毕业设计-基于Matlab的专家PID控制在快速系统中的仿真及应用
基于matlab的pid控制仿真课程设计
这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。
文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。
1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。
Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。
2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。
具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。
三者综合起来,可以实现对被控对象的精确控制。
3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。
利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。
4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。
5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。
(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。
(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。
PID控制和其MATLAB仿真
序号,k=1,2,……,e (k-1)和e (k)分别为第(k-
1)和第k时刻所得旳偏差信号。
1.3.1 位置式PID控制算法
• 位置式PID控制系统
1.3.1 位置式PID控制算法
根据位置式PID控制算法得 到其程序框图。
在仿真过程中,可根据实 际情况,对控制器旳输出 进行限幅:[-10,10]。
• 变速积分旳基本思想是,设法变化积分项旳累加 速度,使其与偏差大小相相应:偏差越大,积分 越慢;反之则越快,有利于提升系统品质。
• 设置系数f(e(k)),它是e(k)旳函数。当 ∣e(k)∣增大时,f减小,反之增大。变速积分 旳PID积分项体现式为:
ui (k )
ki
k
1
e(i)
f
e(k )e(k )T
i0
1.3.8 变速积分算法及仿真
• 系数f与偏差目前值∣e(k)∣旳关系能够是线性 旳或是非线性旳,例如,可设为
1
f
e(k
)
A
e(k A
)
B
0
e(k) B B e(k) A B e(k) A B
1.3.8 变速积分算法及仿真
• 变速积分PID算法为:
u(k)
k
p e(k )
ki
1.3.4 增量式PID控制算法及仿真
• 增量式PID阶跃跟踪成果
1.3.5 积分分离PID控制算法及仿真
• 在一般PID控制中,引入积分环节旳目旳主要是为了 消除静差,提升控制精度。但在过程旳开启、结束或 大幅度增减设定时,短时间内系统输出有很大旳偏差 ,会造成PID运算旳积分积累,致使控制量超出执行机 构可能允许旳最大动作范围相应旳极限控制量,引起 系统较大旳振荡,这在生产中是绝对不允许旳。
(范文)基于MATLAB的PID控制仿真研究设计论文
基于MATLAB的PID控制仿真研究μCOS-II在MCS-51上的移植及实现目录摘要 (4)Abstract (5)前言 (6)绪论 (7)经典控制理论概述 (7)论文结构安排 .............................................................................. 错误!未定义书签。
第1章PID控制的理论基础 (8)1.1 PID控制的相关参数 (8)1.1.1 比例(P)控制 (8)1.1.2 积分(I)控制 (9)1.1.3 微分(D)控制 (9)1.2 常见控制器 (9)1.2.1 比例控制器P (9)1.2.2 比例积分控制器PI (10)1.2.3 比例微分控制器PD (10)1.2.4 比例积分微分控制器PID (11)1.3 PID控制参数整定 (11)第2章传统PID控制 .............................................. 错误!未定义书签。
2.1 传统PID系统设计............................................................... 错误!未定义书签。
2.2 基于MATLAB/SIMULINK的仿真 .................................... 错误!未定义书签。
2.3 传统PID控制器的参数整定............................................... 错误!未定义书签。
2.4 整定结果及分析 ................................................................... 错误!未定义书签。
第3章Ziegler-Nichols整定法 . (13)3.1 系统数学模型的确定 (13)3.2 基于时域响应曲线的整定 (14)3.3 基于频域法的整定 (16)3.4 Ziegler-Nichols整定法的PID控制器设计举例 (16)3.4.1 已知受控对象传递函数为LseTsKsG-+=1) ( (16)3.4.2 已知受控对象频域响应参数 (18)第4章模糊PID系统设计 ...................................... 错误!未定义书签。
基于MATLAB控制系统的仿真与应用毕业设计论文
毕业设计(论文)题目基于MATLAB控制系统仿真应用研究毕业设计(论文)任务书I、毕业设计(论文)题目:基于MATLAB的控制系统仿真应用研究II、毕业设计(论文)使用的原始资料(数据)及设计技术要求:原始资料:(1)MATLAB语言。
(2)控制系统基本理论。
设计技术要求:(1)采用MATLAB仿真软件建立控制系统的仿真模型,进行计算机模拟,分析整个系统的构建,比较各种控制算法的性能。
(2)利用MATLAB完善的控制系统工具箱和强大的Simulink动态仿真环境,提供用方框图进行建模的图形接口,分别介绍离散和连续系统的MATLAB和Simulink仿真。
III、毕业设计(论文)工作内容及完成时间:第01~03周:查找课题相关资料,完成开题报告,英文资料翻译。
第04~11周:掌握MATLAB语言,熟悉控制系统基本理论。
第12~15周:完成对控制系统基本模块MATLAB仿真。
第16~18周:撰写毕业论文,答辩。
Ⅳ、主要参考资料:[1] 《MATLAB在控制系统中的应用》,张静编著,电子工业出版社。
[2]《MATLAB在控制系统应用与实例》,樊京,刘叔军编著,清华大学出版社。
[3]《智能控制》,刘金琨编著,电子工业出版社。
[4]《MATLAB控制系统仿真与设计》,赵景波编著,机械工业出版社。
[5]The Mathworks,Inc.MATLAB-Mathemmatics(Cer.7).2005.信息工程系电子信息工程专业类 0882052 班学生(签名):填写日期:年月日指导教师(签名):助理指导教师(并指出所负责的部分):信息工程系(室)主任(签名):学士学位论文原创性声明本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。
对本文的研究成果作出重要贡献的个人和集体,均已在文中以明确方式表明。
基于MATLAB控制系统的仿真与应用毕业设计论文
