高中文科数学必背公式

合集下载

高考文科数学必考知识点

高考文科数学必考知识点

高考文科数学必考知识点高考文科数学必考知识点主要包括数与代数、函数与方程、几何与空间、统计与概率四个模块,下面将对每个模块的重点内容进行详细介绍。

一、数与代数1. 整式与分式整式是只包含有限个非负整数次幂的代数式,如2x²+3x-1;分式是由多项式除以非零多项式得到的表达式,如(2x²+3x-1)/(x+2)。

必考知识点包括整式的加减乘除运算、分式的约分和等值变形。

2. 方程与不等式方程是含有未知数的等式,如2x+3=7;不等式是含有未知数的不等式,如2x+3>7。

必考知识点包括一元一次方程及其应用、一元二次方程及其应用、一元一次不等式及其应用。

3. 指数与对数指数是用来表示乘法的重复操作,如2³=2×2×2;对数是指数运算的逆运算,如log₂8=3。

必考知识点包括指数与幂、对数的定义和性质。

4. 等比数列与等差数列等差数列是指相邻两项之差相等的数列,如1, 3, 5, 7, ...;等比数列是指相邻两项之比相等的数列,如2, 4, 8, 16, ...。

必考知识点包括等差数列与等比数列的通项公式、求和公式及其应用。

二、函数与方程1. 函数函数是一个映射关系,将一个集合的每个元素都对应到另一个集合中的唯一元素,如y=x ²。

必考知识点包括函数的定义、函数的图像、函数的性质以及常见的基本函数。

2. 二次函数二次函数是一个以x的二次多项式形式表示的函数,如y=ax²+bx+c。

必考知识点包括二次函数的图像、二次函数的最值、零点及其应用。

3. 指数函数与对数函数指数函数是以变量为指数的函数,如y=2ˣ;对数函数是指数函数的逆运算,如y=log₂x。

必考知识点包括指数函数与对数函数的图像、性质和应用。

4. 三角函数三角函数是描述角度与边长之间关系的函数,如y=sin(x)。

必考知识点包括三角函数的图像、周期性、相关性质以及应用。

高中文科数学公式总结大全

高中文科数学公式总结大全

高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。

在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。

而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。

以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。

高考数学必背公式

高考数学必背公式

高考数学必背公式
高考数学必背公式包括但不限于:
1. 圆的公式:
圆体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0,其中d2+e2-4f>0
2. 椭圆公式:
椭圆周长公式:l=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
椭圆面积公式:s=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

3. 两角和公式、倍角公式、半角公式、和差化积等三角函数公式。

4. 等差数列、等比数列等数列公式。

5. 抛物线等几何图形公式。

以上信息仅供参考,建议查阅高中数学教材或教辅资料,获取更准确全面的信息。

(完整word版)高中数学公式及知识点总结大全(精华版)

(完整word版)高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中文科-数学常用公式

高中文科-数学常用公式
1 2n
空的真子集有2n–2 个.
6.方程f(x)0在(k1,k2)上有且只有一个实根,与f(k1)f(k2)0不等价,前者是后者的一个必要而不是充分条件.
特别地, 方程ax2bxc0(a0)
有且只有一 个实根在(k1,k2)
内,等价于
f(k1)f(k2
)0,或
f(k1)0且
k12a
k1k2
2
, 或f(k2
f(x)与函数yf(x)的图象关于直线x0(即y轴)对称.
f(x)与函数yf(x)的图象关于直线y0(即x轴)对称.
(3)指数函数yax和ylogax的图象关于直线y=x对称.
19.若将函数y
f(x)的图象右移a、上移b个单位,得到函数y
f(xa)b的图象;
若将曲线f(x,y)0的图象右移a、上移b个单位,得到曲线f(xa,yb)0的图象.
减函数
减函数
减函数
增函数
减函数
减函数
减函数
增函数
16.函数的奇偶性(注:奇.偶.函.数.大.前.提.:.定.义.域.必.须.关.于.原.点.对.称.)
⑴若f(x)是偶函数,则fx
fx
fx;偶函数的图象关于y轴对称;偶函数在
x>0和x<0上具有相反的单调区间。
⑵定义域含零的奇函数必过原点(可用于求参数);奇函数的图象关于原点对称;奇函数在x>0
p且q
对任何x,不成立
存在某x,成立
p且q
p或q
12.四种命题的相互关系如右图所示
互逆
13. 充要条件
(1)若pq,则说p是q的充分条件,同时q是p的必要条件
(2)充要条件:若pq,且qp,则p是q的充要条件.

