2020高考数学一轮复习第9章统计统计案例第2讲用样本估计总体学案

合集下载

高考数学一轮复习第2讲 用样本估计总体

高考数学一轮复习第2讲 用样本估计总体

第2讲用样本估计总体1.用样本的频率分布估计总体分布(1)作频率分布直方图的步骤①求极差(01最大值与02最小值的差).03组距与04组数.05分组.06频率分布表.07频率分布直方图.(2)频率分布折线图和总体密度曲线08中点,就得到频率分布折线图.09样本容量的增加,作图时10所分的组数增加,11组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(3)茎叶图12中间的一列数,叶是从茎的13旁边生长出来的数.2.用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x -=14x1+x2+…+xn n ,反映了一组数据的平均水平.(4)标准差:是样本数据到平均数的一种平均距离,s = 15 错误!.(5)方差:s 2=161n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2](x n 是样本数据,n 是样本容量,x -是样本平均数).1.频率分布直方图与众数、中位数与平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.标准差与方差的特点反映了各个样本数据聚集于样本平均数周围的程度.标准差(方差)越小,表明各个样本数据在样本平均数周围越集中;标准差(方差)越大,表明各个样本数据在样本平均数的两边越分散.3.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x -+a .(2)若数据x 1,x 2,…,x n 的方差为s 2,则: ①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数答案 B解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.2.(2020·云川贵百校联考)某课外小组的同学们从社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量/度120140160180200户数2358 2 则这20户家庭该月用电量的众数和中位数分别是()A.180,170 B.160,180C.160,170 D.180,160答案 A解析用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B,C;将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A.3.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为()A.28 B.40 C.56 D.60 答案 B解析设中间一个小长方形的面积为x,其他8个长方形的面积和为52x,因此x+52x=1,所以x=27.所以中间一组的频数为140×27=40.故选B.4.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1C.1 D.10答案 C解析因为数据ax i+b(i=1,2,…,n)的方差是数据x i(i=1,2,…,n)的方差的a2倍,所以所求数据的方差为102×0.01=1.故选C.6.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为 .答案50解析根据题中的频率分布直方图可知,三等品的频率为1-(0.0500+0.0625+0.0375)×5=0.25,因此该样本中三等品的件数为200×0.25=50.多角度探究突破考向一统计图表及应用角度1扇形图例1(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案 A解析设新农村建设前的收入为M,则新农村建设后的收入为2M,新农村建设前种植收入为0.6M,新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A 不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,增加了一倍,所以C正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确.故选A.角度2折线图例2(多选)(2020·海南高考调研)如图所示的折线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的折线图,则下列判断正确的是()A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了1 3B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率答案ABC解析1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例,所以西安市所占比例为3287>13,故A 正确;由折线图可知,1月25日到2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B 正确;2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213-116=97例,故C 正确;2月8日到2月10日西安市新冠肺炎累计确诊病例增加了98-8888=544,2月6日到2月8日西安市新冠肺炎累计确诊病例增加了88-7474=737,显然737>544,故D 错误.角度3 频率分布直方图例3 (1)(2020·天津高考)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .36答案 B解析 根据频率分布直方图可知,直径落在区间[5.43,5.47)之间的频率为(6.25+5.00)×0.02=0.225,则直径落在区间[5.43,5.47)内零件的个数为80×0.225=18.故选B.(2)(多选)(2020·临沂模拟)在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中正确的有( )A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000人C.考生竞赛成绩的平均分约为70.5分D.考生竞赛成绩的中位数为75分答案ABC解析根据频率分布直方图得,成绩出现在[70,80]的频率最大,故A正确;不及格考生数为10×(0.010+0.015)×4000=1000,故B正确;根据频率分布直方图估计考试的平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;0.1+0.15+0.2=0.45<0.5,0.1+0.15+0.2+0.3=0.75>0.5,所以考生竞赛成绩的中位数为70+0.5-0.450.3×10≈71.67,故D错误.故选ABC. 常见统计图的特点(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.(3)准确理解频率分布直方图的数据特点①频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆;②频率分布直方图中各小长方形的面积之和为1,这是解题的关键,常利用频率分布直方图估计总体分布.1.(2020·葫芦岛模拟)书籍是人类的智慧结晶和进步阶梯,阅读是一个国家的文化根基和创造源泉.2014年以来,“全民阅读”连续6年被写入政府工作报告.某高中为了解学生假期自主阅读书籍类型,在全校范围内随机抽取了部分学生进行调查.学生选择的书籍大致分为以下四类:A历史类、B文学类、C科学类、D哲学类.根据调查的结果,将数据整理成如下的两幅不完整的统计图,其中a-b=10.根据上述信息,可知本次随机抽查的学生中选择A历史类的人数为()A.45 B.30C.25 D.22答案 B解析由题可知,样本容量为30-180.1=120,所以选择A历史类的人数为120-42-30-18=30.故选B.2.(2020·汕头二模)新型冠状病毒疫情发生后,口罩的需求量大增,某口罩工厂为提高生产效率,开展技术创新活动,提出两种新的生产方式,为比较两种生产方式的效率,选取80名工人,将他们随机分成两组,每组40人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.第一种生产方式40名工人完成同一生产任务所用时间(单位:min)如表:68728577838290838984 88877691799087918692 88878176959463878571 96637485929987827569 第二种生产方式40名工人完成同一生产任务所用时间(单位:min)如扇形图所示:(1)请填写第一种生产方式完成任务所用时间的频数分布表并作出频率分布直方图:生产时间[60,70)[70,80)[80,90)[90,100]频数(2)试从扇形图中估计第二种生产方式的平均数;(3)根据频率分布图和扇形图判断哪种生产方式的效率更高?并说明理由.解(1)第一种生产方式完成任务所用时间的频数分布表如下:生产时间[60,70)[70,80)[80,90)[90,100]频数481810频率分布直方图如下:(2)从扇形图中估计第二种生产方式的平均数为65×0.25+75×0.5+85×0.2+95×0.05=75.5 min.(3)从频率分布直方图中估计第一种生产方式的平均数为65×0.1+75×0.2+85×0.45+95×0.25=83.5 min,从平均数的角度发现:用第一种生产方式的工人完成生产任务所需要的时间高于80分钟;用第二种生产方式的工人完成生产任务所需要的时间低于80分钟,因此第二种生产方式的效率更高.考向二用样本估计总体例4(1)(多选)为了了解某校高一年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论正确的是()A.该校高一年级学生1分钟仰卧起坐的次数的中位数为26.25次B.该校高一年级学生1分钟仰卧起坐的次数的众数为27.5次C.该校高一年级学生1分钟仰卧起坐的次数超过30次的约有320人D.该校高一年级学生1分钟仰卧起坐的次数少于20次的约有32人答案ABC解析由题图可知中位数是26.25次,众数是27.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校高一年级学生1分钟仰卧起坐的次数超过30次的约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校高一年级学生1分钟仰卧起坐的次数少于20次的约有160人.故A,B,C正确,D错误,故选ABC.(2)(2020·香坊区校级二模)2020年初新冠病毒疫情爆发,全国范围开展了“停课不停学”的线上教学活动.哈六中数学组积极研讨网上教学策略:先采取甲、乙两套方案教学,并对分别采取两套方案教学的班级的7次线上测试成绩进行统计如图所示:①请填写如表(要求写出计算过程)平均数方差甲乙②从下列三个不同的角度对这次方案选择的结果进行分析:a.从平均数和方差相结合看(分析哪种方案的成绩更好);b.从折线图上两种方案的走势看(分析哪种方案更有潜力).