基于MATLAB控制系统的仿真与应用毕业设计论文目录一、内容概括 (2)1. 研究背景和意义 (3)2. 国内外研究现状 (4)3. 研究目的和内容 (5)二、MATLAB控制系统仿真基础 (7)三、控制系统建模 (8)1. 控制系统模型概述 (10)2. MATLAB建模方法 (11)3. 系统模型的验证与校正 (12)四、控制系统性能分析 (14)1. 稳定性分析 (14)2. 响应性能分析 (16)3. 误差性能分析 (17)五、基于MATLAB控制系统的设计与应用实例分析 (19)1. 控制系统设计要求与方案选择 (20)2. 基于MATLAB的控制系统设计流程 (22)3. 实例一 (23)4. 实例二 (25)六、优化算法在控制系统中的应用及MATLAB实现 (26)1. 优化算法概述及其在控制系统中的应用价值 (28)2. 优化算法介绍及MATLAB实现方法 (29)3. 基于MATLAB的优化算法在控制系统中的实践应用案例及分析对比研究31一、内容概括本论文旨在探讨基于MATLAB控制系统的仿真与应用,通过对控制系统进行深入的理论分析和实际应用研究,提出一种有效的控制系统设计方案,并通过实验验证其正确性和有效性。
本文对控制系统的基本理论进行了详细的阐述,包括控制系统的定义、分类、性能指标以及设计方法。
我们以一个具体的控制系统为例,对其进行分析和设计。
在这个过程中,我们运用MATLAB软件作为主要的仿真工具,对控制系统的稳定性、动态响应、鲁棒性等方面进行了全面的仿真分析。
在完成理论分析和实际设计之后,我们进一步研究了基于MATLAB 的控制系统仿真方法。
通过对仿真模型的建立、仿真参数的选择以及仿真结果的分析,我们提出了一种高效的仿真策略。
我们将所设计的控制系统应用于实际场景中,通过实验数据验证了所提出方案的有效性和可行性。
本论文通过理论与实践相结合的方法,深入探讨了基于MATLAB 控制系统的仿真与应用。
基于matlab的pid控制器设计
基于Matlab的PID控制器设计引言PID控制器是一种常用的闭环控制器,可以通过调整控制系统的输出,使其迅速、准确地响应给定的参考输入。
在Matlab中,我们可以利用其强大的控制系统工具箱来设计和实现PID控制器。
本文将详细介绍基于Matlab的PID控制器设计的步骤和方法,并结合示例演示其应用。
PID控制器概述什么是PID控制器PID控制器是一种比例-积分-微分控制器,可以通过对误差信号的比例、积分和微分操作来调整控制系统的输出。
其中,比例项负责反馈控制误差,积分项用于消除静态误差,微分项则用于抑制振荡和提高系统的响应速度。
PID控制器的基本原理PID控制器的输出由以下三个部分组成: - 比例项:比例项与控制误差成正比,生成一个与误差成比例的控制信号。
- 积分项:积分项计算误差的积分累加值,用于消除控制系统的静态误差。
- 微分项:微分项计算误差的导数,用于抑制振荡和提高系统的响应速度。
PID控制器的输出计算公式如下:u(t) = K_p \cdot e(t) + K_i \cdot \int e(t) \, dt + K_d \cdot \frac{de(t)}{dt}其中,u(t)为控制器的输出,K_p、K_i、K_d分别为比例、积分和微分增益,e(t)为控制误差。
基于Matlab的PID控制器设计步骤1. 系统建模在设计PID控制器之前,我们首先需要对控制系统进行建模。
使用Matlab的控制系统工具箱,可以通过输入系统的传递函数或状态空间模型来进行建模。
示例:建模一个二阶惯性系统我们以一个简单的二阶惯性系统为例,其传递函数为:G(s) = \frac{1}{s^2 + 2s + 1}在Matlab中,我们可以使用tf函数来定义系统的传递函数模型:s = tf('s');G = 1/(s^2 + 2*s + 1);2. 设计PID控制器设计PID控制器的关键是选择合适的增益参数。
课程设计专家PID控制系统simulink仿真
课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
PID控制算法的MATLAB仿真应用
PID控制算法的MATLAB仿真应用首先,我们需要了解PID控制算法的原理。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制是根据误差信号的大小与输出信号的差异来调节控制器输出信号的增益。
积分控制是根据误差信号的累积值来调节控制器输出信号的增益。
微分控制是根据误差信号的变化率来调节控制器输出信号的增益。
PID控制算法的输出信号可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t) dt + Kd * de(t)/dt其中,e(t)是系统输入与目标值之间的误差信号,u(t)是控制器的输出信号,Kp、Ki和Kd分别是比例增益、积分增益和微分增益。
在MATLAB中使用PID控制算法进行仿真应用,可以按照以下步骤进行:1. 创建一个Simulink模型,可以通过在命令窗口中输入simulink打开Simulink库,然后从库中选择合适的模块进行建模。
在模型中,需要包括被控对象、PID控制器和反馈信号。
2. 配置PID控制器的参数。
在Simulink模型中,可以使用PID Controller模块配置PID控制器的参数,包括比例增益、积分增益和微分增益。
3. 配置被控对象的模型。
在Simulink模型中,可以使用Transfer Fcn模块来建立被控对象的传递函数模型,包括系统的输入和输出端口,以及系统的传递函数。
4. 配置反馈信号。
在Simulink模型中,可以使用Sum模块将被控对象的输出信号和控制器的输出信号相加,作为反馈信号传递给PID控制器。
5. 运行Simulink模型进行仿真。
在Simulink中,可以选择仿真的时间范围和时间步长,然后点击运行按钮开始仿真。
仿真结果可以在模型中的Scope或To Workspace模块中查看和分析。
6.通过调整PID控制器的参数来优化系统的稳定性和响应速度。
根据仿真结果,可以逐步调整PID控制器的比例增益、积分增益和微分增益,以达到期望的控制效果。
pid控制系统的设计及仿真(matlab)本科论文
编号 0814143毕业论文题目:PID控制系统的设计及仿真(MATLAB)毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日目录摘要 (1)Abstract (2)第一章绪论 (1)1.1 课题意义及来源 (1)1.2 温度控制系统的研究现状 (1)1.2.1工业温度控制发展简介 (1)1.2.2温度微机控制系统控制方案 (2)1.3 MA TLAB简介 (4)第二章被控对象及控制策略 (4)2.1被控对象 (5)2.2 控制策略 (6)2.2.1比例、积分、微分 (6)2.2.2 P、I、D控制 (8)第三章PID最佳调整法与系统仿真 (10)3.1 PID参数整定法概述 (10)3.1.1 PID参数整定方法 (10)3.1.2 PID调整方式 (10)3.2针对无转移函数的PID调整法 (11)3.2.1Relay feedback调整法 (11)3.2.2Relay feedback 在计算机做仿真 (12)3.2.3在线调整法 (13)3.2.4在线调整法在计算机做仿真 (14)3.3 针对有转移函数的PID调整方法 (15)3.3.1系统辨识法 (15)3.3.2波德图法及根轨迹法 (17)3.4 仿真结果及分析 (17)总结 (20)参考文献 (21)致谢 (22)河西学院本科生毕业设计诚信声明本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行设计工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。
基于MATLAB仿真的PID控制器设计毕业设计
基于MA TLAB 仿真的PID 控制器设计摘 要本论文以温度控制系统为研究对象设计一个PID 控制器。
PID 控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。