(完整版)文科高中数学公式大全(超全完美)

(完整版)文科高中数学公式大全(超全完美)

高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

高中文科数学公式大全(如有错误,自行修改)

高中文科数学公式大全(如有错误,自行修改)

a b
cos sin
.
双曲线:
x a
2 2
y2 b2
1 (a>0,b>0), c 2
a2
b2 ,离心率 e
c a
1
,渐近线方程是
y
b a
x
.
抛物线:
y2
2
px
,焦点
(
p 2
,0)
,准线
x
p 2
。抛物线上的点到焦点距离等于它到准线的距离.
36、双曲线的方程与渐近线方程的关系
x2 (1)若双曲线方程为 a 2
d A,B (x2 x1)2 ( y2 y1)2 (A (x1, y1) ,B (x2 , y2 ) ).
32、点到直线的距离
d | Ax0 By0 C | A2 B2
(点 P(x0 , y0 ) ,直线 l : Ax By C 0 ).
33、 圆的三种方程
(1)圆的标准方程 (x a)2 ( y b)2 r2 .
40、证明直线与平面平行的方法
(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行) (2)先证面面平行 41、证明平面与平面平行的方法 平面与平面平行的判定定理(一个平面内的两.条.相.交.直线分别与另一平面平行) 42、证明直线与直线垂直的方法
转化为证明直线与平面垂直
43、证明直线与平面垂直的方法 (1)直线与平面垂直的判定定理(直线与平面内两.条.相.交.直线垂直) (2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)
x y
2 x2 y2
tan
y x
(x
0)
第 6页(共 6页)

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全1. 二次函数的标准形式:y = ax² + bx + c2. 三角函数的基本关系:sin(A±B)=sinAcosB±cosAsinB3. 余弦定理:a² = b² + c² - 2bc cosA4. 正弦定理:a/sinA = b/sinB = c/sinC5. 相似三角形的定义:两个三角形的相应角相等,且相应边成比例,则称两个三角形相似。

6. 三角形面积公式:S=1/2ab sinC7. 勾股定理:a² + b² = c²8. 平面向量的定义:平面向量是指在平面上的有向线段,它由起点和终点确定,其长度和方向确定。

9. 向量的加法:a+b=b+a10. 向量的减法:a-b=b-a高中数学公式大全总结1、二次函数的标准方程:y=ax^2+bx+c2、三角函数的基本公式:sinA=a/c,cosA=b/c,tanA=a/b3、勾股定理:a^2+b^2=c^24、直角三角形面积公式:S=1/2ab5、椭圆面积公式:S=πab6、圆的面积公式:S=πr^27、梯形面积公式:S=1/2(a+b)h8、平行四边形面积公式:S=ab9、正方形面积公式:S=a^210、圆柱体体积公式:V=πr^2h探索澳洲金融数学,展开你的金融数学之旅澳洲金融数学是一门涉及金融统计学、投资分析和金融工程的综合性学科。

