基础知识和基本方法:数学归纳法证明不等式.doc
不等式证明的基本方法
不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
证明基本不等式的方法
证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。
在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。
首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。
接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。
最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。
2.递推法:递推法是证明基本不等式的另一种常用方法。
我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。
然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。
最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。
3.反证法:反证法是证明基本不等式的另一种有效方法。
我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。
接着,我们通过一系列的推导和推理,得出矛盾的结论。
这表明我们的假设是错误的,即不等式是成立的。
4.变量替换法:变量替换法是证明基本不等式的一种常用方法。
我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。
然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。
5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。
我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。
然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。
无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。
此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。
在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。
(完整版)不等式知识结构及知识点
o 不等式知识结构及知识点总结一.知识结构二.知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)a b b a >⇔>,a b b c a c >>⇒>a b a c b c>⇔+>+(同向可加性) (异向可减性)d b c a d c b a +>+⇒>>,db c a d c b a ->-⇒<>,④(可积性) bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性) (异向正数可除性)0,0a b c d ac bd >>>>⇒>0,0a b a b c d c d>><<⇒>⑥(平方法则) ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且0,1)a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①,(当且仅当时取号).变形公式:()222a b ab a b R +≥∈,a b =""=o 22.2a b ab +≤②(基本不等式),(当且仅当时取到等号).2a b+≥()a b R +∈,a b =变形公式:用基本不等式求最值时(积定和最小,和定a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当3a b c ++()a b c R +∈、、时取到等号).a b c ==④(当且仅当时取到等号).()222a b c ab bc ca a b R ++≥++∈,a b c ==⑤(当且仅当时取到等号).3333(0,0,0)a b c abc a b c ++≥>>>a b c ==⑥(当仅当a=b 时取等号)(当仅当a=b 0,2b aab a b>+≥若则0,2b aab a b<+-若则时取等号)⑦其中规律:小于1同加则变大,大于ban b n a m a m b a b <++<<++<1(000)a b m n >>>>,,1同加则变小.⑧ 220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:,(当且1122a b a b --+≤≤+()a b R +∈,仅当时取号).(即调和平均几何平均算术平均平方平均).a b =""=≤≤≤ 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥++++≥1122(,,,).x y x y R ∈④二维形式的柯西不等式当且仅当22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈时,等号成立.ad bc =⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++o r21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使,αβ ,αβαβ⋅≤ βk 时,等号成立.k αβ=⑧排序不等式(排序原理):设为两组实数.是的任一排列,1212...,...n n a a a b b b ≤≤≤≤≤≤12,,...,n c c c 12,,...,n b b b 则(反序和乱序和12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++≤顺序和)≤当且仅当或时,反序和等于顺序和.12...n a a a ===12...n b b b ===⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任()f x 意两点有则称f(x)为凸(或1212,(),x x x x ≠12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131((;242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<等.*,1)k N k >∈>5、一元二次不等式的解法求一元二次不等式解集的步骤:20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩(时同理)<≤“或”规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,1a >()()()()f x g x aa f x g x >⇔>01a <<()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时, ⑵当时,1a >()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩01a <<()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:(0).(0)a a a a a ≥⎧=⎨-<⎩22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①②(0);x a a x a a ≤⇔-≤≤≥(0);x a x a x a a ≥⇔≥≤-≥或③④()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标20ax bx c ++>准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.a ∆14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时20ax bx c ++>0a =②当时 ⑵不等式的解集是全0,0;b c ⇒=>0a ≠00.a >⎧⇒⎨∆<⎩20ax bx c ++<体实数(或恒成立)的条件是:①当时②当时0a =0,0;b c ⇒=<0a ≠00.a <⎧⇒⎨∆<⎩⑶恒成立恒成立()f x a <max ();f x a ⇔<()f x a ≤max ();f x a ⇔≤⑷恒成立恒成立()f x a >min ();f x a ⇔>()f x a ≥min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线的同一侧的所有点的坐标代入0Ax By C ++=后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取Ax By C ++一特殊点(如原点),由的正负即可判断出或00(,)x y 00Ax By C ++0Ax By C ++>(表示直线哪一侧的平面区域.0)<即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,0Ax By C ++>(0)<B 或表示直线上方的区域;若异号,则表示直线上方的区域.即:同0Ax By C ++>(0)<号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数为常数)的最值:z Ax By =+(,A B 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,z Ax By =+x y 、则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值z z z 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直0:0l Ax By +=线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,0l 0l (,)x y 将最优解代入目标函数即可求出最大值或最小值 .(,)x y z Ax By =+第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.z A z y x B B =-+zB①若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B >z Ax By =+z 大值,使直线的纵截距最小的角点处,取得最小值;z ②若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B <z Ax By =+z 小值,使直线的纵截距最小的角点处,取得最大值.z ⑷常见的目标函数的类型:①“截距”型: ②“斜率”型:或;z Ax By =+yz x =;y b z x a-=-③“距离”型:或 或22z x y =+z =22()()z x a y b =-+-z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.16. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注值?(一正、意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。
归纳法证明不等式用归纳法证明不等式
归纳假设
提出归纳假设
根据已知条件和不等式的性质,提出一个归纳假设,即假设在某个条件下不等 式成立。
验证归纳假设
验证在初始条件下,归纳假设成立。
归纳步骤
归纳递推
根据归纳假设,推导出在更广泛的情况下不等式也成立。
完成证明
通过递推和归纳,最终完成对不等式的证明。
CHAPTER 03
归纳法证明不等式的例子
归纳法证明
利用数学归纳法证明平方和公式,首先需要证明基础步骤,即当$n=1$时,公式成立。然后通过假设 当$n=k$时公式成立,推导出当$n=k+1$时公式也成立。最后,根据数学归纳法,可以得出平方和公 式对于所有正整数$n$都成立。
CHAPTER 04
归纳法证明不等式的注意事 项
初始基础要正确
确定初始基础
在开始归纳法之前,确保选择正确的初 始基础,这可以是已知的不等式或数学 定理。
VS
检查基础条件
确保所选择的初始基础是正确的,并且满 足所给定的条件。
归纳假设要合理
要点一
选择归纳假设
选择一个合理的归纳假设,以便在归纳步骤中使用。
Hale Waihona Puke 要点二验证归纳假设
确保所选择的归纳假设是正确的,并且满足所给定的 条件。
归纳法证明
利用数学归纳法证明等比数列求和公式,首先需要证明基础步骤,即当$n=1$时,公式成立。然后通过假设当 $n=k$时公式成立,推导出当$n=k+1$时公式也成立。最后,根据数学归纳法,可以得出公式对于所有正整数 $n$都成立。
利用数学归纳法证明平方和公式
平方和公式
平方和公式是指一个数列中所有数的平方和的极限存在时,该极限等于数列的各项的平方和。
高中数学 第二节 证明不等式的基本方法、数学归纳法证明不等式课件 新人教A版选修4-5
ab
ab 2 abba.
