高考文科必背数学公式

合集下载

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数。

(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数. 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±。

(2)'''()uv u v uv =+。

(3)'''2()(0)u u v uv v v v -=≠。

大学文科数学全部公式

大学文科数学全部公式
A B A B A B A B
A B AB A AB
3. 概率的计算方法
直接计算 P(A) A中包含的样本点个数
tan xdx ln cos x C . cot xdx ln sin x C .
不定积分的分部积分法
分部积分法常用于被积函数是两种不同类型函数乘积的积分,
如 x na x dx , x n sin xdx , x n arctan xdx , e x cos xdx 等.
(4)若 lim
x 是 x 的 k 阶无穷小量.
k
L ( L 0, k 0) ,则称 x0 时,
重要结论:
1 x, 当 x 0 时, loga (1 x) ~ lna
ln( 1 x ) ~ x ,
e x 1 ~ x ,
a 1 ~ x lna ,
x
(1 x) 1 ~ x.
(1)齐次方程组(1)只有零解 R( A) n (未知量的个数). (2)齐次方程组(1)有非零解 R( A) n (未知量个数). 有n个未知数n个方程的齐次线性方程组 有非零解的充要条件是它的系数矩阵行列式 A 0.
求解齐次线性方程组的一般步骤:
① 对系数矩阵A施行初等行变换化为行最简矩阵; ② 由行最简矩阵写出对应的同解方程组; ③令同解方程组中的自由未知量分别为 c1 , c2 ,, cnr ,
1 y C ] , 3
1 4 故原方程的通解为 x y Cy . 3
行列式的计算
三种常用方法
三角法 : 根据行列式的特点,利用行列式的性 质,把它逐步化为三角行列式,然后求得其值。
降阶法 : 利用行列式按行(列)展开法则降阶, 把它降为较低阶的行列式,然后求解;通常此法需 结合化简性质运用。 通过降阶法建立起行列式与其同形的 递推法 : 较低阶的行列式的关系式--------递推关系式,然后由 递推关系式求解其值。

高中文科数学公式总结大全

高中文科数学公式总结大全

高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。

在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。

而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。

以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。

高考文科数学河南知识点

高考文科数学河南知识点

高考文科数学河南知识点高考是每个学生都经历的一场考试,数学作为其中一个科目,对于文科生来说,可能是一个挑战。

本文将介绍一些河南高考文科数学的知识点,帮助考生更好地准备这门科目。

一、函数与方程1. 一次函数:y = kx + b,k为斜率,b为截距。

注意在考试中常常会涉及到求解关于一次函数的问题。

2. 二次函数:y = ax^2 + bx + c,a为二次项系数,b为一次项系数,c为常数项。

要能够掌握二次函数的基本性质,如开口方向、顶点坐标等。

3. 不等式:对于不等式,要熟悉解不等式的方法,如图像法、试数法等。

二、数列与数学归纳法1. 数列的概念:数列是按照一定规律排列的数的集合。

要能够分辨等差数列和等比数列,并掌握它们的通项公式。

2. 数学归纳法:数学归纳法是一种证明方法,常用于证明数列的一般性质。

要熟悉数学归纳法的步骤,并能够灵活运用。

三、概率与统计1. 可能性与概率:要理解概率的概念,掌握计算概率的方法,如事件的互斥与独立。

2. 统计与图表分析:了解统计学中的基本概念,如平均数、中位数、众数等,并能够读懂各种图表,如折线图、柱状图等。

四、几何与三角函数1. 平面几何:熟悉平面几何中的基本概念,如线段、角、多边形等,并能够灵活应用几何性质求解相关问题。

2. 三角函数:熟练掌握正弦、余弦和正切等三角函数的定义和性质,能够应用三角函数解决实际问题。

五、解析几何1. 平面直角坐标系:要了解平面直角坐标系的概念,能够在平面直角坐标系中求两点之间的距离、斜率等。

2. 直线和圆的方程:要能够根据直线上的点或直线的特征方程求解直线的方程,同样地,要能够根据圆上的特征点求解圆的方程。

以上是一些涉及高考文科数学河南知识点的简要介绍,考生在备考中应该重点关注这些知识点,多做练习,掌握解题技巧。

只有充分掌握了这些知识,才能在高考数学科目中取得好成绩。

祝愿所有考生都能取得优异的成绩!。

高中数学公式大全(文科)