解①由图象可得,x-甲=17×(109+111+113+115+117+119+121)=115,x-乙=17×(121+115+109+115+113+117+115)=115,则s2甲=17×(62+42+22+02+22+42+62)=16,s2乙=17×(62+02+62+02+22+22+02)=807≈11.43,故表格第一行:115,16;第二行:115,约为11.43.②a.因为x-甲=x-乙,s2甲>s2乙,故乙方案更好.b.由折线图可知甲走势稳定上升,故甲方案更好.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述数据的集中趋势,方差和标准差描述数据的波动大小.(2)方差的简化计算公式:s2=1n[(x21+x2+…+x2n)-n x-2],或写成s2=1n(x21+x2+…+x2n)-x-2,即方差等于原始数据平方的平均数减去平均数的平方.3.某学校共有学生2000人,其中高一800人,高二、高三各600人,学校对学生在暑假期间每天的读书时间做了调查统计,全体学生每天的读书时间的平均数为x-=3小时,方差为s2=1.966,其中三个年级学生每天读书时间的平均数分别为x-1=2.7,x-2=3.1,x-3=3.3,又已知高一学生、高二学生每天读书时间的方差分别为s21=1,s2=2,则高三学生每天读书时间的方差s23= .答案 3解析由题意可得,1.966=8002000×[1+(2.7-3)2]+6002000×[2+(3.1-3)2]+6002000×[s23+(3.3-3)2],解得s23=3.4.(2020·南宁模拟)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间(x--2s,x-+2s)之外,则认为该零件属于“不合格”的零件,其中x-,s分别为样本平均数和样本标准差,计算可得s≈15(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100 cm ,试判断该零件是否属于“不合格”的零件.解 (1)x -=35×10×0.005+45×10×0.010+55×10×0.015+65×10×0.030+75×10×0.020+85×10×0.015+95×10×0.005=66.5.(2)x -+2s =66.5+30=96.5,x --2s =66.5-30=36.5,100>96.5,∴该零件属于“不合格”的零件.一、单项选择题1.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A.x -A >x -B ,s A >s BB .x -A <x -B ,s A >s B C.x -A >x -B ,s A <s BD .x -A <x -B ,s A <s B答案 B解析 由图可得样本A 的数据都在10及以下,样本B 的数据都在10及以上,所以x -A <x -B ,样本B 的数据比样本A 的数据波动幅度小,所以s A >s B ,故选B.2.在高一期中考试中,甲、乙两个班的数学成绩统计如下表: 班级 人数 平均数 方差甲20x-甲2乙30x-乙3其中x-甲=x-乙,则两个班数学成绩的方差为()A.3 B.2C.2.6 D.2.5答案 C解析由题意可知两个班的数学成绩的平均数为x-=x-甲=x-乙,则两个班数学成绩的方差为s2=2020+30[2+(x-甲-x-)2]+3020+30[3+(x-乙-x-)2]=2020+30×2+3020+30×3=2.6.3.(2020·河南省名校联考)如图给出的是某小区居民一段时间内访问网站的比例图,则下列选项中不超过21%的为()A.腾讯与百度的访问量所占比例之和B.网易与搜狗的访问量所占比例之和C.淘宝与论坛的访问量所占比例之和D.新浪与小说的访问量所占比例之和答案 B解析由于网易与搜狗的访问量所占比例之和为18%,不超过21%,故选B.4.(2020·安庆模拟)某单位统计了本单位的职工一天行走步数(单位:百步)得到如图所示的频率分布直方图,估计该单位职工一天行走步数的平均值为(同一组中的数据用该组区间的中点值为代表)()A.125 B.125.6C.124 D.126答案 B解析由频率分布直方图,估计该单位职工一天行走步数的平均值为x-=60×0.002×20+80×0.006×20+100×0.008×20+120×0.012×20+140×0.010×20+160×0.008×20+180×0.002×20+200×0.002×20=125.6.故选B.5.(2020·威海一模)恩格尔系数是食品支出总额占个人消费支出总额的比重,其数值越小说明生活富裕程度越高.统计改革开放40年来我国历年城镇和农村居民家庭恩格尔系数,绘制了如图的折线图.根据该折线图,下列结论错误的是()A.城镇居民家庭生活富裕程度不低于农村居民家庭B.随着改革开放的不断深入,城镇和农村居民家庭生活富裕程度越来越高C.1996年开始城镇和农村居民家庭恩格尔系数都低于50%D.随着城乡一体化进程的推进,城镇和农村居民家庭生活富裕程度差别越来越小答案 C解析由折线图可知,对于A,因为城镇的恩格尔系数较小,故城镇居民家庭生活富裕程度不低于农村居民,A正确;对于B,城镇和农村的恩格尔系数整体上都在下降,说明城镇和农村居民家庭生活富裕程度越来越高,B正确;对于C,1996~2000年我国农村居民家庭恩格尔系数高于50%,C错误;对于D,结合图形得到城镇和农村家庭恩格尔系数之间的差距越来越小,说明城镇和农村家庭生活富裕程度差别越来越小,D正确.故选C.6.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案 D解析由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;平均最高气温高于20 ℃的月份为六月、七月、八月,只有3个,D错误.7.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布扇形图和90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是()注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多答案 D解析由题图易知互联网行业从业人员90后占56%,A正确;仅90后从事技术岗位的人数占总人数的0.22176,超过20%,B正确;90后从事运营岗位的人数占总人数的0.56×0.17=0.0952>0.03,C正确;90后从事技术岗位的人数占总人数的0.22176<0.41,而题中未给出80后从事互联网行业岗位分布情况,故D不一定正确.二、多项选择题8.(2020·青岛模拟)近几年,在国家大力支持和引导下,中国遥感卫星在社会生产和生活各领域的应用范围不断扩大,中国人民用遥感卫星系统研制工作取得了显著成绩,逐步形成了气象、海洋、陆地资源和科学试验等遥感卫星系统.如图是2007~2018年中国卫星导航与位置服务产业总体产值规模(万亿)及增速(%)的统计图,则下列结论中正确的是()A.2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%B.若2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,总体产值规模将达3672亿元C.2007~2018年中国卫星导航与位置服务产业总体产值规模逐年增加,但不与时间成正相关D.2007~2018年中国卫星导航与位置服务产业总体产值规模的增速中有些与时间成负相关答案ABD解析对于A,根据图中数据可知2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%,故A正确;对于B,2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,即为20%,故2019年总体产值规模为3060×(1+20%)=3672(亿元),故B正确;对于C,根据正相关的定义,散点位于从左下角到右上角区域,则两个变量具有正相关关系,故C错误;对于D,根据负相关的定义,散点位于从左上角到右下角区域,则两个变量具有负相关关系,故D 正确.故选ABD.9.为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论正确的是()A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5次C.该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人D.该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有32人答案ABC解析由题图可知中位数是26.25次,众数是27.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有160人.故A,B,C正确,D错误.故选ABC.10.在发生某公共卫生事件期间,我国有关机构规定:“该事件在一段时间没有发生规模群体感染的标志为连续10天,每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,不一定符合该标志的是() A.甲地总体均值为3,中位数为4B.乙地总体均值为2,总体方差大于0C.丙地中位数为3,众数为3D.丁地总体均值为2,总体方差为3答案ABC解析由于平均数和中位数不能确定某一天的病例不超过7人,A不一定符合该标志;当总体方差大于0,不知道总体方差的具体数值,因此不能确定数据的波动大小,B不一定符合该标志;中位数和众数也不能确定某一天的病例不超过7人,C不一定符合该标志;当总体平均数是2,若有一个数据超过7,则方差就超过3,D一定符合该标志.故选ABC.三、填空题11.(2021·湖北宜昌高三月考)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):人入选,则入选的最佳人选应是 . 答案 甲解析 因为x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.12.已知30个数据的60%分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是 .答案 8.6解析 由30×60%=18,设第19个数据为x ,则7.8+x 2=8.2,解得x =8.6,即第19个数据是8.6.四、解答题13.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.14.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整; (2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)解 (1)(2)月均用水量的最低标准应定为2.5 t .样本中月均用水量不低于2.5 t 的居民占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5 t.(3)这100位居民的月均用水量的平均数为0.5×⎝ ⎛⎭⎪⎪⎫14×0.10+34×0.20+54×0.30+74×0.40+94×0.60+114×0.30+134×0.10=1.875(t).。