【拓展提升】比较法证明不等式的方法与步骤 1.作差比较法 (1)作差比较法的一般步骤是:作差、变形、判断符号、得出 结论.其中,变形整理是关键,变形的目的是为了判断差的符号,常 用的变形方法有:因式分解、配方、通分、拆项、添项等. (2)若所证不等式的两边是整式或分式多项式时,常用作差比 较法.
第二节 证明不等式的基本方法、数学 归纳法证明不等式
1.比较法证明不等式可分为作差比较法和作商比较法两种
理论依 据
适用类 型
作差比较法 a>b⇔_a_-_b_>_0_ a<b⇔_a_-_b_<_0_ a=b⇔_a_-_b_=_0_
作商比较法 b>0, a >1⇒a>b
b
b<0, a >1⇒a<b
(5)数学归纳法的第一步n的初始值一定为1.( )
【解析】(1)错误.若x-y<0,则有x+2y<x-y.
(2)正确.∵a>b>-1,∴a+1>b+1>0, 1 1 .
a 1 b 1
(3)错误.
b1b a1 a
a∵aba>b1a>, 0,∴a-b<0,
a(a+1)>0,b1b,st.
a1 a
(4)错误.该不等式无论用作差法还是作商法都不好证明,最好
【互动探究】在本例(2)的条件下,证明
ab
ab 2
abba.
【证明】
abba
ab
ab 2
ba ab
a 2 b 2
(b)a2b, a
当a=b时,( b
)
a
2
高中数学人教B版选修4-5教师用书:3.2 用数学归纳法证明不等式贝努利不等式 Word版含解析
3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式1.会用数学归纳法证明简单的不等式.2.会用数学归纳法证明贝努利不等式;了解贝努利不等式的应用条件.[基础·初探]教材整理1用数学归纳法证明不等式在不等关系的证明中,有多种多样的方法,其中数学归纳法是最常用的方法之一,在运用数学归纳法证不等式时,推导“k+1”成立时其他的方法如比较法、分析法、综合法、放缩法等常被灵活地运用.教材整理2贝努利不等式1.定理1(贝努利不等式)设x>-1,且x≠0,n为大于1的自然数,则(1+x)n>1+nx.2.定理2(选学)设α为有理数,x>-1,(1)如果0<α<1,则(1+x)α≤1+αx;(2)如果α<0或者α>1,则(1+x)α≥1+αx.当且仅当x=0时等号成立.事实上,当α是实数时,也是成立的.,则2n与n的大小关系是()设n∈N+A.2n>nB.2n<nC.2n =nD.不确定【解析】2n =(1+1)n ,根据贝努利不等式有(1+1)n ≥1+n ×1=1+n ,上式右边舍去1,得(1+1)n >n ,即2n >n .【答案】A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]已知S n =1+12+13+…+1n (n >1,n ∈N +),求证:S 2n >1+n2(n ≥2,n ∈N+).【精彩点拨】求S n 再证明比较困难,可运用数学归纳法直接证明,注意S n表示前n 项的和(n >1),首先验证n =2,然后证明归纳递推.【自主解答】(1)当n =2时,S 22=1+12+13+14=2512>1+22,即n =2时命题成立.(2)假设n =k (k ≥2,k ∈N +)时命题成立,即S 2k =1+12+13+…+12k >1+k2. 当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12.故当n =k +1时,命题也成立.由(1)(2)知,对n ∈N +,n ≥2,S 2n >1+n2都成立.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为12k +1,实际上应为12k +1;二是12k +1+12k +2+…+12k +1共有多少项之和,实际上 2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k .[再练一题]1.若在本例中,条件变为“设f (n )=1+12+13+…+1n (n ∈N +),由f (1)=1>12,f (3)>1,f (7)>32,f (15)>2,…” .试问:你能得到怎样的结论?并加以证明.【解】数列1,3,7,15,…,通项公式为a n =2n -1,数列12,1,32,2,…,通项公式为a n =n2,∴猜想:f (2n -1)>n2.下面用数学归纳法证明:①当n =1时,f (21-1)=f (1)=1>12,不等式成立. ②假设当n =k (k ≥1,k ∈N +)时不等式成立, 即f (2k -1)>k2,则f (2k +1-1)=f (2k-1)+12k+12k +1+…+12k +1-2+12k +1-1>f (2k-1)+=f (2k-1)+12>k 2+12=k +12.∴当n =k +1时不等式也成立.据①②知对任何n ∈N +原不等式均成立.设P n =(1+x )n,Q n =1+nx +2x 2,n ∈N +,x ∈(-1,+∞),试比较P n 与Q n 的大小,并加以证明.【导学号:38000059】【精彩点拨】本题考查数学归纳法的应用,解答本题需要先对n 取特殊值,猜想P n 与Q n 的大小关系,然后利用数学归纳法证明.【自主解答】(1)当n =1,2时,P n =Q n . (2)当n ≥3时,(以下再对x 进行分类). ①若x ∈(0,+∞),显然有P n >Q n . ②若x =0,则P n =Q n . ③若x ∈(-1,0),则P 3-Q 3=x 3<0,所以P 3<Q 3.P 4-Q 4=4x 3+x 4=x 3(4+x )<0,所以P 4<Q 4. 假设P k <Q k (k ≥3),则P k +1=(1+x )P k <(1+x )Q k =Q k +xQ k=1+kx +k (k -1)x 22+x +kx 2+k (k -1)x 32=1+(k +1)x +k (k +1)2x 2+k (k -1)2x 3=Q k +1+k (k -1)2x 3<Q k +1, 即当n =k +1时,不等式成立. 所以当n ≥3,且x ∈(-1,0)时,P n <Q n .1.利用数学归纳法比较大小,关键是先用不完全归纳法归纳出两个量的大小关系,猜测出证明的方向,再用数学归纳法证明结论成立.2.本题除对n 的不同取值会有P n 与Q n 之间的大小变化,变量x 也影响P n 与Q n 的大小关系,这就要求我们在探索大小关系时,不能只顾“n ”,而忽视其他变量(参数)的作用.[再练一题]2.