高中数学公式大全(文科)

高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n-个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。

(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假5 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。

6 函数单调性:增函数:(1)、文字描述是:y 随x 的增大而增大。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。

(完整版)文科高中数学公式大全(超全完美)

(完整版)文科高中数学公式大全(超全完美)

高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

文科数学高考知识点公式

文科数学高考知识点公式

文科数学高考知识点公式在文科数学高考中,知识点很多,其中公式是我们必须牢记的重要内容。

这些公式不仅能够帮助我们解决各类数学问题,还能提高解题效率。

本文将介绍一些常见的文科数学高考知识点公式,并探讨其应用。

1. 几何平均数公式几何平均数是一组数的乘积开方。

在高考中,我们经常需要用到平均数解题,而几何平均数公式是计算几何平均数的重要工具。

公式如下:对于正数a_1、a_2、...、a_n,它们的几何平均数G满足以下公式:G = (a_1 * a_2 * ... * a_n)^(1/n)例如,求1、2、3、4、5的几何平均数,可以应用该公式:G = (1 * 2 * 3 * 4 * 5)^(1/5) = 2.6052. 排列组合公式在高考中,排列组合是一个常见的考点。

排列组合公式可以帮助我们快速计算排列和组合的数量。

(1)排列公式:对于n个元素中取出r个元素进行排列,排列数用P表示,计算公式为:P(n,r) = n!/(n-r)!例如,从5个数中取出3个数进行排列,可以应用该公式:P(5,3) = 5!/(5-3)! = 60(2)组合公式:对于n个元素中取出r个元素进行组合,组合数用C表示,计算公式为:C(n,r) = n!/((n-r)! * r!)例如,从5个数中取出3个数进行组合,可以应用该公式:C(5,3) = 5!/((5-3)! * 3!) = 103. 相似三角形的比例公式在几何学中,相似三角形的比例是非常重要的。

相似三角形的比例公式可以帮助我们求解未知边长的三角形问题。

设两个相似三角形的对应边长比为m: n,那么这两个相似三角形的面积比为m²: n²。

例如,已知两个相似三角形的一个边长比为2:3,求其面积比,可以应用该公式:面积比 = 2²:3² = 4:94. 等差数列求和公式在高考中,等差数列是一个常见的数列类型。

等差数列求和公式可以帮助我们快速计算等差数列的和。

高中数学公式大全文科

高中数学公式大全文科

高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。

高中数学公式大全 高考文科必背数学公式整理

高中数学公式大全 高考文科必背数学公式整理

千里之行,始于足下。

高中数学公式大全高考文科必背数学公式整理高中数学是一门基础科学课程,内容丰富,有很多重要的公式需要记忆和把握。

下面我整理了一些高考文科必背的数学公式,期望对您有所挂念。

1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2) b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n, n)a^0 b^n2. 幂的运算:a^m * a^n = a^(m+n)(a^m)^n = a^(mn)a^m / a^n = a^(m-n)3. 对数与指数的关系:a^x = b 等价于 x = loga(b)4. 对数运算:loga(mn) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^p) = p*loga(m)loga1 = 0 (任何数以自身为底数取对数等于0)logaa = 1 (底数与真数相等时,对数等于1)5. 三角函数和三角恒等式:sin^2x + cos^2x = 11 + tan^2x = sec^2x1 + cot^2x = cosec^2x第1页/共2页锲而不舍,金石可镂。