PID 控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器过程控制中最常见的控制器 ( (至今在全世界过程控制中用的至今在全世界过程控制中用的84%仍是纯PID 调节器,若改进型包含在内则超过90%)。
在PID 控制器的设计中,参数整定是最为重要的参数整定是最为重要的,,随着计算机技术的迅速发展,对PID 参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB 仿真系统。
本设计就是借助此软件主要运用Relay-feedback 法,法,线上综合法和系统辨识法来研究线上综合法和系统辨识法来研究PID 控制器的设计方法,设计一个温控系统的PID 控制器,并通过MA MATLAB TLAB 中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。
中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。
关键词: PID 参数整定参数整定 ;PID 控制器控制器 ;MA TLAB 仿真;冷却机;仿真;冷却机;Design of PID Controller based on MATLABAbstractThis paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid controller design method, design a pid controller of temperature control system and observe the output waveform while input step signal through virtual oscilloscope after system completed.Keywords : PID parameter setting ;PID controller ; MA TLAB simulation ;cooling machine目 录摘 要.................................................................................................................................................... 1 ABSTRACT......................................................................................................................................... 1 第一章第一章绪 论 .................................................................................................................................. 4 1.1 课题来源及PID 控制简介 .. (4)1.1.1 课题的来源和意义课题的来源和意义................................................................................................................. 4 1.1.2 PID 控制简介 . (4)1.2 国内外研究现状及MA TLAB 简介....................................................................................... 6 第二章第二章 控制系统及控制系统及PID 调节............................................................................................... 8 2.1 控制系统构成............................................................................................................................ 8 2.2PID 控制 ...................................................................................................................................... 9 2.2.1 比例、积分、微分比例、积分、微分................................................................................................................. 9 2.2.2 P、I、D控制P、I、D控制....................................................................................................................11 第三章第三章系统辨识 ........................................................................................................................ 13 3.1 系统辨识 .. (13)3.2 系统特性图............................................................................................................................... 15 3.3 系统辨识方法 .. (15)第四章第四章PID 最佳调整法与系统仿真 .............................................. 错误!未定义书签。
基于matlab的智能PID控制器设计和仿真毕业设计论文
基于MATLAB的智能PID控制器设计与仿真摘要在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。
传统的PID控制器原理十分简单,即按比例、积分、微分分别控制的控制器,但是他的核心也是他的难点就是三个参数(比例系数Kp、积分系数Ki、微分系数Kd)的整定。
参数整定的合适,那么该控制器将凭借结构简单、鲁棒性好的优点出色的完成控制任务,反之则达不到人们所期望的控制效果。
人工神经网络模拟人脑的结构和功能而形成的信息处理系统,是一门十分前沿高度综合的交叉学科,并广泛应用于工程领域。
神经网络控制是把自动控制理论同他模仿人脑工作机制的数学模型结合起来,并拥有自学习能力,能够从输入—输出数据中总结规律,智能的处理数据。
该技术目前被广泛应用于处理时变、非线性复杂的系统,并卓有成效。