高考数学一轮复习 第九章 统计与统计案例 9.2 用样本估计总体课件 苏教苏教高三全册数学课件

高考数学一轮复习 第九章 统计与统计案例 9.2 用样本估计总体课件 苏教苏教高三全册数学课件

主 回
2,则数据2x1,2x2,2x3,2x4,2x5的标准差为




2 2 [由s2=1n

堂 考
8,标准差为2
2.]

(xi- x )2=2,则数据2x1,2x2,2x3,2x4,2x5的方差是 时 集






12/11/2021

第十五页,共四十八页。
16
4.如图是 100 位居民月均用水量的频率分布直方图,则月均用

探 究
②数据ax1,ax2,…,axn的方差为a2s2.


12/11/2021

第十页,共四十八页。
11



一、思考辨析(正确的打“√”,错误的打“×”)

回 顾
(1)平均数、众数与中位数从不同的角度描述了一组数据的集中
课 后
趋势.

( )时
课 堂
(2)一组数据的方差越大,说明这组数据越集中.
考点1 样本的数字特征的计算与应用
课 前
利用样本的数字特征解决决策问题的依据

主 回
(1)平均数反映了数据取值的平均水平;标准差、方差描述了一 课

组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程


度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越
时 集


堂 考
稳定.


(2)用样本估计总体就是利用样本的数字特征来描述总体的数字
课 后
中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.

2020届高考数学一轮复习第九篇统计与统计案例第2节用样本估计总体课件理新人教A版

2020届高考数学一轮复习第九篇统计与统计案例第2节用样本估计总体课件理新人教A版

标 标准差是样本数据到平均数的 均数周围的程度.标准差越小,表明
准 一种平均距离,即 s=
各个样本数据在样本平均数周围越

集中;标准差越大,表明各个样本数
据在样本平均数的两边越分散
返回导航
方差
标准差的平方,即 s2=1n[(x1- 同标准差一样用来衡量样本
x )2+(x2- x )2+…+(xn- x )2]
返回导航
1.样本中共有五个个体,其值分别为 0,1,2,3,m.若该样本的平均值
为 1,则其方差为( )
(A)
10 5
(B)
30 5
(C) 2
(D)2
D 解析:依题意得 m=5×1-(0+1+2+3)=-1,
样本方差 s2=15(12+02+12+22+22)=2. 即所求的样本方差为 2.
返回导航
返回导航
3.某赛季,甲、乙两名篮球运动员都参加了 11 场比赛,他们每场比 赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分 别为( )
返回导航
(A)19、13 (C)20、18
(B)13、19 (D)18、20
A 解析:由茎叶图可知,甲的中位数为 19,乙的中位数为 13.故选 A.
返回导航
解:(1)由已知可设每组的频率为 2x,4x,17x,15x,9x,3x. 则 2x+4x+17x+15x+9x+3x=1 解得 x=0.02. 则第二小组的频率为 0.02×4=0.08. 样本容量为 12÷0.08=150. (2)次数在 110 次以上(含 110 次)的频率和为 17×0.02+15×0.02+ 9×0.02+3×0.02 =0.34+0.3+0.18+0.06=0.88. 则高一学生的达标率约为 0.88×100%=88%.

高考数学一轮复习 第9章 统计与统计案例 9.2 用样本估计总体习题课件 文

高考数学一轮复习 第9章 统计与统计案例 9.2 用样本估计总体习题课件 文

显然-x A<-x B,
又由图形可知,B 组的数据分布比 A 均匀,变化幅度不
大,故 B 组数据比较稳定,方差较小,从而标准差较小,所
以 sA>sB,故选 B.
12/8/2021
第十二页,共三十七页。
7.(2017·广东肇庆一模)图 1 是某高三学生进入高中三 年来的数学考试成绩茎叶图,第 1 次到 14 次的考试成绩依 次记为 A1,A2,…,A14.图 2 是统计茎叶图中成绩在一定范 围内考试次数的一个算法流程图.那么算法流程图输出的结 果是( )
课后作业(zuòyè)夯关 9.2 用样本(yàngběn)估计总体
12/8/2021
第一页,共三十七页。
[基础送分 提速狂刷练] 一、选择题 1.(2015·安徽高考)若样本数据 x1,x2,…,x10 的标准 差为 8,则数据 2x1-1,2x2-1,…,2x10-1 的标准差为( ) A.8 B.15 C.16 D.32
12/8/2021
第十三页,共三十七页。
A.7 B.8 C.9 D.10
解析 该程序的作用是求考试成绩不低于 90 分的次 数,根据茎叶图可得不低于 90 分的次数为 10.故选 D.
12/8/2021
第十四页,共三十七页。
8.(2017·吉林模拟)下面的茎叶图是某班学生在一次数学 测试时的成绩:
+x+4+5⇒x=2.
12/8/2021
第二十页,共三十七页。
11.某商场调查旅游鞋的销售情况,随机抽取了部分顾 客的购鞋尺寸,整理得如下频率分布直方图,其中直方图从 左至右的前 3 个小矩形的面积之比为 1∶2∶3,则购鞋尺寸 在[39.5,43.5)内的顾客所占百分比为__5_5_%____.