它侧重于金融市场、金融产品和金融服务中经济学、数学和计算机科学知识的结合。

本文将为您提供了解更多澳洲金融数学的指南,帮助您开启探索之旅。

一、澳洲金融数学的定义澳洲金融数学是一门综合性学科,涉及金融统计学、投资分析和金融工程等领域。

它涉及金融市场、金融产品和金融服务相关的经济学、数学和计算机科学知识。

二、澳洲金融数学的内容澳洲金融数学的内容包括:金融数学基础、金融数学模型、金融产品定价、金融风险管理、金融统计学、金融工程、投资管理、金融市场分析等。

高中数学公式大全 高考文科必背数学公式整理

高中数学公式大全 高考文科必背数学公式整理

千里之行,始于足下。

高中数学公式大全高考文科必背数学公式整理高中数学是一门基础科学课程,内容丰富,有很多重要的公式需要记忆和把握。

下面我整理了一些高考文科必背的数学公式,期望对您有所挂念。

1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2) b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n, n)a^0 b^n2. 幂的运算:a^m * a^n = a^(m+n)(a^m)^n = a^(mn)a^m / a^n = a^(m-n)3. 对数与指数的关系:a^x = b 等价于 x = loga(b)4. 对数运算:loga(mn) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^p) = p*loga(m)loga1 = 0 (任何数以自身为底数取对数等于0)logaa = 1 (底数与真数相等时,对数等于1)5. 三角函数和三角恒等式:sin^2x + cos^2x = 11 + tan^2x = sec^2x1 + cot^2x = cosec^2x第1页/共2页锲而不舍,金石可镂。

sin(90° - x) = cosx,cos(90° - x) = sinxtan(90° - x) = cotx,cot(90° - x) = tanxsin2x = 2sinxcosxcos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2xtan2x = (2tanx) / (1 - tan^2x)6. 平面坐标和距离公式:点P(x₁, y₁)与点Q(x₂, y₂)之间的距离公式:d = sqrt((x₂-x ₁)^2 + (y₂-y₁)^2)7. 二次函数相关公式:抛物线顶点坐标:(h, k),其中 h = -b/(2a),k = f(h) = f(-b/(2a)) 抛物线开口朝上时,对称轴为x = h;开口朝下时,对称轴为 y = k抛物线的焦点坐标:(h, k+p),其中 p = 1/(4a)焦点到顶点的距离:|p| = 1/(4|a|)抛物线与x轴交点:x₁ = h - |p|,x₂ = h + |p|8. 函数导数和微分公式:(cf(x))' = c(f(x))',其中c为常数(f(x) + g(x))' = f'(x) + g'(x)(f(x) - g(x))' = f'(x) - g'(x)(f(x) * g(x))' = f'(x)g(x) + f(x)g'(x)(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/(g(x))^2(f(g(x)))' = f'(g(x))*g'(x)(f(g(x)))'' = f''(g(x))*(g'(x))^2 + f'(g(x))*g''(x)在x=a处的高阶导数:f(a) = f'(a) = f''(a) = ... = f^n(a)这里只列举了一些高考文科必背的数学公式,还有很多公式和定理没有列出。

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。

作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。

为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。

一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。

2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。

3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。

4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。

二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。

(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。

高中文科数学公式

高中文科数学公式

高中数学 :公 式 方 法第一部分 集合1.元素与集合关系用∈(属于),集合与集合关系用⊆(包含于)。

2.集合运算有三种:交⋂,并⋃,补。

交⋂:求公共元素, 并⋃:求全部元素, 补:求全集里除了本集合元素外的其余元素.3.常用数集:R(实数集) Z(整数集) N(自然数集)4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个; 非空子集有2n –1个;非空真子集有2n –2个. 5.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数与导数1.函数定义域的求法:①有分母,则分母不等于零; ②有偶次方根,则被开方数大于或等于零; ③ 有对数,则真数大于零2.函数的奇偶性:⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....⑵)(x f 是奇函数)()(x f x f -=-⇔; )(x f 是偶函数)()(x f x f =-⇔.⑶特殊值法:奇函数)(x f 在0处有定义,则0)0(=f ,偶函数f(-1)=f (1),可求函数式的字母值。

3.函数的单调性: ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >; ⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分) 4.基本初等函数(1).一次函数:y=kx+b (k ≠0) 正比例函数:)0(≠=k kx y(2).一元二次函数:02=++c bx ax (a ≠0) (3)反比例函数:)0(≠=k xk y(4)指数函数:)1,0(≠>=a a a y x; (5)对数函数:)1,0(log≠>=a a x y a;(记住:真数>0)(6)幂函数:αx y = ()R ∈α ;(记住:α=-1,21,3的图象)(7)三角函数:正弦函数:x y sin =;余弦函数:x y cos = ;正切函数:x y tan =;;⑴零指数:a 0=1 (a ≠0) 负指数:a p -=pa1 (负指数=倒数)分数指数幂:mn a =(分数指数=根式)⑵.①指数式与对数式互化:b N N a ab =⇔=log ; (底还是做底)②()N M MN aaalogloglog+=; ③N M NMaaalogloglog-=;④log n a M =nlog m a . ⑶.对数的换底公式:log log log m a m N N a=. .(4)记住:log a a =1, log 1a =0 对数恒等式:log aNa N =5.二次函数:⑴解析式:①一般式:c bx ax x f ++=2)(; ②顶点式:k h x a x f +-=2)()(,),(k h 为顶点;③零点式:))(()(21x x x x a x f --= (a ≠0).⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