关键词自适应PID控制算法,PID控制器,神经网络Design and simulation of Intelligent PID Controllerbased on MATLABAbstractPID controller ,the control method which is developed on the basis of classical control theory, is widely used in industrial production.The Principle of traditional PID controller is very simple, which contains of the proportion, integral, differential three component, but its core task and difficulties is three parameter tuning(proportional coefficient Kp, integral coefficient Ki and differential coefficient KD).If the parameter setting is suitable, the controller can accomplish the control task with the advantages of simple structure and good robustness;but on the contrary, it can not reach the desired control effect which we what.Artificial neural network , the formation of the information processing system which simulate the structure and function of the human brain , is a very high degree of integration of the intersection of disciplines, and widely used in the field of engineering. Neural network control ,combining automatic control theory and the imitate mathematical model of the working mechanism of human brain , has self-learning ability, and can summarize the law of the input-output data , dealing with data intelligently .This technique has been widely used in the process of time-varying, nonlinear and complex system, and it is very effective.Key W ord:Adaptive PID control algorithm,PID controller,Neural network目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题研究背景及意义 (1)第二章 PID控制器 (2)2.1 PID控制原理 (2)2.2常规PID控制器的算法理论 (3)2.2.1 模拟PI D控制器 (3)2.2.2 数字P I D控制算法 (3)2.2.3常规PID控制的局限 (5)2.2.4 改进型PID控制器 (5)第三章人工神经网络 (8)3.1 人工神经网络的原理 (8)3.2神经网络PID控制器 (8)3.2.1神经元PID控制器 (8)3.2.2 单神经元自适PID应控制器 (9)3.3 BP神经网络参数自学习的PID控制器 (12)第四章MATAB仿真 (16)4.1 仿真过程 (16)第五章结论与展望 (24)致谢 (25)参考文献 (25)华东交通大学毕业设计(论文)第一章绪论1.1 课题研究背景及意义在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。
毕业设计-基于Matlab的专家PID控制在快速系统中的仿真及应用
本科毕业论文(设计)论文(设计)题目:专家PID控制在快速系统中的仿真及应用学院:__专业:_班级:学号:学生姓名:____指导教师:_2010年06月07日贵州大学本科毕业论文(设计)诚信责任书本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。
毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均以明确注明出处。
特此声明。
论文(设计)作者签名:日期:目录摘要 (III)ABSTRACT (IV)前言 (1)第一章绪论 (2)1.1研究的目的和意义 (2)1.2国内外研究现状和发展趋势 (3)1.3本课题的主要研究内容 (4)第二章PID控制器综述 (6)2.1常规PID控制器概述 (6)2.2积分分离PID控制器 (8)2.2.1积分分离PID控制原理 (8)2.2.2积分分离PID的主要用途 (9)2.3专家PID控制器 (9)2.3.1智能PID控制概述 (9)2.3.2专家PID控制原理 (10)第三章专家PID控制及积分分离PID控制在MATLAB上的实现 (14)3.1 MATLAB简介 (14)3.1.1 MATLAB简介 (14)3.1.2 SIMULINK介绍及建模方法 (14)3.2基于MATLAB的积分分离PID控制器设计 (16)3.2.1积分分离PID控制器的simulink程序设计 (16)3.2.2设计过程中的问题分析 (19)3.3基于MATLAB的专家PID控制控制器设计 (19)3.3.1专家PID算法的MATLAB实现 (19)3.3.2 专家PID控制器的M文件实现 (23)3.3.3专家PID控制器的simulink程序设计 (26)3.3.4设计过程中的问题分析 (29)第四章系统数学模型的建立 (30)4.1数学模型的建立方法 (30)4.1.1 数学模型概述 (30)4.1.2 数学建模的一般方法 (30)4.2基于本课题的数学模型建立 (32)4.3.1实验设备简介 (32)4.3.2快速系统简介及控制对象的确定 (34)4.3.3建立流量控制系统数学模型 (34)第五章专家PID和积分分离PID在流量控制系统中的应用 (38)5.1积分分离PID在流量控制系统中的仿真 (38)5.2专家PID控制在流量系统中的仿真及分析 (39)5.2.1专家PID在流量控制系统中的 simulink仿真 (39)5.2.2 控制系统阈值的重要性分析 (40)5.2.3专家PID控制器的自适应能力分析 (42)5.3两种PID算法对比 (44)5.4专家PID控制系统的优缺点及解决方案 (46)第六章结论 (47)参考文献 (49)致谢 (50)附录1:实验控制系统总貌图 (51)附录2:实验设备硬件接线图 (52)附录3:实验系统的阶跃响应曲线 (53)专家PID控制在快速系统中的仿真及应用摘要智能化理论是PID智能控制器构成的基础,当前智能化理论主要是指专家系统、模糊集理论、神经网络、混沌集理论等内容。
PID控制算法的MATLAB仿真应用
1 GC ( s) K P 1 T s Ts D I 控制器的传递函数可写为:
基于 MATLAB 的 PID 控制在计算机控制中的应用
摘 要:
PID控制器结构和算法简单,应用广泛,但参数整定比较复杂,在此我探讨 利用MATLAB实现PID参数整定及其仿真的方法,并分析比较比例、比例积分、比 例微分控制,探讨Kp,Ti,Td三个参数对PID控制规律的影响。本文介绍了PID 控制器在工业领域中的广泛应用,及PID控制器的理论基础以及其对连续系统性 能指标的改善作用。 本文简要介绍了PID控制器在工业领域中的广泛应用,及PID 控制器的理论基础以及其对连续系统性能指标的改善作用。
1.1.3 微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成 正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。 其原因是 由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用的变化“超前” , 即在误差接近零时,抑制误差的作用就应该是零。 微分控制能够预测误差变化的趋势,可以减小超调量,克服振荡,使系统的 稳定性提高。同时,加快系统的动态响应速度,减小调整时间,从而改善系统的 动态性能。