高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案

高考数学一轮复习 第9章 统计、统计案例 第2讲 用样本估计总体学案

第2讲 用样本估计总体板块一 知识梳理·自主学习[必备知识]考点1 用样本的频率分布估计总体分布1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数.考点2 用样本的数字特征估计总体的数字特征1.众数:一组数据中出现次数最多的数.2.中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.3.平均数:x -=x 1+x 2+…+x n n,反映了一组数据的平均水平. 4.标准差:是样本数据到平均数的一种平均距离,s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]. 5.方差:s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2](x n 是样本数据,n 是样本容量,x -是样本平均数).[必会结论]频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( )(3)一组数据的方差越大,说明这组数据越集中.( )(4)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( )(5)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )答案(1)√(2)×(3)×(4)√(5)×2.[2017·芜湖模拟]某市中心购物商场在“双11”开展的“买三免一”促销活动异常火爆,对当日8时至22时的销售额进行统计,以组距为2小时的频率分布直方图如图所示,已知12时至16时的销售额为90万元,则10时至12时销售额为( )A.120万元 B.100万元 C.80万元 D.60万元答案 D解析由图可知12时至16时频率为0.45,销售额90万元,10时至12时频率为0.3,销售额为0.30.45×90=60万元.故选D.3.如图是2017年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( )A.85,84 B.84,85 C.86,84 D.84,86答案 A解析 由图可知去掉一个最高分和一个最低分后,所剩数据为84,84,86,84,87,则平均数为85,众数为84.4.[课本改编]在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( ) A .28 B .40 C .56 D .60答案 B解析 设中间一个小长方形面积为x ,其他8个长方形面积为52x ,因此x +52x =1,∴x =27. 所以中间一组的频数为140×27=40.故选B. 5.[2015·湖北高考]某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 答案 (1)3 (2)6000解析 (1)由0.1×1.5+0.1×2.5+0.1×a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10000=6000.板块二 典例探究·考向突破考向 频率分布直方图的应用例 1 [2016·山东高考]某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60 C.120 D.140答案 D解析由频率分布直方图知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D.触类旁通应用频率分布直方图应注意的问题(1)频率分布直方图是从各个小组数据在样本容量中所占比例大小的角度,表示数据分布的规律.(2)图中各小长方形的面积等于相应各组的频率,它直观反映了数据在各个小组的频率的大小.(3)要把握一个基本公式:频率=频数样本容量.【变式训练1】为了解某校高三学生联考的数学成绩情况,从该校参加联考学生的数学成绩中抽取一个样本,并分成五组,绘成如图所示的频率分布直方图,已知第一组至第五组的频率之比为1∶2∶8∶6∶3,第五组的频数为6,则样本容量为________.答案40解析因为第一组至第五组的频率之比为1∶2∶8∶6∶3,所以可设第一组至第五组的频率分别为k,2k,8k,6k,3k,又频率之和为1,所以k+2k+8k+6k+3k=1,解得k=120=0.05,所以第五组的频率为3×0.05=0.15,又第五组的频数为6,所以样本容量为60.15=40.考向 茎叶图的应用例 2 [2017·山东高考]如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7答案 A解析 甲组数据的中位数为65,由甲、乙两组数据的中位数相等得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x )=15×(59+61+67+65+78), ∴x =3.故选A.触类旁通茎叶图的绘制及应用(1)一般制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大顺序由上到下列出.(2)估计数字特征,给定两组数据的茎叶图,“重心”下移者平均数较大,数据集中者方差较小.【变式训练2】 [2018·长沙模拟]下面的茎叶图是某班学生在一次数学测试时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( )A .15名女生成绩的平均分为78B .17名男生成绩的平均分为77C .女生成绩和男生成绩的中位数分别为82,80D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重答案 C解析15名女生成绩的平均分为115×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A正确;17名男生成绩的平均分为117×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;根据女生和男生成绩数据分析可得,两组数据的中位数均为80,C错误.考向数字特征的应用命题角度1 样本数字特征与直方图交汇例 3 [2018·益阳模拟]为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5C.该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320D.该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32答案 D解析由频率分布直方图可知,中位数是频率分布直方图面积等分线对应的数值,是26.25;众数是最高矩形的中间值27.5;1分钟仰卧起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30的人数为320;1分钟仰卧起坐的次数少于20的频率为0.1,所以估计1分钟仰卧起坐的次数少于20的人数为160.故D错.命题角度2 样本的数字特征与茎叶图例 4 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为________.答案 367 解析 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.命题角度3 样本的数字特征与优化决策问题例 5 某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99;乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间的产品较稳定.解 (1)因为间隔时间相同,所以是系统抽样.(2)茎叶图如下:(3)甲车间:平均值:x 1=17(102+101+99+98+103+98+99)=100, 方差:s 21=17[(102-100)2+(101-100)2+…+(99-100)2]=247. 乙车间:平均值:x 2=17(110+115+90+85+75+115+110)=100, 方差:s 22=17[(110-100)2+(115-100)2+…+(110-100)2]=16007. ∵x 1=x 2,s 21<s 22,∴甲车间的产品较稳定.触类旁通(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差)分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,再计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性大小比较方差(标准差)的大小.核心规律1.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质.2.众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.某些数据的变动对中位数可能没有影响.中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.满分策略1.正确理解频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距; (2)小长方形的面积=组距×频率组距=频率; (3)数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.2.茎叶图中一定要分清茎、叶的含义.3.求解中位数时一定要注意先对原始数据进行排序后才能求解.板块三 启智培优·破译高考易错警示系列11——频率分布直方图中概念不清致误[2016·四川高考]我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)估计居民月均用水量的中位数.错因分析 (1)在频率分布直方图中,小矩形的面积表示频率,纵坐标表示频率组距,解本题时,易把纵坐标误认为频率而致误.(2)频率分布直方图中中位数左右两边小长方形的面积相等,解本题时由于中位数的概念不清易出错.解 (1)由频率分布直方图,可知:月均用水量在 [0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a ,解得a =0.30.(2)由(1)知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x <2.5.由0.50×(x -2)=0.5-0.48,解得x =2.04.故可估计居民月均用水量的中位数为2.04.答题启示 条形统计图(直方图)中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.跟踪训练某城市100户居民的月平均用电量(单位:度),以[160, 180),[180, 200),[200, 220),[220, 240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解 (1)依题意,20×(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)=1,解得x =0.0075.(2)由图可知,最高矩形的数据组为[220,240), ∴众数为220+2402=230. ∵[160,220)的频率之和为(0.002+0.0095+0.011)×20=0.45,依题意,设中位数为y ,∴0.45+(y -220)×0.0125=0.5.解得y =224,∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为0.01250.0125+0.0075+0.005+0.0025=511,∴月平均用电量在[220,240)的用户中应抽取11×511=5户. 板块四 模拟演练·提能增分[A 级 基础达标]1.[2017·全国卷Ⅰ]为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数答案 B解析 因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.2.[2018·湖南模拟]在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A .3B .4C .5D .6答案 B解析 由茎叶图可知,在区间[139,151]的人数为20,再由系统抽样的性质可知人数为20×735=4人. 3.[2018·广州联考]学校为了解学生在课外读物方面的支出情况,抽取了n 位同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为( )A.100 B.120 C.130 D.390答案 A解析由图知[10,30)的频率为:(0.023+0.01)×10=0.33,[30,50)的频率为1-0.33=0.67,所以n=670.67=100,故选A.4.[2018·郑州质量预测]PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲B.乙C.甲、乙相等D.无法确定答案 A解析从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小.5.甲、乙两人在一次射击比赛中射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数 B .甲的成绩的中位数等于乙的成绩的中位数 C .甲的成绩的方差小于乙的成绩的方差 D .甲的成绩的极差小于乙的成绩的极差 答案 C解析 甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是(-2)2+(-1)2+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,方差是(-1)2+(-1)2+(-1)2+02+325=125,故选C.6.[2018·金华模拟]设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( )A .1+a,4B .1+a,4+aC .1,4D .1,4+a答案 A解析 由均值和方差的定义及性质可知:y =x +a =1+a ,s 2y =s 2x =4.故选A. 7.[2015·重庆高考]重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( ) A .19 B .20 C .21.5 D .23 答案 B解析 由茎叶图知,平均气温在20 ℃以下的有5个月,在20 ℃以上的也有5个月,恰好是20 ℃的有2个月,由中位数的定义知,这组数据的中位数为20.选B.8.[2018·聊城模拟]某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175 cm ,但有一名运动员的身高记录不清楚,其末位数记为x ,那么x 的值为________.答案 2解析 由题意有:175×7=180×2+170×5+1+1+2+x +4+5⇒x =2.9.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 99 9乙101799.答案 甲解析 x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.10.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x =________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.答案 (1)0.0125 (2)72解析 x 等于该组的频率除以组距20.由频率分布直方图知20x =1-20×(0.025+0.0065+0.003+0.003),解得x =0.0125.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72(名)学生可以申请住宿.[B 级 知能提升]1.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75 答案 C解析 设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =5+15+250.75=60.2.[2015·安徽高考]若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32 答案 C解析 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.3.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70~99分),若甲、乙两组学生的平均成绩一样,则a =________;甲、乙两组学生的成绩相对整齐的是________.答案 5 甲组解析 由题意可知75+88+89+98+90+a 5=76+85+89+98+975=89,解得a =5.因为s 2甲=15×(142+1+0+92+62)=3145,s 2乙=15×(132+42+0+92+82)=3305,所以s 2甲<s 2乙,故成绩相对整齐的是甲组.4.[2018·南宁模拟]某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学期10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更合适?并说明理由;(2)若从甲、乙两人90分以上的成绩中各随机抽取1次,求抽到的2次成绩均大于95分的概率.解 (1)由茎叶图可知,甲的平均成绩, x -甲=79+84+85+87+87+88+93+94+96+9710=89,乙的平均成绩x -乙=75+77+85+88+89+89+95+96+97+9910=89,甲、乙的平均成绩相等.又甲成绩的方差s 2甲=110[(79-89)2+(84-89)2+(85-89)2+(87-89)2+(87-89)2+(88-89)2+(93-89)2+(94-89)2+(96-89)2+(97-89)2]=30.4,乙成绩的方差s 2乙=110[(75-89)2+(77-89)2+(85-89)2+(88-89)2+(89-89)2+(89-89)2+(95-89)2+(96-89)2+(97-89)2+(99-89)2]=60.6,故甲成绩的方差小于乙成绩的方差,因此选派甲参赛更合适.(2)从甲、乙两人90分以上的成绩中各随机抽取1次的不同结果有(93,95),(93,96),(93,97),(93,99),(94,95),(94,96),(94,97),(94,99),(96,95),(96,96),(96,97),(96,99),(97,95),(97,96),(97,97),(97,99),共16种.记“抽到的2次成绩均大于95分”为事件A ,则事件A 的结果有(96,96),(96,97),(96,99),(97,96),(97,97),(97,99),共6种.因此抽到的2次成绩均大于95分的概率P (A )=616=38.5.[2017·云南统一检测]某校1200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:成绩分组 频数 频率 平均分 [0,20)30.0116(1)求(2)如果从这1200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P (注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解 (1)由题意可得,b =1-(0.015+0.125+0.5+0.31)=0.05,a =200×0.05=10,c =200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人. ∴P =162200=81100=0.81.(3)这次数学测验样本的平均分为x -=16×3+32.1×10+55×25+74×100+88×62200=73,∴这次数学测验的年级平均分大约为73分.。