已知数列{a n },{b n }与函数f (x ),g (x ),x ∈R ,满足条件:b 1=b ,a n =f (b n )=g (b n +1)(n ∈N +),若函数y =f (x )为R 上的增函数,g (x )=f -1(x ),b =1,f (1)<1,证明:对任意x ∈N +,a n +1<a n .【证明】因为g (x )=f -1(x ),所以a n =g (b n +1) =f -1(b n +1),即b n +1=f (a n ).下面用数学归纳法证明a n +1<a n (n ∈N +). (1)当n =1时,由f (x )为增函数,且f (1)<1,得 a 1=f (b 1)=f (1)<1, b 2=f (a 1)<f (1)<1, a 2=f (b 2)<f (1)=a 1, 即a 2<a 1,结论成立.(2)假设n =k 时结论成立,即a k +1<a k .由f (x )为增函数,得f (a k +1)<f (a k ),即b k +2<b k +1. 进而得f (b k +2)<f (b k +1),即a k +2<a k +1. 这就是说当n =k +1时,结论也成立. 根据(1)和(2)可知,对任意的n ∈N +,a n +1<a n .设n 为正整数,记a n =⎝ ⎭⎪⎫1+1n n +1,n =1,2,3,….求证:a n +1<a n .【精彩点拨】用求商比较法证明a n +1<a n ,其中要用贝努利不等式. 【自主解答】 由a n 的意义知对一切n =1,2,3,…都成立. ∴只需证明a na n +1>1,n =1,2,3,….由于a n a n +1=⎝ ⎛⎭⎪⎫1+1n n +1⎝ ⎛⎭⎪⎫1+1n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+1n 1+1n +1×⎝ ⎛⎭⎪⎫1+1n +1-1 =⎣⎢⎢⎡⎦⎥⎥⎤(n +1)(n +1)n (n +2)×n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+n (n +2)n (n +2)×n +1n +2=⎣⎢⎡⎦⎥⎤1+1n (n +2)×n +1n +2,因此,根据贝努利不等式, 有a na n +1>⎣⎢⎡⎦⎥⎤1+(n +1)×1n (n +2)×n +1n +2>⎝ ⎛⎭⎪⎪⎫1+n +1n 2+2n +1×n +1n +2 =⎝ ⎛⎭⎪⎫1+1n +1×n +1n +2=1.∴a n >a n +1对于一切正整数n 都成立.本题在证明的过程中,综合运用了求商比较法,放缩法,进而通过贝努利不等式证明不等式成立.[再练一题]3.设a 为有理数,x >-1.如果0<a <1,证明:(1+x )a ≤1+ax ,当且仅当x =0时等号成立.【证明】 0<a <1,令a =mn ,1≤m <n ,其中m ,n 为正整数,则由平均值不等式,得(1+x )a=(1+x )mn=≤m (1+x )+(n -m )n =mx +n n =1+m n x =1+ax ,当且仅当1+x =1,即x =0时,等号成立.[探究共研型]探究【提示】 放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标.而且要恰到好处,目标往往要从证明的结论考虑.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122;将分子或分母放大(缩小):1k2<1k(k-1),1k2>1k(k+1),1k<2k+k-1,1k>2k+k+1(k∈R,k>1)等.证明:2n+2>n2(n∈N+).【精彩点拨】验证n=1,2,3时不等式成立⇒假设n=k成立,推证n=k+1⇒n=k+1成立,结论得证【自主解答】(1)当n=1时,左边=21+2=4;右边=1,左边>右边;当n=2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.因此当n=1,2,3时,不等式成立.(2)假设当n=k(k≥3且k∈N+)时,不等式成立,即2k+2>k2(k∈N+).当n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)≥k2+2k+1=(k+1)2.(因为k≥3,则k-3≥0,k+1>0)所以2k+1+2>(k+1)2,故当n=k+1时,原不等式也成立.根据(1)(2)知,原不等式对于任何n∈N+都成立.1.本例中,针对目标k2+2k+1,由于k的取值范围(k≥1)太大,不便于缩小.因此,用增加奠基步骤(把验证n=1扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.2.利用数学归纳法证明数列型不等式的关键是由n=k到n=k+1的变形.为满足题目的要求,常常要采用“放”与“缩”等手段,但是放缩要有度,这是一个难点,解决这个难题一是要仔细观察题目结构,二是要靠经验积累.[再练一题]4.设x>-1,且x≠0,n为大于1的自然数,用数学归纳法证明(1+x)n>1+nx.【证明】(1)当n=2时,由x≠0,知(1+x)2=1+2x+x2>1+2x,因此n=2时命题成立.(2)假设n=k(k≥2为正整数)时命题成立,即(1+x)k>1+kx,则当n=k+1时,(1+x)k+1=(1+x)k(1+x)>(1+kx)(1+x)=1+x+kx+kx2>1+(k+1)x.即n=k+1时,命题也成立.由(1)(2)及数学归纳法知原命题成立.探究2【提示】利用数学归纳法解决探索型不等式的思路是先通过观察、判断,猜想出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探索型问题时.若不等式1n +1+1n +2+1n +3+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明你的结论.【导学号:38000060】【精彩点拨】先通过n 取值计算,求出a 的最大值,再用数学归纳法进行证明,证明时,根据不等式特征,在第二步,运用比差法较方便.【自主解答】当n =1时,11+1+11+2+13×1+1>a24,则2624>a24,∴a <26. 又a ∈N +,∴取a =25.下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524.(1)n =1时,已证.