文科高考数学必背公式

文科高考数学必背公式

文科高考数学必背公式在文科高考中,数学是一个重要的科目。

虽然数学不是文科生的强项,但是通过对一些必背公式的掌握,可以在考试中取得更好的成绩。

以下是文科高考数学必背公式。

1. 一次函数的表达式:y = kx + b。

其中,k为斜率,b为截距。

2. 二次函数的标准形式:y = ax² + bx + c。

其中,a、b、c为常数,且a≠0。

3. 二次函数的顶点坐标:顶点的横坐标为x = -b/2a,纵坐标为y = -Δ/4a。

其中,Δ为判别式,Δ = b² - 4ac。

4.一元二次方程的解:解为x=(-b±√Δ)/2a。

5.二次函数的对称轴方程:x=-b/2a。

6. 三角函数的定义:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边。

7. 三角函数的正负关系:sinθ、tanθ在0~π范围内非负,cosθ在π/2时为0,在0~π/2范围内非负,在π/2~π范围内非正。

8. 三角函数的周期性:sin(θ ± 2πn) = sinθ,cos(θ ± 2πn) = cosθ,tan(θ ± πn) = tanθ。

其中,n为整数。

9. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。

10. 三角函数的倍角公式:sin2θ = 2sinθcosθ,cos2θ =cos²θ - sin²θ,tan2θ = (2tanθ) / (1 - tan²θ)。

11.平面几何中的相似三角形:对应角相等,对应边成比例。

12.平行线的性质:同位角互等、内错角互补、同旁内角互补。

13. 同余式的性质:如果a≡b (mod m),则a±c≡b±c (mo d m),ac≡bc (mod m)。

公式大全 文科版

公式大全 文科版

高中数学常用公式及常用结论(文科)1.集合12{,, , }n a a a ⋅⋅⋅的子集个数共有2n 个;真子集有2n -1个; 非空子集有2n -1个;非空的真子集有2n -2个.2.二次函数的解析式的三种形式(1)一般式2() (0)f x ax bx c a =++≠; (2)顶点式2()() (0)f x a x h k a =-+≠; (3)零点式12()()() (0)f x a x x x x a =--≠. 3.真值表四种命题的相互关系充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.4.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.7.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.若函数)(x f y =是奇函数,则()()f x a f x a --=-+;若函数)(a x f y +=是奇函数,则()()f x a f x a -+=-+.8.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称.9.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.10.多项式函数110()n n n n P x a x a xa --=++⋅⋅⋅+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.11.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.12.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.13.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.14.互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.15.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,()()(),(1)f xy f x f y f α==.16.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;17.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).18.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.19.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.20.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m n a a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).21.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.对数恒等式 log a N a N =22.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆. 若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.23. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.24.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =++⋅⋅⋅+).25.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-.26.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1), 11, 1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11, 11, 1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.27.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 诱导公式可用十个字概括为“奇变偶不变,符号看象限”。