1.1.1 比例(P)控制
比例控制是一种最简单的控制方式, 其控制器的输出与输入误差信号成比例 关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 比例控制作用及时,能迅速反应误差,从而减小稳态误差。但是,比例控制 不能消除稳态误差。其调节器用在控制系统中,会使系统出现余差。为了减少余 差,可适当增大 K P , K P 愈大,余差就愈小;但 K P 增大会引起系统的不稳定, 使系统的稳定性变差,容易产生振荡。
基于MATLAB的PID控制器参数整定及仿真
基于MATLAB的PID控制器参数整定及仿真PID控制器是一种经典的控制器,在工业自动化控制系统中广泛应用。
其主要功能是根据系统的误差信号,通过调整输出信号的比例、积分和微分部分来减小误差,并达到系统的稳定控制。
PID控制器参数整定是指确定合适的比例常数Kp、积分常数Ki和微分常数Kd的过程。
本文将介绍基于MATLAB的PID控制器参数整定及仿真的方法。
首先,在MATLAB中建立一个包含PID控制器的模型。
可以通过使用MATLAB的控制系统工具箱来实现这一过程。
在工具箱中,可以选择合适的建模方法,如直接设计模型、积分节点模型或传输函数模型。
通过这些工具,可以方便地建立控制系统的数学模型。
其次,进行PID控制器参数整定。
PID控制器参数整定的目标是通过调整比例常数Kp、积分常数Ki和微分常数Kd,使系统的响应特性达到最佳状态。
常用的PID参数整定方法有经验法、试误法、Ziegler-Nichols方法等。
1.经验法:根据系统的特性和经验,选择合适的PID参数。
这种方法常用于初步整定,但可能需要根据实际情况调整参数。
2.试误法:通过逐步试验和调整PID参数,使系统的输出响应逐渐接近期望值,从而达到最佳控制效果。
3. Ziegler-Nichols方法:该方法是一种经典的系统辨识方法,通过测试系统的临界稳定性,得到系统的传递函数参数,并据此计算出合适的PID参数。
最后,进行PID控制器参数整定的仿真。
在MATLAB中,可以通过使用PID模块进行仿真。
可以输入相应的输入信号和初始参数,观察系统的输出响应,并通过调整参数,得到最佳的控制效果。
总结起来,基于MATLAB的PID控制器参数整定及仿真的过程包括:建立控制系统模型、选择PID参数整定方法、进行PID参数整定、进行仿真实验。
PID控制器参数整定的好坏直接影响控制系统的工作性能。
通过基于MATLAB的仿真实验,可以方便地调整和优化控制系统的PID参数,提高系统的响应速度、稳定性和抗干扰性能。
基于MATLAB的PID控制器设计报告
MATLAB论文--基于控制系统的PID调节基于MATLAB的PID 控制器摘要:本论文主要研究PID控制器。
PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。
PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。
在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。
本论文主要介绍PID的原理及简单的用法,探究控制器中各个参数对系统的影响,就是利用《自动控制原理》和《MATLAB》所学的内容利用简单的方法研究PID控制器的设计方法,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。
关键字:PID控制简介PID控制器原理MATLAB仿真PID参数的设定正文:一、PID控制简介PID控制器又称PID调节器,是工业过程控制系统中常用的有源校正装置。
长期以来,工业过程控制系统中多采用气动式PID控制器。
由于气动组件维修方便,使用安全可靠,因此在某些特殊场合,例如爆炸式环境,仍然使用气动式PID控制器。
随着运算放大器的发展和集成电路可靠性的日益提高,电子式PID控制器已逐渐取代了气动式PID控制器。
目前,已在开发微处理器PID控制器。
这里,仅简要介绍PID控制器的主要特性。
PID调节器是一种线性调节器,它根据给定值)(t r与实际输出值)(t c构成的控制偏差:)(t e=)(t r-)(t c将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID调节器。
在实际应用中,常根据对象的特征和控制要求,将P、I、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。
例如,P 调节器,PI调节器,PID调节器等。
所以, 正确计算控制器的参数, 有效合理地实现PID控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。
专家PID控制系统Matlab仿真
专家PID 控制系统Matlab 仿真摘要:分析了一个速度控制器的控制仿真。
其传递函数为:ss s s G 104735.87523500)(23++=使用专家PID 控制系统,输入信号为阶跃信号,取采样时间为1ms ,画出阶跃响应曲线和误差变化曲线。
0引言专家控制(Expert Control)的实质是基于受控对象和控制规律的各种知识,并以智能的方式利用这些知识来设计控制器。
利用专家经验来设计PID 参数便构成专家PID 控制。
典型的二阶系统单位阶跃响应误差曲线如图1、2所示。
对于典型的二阶系统阶跃响应过程作如下分析,根据误差及其变化,可设计专家PID 控制器,该控制器可分为五种情况进行设计。
1设计根据误差及其变化,可设计专家PID 控制器,该控制器可分为以下五种情况进行设计:(1)当1M |e(k)|>时,说明误差的绝对值已经很大,不论误差变化趋势如何,都应考虑控制器的输出应按最大〔或最小)输出,以达到迅速调整误差,使误差绝对值以最大速度减小。
此时,它相当于实施开环控制。
(2)当0)(e(k)>∆k e 时,说明误差在朝误差绝对值增大方向变化,或误差为某一常值,未发生变化。
此时,如果2M |e(k)|>,说明误差也较大,可考虑由控制器实施较强的控制作用,以达到扭转误差绝对值朝减小方向变化,并迅速减小误差的绝对值。
此时,如果2M |e(k)|<,说明尽管误差朝绝对值增大方向变化,但误差绝对值本身并不很大,可考虑控制器实施一般的控制作用,只要扭转误差的变化趋势,使其初误差绝对值减小方向变化。
(3)当0)(e(k)<∆k e ,01)-(e(k)>∆k e 或0e(k)=时,说明误差的绝对值朝减小的方向变化,或者已经达到平衡状态。
此时,可考虑采取保持控制器输出不变。
(4)当0)(e(k)<∆k e ,01)-(e(k)<∆k e 时,说明误差处于极值状态。
基于MATLAB的数字PID控制器设计及仿真分析资料
基于MATLAB的数字PID控制器设计及仿真分析摘要PID控制作为历史最为悠久,生命力最强的控制方式一直在生产过程自动化控制中发挥着巨大的作用。
PID控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛用于过程控制和运动控制中。
数字PID控制算法是将模拟PID离散化而得到的,各参数有着明显的物理意义,而且调整方便,所以PID控制器很受工程技术人员的喜爱。
本论文主要实现基于MATLAB的数字PID控制器设计及仿真。
首先介绍了传统的模拟PID控制方法,包括比例控制方法、比例积分控制方法、比例积分微分控制方法等。
接下来,介绍了数字PID控制。
随着时代的发展,科技的进步,传统的模拟PID控制方法不能满足人们的需求,数字PID控制的改进算法也便随之而来。
本文最后,应用MATLAB软件,在实验的环境下实现了其设计及仿真。