(2)假设当n =k 时(k ≥1,k ∈N +),1k +1+1k +2+…+13k +1>2524,∴当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +1+13k +2+13k +3+13(k +1)+1=⎝ ⎛⎭⎪⎫1k +1+1k +2+…+13k +1+⎝ ⎛ 13k +2+13k +3+⎭⎪⎫13k +4-1k +1 >2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23(k +1). ∵13k +2+13k +4=6(k +1)9k 2+18k +8>23(k +1),∴13k +2+13k +4-23(k +1)>0,∴1(k +1)+1+1(k +1)+2+…+13(k +1)+1>2524也成立.由(1)(2)可知,对一切n ∈N +, 都有1n +1+1n +2+…+13n +1>2524, ∴a 的最大值为25.1.不完全归纳的作用在于发现规律,探究结论,但结论必须证明.2.本题中从n =k 到n =k +1时,左边添加项是13k +2+13k +3+13k +4-1k +1,这一点必须清楚.[再练一题]5.设a n =1+12+13+…+1n (n ∈N +),是否存在n 的整式g (n ),使得等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)对大于1的一切正整数n 都成立?证明你的结论.【解】假设g (n )存在,那么当n =2时, 由a 1=g (2)(a 2-1),即1=g (2)⎝ ⎛⎭⎪⎫1+12-1,∴g (2)=2;当n =3时,由a 1+a 2=g (3)(a 3-1), 即1+⎝ ⎛⎭⎪⎫1+12=g (3)⎝ ⎛⎭⎪⎫1+12+13-1, ∴g (3)=3,当n =4时,由a 1+a 2+a 3=g (4)(a 4-1), 即1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+13=g (4)⎝ ⎛⎭⎪⎫1+12+13+14-1,∴g (4)=4,由此猜想g (n )=n (n ≥2,n ∈N +). 下面用数学归纳法证明:当n ≥2,n ∈N +时,等式a 1+a 2+a 3+…+a n -1=n (a n -1)成立. (1)当n =2时,a 1=1, g (2)(a 2-1)=2×⎝ ⎛⎭⎪⎫1+12-1=1, 结论成立.(2)假设当n =k (k ≥2,k ∈N +)时结论成立, 即a 1+a 2+a 3+…+a k -1=k (a k -1)成立, 那么当n =k +1时,a 1+a 2+…+a k -1+a k =k (a k -1)+a k =(k +1)a k -k =(k +1)a k -(k +1)+1=(k +1)⎝⎛⎭⎪⎫a k +1k +1-1=(k +1)(a k +1-1), 说明当n =k +1时,结论也成立,由(1)(2)可知,对一切大于1的正整数n ,存在g (n )=n 使等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)成立.[构建·体系]1.用数学归纳法证不等式:1+12+14+…+12n -1>12764成立,起始值至少取( )A.7B.8C.9D.10【解析】左边等比数列求和S n =1-⎝ ⎛⎭⎪⎫12n1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n >12764, 即1-⎝ ⎛⎭⎪⎫12n >127128,⎝ ⎛⎭⎪⎫12n<1128,∴⎝ ⎛⎭⎪⎫12n<⎝ ⎛⎭⎪⎫127,∴n >7, ∴n 取8,选B. 【答案】B2.用数学归纳法证明2n ≥n 2(n ≥5,n ∈N +)成立时第二步归纳假设的正确写法是( )A.假设n =k 时命题成立B.假设n =k (k ∈N +)时命题成立C.假设n =k (k ≥5)时命题成立D.假设n =k (k >5)时命题成立【解析】 由题意知n ≥5,n ∈N +, 故应假设n =k (k ≥5)时命题成立. 【答案】 C3.用数学归纳法证明不等式1n +1+1n +2+…+12n >1314(n ≥2,n ∈N +)的过程中,由n =k 递推到n =k +1时不等式左边( )【导学号:38000061】A.增加了一项12(k +1)B.增加了两项12k +1,12k +2C.增加了两项12k +1,12k +2,但减少了一项1k +1D.以上各种情况均不对 【解析】∵n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2, ∴增加了两项12k +1,12k +2,少了一项1k +1.【答案】C4.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)”时,第一步的验证为________.【解析】当n =1时,21+1≥12+1+2,即4≥4成立. 【答案】21+1≥12+1+2 5.试证明:1+12+13+…+1n <2n (n ∈N +). 【证明】(1)当n =1时,不等式成立.(2)假设n =k (k ≥1,k ∈N +)时,不等式成立,即 1+12+13+…+1k<2k . 那么n =k +1时, ⎝⎛⎭⎪⎫1+12+13+…+1k +1k +1<2k +1k +1=2k (k +1)+1k +1<k +(k +1)+1k +1=2k +1.这就是说,n=k+1时,不等式也成立.根据(1)(2)可知,不等式对n∈N+成立.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
如何巧妙使用数学归纳法
如何巧妙使用数学归纳法一、数学归纳法的基本概念知识点:数学归纳法的定义知识点:数学归纳法的基本步骤知识点:数学归纳法的证明形式二、数学归纳法的应用领域知识点:数学归纳法在数列中的应用知识点:数学归纳法在几何中的应用知识点:数学归纳法在代数中的应用知识点:数学归纳法在微积分中的应用三、数学归纳法的证明过程知识点:数学归纳法的第一步——验证基础情况知识点:数学归纳法的第二步——假设命题在基础情况成立知识点:数学归纳法的第三步——证明当命题在基础情况成立时,命题在下一情况也成立知识点:数学归纳法的证明方法——直接证明法和反证法四、数学归纳法的巧妙使用知识点:数学归纳法在证明恒等式中的应用知识点:数学归纳法在证明不等式中的应用知识点:数学归纳法在证明函数性质中的应用知识点:数学归纳法在解决递推式中的应用五、数学归纳法的局限性知识点:数学归纳法只能证明与自然数有关的命题知识点:数学归纳法不能证明与特定个体有关的命题知识点:数学归纳法不能证明与具体情境有关的命题六、数学归纳法的拓展知识点:双向数学归纳法知识点:数学归纳法的推广形式——归纳法知识点:数学归纳法与数学逻辑的关系七、数学归纳法的教学策略知识点:引导学生理解数学归纳法的基本概念知识点:通过实例让学生掌握数学归纳法的证明过程知识点:培养学生运用数学归纳法解决实际问题的能力知识点:引导学生反思数学归纳法的局限性,提高思维品质八、数学归纳法的评价与反思知识点:评价学生掌握数学归纳法的情况知识点:反思数学归纳法在教学中的优点和不足知识点:探讨数学归纳法在数学发展中的作用和地位综上所述,数学归纳法是一种重要的数学证明方法,通过理解其基本概念、掌握证明过程和巧妙使用,可以解决许多与自然数有关的数学问题。