高考数学一轮复习 第九章 第二节 用样本估计总体课件 理 新人教版

高考数学一轮复习 第九章 第二节 用样本估计总体课件 理 新人教版
于频率分布直方图中每个小矩形的面积乘以小矩形底边中 点的横坐标之和,众数是最高的矩形的中点的横坐标. 2.注意区分直方图与条形图,条形图中的纵坐标刻度为频 数或频率,直方图中的纵坐标刻度为频率/组距.
3.方差与原始数据的单位不同,且平方后可能夸大了偏差
的程度,虽然方差与标准差在刻画样本数据的分散程度上 是一样的,但在解决实际问题时,一般多采用标准差.
[互动探究] 在本例条件下估计样本数据的众数.
解析 众数应为最高矩形的中点对应的横坐标,故约为65.
[规律方法] 解决频率分布直方图问题时要抓住 (1)直方图中各小长方形的面积之和为 1. 频率 频率 (2)直方图中纵轴表示 ,故每组样本的频率为组距× ,即 组距 组距 矩形的面积. (3)直方图中每组样本的频数为频率×总体数.
2. (教材习题改编)把样本容量为 20 的数据分组, 分组区间与频数 如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5; [50,60),4;[60,70],2,则在区间[10,50)上的数据的频率 是 ( A.0.05 C.0.5 B.0.25 D.0.7 )
三、样本的数字特征 数字特征 众数 定 义 在一组数据中,出现次数 最多 做这组数据的众数. 的数据叫
将一组数据按大小依次排列,把处在
中位数 最中间 位置的一个数据(或最中间两个数 据的 平均数 )叫做这组数据的中位数. 在频率
分布直方图中,中位数左边和右边的直方图 的面积 相等 .
样本数据的算术平均数.即 平均数 1 x = (x1+x2+…+xn). n 1 s = [(x1- x )2+(x2- x )2+…+(xn- x )2] . n
0.04)×10=1,解得a=0.005. (2) 由频率分布直方图知这 100 名学生语文成绩的平均分为