本次毕业设计用来完成数字PID控制器的设计,并通过MATLAB实现其仿真同时加以分析。
通过查阅文献得知,与传统模拟PID控制器相比较,该控制器具有良好的灵活性,而且可得到精确的数学模型。
另外,基于MATLAB的数字PID 控制器设计及仿真,充分的利用了MATLAB的实验环境,整个设计验证了数字PID的广泛可实现性及准确性。
关键词:PID控制;模拟PID控制器;数字PID控制器;MATLAB仿真;Design and simulation analysis of Digital PID ControllerMATLAB-basedAbstractAs the most age-old and powerful control mode, PID control always has had a great effect on the automatic control of the production process. PID control is one of the first developed control strategy, because of thesimple algorithm,great robust and high reliability, it is widely used in process control and motor control. Digital PID control algorithm is gotten by discreting the analog PID control, and the parameters have obvious physical meaning and facility adjustment, so PID controller is popular with engineering and technical personnel.In the paper, the main idea is to accomplish MATLAB-based digital PID controller design and simulation analysis. In the first place, the traditional analog PID control methods is introduced, including proportional control methods, proportional integral control and proportional integral differential control. In the second place, the digital PID control methods are offered. With the development of the times, the advancement of technology, traditional analog PID control method cannot make a satisfaction, then digital PID control is followed. At last,the application of MATLAB software to achieve their design and simulation is easy to accomplish.The graduation project is to complete the digital PID controller design and simulation through MATLAB simulation and analysis. It is known that through the literature, compare with traditional PID controller, the controller has good flexibility and precision of the mathematical models available. In addition, in the number of MATLAB-based PID controller design and simulation, the MATLAB experiment environment is used comprehensively. The entire design is confirmed the wide range and accuracy of digital PID controller.Key words:PID control;analog PID controller;digital PID controller;MATLAB simulatio目录摘要 (I)ABSTRACT...................................................................... I I 第1章绪论.. (1)1.1课题目的及意义 (1)1.2数字PID控制器的研究现状 (2)第2章 PID控制器 (3)2.1传统PID控制器概述 (3)2.2PID控制器的基本原理 (5)2.2.1 比例(P)调节 (6)2.2.2 比例积分(PI)调节 (7)2.2.3 比例积分微分(PID)调节 (9)第3章数字PID控制器 (13)3.1数字PID控制系统 (13)3.2数字PID控制的基本算法 (14)3.2.1 位置式PID控制算法 (14)3.2.2 增量式PID控制算法 (16)3.2.3 位置算式与增量算式的比较 (17)第4章数字PID的改进算法 (19)4.1积分算法的改进 (20)4.1.1 积分分离法 (21)4.1.2 变速积分法 (24)4.1.3 遇限消弱积分法 (25)4.1.4 梯形积分法 (26)4.2微分算法的改进 (27)4.2.1 不完全微分PID控制算法 (27)4.2.2 微分先行PID控制算法 (30)4.3带死区的PID控制算法 (32)第5章基于MATLAB的数字PID控制器设计及仿真 (34)5.1位置式PID控制算法仿真实例 (34)5.2增量式PID控制算法仿真实例 (35)参考文献 (37)谢辞 (37)第1章绪论1.1 课题目的及意义PID控制器又称为PID调节器,是按偏差的比例P、积分I、微分进行控制的调节器的简称,它主要针对控制对象来进行参数调节。
基于matlab的pid控制仿真课程设计
基于matlab的pid控制仿真课程设计PID(比例-积分-微分)控制器是一种常见的控制算法,被广泛应用于工业控制系统中。
在本文中,我们将介绍基于MATLAB的PID控制仿真课程设计。
首先,我们将简要介绍PID控制器的原理和特点,然后介绍如何使用MATLAB进行PID控制的仿真。
PID控制器是一种反馈控制器,可以通过比例、积分和微分三部分来调节控制系统的输出。
比例部分根据误差的大小进行调节,积分部分用于消除稳态误差,微分部分用于抑制系统振荡。
通过调节PID控制器的参数,可以使系统的稳定性、响应速度和稳态误差达到预期的要求。
在MATLAB中,可以使用控制系统工具箱来进行PID控制的仿真。
首先,我们需要定义一个系统模型,可以是连续时间系统或离散时间系统。
然后,我们可以使用PID控制器对象来创建一个PID控制器。
PID控制器的参数可以通过试错法、模型辨识等方法进行调节。
一旦系统模型和PID控制器被定义,我们可以使用MATLAB中的仿真工具来进行PID控制器的仿真。
通常,我们将输入信号作为控制器的参考信号,将输出信号作为系统的输出,并将控制器的输出作为系统的输入。
然后,我们可以观察系统的响应,并根据需要调整控制器的参数。
在进行PID控制仿真实验时,我们可以通过选择不同的控制器参数、改变控制器的结构、调整参考信号等方式来研究控制系统的性能。