在教学过程中,教师应引导学生深入理解数学归纳法,通过实例让学生掌握其证明过程,并培养学生运用数学归纳法解决实际问题的能力。
同时,也要让学生了解数学归纳法的局限性,从而提高他们的数学思维品质。
利用数学归纳法证明不等式的基本技巧
利用数学归纳法证明不等式的基本技巧利用数学归纳法证明不等式的基本技巧:1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。
为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。
作商时,需要满足两者均为正数。
2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。
综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论 B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。
4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。
5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。
常用的带有常数项的恒等式,可由题目中的条件变形得到,也可用常用的公式或公式变形。
7、几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法。
不等式证明基本方法
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
数学归纳法证明不等式的两个技巧
数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。
它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。
下面将介绍两种常用的数学归纳法证明不等式的技巧。
技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。
例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。
基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。
技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。
然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。
例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。
根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。
根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。
综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。
这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。
不等式证明方法大全
不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
:数学归纳法证明不等式
第四讲:数学归纳法证明不等式数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。
数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。
本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比与猜想、抽象与概括、从特殊到一般等数学思想方法。
在用数学归纳法证明不等式的具体过程中,要注意以下几点:(1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征;(2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置;(4)有的试题需要先作等价变换。
例题精讲例1、用数学归纳法证明n n n n n 212111211214131211+++++=--++-+-分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明:1︒当n=1时,左边=1-21=21,右边=111+=21,所以等式成立。
2︒假设当n=k 时,等式成立,即k k k k k 212111211214131211+++++=--++-+-。
那么,当n=k+1时,221121211214131211+-++--++-+-k k k k 221121212111+-+++++++=k k k k k )22111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21121213121+++++++++=k k k k k这就是说,当n=k+1时等式也成立。
综上所述,等式对任何自然数n 都成立。
点评:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确.要证明的等式左边共2n 项,而右边共n 项。
不等式求解方法归纳