2020版高考数学一轮复习 第9章 统计与统计案例 第2讲 用样本估计总体讲义 理(含解析)

2020版高考数学一轮复习 第9章 统计与统计案例 第2讲 用样本估计总体讲义 理(含解析)

(2)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)-n 错误!2]或写成 s2=错误!(x错误!+x错误!+…+x错误!)-错误!2,即方差等于 原数据平方的平均数减去平均数的平方.
(3)平均数、方差的公式推广 ①若数据 x1,x2,…,xn 的平均数为错误!,那么 mx1+a,mx2+a,mx3+ a,…,mxn+a 的平均数是 m错误!+a。 ②数据 x1,x2,…,xn 的方差为 s2. a.数据 x1+a,x2+a,…,xn+a 的方差也为 s2; b.数据 ax1,ax2,…,axn 的方差为 a2s2.
(2)通过观察茎叶图可以看出:①品种 A 的亩产平均数(或均值)比品种 B 高;②品种 A 的亩产标准差(或方差)比品种 B 大,故品种 A 的亩产稳定 性较差.
1.茎叶图的画法步骤 第一步:将每个数据分为茎(高位)和叶(低位)两部分; 第二步:将最小茎与最大茎之间的数按大小次序排成一列,写在左(右) 侧;有两组数据时,写在中间; 第三步:将各个数据的叶依次写在其茎的右(左)侧. 2.茎叶图的应用 (1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的 位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏, 特别是“叶”的位置上的数据. (2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也 可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中 在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.
第 2 讲 用样本估计总体
[考纲解读] 1。了解频率分布直方图的意义和作用,能根据频率分布表画 频率分布直方图、频率折线图、茎叶图,并体会它们各自的特点.(重点) 2.理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提 取基本的数字特征,并作出合理的解释. 3.会用样本的频率分布估计总体分布,用样本的基本数字特征估计总体的基本 数字特征.(难点) 4.会用随机抽样的基本方法和样本估计总体的思想解决实际问题. [考向预测] 从近三年高考情况来看,本讲是高考中的一个热点.预测 2020 年将会考查用样本估计总体,主要体现在利用频率分布直方图或茎叶图估计 总体,利用样本数字特征估计总体.题型以客观题呈现,试题难度不大,属 中、低档题型.频率分布直方图与茎叶图也可能出现于解答题中,与概率等 知识综合命题。

2024届新高考一轮总复习人教版 第九章 第2节 用样本估计总体 课件(49张)

2024届新高考一轮总复习人教版 第九章 第2节 用样本估计总体 课件(49张)

2.(必修第二册 P202 例 2 改编)某机构调查了解 10 种食品的卡路里含量,结果如下:
107,135,138,140,146,175,179,182,191,195.则这组数据的第 25 百分位数和
中位数分别是( )
A.138,160.5
B.138,146
C.138,175
D.135,160.5
[必记结论] 1.频率分布直方图与众数、中位数、平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的. (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面 积乘以小长方形底边中点的横坐标之和.
2.简单随机抽样样本平均数、方差的公式推广 (1)若数据 x1,x2,…,xn 的平均数为-x ,则 mx1+a,mx2+a,mx3+a,…,mxn+a 的平均数是 m-x +a. (2)数据 x1,x2,…,xn 与数据 x1′=x1+a,x2′=x2+a,…,xn′=xn+a 的方差相等, 即数据经过平移后方差不变; (3)若数据 x1,x2,…,xn 的方差为 s2,则数据 ax1+b,ax2+b,…,axn+b 的方差 为 a2s2.
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)对一组数据来说,平均数和中位数总是非常接近.( ) (2)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) (3)方差与标准差具有相同的单位.( ) (4)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不 变.( ) 答案:(1)× (2)√ (3)× (4)√
情况下是优点,但它对极端值的不敏 数据的平均数)
感有时也会成为缺点
数字特征

2020版高考数学一轮复习第9章统计与统计案例第2节用样本估计总体教学案含解析理

2020版高考数学一轮复习第9章统计与统计案例第2节用样本估计总体教学案含解析理

第二节 用样本估计总体[考纲传真] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点 茎叶图的优点是不但可以记录所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便.注意:茎叶图中茎是指中间的一列数,叶是从茎的旁边生长出来的数.4.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把a 1+a 2+…+a n n称为a 1,a 2,…,a n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为–x ,则这组数据的标准差和方差分别是s =1n ⎣⎡⎦⎤x 1-–x 2+x 2-–x 2+…+x n -–x2 s 2=1n ⎣⎡⎦⎤x 1-–x2+x 2-–x 2+…+x n -–x 2 [常用结论] 1.频率分布直方图的3个结论(1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1.(3)小长方形的高=频率组距,所有小长方形高的和为1组距. 2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为–x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m –x +a.(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中. ( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次. ( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( )A .4B .8C .12D .16B [设频数为n ,则n 32=0.25,∴n =32×14=8.] 3.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92A [∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数–x =87+89+90+91+92+93+94+968=91.5.] 4.某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.48 [由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).]5.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数–x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]1此学生该门功课考试分数的极差与中位数之和为 ( )A .117B .118C .118.5D .119.5B [22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42, 将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.]2.(2019·泉州质检)某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n -m 的值是 ( )A .5B .6C .7D .8B [由甲组学生成绩的平均数是88,可得70+80×3+90×3++4+6+8+2+m +7=88,解得m =3.由乙组学生成绩的中位数是89,可得n =9,所以n -m =6,故选B.] 叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一重复出现的数据要重复记录,不能遗漏给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小1.(2019·济南一中质检)2018年2月20日,摩拜单车在济南推出“做文明骑士,周一摩拜单车免费骑”活动.为了解单车使用情况,记者随机抽取了五个投放区域,统计了半小时内被骑走的单车数量,绘制了如图所示的茎叶图,则该组数据的方差为 ( )A .9B .4C .3D .2B [由茎叶图得该组数据的平均数–x =15(87+89+90+91+93)=90. ∴方差为15[(87-90)2+(89-90)2+(90-90)2+(91-90)2+(93-90)2]=4.] 2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )甲 乙A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差C [甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是-2+-2+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,方差是-2+-2+-2+02+325=125,故选C.] 3.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有1________.甲 [–x 甲=–x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25, s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.] 众数、中位数、平均数及方差的意义字特征,是对总体的一种简明地描述;②平均数、中位数、众数描述其集中趋势,方差和标.在计算平均数、方差时可利用平均数、方差的有关结论►考法1 【例1】 (2019·石家庄检测)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140D[由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]►考法2 频率分布直方图与样本的数字特征的综合【例2】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.[解](1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(1)的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )A.64 B.54 C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组为38.所以第三组频数为22.又最大频率为0.32的最大频数为0.32×100=32.所以a=22+32=54.](2)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].①若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分;②若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90]之外的人数.[解]①估计这次语文成绩的平均分x=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.②分别求出语文成绩在分数段[50,60),[60,70),[70,80),[80,90]的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90]的人数依次为5,20,40,25.所以数学成绩在[50,90]之外的人数有100-(5+20+40+25)=10(人).1.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半A[设新农村建设前经济收入的总量为x,则新农村建设后经济收入的总量为2x.建设前种植收入为0.6x,建设后种植收入为0.74x,故A不正确;建设前其他收入为0.04x,建设后其他收入为0.1x,故B正确;建设前养殖收入为0.3x,建设后养殖收入为0.6x,故C正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.]2.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:k g)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.]3.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳A[对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.]4.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个D[对于选项A,由图易知各月的平均最低气温都在0 ℃以上,A正确;对于选项B,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B正确;对于选项C,三月和十一月的平均最高气温均为10 ℃,所以C正确;对于选项D,平均最高气温高于20 ℃的月份有七月、八月,共2个月份,故D错误.]自我感悟:______________________________________________________________________________________________________________________________________________________________________________________。