高考数学公式总结归纳

高考数学公式总结归纳

高考数学公式总结归纳高中数学理科是10本书,文科是9本书,数学公式非常多,如果基础知识不扎实,平时做题查阅公式就要浪费很多时间。

接下来是小编为大家整理的高考数学公式总结归纳,希望大家喜欢!高考数学公式总结归纳一圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高考数学公式总结归纳二乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab|a-b||a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1_2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa)) ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa)) 和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb某些数列前n项和1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13 +15++(2n-1)=n22+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62 +72+82++n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6 _++n(n+1)=n(n+1)(n+2)/3正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_斜棱柱侧面积s=c_正棱锥侧面积s=1/2c_正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_2圆柱侧面积s=c_=2pi_圆锥侧面积s=1/2__=pi__弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__锥体体积公式v=1/3__圆锥体体积公式v=1/3_i_2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_圆柱体v=pi_2h高考数学公式总结归纳三抛物线公式y = ax^2+bx+c 就是y等于ax的平方加上ba > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py面积公式圆的体积公式 4/3(pi)(r^3)圆的面积公式 (pi)(r^2)圆的周长公式 2(pi)r正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c_ 斜棱柱侧面积 S=c'_正棱锥侧面积 S=1/2c_' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_2圆柱侧面积 S=c_=2pi_ 圆锥侧面积 S=1/2__=pi__弧长公式 l=a_ a是圆心角的弧度数r>0 扇形面积公式 s=1/2__ 锥体体积公式 V=1/3__ 圆锥体体积公式V=1/3_i_2h斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长柱体体积公式 V=s_ 圆柱体V=pi_2h高考数学公式总结归纳四高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。

2024高考数学重点必考公式归纳总结

2024高考数学重点必考公式归纳总结

2024高考数学重点必考公式归纳总结2024高考数学重点必考公式归纳(一)数学两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)数学椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积(三)数学某些数列前n项和公式1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1×2+2×3+3×4+4×5+5×6+6×7+…+n(n+1)=n(n+1)(n+2)/3高考数学必背公式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1×X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+ … +(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+ …n3=n2(n+1)2/41×2+2×3+3×4+4×5+5×6+6×7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c×h 斜棱柱侧面积 S=c×h正棱锥侧面积S=1/2c×h 正棱台侧面积 S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi×r2圆柱侧面积S=c×h=2pi×h 圆锥侧面积 S=1/2×c×l=pi×r×l弧长公式l=a×r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2×l×r 锥体体积公式V=1/3×S×H 圆锥体体积公式 V=1/3×pi×r2h斜棱柱体积V=SL 注:其中,S是直截面面积, L 是侧棱长柱体体积公式V=s×h 圆柱体 V=pi×r2h高中文科数学必背公式总结公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到 2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及 3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上 k∈Z)高三学数学最有效的方法一轮复习①立足课本,迅速激活已学过的各个知识点。

文科高考数学必背知识点--公式

文科高考数学必背知识点--公式

文科高考数学必背知识点--公式一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαco s(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(0,1,0)a a N>≠>.1≠,0m>,且1m≠,0N>).).).89、正弦、余弦的诱导公式(奇变偶不变,符号看象限)α看成锐角时该函数的符号;α看成锐角时该函数的符号。

高中数学公式大全 高考文科必背数学公式整理

高中数学公式大全 高考文科必背数学公式整理

高考数学爆强秒杀公式与方法一1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1>若f(x)=-f(x+k),则T=2k;2>若f(x)=m/(x+k)(m不为0),则T=2k;3>若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x 相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:1>若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2>函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3>若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1>对于属于R上的奇函数有f(0)=0;2>对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3>奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n 为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高三文科数学公式大全

高三文科数学公式大全

高三文科数学公式大全数学公式是人类长期生产劳动的经验总结,包含着历代数学家辛勤汗水和智慧,它揭示了数学知识的基本规律,是学生数学认知发展的重要载体。

学习数学,前提就是对公式和定理有着正确透彻的理解。

牢固掌握并灵活运用公式定理是提高数学能力的关键。

以下是店铺为大家精心准备的:高三文科数学公式大全。

欢迎参考阅读!高三文科数学公式大全如下:一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb) tan(a-b)=(tana-tanb)/(1+tana*tanb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一,公式和结论1,指数运算性质:aa anm n m+=•;()a amn nm =;()b a ab nnn= (R n m b a ∈>>.,0,0)2,对数运算性质:log a M +log a N =log a MN ;log a M - log a N =log a NM;a log a N=N ;log a M =a b Mb log log ;M aMa=log (0,0,1,1,0,0>>≠≠>>N M b a b a )。

3,等差数列:1(1)n a a n d =+- ; ()n m a a n m d =+- ;n ma a d n m-=-()m n ≠;若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 11()(1)22n n n a a n n S na d +-==+ 。