例如,我们可以改变比例增益来改变系统的稳定性和响应速度,增加积分时间常数来减小稳态误差,增加微分时间常数来抑制系统振荡等。
在课程设计中,我们可以设计不同的控制实验,并分析不同参数对系统性能的影响。
例如,可以研究比例增益对系统稳定性和响应速度的影响,或者研究积分时间常数对稳态误差的影响等。
同时,我们还可以通过比较PID控制和其他控制算法(如PI控制、PD控制等)来评估PID控制的优势和局限性。
在进行PID控制仿真实验时,我们应该注意以下几点。
首先,选择合适的系统模型,确保模型能够准确地描述实际系统的行为。
毕业设计--基于MATLAB的PID控制算法的实现
摘要目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。
PID 控制及其控制器已在工程实际中得到了广泛的应用。
本文介绍了PID控制的基础知识和工作原理,并讨论PID控制器的类型以及各种控制器的优缺点,为进行数字PID的算法研究和仿真提供理论基础。
在简单介绍工业过程控制中经常使用到的位置式和增量式PID控制后主要讨论了两种改进的数字PID控制算法:积分分离PID算法与不完全微分PID算法,比较传统控制算法与改进的算法的优缺点,并基于MATLAB对其进行仿真,讨论仿真结果。
仿真结果表明:积分分离控制算法和不完全微分控制算法可以提高控制精度和消除系统高频干扰等。
证明改进的PID控制算法相比一般PID控制算法有很多优点。
关键词:数字PID;积分分离;不完全微分;MATLAB仿真AbstractAt present the level of industrial automation has become an important sign of the modernization of every industries.PID control and controllers now have been worked in a wide range of engineering applications.This paper briefly introduces and discusses the types and the advantages or disadvantages of the PID controllers.These konwledge lay the foundation for the arithmetical research and the simulation.It mainly discusses two improved PID control algorithms: Integral separation PID control algorithm and Not completely differential PID control algorithm after introducing the Incremental PID control and the Position control algorithm used in the industrial process paring the advantage and diadvantage of the traditional PID control algorithm to the improved PID control algorithm and discussing the results of MATLAB simulation.The simulation results show that the Integral separation PID control algorithm and Not completely differential PID control algorithm can improve the control accuracy and eliminate the high frequency interference ,etc.This article proves that the improved PID control algorithm have more advantages than normal PID control algorithm.Key words:digital PID; Integral separation; Not completely differential simulation; MATLAB simulation目录第1章概述 (1)1.1设计的目的和意义 (1)1.2国内外研究发展现状 (1)1.3本次设计的研究内容 (2)第2章 PID控制基本理论 (3)2.1PID的工作原理 (3)2.2PID控制器类型分类 (4)2.4PID控制器参数确定 (6)2.5PID控制器优缺点 (10)2.6本章小结 (10)第3章数字PID控制算法及仿真意义 (11)3.1数字PID控制算法 (11)3.2MATLAB简介 (19)3.3PID仿真的意义 (21)3.4本章小结 (22)第4章改进型PID控制算法及仿真 (23)4.1积分分离式PID控制算法 (23)4.2不完全微分PID控制算法 (27)4.3本章小结 (32)结论 (33)参考文献 (34)致谢 (35)附录 (36)第1章概述1.1 设计的目的和意义PID控制由于结构简单、工作稳定、鲁棒性好等因素在当今的工业过程控制中仍占有主导地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文(设计)论文(设计)题目:专家PID控制在快速系统中的仿真及应用学院:__专业:_班级:学号:学生姓名:____指导教师:_2010年06月07日贵州大学本科毕业论文(设计)诚信责任书本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。
毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均以明确注明出处。
特此声明。
论文(设计)作者签名:日期:目录摘要 (III)ABSTRACT (IV)前言 (1)第一章绪论 (2)1.1研究的目的和意义 (2)1.2国内外研究现状和发展趋势 (3)1.3本课题的主要研究内容 (4)第二章PID控制器综述 (6)2.1常规PID控制器概述 (6)2.2积分分离PID控制器 (8)2.2.1积分分离PID控制原理 (8)2.2.2积分分离PID的主要用途 (9)2.3专家PID控制器 (9)2.3.1智能PID控制概述 (9)2.3.2专家PID控制原理 (10)第三章专家PID控制及积分分离PID控制在MATLAB上的实现 (14)3.1 MATLAB简介 (14)3.1.1 MATLAB简介 (14)3.1.2 SIMULINK介绍及建模方法 (14)3.2基于MATLAB的积分分离PID控制器设计 (16)3.2.1积分分离PID控制器的simulink程序设计 (16)3.2.2设计过程中的问题分析 (19)3.3基于MATLAB的专家PID控制控制器设计 (19)3.3.1专家PID算法的MATLAB实现 (19)3.3.2 专家PID控制器的M文件实现 (23)3.3.3专家PID控制器的simulink程序设计 (26)3.3.4设计过程中的问题分析 (29)第四章系统数学模型的建立 (30)4.1数学模型的建立方法 (30)4.1.1 数学模型概述 (30)4.1.2 数学建模的一般方法 (30)4.2基于本课题的数学模型建立 (32)4.3.1实验设备简介 (32)4.3.2快速系统简介及控制对象的确定 (34)4.3.3建立流量控制系统数学模型 (34)第五章专家PID和积分分离PID在流量控制系统中的应用 (38)5.1积分分离PID在流量控制系统中的仿真 (38)5.2专家PID控制在流量系统中的仿真及分析 (39)5.2.1专家PID在流量控制系统中的 simulink仿真 (39)5.2.2 控制系统阈值的重要性分析 (40)5.2.3专家PID控制器的自适应能力分析 (42)5.3两种PID算法对比 (44)5.4专家PID控制系统的优缺点及解决方案 (46)第六章结论 (47)参考文献 (49)致谢 (50)附录1:实验控制系统总貌图 (51)附录2:实验设备硬件接线图 (52)附录3:实验系统的阶跃响应曲线 (53)专家PID控制在快速系统中的仿真及应用摘要智能化理论是PID智能控制器构成的基础,当前智能化理论主要是指专家系统、模糊集理论、神经网络、混沌集理论等内容。