sin(90° - x) = cosx,cos(90° - x) = sinxtan(90° - x) = cotx,cot(90° - x) = tanxsin2x = 2sinxcosxcos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2xtan2x = (2tanx) / (1 - tan^2x)6. 平面坐标和距离公式:点P(x₁, y₁)与点Q(x₂, y₂)之间的距离公式:d = sqrt((x₂-x ₁)^2 + (y₂-y₁)^2)7. 二次函数相关公式:抛物线顶点坐标:(h, k),其中 h = -b/(2a),k = f(h) = f(-b/(2a)) 抛物线开口朝上时,对称轴为x = h;开口朝下时,对称轴为 y = k抛物线的焦点坐标:(h, k+p),其中 p = 1/(4a)焦点到顶点的距离:|p| = 1/(4|a|)抛物线与x轴交点:x₁ = h - |p|,x₂ = h + |p|8. 函数导数和微分公式:(cf(x))' = c(f(x))',其中c为常数(f(x) + g(x))' = f'(x) + g'(x)(f(x) - g(x))' = f'(x) - g'(x)(f(x) * g(x))' = f'(x)g(x) + f(x)g'(x)(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/(g(x))^2(f(g(x)))' = f'(g(x))*g'(x)(f(g(x)))'' = f''(g(x))*(g'(x))^2 + f'(g(x))*g''(x)在x=a处的高阶导数:f(a) = f'(a) = f''(a) = ... = f^n(a)这里只列举了一些高考文科必背的数学公式,还有很多公式和定理没有列出。

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。

作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。

为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。

一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。

2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。

3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。

4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。

二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。

(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。

高中文科数学公式

高中文科数学公式

高中数学 :公 式 方 法第一部分 集合1.元素与集合关系用∈(属于),集合与集合关系用⊆(包含于)。

2.集合运算有三种:交⋂,并⋃,补。

交⋂:求公共元素, 并⋃:求全部元素, 补:求全集里除了本集合元素外的其余元素.3.常用数集:R(实数集) Z(整数集) N(自然数集)4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个; 非空子集有2n –1个;非空真子集有2n –2个. 5.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数与导数1.函数定义域的求法:①有分母,则分母不等于零; ②有偶次方根,则被开方数大于或等于零; ③ 有对数,则真数大于零2.函数的奇偶性:⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....⑵)(x f 是奇函数)()(x f x f -=-⇔; )(x f 是偶函数)()(x f x f =-⇔.⑶特殊值法:奇函数)(x f 在0处有定义,则0)0(=f ,偶函数f(-1)=f (1),可求函数式的字母值。

3.函数的单调性: ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >; ⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分) 4.基本初等函数(1).一次函数:y=kx+b (k ≠0) 正比例函数:)0(≠=k kx y(2).一元二次函数:02=++c bx ax (a ≠0) (3)反比例函数:)0(≠=k xk y(4)指数函数:)1,0(≠>=a a a y x; (5)对数函数:)1,0(log≠>=a a x y a;(记住:真数>0)(6)幂函数:αx y = ()R ∈α ;(记住:α=-1,21,3的图象)(7)三角函数:正弦函数:x y sin =;余弦函数:x y cos = ;正切函数:x y tan =;;⑴零指数:a 0=1 (a ≠0) 负指数:a p -=pa1 (负指数=倒数)分数指数幂:mn a =(分数指数=根式)⑵.①指数式与对数式互化:b N N a ab =⇔=log ; (底还是做底)②()N M MN aaalogloglog+=; ③N M NMaaalogloglog-=;④log n a M =nlog m a . ⑶.对数的换底公式:log log log m a m N N a=. .(4)记住:log a a =1, log 1a =0 对数恒等式:log aNa N =5.二次函数:⑴解析式:①一般式:c bx ax x f ++=2)(; ②顶点式:k h x a x f +-=2)()(,),(k h 为顶点;③零点式:))(()(21x x x x a x f --= (a ≠0).⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

高中文科数学公式大全(完整完全精华版)