{}a n是等差数列d a an n =⇔+_1(d 为常数) a a a n n n 212+++=⇔q pn a n +=⇔(p,q 为常数)Bn A n S n +=⇔2(A ,B 为常数)4,等比数列:qa a n n 11-= ;qa a mn m n -= (0,,≠∈+q N n m ) ;若m ,n ,p ,q N +∈且m n p q +=+,则aa a a qpnm=qq a S nn --=1)1(1 ;qa a Snn--=11(1≠q );a Sn n1•= (q=1); {}a n是等比数列q aa nn =⇔+1(q 为常数) a a a n n n 221+=+⇔ a a a n n n 21,,(++不等于0) q a nn c =⇔ (c,q 为非0常数)B A q S nn +=⇔(A,B 为非0常数,A+B=0,1≠q )5, 绝对值不等式定理: b a b a b a +≤±≤-。

6,弧长公式与扇形面积公式:r a l = r S a lr 22121==扇形 。

7,诱导公式:()Z k k ∈±απ2与a 的三角函数间的关系式即为诱导公式,口诀:“函数名奇变偶不变;符号看象限”。

8,同关系角公式:;cot 1tan ,sec 1cos ,csc 1sin ∂=∂∂=∂∂=∂ ;sin cos cot ,cos sin tan ∂∂=∂∂∂=∂∂=∂+∂=∂+=∂+∂csc cot sec tan cos sin2222221,1,19,和(差)角公式:()βαβαβαsin cos cos sin sin ±=± ; ()βαβαβαsin sin cos cos cos μ=± ;()βαβαβαtan tan 1tan tan tan μ±=± 。

10,倍角公式: αααααsin cos sin cos222221122cos -=-=-=;αααcos sin 22sin =; αααtan 21tan 22tan -=。

化简公式:()⎪⎭⎫ ⎝⎛∈=±+=±∈+20tan sin cos sin ,22πφφφθθθ,,a b ,b a R b a b a且则若。

11,不等式的性质:(1)三条公理:⎪⎩⎪⎨⎧=-⇔=〈-⇔〈〉-⇔〉000b a b a b a b a b a b a(2)五条基本性质:对称性:a b b a a b b a 〉⇔〈〈⇔〉, 传递性:c a c b a 〉⇔〉〉移向法则:b a c b c a 〉⇔+〉+乘法法则:bcac c b a bc ac c b a 〈⇒〈〉〉⇒〉〉00且且倒数法则:ba b a ab 110〈⇒〉〉且 (3)六条基本性质:加法:d b c a d c b a +〉+⇒〉〉且 减法:c b d a d c b a -〉-⇒〉〉且 乘法:bd ac d c b a 〉⇒〉〉〉〉00且 除法:cb d a dc b a 〈⇒〉〉〉〉00且 乘方:00〉〉⇒∈〉〉+b a nn N n b a 且开方:00〉〉⇒∈〉〉+n nb a N n b a 且(4)均值不等式:)”“,,(222号不等式取时当且仅当==∈≥+,b a R b a ab b a)”“,,(2号不等式取时当且仅当==∈≥++,b a R b a ab b a)”“,,(22222号不等式取时当且仅当==∈+≤⎪⎭⎫ ⎝⎛+,b a R b a b a b a)”“,,(222号不等式取时当且仅当==∈+≤+⎪⎪⎭⎫ ⎝⎛+,b a R b a ba b a )”“,,()())((22222号不等式取时当且仅当==∈+≥++,bd a c R b a bd ac d c b a12,不等式的解法:(1)一元二次不等式的解集与一元二次方程的对应关系:(2)分式不等式:()()()()()()()())0(0)0(0<>⇔<>x g x f x g x f x g x f x g x f ;()()()()()()()()()())00(00)0(0≠≤≠≥⇔≤≥x g x g x f x g x g x f x g x f x g x f 且且 。

(3)无理不等式:()()()()()()()()⎩⎨⎧〈≥⎪⎪⎩⎪⎪⎨⎧≥≥≥⇔≥00002x g x f x x f x g x f x g x f g 或 ;()()()()()()⎪⎪⎩⎪⎪⎨⎧≤≥≥⇔≤x x f x g x f x g x f g 200 (4)指数不等式: ()()()()x g x f ,a aax g x f 〉⇔〉〉时当1 ; ()()()()x g x f ,a aax g x f 〈⇔〉〈〈时当10 。