一、不等式基本知识1、基本性质性质一:a b b a <⇔>(对称性) 性质二:c a c b b a >⇒>>,,(传递性) 性质三:c b c a b a +>+⇔>性质四:bc ac c b a bc ac c b a <⇔<>>⇔>>0,;0, 2、运算性质d b c a d c b a +>+⇒>>,(加法法则);bd ac d c b a >⇒>>>>0,0(乘法法则) nnba N nb a >⇒∈>>+,0(乘方法则);nnba N nb a >⇒∈>>+,0(开方法则)3、常用不等式 (1)ab b a b a ≥+≥+222)2(2(2)||222ab b a ≥+ 取等号条件:一正、二定、三相等 (3)2|1|≥+xx (4)若ma mb a b m b a ++<>>>,0,0(5)n n n x x x n x x x x ⋅⋅⋅⋅⋅⋅⋅≥+⋅⋅⋅+++21321(0≥i x )二、不等式的证明方法常用的方法有:比较法、分析法、综合法、归纳法、反证法、类比法、放缩法、换元法、判别式法、导数法、几何法、构造函数、数轴穿针法等。
1、比较法例1、若,0,0>>b a 求证:b a baab+≥+22。
证明:abb a b a b a abb ab a b a b a baab22222))(()())(()(-+=+-+-+=+-+0≥,∴b a abba+≥+22。
2、分析法例2已知y x b a ,,,都是正实数,且.,11y x b a >>求证:yb y xa x +>+。
解: y x b a ,,,都是正实数,∴要证yb y xa x +>+,只要证)()(x a y y b x +>+,即证ay bx >,也就是abay abbx >,即,by ax >而由.,11y x ba>>,知by ax >成立,原式得证。
高中数学第四讲数学归纳法证明不等式1数学归纳法素材
4。
1 数学归纳法庖丁巧解牛知识·巧学一、数学归纳法的定义证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性:(1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立。
完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法。
从数学归纳法的定义我们可以看出,它强调的就是两个基本步骤.数学归纳法的两个步骤,是问题的两个方面,一个是命题成立的基础,一个是命题之间可递推的依据,二者缺一不可。
缺步骤(2),则证明就是“一叶障目,以一代全”不能保证命题对所有的自然数n 都成立;而缺步骤(1),则证明就成了“空中楼阁",也难以保证命题对所有自然数n都成立.我们通常称第(1)步为奠基步骤。
记忆要诀总结以上的分析,归纳如下:“奠基步骤不能少,归纳假设要用到,结论写明莫忘掉."如果同学们能正确地理解了数学归纳法证明的要义,才能轻松自如地运用它,而不致误用.误区警示数学归纳法的两个步骤,是问题的两个方面,一个是命题成立的基础,一个是命题之间可递推的依据,二者缺一不可.疑问:既然第(2)步已经证明了任两个连续自然数对应的命题的递推关系,那么第(1)步是否是多余的?请看如下例子:对于欲证的命题:1+2+3+…+n=21n (n+1)+1。
第二步证明为:若n=k 时命题成立,即1+2+3+…+k=21k(k+1)+1, 则当n=k+1时,1+2+3+…+k+(k+1)=21k (k+1)+1+(k+1)=21(k+1)(k+2)+1,即当n=k+1时命题也成立.但我们会发现:当n=1时,左式=1,右式=2,显然命题不成立。
辨析比较归纳法与数学归纳方法我们在研究问题时,还常常用到如下的一种思维方法,即从特殊到一般的思维方法,举例如下:1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42, …,我们由此发现并得出如下结论: 1+2+3+…+(n-1)+n+(n —1)+…+3+2+1=n 2(n ∈N ).这就是考察具有1+2+3+…+(n —1)+n+(n —1)+…+3+2+1特征的某几个式子的数值后,发现了蕴含其中的共性之后而得到的一个结论。
第二节证明不等式的基本方法、数学归纳法证明不等式
(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a
数学归纳法证明不等式
01
02
03
例子一:n=5时的情况
假设n=10时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} geq b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 + b_9 + b_{10}$。
02
CHAPTER
数学归纳法证明不等式的步骤
验证基础情况
首先验证n=1时,不等式是否成立。
基础情况成立
如果基础情况成立,则可以继续进行归纳步骤。
初始步骤
归纳步骤
归纳假设
假设当n=k时,不等式成立,即$P(k)$成立。
归纳推理
基于归纳假设,推导当n=k+1时,不等式也成立,即$P(k+1)$成立。
应用归纳假设
在归纳推理过程中,需要利用归纳假设$P(k)$来推导$P(k+1)$。
要点一
要点二
完成归纳
当归纳步骤完成后,可以得出结论,对于任意正整数n,不等式都成立。
归纳假设的应用
03
CHAPTER
应用数学归纳法证明不等式的例子
假设n=5时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 geq b_1 + b_2 + b_3 + b_4 + b_5$。
确定数列的通项公式
通过数学归纳法,可以证明数列的通项公式,进而研究数列的性质和规律。
不等式的数学运算法则与证明技巧
不等式的数学运算法则与证明技巧不等式在数学中扮演着重要的角色,它们广泛应用于各个领域,如代数、几何、概率等。
了解不等式的数学运算法则和证明技巧,对于解决问题和推导结论具有重要意义。
本文将介绍一些常见的不等式运算法则和证明技巧,帮助读者更好地理解和应用不等式。
一、不等式的基本运算法则1. 加法和减法法则:对于任意实数a、b和c,有以下运算法则:a > b,则a + c >b + ca > b,则a - c >b - c2. 乘法法则:对于任意实数a、b和c,有以下运算法则:a > b,且c > 0,则ac > bca > b,且c < 0,则ac < bc3. 除法法则:对于任意实数a、b和c,有以下运算法则:a > b,且c > 0,则a/c > b/ca > b,且c < 0,则a/c < b/c4. 幂法则:对于任意正实数a、b和c,有以下运算法则:a > b,则a^c > b^c这些基本的不等式运算法则可以帮助我们进行不等式的简化和变形,从而更好地理解和解决问题。