高中文科数学公式大全(完整完全精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方式是:解方程()0f x '=得0x .当()00f x '=时:① 若是在0x 周围的左侧()0f x '>,右边()0f x '<,那么()0f x 是极大值; ② 若是在0x 周围的左侧()0f x '<,右边()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.八、根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.九、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

文科高考数学必背公式

文科高考数学必背公式

文科高考数学必背公式在文科高考中,数学是一个重要的科目。

虽然数学不是文科生的强项,但是通过对一些必背公式的掌握,可以在考试中取得更好的成绩。

以下是文科高考数学必背公式。

1. 一次函数的表达式:y = kx + b。

其中,k为斜率,b为截距。

2. 二次函数的标准形式:y = ax² + bx + c。

其中,a、b、c为常数,且a≠0。

3. 二次函数的顶点坐标:顶点的横坐标为x = -b/2a,纵坐标为y = -Δ/4a。

其中,Δ为判别式,Δ = b² - 4ac。

4.一元二次方程的解:解为x=(-b±√Δ)/2a。

5.二次函数的对称轴方程:x=-b/2a。

6. 三角函数的定义:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边。

7. 三角函数的正负关系:sinθ、tanθ在0~π范围内非负,cosθ在π/2时为0,在0~π/2范围内非负,在π/2~π范围内非正。

8. 三角函数的周期性:sin(θ ± 2πn) = sinθ,cos(θ ± 2πn) = cosθ,tan(θ ± πn) = tanθ。

其中,n为整数。

9. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。

10. 三角函数的倍角公式:sin2θ = 2sinθcosθ,cos2θ =cos²θ - sin²θ,tan2θ = (2tanθ) / (1 - tan²θ)。

11.平面几何中的相似三角形:对应角相等,对应边成比例。

12.平行线的性质:同位角互等、内错角互补、同旁内角互补。

13. 同余式的性质:如果a≡b (mod m),则a±c≡b±c (mo d m),ac≡bc (mod m)。

文科高考数学必背知识点--公式

文科高考数学必背知识点--公式

文科高考数学必背知识点--公式一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαco s(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

高中高考文科数学公式大全

高中高考文科数学公式大全

2021 年高考必备文科数学公式_高考文科数学公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式 tan2A=2tanA/(1-tan2A)cos2a=cos2a-sin2a=2cos2a-1=1-2sin2正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角圆的标准方程 (x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0注: D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py线线平行常用方法总结:(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

(3)初中所学平面几何中判断直线平行的方法(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

(5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。

线面平行的判定方法 :⑴定义:直线和平面没有公共点.(2)判定定理:假设不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行(3)面面平行的性质 : 两个平面平行 , 其中一个平面内的任何一条直线必平行于另一个平面(4)线面垂直的性质:平面外与平面的垂线垂直的直线平行于平面判定两平面平行的方法:(1)依定义采用反证法(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

高考文科数学微点 (12)

高考文科数学微点 (12)