高考数学(文)一轮复习 9-2用样本估计总体

高考数学(文)一轮复习  9-2用样本估计总体

[必会结论] 频率分布直方图与众数、中位数与平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的. (3)平均数是频率分布直方图的“重心”,等于频率分 布直方图中每个小长方形的面积乘以小长方形底边中点的 横坐标之和.
9
板块一
板块二
板块三
板块四
30
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学(文)
考向 数字特征的应用
命题角度 1 样本数字特征与直方图交汇 例 3 [2017·益阳模拟]为了了解某校九年级 1600 名学 生的体能情况,随机抽查了部分学生,测试 1 分钟仰卧起坐 的成绩(次数),将数据整理后绘制成如图所示的频率分布直 方图,根据统计图的数据,下列结论错误的是( )
A.15 名女生成绩的平均分为 78 B.17 名男生成绩的平均分为 77 C.女生成绩和男生成绩的中位数分别为 82,80 D.男生中的高分段和低分段均比女生多,相比较男生 两极分化比较严重
29
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学(文)
解析 15 名女生成绩的平均分为115×(90+93+80+ 80+82+82+83+83+85+70+71+73+75+66+57)= 78,A 正确;17 名男生成绩的平均分为117×(93+93+96+ 80+82+83+86+86+88+71+74+75+62+62+68+53 +57)=77,故 B 正确;观察茎叶图,对男生、女生成绩进 行比较,可知男生两极分化比较严重,D 正确;根据女生 和男生成绩数据分析可得,两组数据的中位数均为 80,C 错误.
板块四
高考一轮总复习 ·数学(文)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考数学一轮复习第9章统计统计案例第2讲用样本估计总体学案板块一知识梳理·自主学习[必备知识]考点1 用样本的频率分布估计总体分布1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数.考点2 用样本的数字特征估计总体的数字特征1.众数:一组数据中出现次数最多的数.2.中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.3.平均数:=,反映了一组数据的平均水平.4.标准差:是样本数据到平均数的一种平均距离,s=. 5.方差:s2=[(x1-)2+(x2-)2+…+(xn-)2](xn是样本数据,n是样本容量,是样本平均数).[必会结论]频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( )(3)一组数据的方差越大,说明这组数据越集中.( )(4)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( ) (5)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )答案(1)√(2)×(3)×(4)√(5)×2.[2017·芜湖模拟]某市中心购物商场在“双11”开展的“买三免一”促销活动异常火爆,对当日8时至22时的销售额进行统计,以组距为2小时的频率分布直方图如图所示,已知12时至16时的销售额为90万元,则10时至12时销售额为( )A.120万元 B.100万元 C.80万元 D.60万元答案D解析由图可知12时至16时频率为0.45,销售额90万元,10时至12时频率为0.3,销售额为×90=60万元.故选D. 3.如图是2017年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( )A.85,84 B.84,85 C.86,84 D.84,86答案A解析由图可知去掉一个最高分和一个最低分后,所剩数据为84,84,86,84,87,则平均数为85,众数为84. 4.[课本改编]在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的,且样本容量为140,则中间一组的频数为( )A.28 B.40 C.56 D.60答案B解析设中间一个小长方形面积为x,其他8个长方形面积为x,因此x+x=1,∴x=.所以中间一组的频数为140×=40.故选B. 5.[2015·湖北高考]某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案(1)3 (2)6000解析(1)由0.1×1.5+0.1×2.5+0.1×a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10000=6000.板块二典例探究·考向突破考向频率分布直方图的应用例 1 [2016·山东高考]某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60 C.120 D.140答案D解析由频率分布直方图知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D.触类旁通应用频率分布直方图应注意的问题(1)频率分布直方图是从各个小组数据在样本容量中所占比例大小的角度,表示数据分布的规律.(2)图中各小长方形的面积等于相应各组的频率,它直观反映了数据在各个小组的频率的大小.(3)要把握一个基本公式:频率=.【变式训练1】为了解某校高三学生联考的数学成绩情况,从该校参加联考学生的数学成绩中抽取一个样本,并分成五组,绘成如图所示的频率分布直方图,已知第一组至第五组的频率之比为1∶2∶8∶6∶3,第五组的频数为6,则样本容量为________.答案40解析因为第一组至第五组的频率之比为1∶2∶8∶6∶3,所以可设第一组至第五组的频率分别为k,2k,8k,6k,3k,又频率之和为1,所以k+2k+8k+6k+3k=1,解得k==0.05,所以第五组的频率为3×0.05=0.15,又第五组的频数为6,所以样本容量为=40.考向茎叶图的应用例 2 [2017·山东高考]如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5 B.5,5 C.3,7 D.5,7答案A解析甲组数据的中位数为65,由甲、乙两组数据的中位数相等得y=5.又甲、乙两组数据的平均值相等,∴×(56+65+62+74+70+x)=×(59+61+67+65+78),∴x=3.故选A.触类旁通茎叶图的绘制及应用(1)一般制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大顺序由上到下列出.(2)估计数字特征,给定两组数据的茎叶图,“重心”下移者平均数较大,数据集中者方差较小.【变式训练2】[2018·长沙模拟]下面的茎叶图是某班学生在一次数学测试时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( )A.15名女生成绩的平均分为78B.17名男生成绩的平均分为77C.女生成绩和男生成绩的中位数分别为82,80 D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重答案C解析15名女生成绩的平均分为×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A正确;17名男生成绩的平均分为×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;根据女生和男生成绩数据分析可得,两组数据的中位数均为80,C错误.考向数字特征的应用1命题角度样本数字特征与直方图交汇例 3 [2018·益阳模拟]为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5 C.该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320D.该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32答案D解析由频率分布直方图可知,中位数是频率分布直方图面积等分线对应的数值,是26.25;众数是最高矩形的中间值27.5;1分钟仰卧起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30的人数为320;1分钟仰卧起坐的次数少于20的频率为0.1,所以估计1分钟仰卧起坐的次数少于20的人数为160.故D错.命题角度2样本的数字特征与茎叶图例 4 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为________.36答案7解析由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,x=4.s2=[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=.命题角度3样本的数字特征与优化决策问题例 5 某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99;乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间的产品较稳定.解(1)因为间隔时间相同,所以是系统抽样.(2)茎叶图如下:(3)甲车间:平均值:x1=(102+101+99+98+103+98+99)=100,方差:s=[(102-100)2+(101-100)2+…+(99-100)2]=.乙车间:平均值:x2=(110+115+90+85+75+115+110)=100,方差:s=[(110-100)2+(115-100)2+…+(110-100)2]=.∵x1=x2,s<s,∴甲车间的产品较稳定.触类旁通(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差)分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,再计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性大小比较方差(标准差)的大小.