作为专家系统的知识,是实践经验丰富、被证明是有效的知识。
论文主要研究专家PID控制器的设计及其在流量控制系统中的应用,完成了以下工作:(1)首先介绍了专家PID控制和积分分离PID控制的原理,并运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(2)其次,文中还对建立数学模型的方法进行了介绍,并针对本课题和实验设备,选取流量为被控对象,使用阶跃响应曲线法建立了流量系统的数学模型。
(3)再次,针对流量系统数学模型,设计了基于专家PID控制算法和积分分离PID 控制算法的控制器,对基于两种控制器的流量系统从系统跟随性、抗绕性等方面进行了研究。
除此之外,对专家PID控制器中阈值对系统的影响以及专家PID控制系统自适应能力进行了简要分析。
仿真结果表明,专家PID和积分分离PID的控制效果各有其优点,但专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,快速控制系统,simulink仿真,积分分离PIDExpert PID control in fast system's simulation and applicationABSTRACTThe intellectualized theory is the foundation which the PID intelligence controller constitutes, The current intellectualized theory is mainly refers to contents expert system, fuzzy set theory, neural network, chaos collection theory and so on. As expert system's knowledge, is the experience rich, is the effective knowledge by the proof.The paper mainly studies controller's design of the expert PID and it’s application in flow control system. Completed the following work:(1)、First, Thesis describes the principle of expert PID control and integral separation PID control, And use MATLAB implementation the two kind of PID controller design and the simulink simulation, And has carried on the comparison to two kind of PID controllers.(2)、Second, In the article a mathematical model of the method were introduced also. And for this task and experimental equipment, Select the flow of charged objects, Established a mathematical model of traffic system Through step response curve law.(3)、Third, In view of mathematical model for the flow system,Designed the controller based on expert PID control algorithm and the integral PID control algorithm separation, based on the two controllers of flow system.In addition, Briefly analyzed the influence on expert PID controller in the system of threshold and the auto-adapted ability of expert PID control system.The simulation result show that the control effect of expert PID and the integral separates PID has its own advantages, But experts PID control uses the multi-section control,its control precision is better, and has excellent anti-interference performance.Keywords:Expert PID, Expert system,Rapid Control Systems,Simulink simulation, integral separates PID前言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
智能控制与常规PID控制相结合,形成所谓智能PID控制,这种新型的控制方式已引起人们的普遍关注和极大兴趣,并已得到较为广泛的应用。
PID控制是最早发展起来的控制策略之一,由于其算法简单,鲁棒性好和可靠性高,被广泛应用于工业过程控制。
在PID控制中,一个至关重要的问题是PID参数(比例系数、积分时间、微分时间)的整定。
参数整定的优劣不仅会影响到控制质量,而目还会影响到控制系统的稳定性和鲁棒性。
实际工业生产过程往往具有非线性、时变等不确定性干扰,常规PID控制器经常出现参数整定不良、控制性能欠佳,且对运行工况的适应性较差等情况[2]。
针对以上问题,长期以来,人们一直在寻求PID控制器的自动整定技术,以适应复杂的工况和高指标的控制要求。
专家智能自整定PID控制器是将专家控制与常规PID控制相结合而具有的自整定、自学习等功能,可以用来描述复杂系统的特性,并通过学习和自组织得到相应的控制策略。
论文以Matlab为基础,研究了两种控制算法:积分分离的PID和专家PID算法,并结合实验室实验装置,取流量为被控对象,分别建立了流量控制系统的积分分离式PID控制器及专家PID控制器,通过对比研究,分别指出了两种控制器的特点及存在问题。
第一章绪论1.1研究的目的和意义目前,智能控制已广泛地应用于自然科学和社会科学的各个领域,如:复杂的工业过程控制、机器人与机械手的控制、航天航空控制、交通运输控制等,尤其当被控对象模型包含有不确定性、时变、非线性、时滞、藕合等难以控制因素、采用其它控制理论难以设计出合适并符合要求的系统时,都有可能应用智能控制理论获得满意的解决[2]。
专家控制是智能控制的一个分支,是先进控制的一种。
其实质是利用专家经验来设计控制器,使控制器具有智能。
本文的目的是用两种PID算法来实现PID控制在快速系统中的仿真及应用。
即:专家PID和积分分离式PID。
根据偏差的比例(P)、积分(I)、微分(D)进行控制(简称PID控制),是控制系统中应用最为广泛的一种控制算法。