(5)对数不等式: ()()()()()()⎪⎩⎪⎨⎧〉〉〉⇔〉〉x g x f x g x f aa,a x g x f 001loglog 时当()()()()()()⎪⎩⎪⎨⎧〈〉〉⇔〉〈〈x g x f x g x f aa,a x g x f 0010loglog 时当(6)绝对值不等式:()()()()()()x g x f x g x f x g x f 〉〈-⇔〉或 ; ()()()()()x g x f x g x g x f 〈〈-⇔〈 ;()()()()x x x g x f g f 22〉⇔〉13,正余弦定理:()为外接圆半径R R CcB b A a 2sin sin sin === A bc c b acos 2222-+=14,三角形面积公式:A bcB acC ab S sin 21sin 21sin 2121===⨯⨯=高底 15,平面向量:−→−=−→−+−→−AC BC AB ; −→−=−→−-−→−ABOA OB ()()()12122211y ,y x x ,,y x ,,y x AB AB--=−→−则两点的坐标分别为设 设a= (x 1,y 1)b= (x 2,y 2)则:ay x a 22211=+=;[]πθθθ,b a b a b a 0,,cos ∈〉〈==•且 ;a.b= x 1 x 2 + y 1 y 2a∥b⇔a=λb⇔ x 1 y 2 = x 2 y 1a⊥b⇔a.b=0⇔ x 1 x 2 +y 1 y 2 = 016,平移公式:如果点P (x ,y )按向量a=(h ,k )平移至),('''y x P 则⎪⎩⎪⎨⎧+=+=ky y h x x ''17,定比分点公式:A(x 1,y 1),B(x 2,y 2),点P (x ,y )分AB所成的比为λ,即−→−=−→−PBAP λ则 λλλλ++=++=1,12121y y y x x x18,距离公式:()()()()21212221222111y y x x P P ,,y x ,P ,y x P --+=则设()BA CBy Ax :d C By :Ax ,y x P 2200000+++==++的距离公式到直线点λBAC C :d C By :Ax C By :Ax 2221121100+-==++=++的距离公式与平行线λλ19,斜率公式:设直线0=++C By :Ax λ(A ≠0)的倾斜角为а(а≠900),方向向量为v=(a ,b )(a ≠0),直线λ上有两个点P 1(x 1,y 1)P 2(x 2,y 2)(x 1≠x 2),则直线λ的斜 率2121tan x x y y a b B A k --==-=∂= 。

20,两直线平行或垂直的充要条件:0022221111=++=++C y B x :A C y B x :A :λλ与两直线已知1λ∥ 2λ122112211221C B C B C A C A B A B A ≠≠=⇔或且 0212121=+⇔⊥B B A A λλ。

21,弦长公式:()()()()()()2122212212221222221142111114211121210),(:yy y y xx x x AB ,,y x B ,y x A y x f C b kx :y y y kkx x kk y y x x -+=-+=-+=-+=+==+=++--则弦长两点相交与与曲线直线λ22,概率公式:n m A P =)( ; 1)(=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+=======A A A P P A P ;())()(B P A P B A P •=• ; k n k knn p P C k P --=)1()( 23,平面的基本性质: 公理1:∂⊂⇒⎭⎬⎫∂∈∂∈∈∈λλλ,B A ,,B A公理2:λλ∈=⋂∂⇒⋂∂∈P P 且ββ公理3:点A ,B ,C 不共线,则有且只有一个平面∂,使∂∈∂∈B A ,,且∂∈C 。

推论1:⇒∉a A 有且只有一个平面∂,使∂⊂∈a a A ,。

推论2:⇒=⋂p b a 有且只有一个平面∂,使∂⊂∂⊂b a ,。

推论3:⇒b a //有且只有一个平面∂,使∂⊂∂⊂b a ,。

: 公理4:c a c b b a ////,//⇒。

24,等角定理:,//,//'''''''B O A O B O A AOB BO AO ∠=∠⇒或AOB ∠与B O A '''∠互补。

25,直线和平面平行的判定和性质定理: 判定定理:若b a b a //,,∂⊂∂⊄,则∂//a 。

相关文档
最新文档