高考微点十二直线与圆牢记概念公式,避免卡壳1.直线方程的五种形式(1)点斜式:y-y0=k(x-x0).(2)斜截式:y=kx+b.(3)两点式:y-y1y2-y1=x-x1x2-x1(x1≠x2,y1≠y2).(4)截距式:xa+yb=1(a≠0,b≠0).(5)一般式:Ax+By+C=0(A,B不同时为0).2.三种距离公式(1)两点A(x1,y1),B(x2,y2)间的距离|AB|=(x2-x1)2+(y2-y1)2.(2)点P(x0,y0)到直线Ax+By+C=0的距离为d=|Ax0+By0+C|A2+B2.(3)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离为d=|C1-C2| A2+B2.3.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).活用结论规律,快速抢分1.三种特殊的直线系方程(1)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).(2)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.(3)过直线A1x+B1y+C1=0,A2x+B2y+C2=0交点的直线系方程:A1x+B1y+C1+λ(A2x +B2y+C2)=0(不包括直线A2x+B2y+C2=0).2.若点P(x0,y0)在圆x2+y2=r2上,则过该点的切线方程为x0x+y0y=r2.3.直线与圆的位置关系(1)代数方法(将直线与圆方程联立得方程组,消去一个未知数,得到一个一元二次方程,再判断此方程的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则d<r⇔相交,d>r⇔相离,d=r⇔相切.高效微点训练,完美升级1.若直线l 过点(-1,2)且与直线2x -3y +1=0垂直,则l 的方程为( )A.3x +2y -1=0B.3x +2y +7=0C.2x -3y +5=0D.2x -3y +8=02.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( )A.19x -9y =0B.9x +19y =0C.19x -3y =0D.3x +19y =03.若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是5,则m +n =( )A.0B.1C.-2D.-14.已知点P (x ,y )在圆(x -2)2+y 2=1上运动,则y x 的最大值是( ) A.33 B.-33 C. 3 D.- 35.已知点A 是直角三角形ABC 的直角顶点,且A (2a ,2),B (-4,a ),C (2a +2,2),则△ABC 外接圆的方程是( )A.x 2+(y -3)2=5B.x 2+(y +3)2=5C.(x -3)2+y 2=5D.(x +3)2+y 2=56.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A.2x +y -5=0B.2x +y -7=0C.x -2y -5=0D.x -2y -7=07.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( )A.1B.-3C.1或-3D.28.已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A.1031B.921C.1023D.9119.(2019·湖南十四校二联)已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( )A.6或- 6B.5或-5C. 6D. 510.(2019·衡水中学质检)已知A ,B 为圆C :(x -m )2+(y -n )2=9(m ,n ∈R )上两个不同的点,C 为圆心,且满足|CA→+CB →|=25,则|AB |=( )A.2 5B.4C. 5D.211.(2019·郑州质检)在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( ) A.102 B.10 C.5 D.1012.已知A (-3,0),B (3,0),P 为圆x 2+y 2=1上的动点,AP→=PQ →,过点P 作与AP 垂直的直线l 交直线QB 于点M ,若点M 的横坐标为x ,则|x |的取值范围是( )A.[1,+∞)B.(1,+∞)C.[2,+∞)D.⎣⎢⎡⎭⎪⎫22,+∞ 13.若直线l 过点(m ,3)和(3,2),且在x 轴上的截距是1,则实数m =________.14.一只虫子从点(0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是________.15.(2019·广州调研)圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程是________.16.已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|P A |+|PQ |的最小值是________.。

高中数学公式大全 高考文科必背数学公式整理

高中数学公式大全 高考文科必背数学公式整理

高考数学爆强秒杀公式与方法一1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1>若f(x)=-f(x+k),则T=2k;2>若f(x)=m/(x+k)(m不为0),则T=2k;3>若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x 相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:1>若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2>函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3>若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1>对于属于R上的奇函数有f(0)=0;2>对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3>奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n 为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高三文科数学公式大全

高三文科数学公式大全

高三文科数学公式大全数学公式是人类长期生产劳动的经验总结,包含着历代数学家辛勤汗水和智慧,它揭示了数学知识的基本规律,是学生数学认知发展的重要载体。

学习数学,前提就是对公式和定理有着正确透彻的理解。

牢固掌握并灵活运用公式定理是提高数学能力的关键。

以下是店铺为大家精心准备的:高三文科数学公式大全。

欢迎参考阅读!高三文科数学公式大全如下:一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb) tan(a-b)=(tana-tanb)/(1+tana*tanb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科必背数学公式
无论你是理科生还是文科生,数学公式,你必须掌握。

提醒广大高考考生,越到接近考试的时候,越需要回顾一些重要的基础知识。

数学公式就是其中之一。

下面汇总整理《高考文科必背数学公式》,供高考考生参考。

函数、导数1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

解三角形公式:正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot( 2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)
=-cosαcos(3π/2+α)=sinα
以上就是“高考文科必背数学公式”全部内容,编辑整理。

为您提供更多高考提分技巧等文章,欢迎广大考生访问,获取更多关于高考的信息。

相关文档
最新文档