二、常见的不等式证明技巧1. 数学归纳法:数学归纳法是一种常用的证明技巧,可以用来证明一类不等式的成立。
它包括两个步骤:基础步骤和归纳步骤。
首先证明当n取某个特定值时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立,由此可以得出当n为任意正整数时不等式成立。
2. 反证法:反证法是一种常用的证明技巧,可以用来证明某个不等式的否定命题不成立。
假设不等式的否定命题成立,然后通过推理和推导得出矛盾,从而证明原不等式成立。
3. 极值法:极值法是一种常用的证明技巧,可以用来证明某个不等式的最大或最小值。
通过求导或其他方法找到函数的极值点,然后证明在极值点附近不等式成立,从而得出结论。
4. 增减函数法:增减函数法是一种常用的证明技巧,可以用来证明某个不等式随变量的增大或减小而成立。
基本不等式的证明方法
基本不等式的证明方法简介基本不等式是解决数学问题中经常用到的重要工具。
本文将介绍一些基本不等式的证明方法,帮助读者更好地理解和运用这些不等式。
方法一:数学归纳法证明数学归纳法是证明数学命题的一种常用方法。
在证明基本不等式时,我们可以运用数学归纳法来逐步推导不等式的成立。
首先,我们将基本不等式的初始条件表示为一个式子,通常为n = 1 或 n = 2。
然后,我们假设当 n = k 时不等式成立,即假设我们已经证明了 n = k 的情况。
接下来,我们需要证明当 n = k + 1 时,不等式仍然成立。
我们可以通过运用数学运算、代入等方法来完成这一步骤。
最后,通过证明初始条件成立,我们可以得出结论,即基本不等式对于所有的正整数 n 都成立。
方法二:几何证明法几何证明法是基于几何形状和图形的性质来证明数学命题的一种方法。
在证明基本不等式时,我们可以通过构建合适的几何形状和图形来解释不等式的成立原理。
举个例子,我们来证明三角形的三边关系,即 a + b > c,其中a、b、c 分别为三角形的三条边长。
我们可以通过构建一个合适的三角形,并进一步分析其边长关系来证明这个不等式的成立。
方法三:代数证明法代数证明法是通过代数运算和方程的性质来证明数学命题的一种方法。
在证明基本不等式时,我们可以使用代数法来进行求解和证明。
例如,要证明 (a + b)^2 >= 4ab,我们可以展开左边的平方项,并进行运算和化简,最终得到不等式成立的形式。
通过适当的代数变换和运算,我们可以证明这个基本不等式的成立。
方法四:数学逻辑证明法数学逻辑证明法是运用数学逻辑原理和推理规则来证明数学命题的一种方法。
在证明基本不等式时,我们可以运用逻辑原理和推理规则来推导不等式的成立。
通过运用严谨的数学推理,我们可以将基本不等式分解为一系列等价的数学命题,然后逐步推导得出不等式的成立。
这种证明方法需要严谨的逻辑思维和推理能力,但能够确保证明的准确性和合理性。
数列不等式的证明方法
数列不等式的证明方法一、数学归纳法:数学归纳法是一种证明数学命题的方法,常用于证明数列不等式的成立。
1.基本思路:数学归纳法证明数列不等式的基本思路如下:(1)首先,证明当n=1时命题成立;(2)然后,假设当n=k时命题成立,即假设P(k)成立;(3)最后,证明当n=k+1时命题也成立,即证明P(k+1)成立。
2.具体操作步骤:(1)证明当n=1时命题成立;(2)假设当n=k时命题成立,即假设P(k)成立;(3)证明当n=k+1时命题也成立,即证明P(k+1)成立。
3.举例说明:以证明斐波那契数列F(n)的递推形式F(n)=F(n-1)+F(n-2)为例。
(1)首先,证明当n=1时命题成立。
易知F(1)=1,F(0)=0,F(1)=F(0)+F(-1)成立。
(2)假设当n=k时命题成立,即假设F(k)=F(k-1)+F(k-2)成立。
(3)证明当n=k+1时命题也成立,即证明F(k+1)=F(k)+F(k-1)成立。
根据假设,F(k+1)=F(k)+F(k-1)成立,所以命题成立。
二、递推法:递推法的证明思路是通过已知条件和递推关系来逐步推导出结论。
1.基本思路:递推法证明数列不等式的基本思路如下:(1)首先,根据数列的递推关系列出递推式;(2)然后,推导出递推式的通项公式;(3)最后,利用递推式的通项公式证明数列不等式的成立。
2.具体操作步骤:(1)根据数列的递推关系列出递推式;(2)推导出递推式的通项公式;(3)利用递推式的通项公式证明数列不等式的成立。
3.举例说明:以证明斐波那契数列F(n)的递推式F(n)=F(n-1)+F(n-2)为例。
(1)根据递推关系列出递推式:F(n)=F(n-1)+F(n-2);(2)推导出递推式的通项公式:解这个递推方程得到F(n)=A*φ^n+B*λ^n,其中A、B为常数,φ和λ为一元二次方程x^2-x-1=0的两个根,φ≈1.618,λ≈-0.618;(3)利用递推式的通项公式证明数列不等式的成立:证明F(n)>n,通过证明A*φ^n+B*λ^n>n,根据递推式的通项公式可得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学归纳法证明不等式
互动思维导图
基础知识和基本方法
数学归纳法的基本原理、步骤和使用范围
(1) 在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊, 归纳法是由特殊到一•般.由一•系列有限的特殊事例得出一•般结论的推理方法,通 常叫归纳法。
在归纳肘,如果逐个考察了某类事件的所有可能情况,因而得出一 般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果 考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这 时得出的结论不一定可靠。
数学问题中,有一类问题是与自然数有关的命题,因 为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归 纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一•定可靠的
例如一个数列的通项公式是a n =(n 2 -5/i + 5)2
容易验证a 2=l, a. =1, =1,如果由此作出结论 ---- 对于任何ne N 二(〃2 _5〃 + 5)2=1都成立,那是错误的.