核心规律1.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质.2.众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.某些数据的变动对中位数可能没有影响.中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.满分策略1.正确理解频率分布直方图(1)纵轴表示,即小长方形的高=;(2)小长方形的面积=组距×=频率;(3)数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.2.茎叶图中一定要分清茎、叶的含义.3.求解中位数时一定要注意先对原始数据进行排序后才能求解.板块三启智培优·破译高考易错警示系列11——频率分布直方图中概念不清致误[2016·四川高考]我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)估计居民月均用水量的中位数.错因分析(1)在频率分布直方图中,小矩形的面积表示频率,纵坐标表示,解本题时,易把纵坐标误认为频率而致误.(2)频率分布直方图中中位数左右两边小长方形的面积相等,解本题时由于中位数的概念不清易出错.解(1)由频率分布直方图,可知:月均用水量在 [0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)由(1)知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04.答题启示条形统计图直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.跟踪训练某城市100户居民的月平均用电量(单位:度),以[160, 180),[180, 200),[200, 220),[220, 240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解(1)依题意,20×(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)=1,解得x=0.0075.(2)由图可知,最高矩形的数据组为[220,240),∴众数为=230.∵[160,220)的频率之和为(0.002+0.0095+0.011)×20=0.45,依题意,设中位数为y,∴0.45+(y-220)×0.0125=0.5.解得y=224,∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为=,∴月平均用电量在[220,240)的用户中应抽取11×=5户.板块四模拟演练·提能增分[A级基础达标]1.[2017·全国卷Ⅰ]为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值D.x1,x2,…,xn的中位数答案B解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B. 2.[2018·湖南模拟]在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3 B.4 C.5 D.6答案B解析由茎叶图可知,在区间[139,151]的人数为20,再由系统抽样的性质可知人数为20×=4人.3.[2018·广州联考]学校为了解学生在课外读物方面的支出情况,抽取了n位同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为( )A.100 B.120 C.130 D.390答案A解析由图知[10,30)的频率为:(0.023+0.01)×10=0.33,[30,50)的频率为1-0.33=0.67,所以n==100,故选A.4.[2018·郑州质量预测]PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )B.乙A.甲D.无法确定C.甲、乙相等答案A解析从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小.5.甲、乙两人在一次射击比赛中射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差答案C解析甲的平均数是=6,中位数是6,极差是4,方差是=2;乙的平均数是=6,中位数是5,极差是4,方差是=,故选C. 6.[2018·金华模拟]设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )B.1+a,4+aA.1+a,4C.1,4D.1,4+a答案A 解析由均值和方差的定义及性质可知:=+a=1+a,s=s=4.故选A. 7.[2015·重庆高考]××市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( )A.19 B.20 C.21.5 D.23答案B解析由茎叶图知,平均气温在20 ℃以下的有5个月,在20 ℃以上的也有5个月,恰好是20 ℃的有2个月,由中位数的定义知,这组数据的中位数为20.选B. 8.[2018·聊城模拟]某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175 cm,但有一名运动员的身高记录不清楚,其末位数记为x,那么x的值为________.答案2解析由题意有:175×7=180×2+170×5+1+1+2+x+4+5⇒x=2. 9.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):99如果甲、乙两人中只有________.答案甲解析甲=乙=9,s=×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=,s=×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=>s,故甲更稳定.10.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x=________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.答案(1)0.0125 (2)72解析x等于该组的频率除以组距20.由频率分布直方图知20x=1-20×(0.025+0.0065+0.003+0.003),解得x=0.0125.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72(名)学生可以申请住宿.[B级知能提升]1.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75答案 C解析 设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n ==60.2.[2015·安徽高考]若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A .8B .15C .16D .32答案 C解析 已知样本数据x1,x2,…,x10的标准差为s =8,则s2=64,数据2x1-1,2x2-1,…,2x10-1的方差为22s2=22×64,所以其标准差为=2×8=16. 3.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70~99分),若甲、乙两组学生的平均成绩一样,则a =________;甲、乙两组学生的成绩相对整齐的是________.答案 5 甲组 解析 由题意可知=76+85+89+98+975×(132=s =,62)+92+0+1+×(142=s 因为5.=a ,解得89=+42+0+92+82)=,所以s<s ,故成绩相对整齐的是甲组.4.[2018·南宁模拟]某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学期10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更合适?并说明理由;(2)若从甲、乙两人90分以上的成绩中各随机抽取1次,求抽到的2次成绩均大于95分的概率.解 (1)由茎叶图可知,甲的平均成绩,x-,乙的平均成绩乙=89甲== 75+77+85+88+89+89+95+96+97+9910,甲、乙的平均成绩相等.89=又甲成绩的方差s=[(79-89)2+(84-89)2+(85-89)2+(87-89)2+(87-89)2+(88-89)2+(93-89)2+(94-89)2+(96-89)2+(97-89)2]=30.4,乙成绩的方差s=[(75-89)2+(77-89)2+(85-89)2+(88-89)2+(89-89)2+(89-89)2+(95-89)2+(96-89)2+(97-89)2+(99-89)2]=60.6,故甲成绩的方差小于乙成绩的方差,因此选派甲参赛更合适.(2)从甲、乙两人90分以上的成绩中各随机抽取1次的不同结果有(93,95),(93,96),(93,97),(93,99),(94,95),(94,96),(94,97),(94,99),(96,95),(96,96),(96,97),(96,99),(97,95),(97,96),(97,97),(97,99),共16种.记“抽到的2次成绩均大于95分”为事件A,则事件A的结果有(96,96),(96,97),(96,99),(97,96),(97,97),(97,99),共6种.因此抽到的2次成绩均大于95分的概率P(A)==. 5.[2017·云南统一检测]某校1200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:(1)求a、b(2)如果从这1200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解(1)由题意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.∴P===0.81.(3)这次数学测验样本的平均分为-==73,x∴这次数学测验的年级平均分大约为73分.。

相关文档
最新文档