事实上,角=25纣.
因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑 严谨性要求的新的方法一一数学归纳法.
(2) 数学归纳法是一•种重要的数学证明方法,其中递推思想起主要作用。
形象 地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有 无限多张牌的多米诺骨牌游戏,其核心是归纳递推.
一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立 时,可以用一下两个步骤:(1)证明当〃二〃。
(例如〃。
=1或2等)时命题成立;
归纳、狷想、证明一方法
由有限证无限一一思想
证明恒等式或整除
证明不等式
(2)假设汽〃=k (kwN+,且k>n0 )时命题成立,证明当n = k+l时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于〃。
所有自然数都成立. 这种证明方法称为数学归纳法.
自然数公理(皮亚诺公理)中的〃归纳公理〃是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数〃有关的命题.这里的〃是任意的正整数,它可取无限多个值.
附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.
任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个〃直接后续〃数,并且满足下列公理:
%11是一个自然数;
%1在自然数集合111,每个自然数a有一个确定〃直接后续〃数a';
%1aS,即1不是任何自然数的〃直接后续〃数;
%1由a'如推出a由这就是说,每个自然数只能是另一个自然数的〃直接后续〃数;
%1设M是自然数的一个集合,如果它具有下列性质:(I )自然数1属于M,(II)如果自然数a属于M,那么它的一个〃直接后续〃数a'也属于M,则集合M 包含一切自然数.
其中第5条公理又叫做归纳公理,它是数学归纳法的依据.
(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数〃的命题都可以用数学归纳法证明.
例如用数学归纳法证明(1+上)〃(心N.)的单调性就难以实现.一般来说, n
从S〃到卜〃+1肘,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.
例3下列式子对于任意的〃 6 N +都成立吗?
5n~一7〃
+ 42
① F +22 + 32+ • • • + n2 =
② 1・2 + 2・3 + 3・4 + ・・・ + +1) = 3/22 -3/2 + 2
答:经检验,当g2,3时①②均成立,但〃二4时,就不成立了。
______ 1 〃+2
例1・2用数学归纳法证明:"1+6/ +。
2+...+ W*=a^ne AQ〃.在验证1-6?
〃二1成立时,左边计算的结果是( )
A 1
B 1+ ci
C 1+ Q +。
~
D 1+ ci + ci + a'
解析:左边从1(即。
°)起,每项指数增加1,到最后一项为。
成,因此〃=1时,左边的最后一项为。
2,因此左边计算的结果应为1+0 + 4之
答案:c
例回|用数学归纳法证明3k>n3(n>3,neN)第一•步应验证()
A.〃=l
B.n=2
C.n=3
D.〃=4
解析:由题意知n>3, /.应验证〃=3.
答案:0
机E用数学归纳法证明i+_L+_L+...+_在验证第一步时, 2 3 2"-1
左边的式子应是( )
A 1
B 1+-
C 1+-+-
D 1+1+1 + 1
2 2
3 2 3 4
解析:仔细观察左边,它是以1为首相,后一项的分母比前一项增加1,最
后一项为一1—, 〃=2时•,它的最后一项为左边为i+L + L 2"-1 3 2 3 答案:B
例1-5|用数学归纳法证明(〃+1)(〃+2)...(〃 + 〃)=2“・1・3• (2〃-1)
(住N)成立时,从人到k+1左边需增乘的代数式是( )
2k + 1 2^ + 3
A ——
B 2 (2A+1)
C 2&+1
D 堂一
k + 1 R + 1
解析:要求左辿从k到k+1左边需增乘的代数式可以先写出〃二k时左边二(。
+1) (k+2) ... (k+k),再将左边式子中的〃用上+1来代入,得出n=k+l时左边=3+2)以+3) ... (k+k) (k + k+1) (k + k+2),然后比较两式,得出需增乘(m)(SS2)=2(2化+1),在写〃二化+1时左边的式子时•,需要注意左边k+\
式子的结构,它是R+1个因式的乘积且后一个因式增加1,要避免重复和遗漏.
答案:B
例1.6|已知加)=(2〃+7)・3〃+9,存在自然数m,使得对任意〃e N+,都能使m 整除
J[n),则最大的m的值为()
A.30
B.26
C.36
D.6
解析:・.7(1)=36J(2)=108=3X36J(3)=360=10X36
.・J(1)J(2)J(3)能被36整除,猜想能被36整除.
证明:(1)〃=1,2时,由上得证;
(2)设n=k(k>2)时,
舟0=(2奸7)・3"+9能被36整除,贝山=奸1时,
川t+1)-/(幻=(2奸9)・3好| 一(2奸7)・3*
=(6 奸27)・3*—(2 好7)・3*
=(4 奸20)・3*=36(奸5)・3*一2 (jt>2)
n"+l)能被36整除
由(1) (2)可知,对一•切正整数都有能使36整除爬).
..顶1)不能被大于36的数整除,...所求最大的m值等于36.
答案:C
例1・7|用数学归纳法证明42〃 + 1+3倬能被13整除,其中〃仁N*+・
证明:⑴当〃=1时,42X1+1+3I+2=91能被13整除
(2)假设当n=k时,42x1+3奸2能被13整除,则当n=M时,
42(奸i)+】+3 好3=42奸1.42+3 奸2.3—42奸1.3+42好1.3
=42奸|.13+3«好】+3 奸2)
V42H1-13能被13整除,42*+3奸2能被13整除,
.••当〃=奸1时也成立.
由①②知,当"UN、时,42n+1+3n+2能被13整除。