高中文科数学公式大全(精华版)83722

合集下载

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,假设0)(>'x f ,那么)(x f 为增函数;假设0)(<'x f ,那么)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,那么)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,那么)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: 〔1〕顶点坐标为24(,)24b ac b a a --;〔2〕焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法那么〔1〕'''()u v u v ±=±. 〔2〕'''()uv u v uv =+. 〔3〕'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >〕.(2)1m nm naa-==〔0,,a m n N *>∈,且1n >〕.根式的性质〔1〕当na =;当n(1) r sa a a⋅=(2) ()(r s rsa a=(3)()r r rab a b=注:假设a>0理数指数幂都适用..0,1,0)a N>≠>..1,0m>,且1m≠,0N>).对数恒等式:推论log m nab常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中文科数学公式大全(完美)

高中文科数学公式大全(完美)

高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

高中文科数学公式大全(完美)

高中文科数学公式大全(完美)

高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±。

(2)'''()uv u v uv =+。

(3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin 。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)11m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()rr rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

(完整版)高中文科数学公式大全(完美),推荐文档

(完整版)高中文科数学公式大全(完美),推荐文档

2
2
2
18、三角形内角和定理
在△ABC 中,有 A B C C ( A B)
19、 a 与 b 的数量积(或内积)
a b | a | | b | cos
20、平面向量的坐标运算
(1)设 A (x1, y1) ,B (x2 , y2 ) ,则 AB OB OA (x2 x1, y2 y1) .
4、几种常见函数的导数
① C ' 0 ;② (x n )' nx n1 ;
③ (sin x)' cos x ;④ (cos x)' sin x ;
⑤ (a x )' a x ln a ;⑥ (e x )' e x ;
⑦ (loga
x)'
1 x ln a
;⑧ (ln
x)'
1 x
5、导数的运算法则
(2) 如果在 x0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x0 是极小值.
二、三角函数、三角变换、解三角形、平面向量
8、同角三角函数的基本关系式
sin2 cos2 1, tan = sin . cos
9、正弦、余弦的诱导公式
k 的正弦、余弦,等于 的同名函数,前面加上把 看成锐角时该函数的符号; k 的正弦、余弦,等于 的余名函数,前面加上把 看成锐角时该函数的符号。
(1) (u v)' u' v' .
(2) (uv)' u'v uv' .
(3)
u ( v
)'
u'v uv' v2
(v
0)
.
6、会用导数求单调区间、极值、最值
7、求函数 y f x的极值的方法是:解方程 f x 0 .当 f x0 0 时:

高中文科数学公式大全

高中文科数学公式大全

高中文科数学公式大全一、函数、导数1、函数的单调性1设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.2设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数; 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称; 3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '=5、导数的运算法则1'''()u v u v ±=±. 2'''()uv u v uv =+. 3'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: 1 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; 2 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号;10、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.11、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=12、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈RA,ω,ϕ为常数,且A ≠0,ω>0的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈A,ω,ϕ为常数,且A ≠0,ω>0的周期T πω=.13、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换 14、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 15、正弦定理2sin sin sin a b cR A B C===. 16、余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.17、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 18、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ 19、a 与b 的数量积或内积20、平面向量的坐标运算1设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. 2设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +.3设a =),(y x ,则22y x a += 21、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则 22、向量的平行与垂直b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=. 三、数列23、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩ 数列{}n a 的前n 项的和为12n n s a a a =+++.24、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;25、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 26、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 27、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式28、已知y x ,都是正数,则有xy yx ≥+2,当y x =时等号成立;1若积xy 是定值p ,则当y x =时和y x +有最小值p 2;2若和y x +是定值s ,则当y x =时积xy 有最大值241s .五、解析几何29、直线的五种方程1点斜式 11()y y k x x -=- 直线l 过点111(,)P x y ,且斜率为k . 2斜截式 y kx b =+b 为直线l 在y 轴上的截距.3两点式112121y y x x y y x x --=--12y y ≠111(,)P x y 、222(,)P x y 12x x ≠. 4截距式 1x ya b+=a b 、分别为直线的横、纵截距,0a b ≠、5一般式 0Ax By C ++=其中A 、B 不同时为0.30、两条直线的平行和垂直 若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-. 31、平面两点间的距离公式,A Bd =11(,)x y ,B 22(,)x y .32、点到直线的距离d =点00(,)P x y ,直线l :0Ax By C ++=.33、 圆的三种方程1圆的标准方程 222()()x a y b r -+-=.2圆的一般方程 220x y Dx Ey F ++++=224D E F +->0.3圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.34、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 弦长=222d r -其中22BA CBb Aa d +++=.35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆:22221(0)x y a b a b +=>>,222b c a =-,离心率1<=ace ,参数方程是cos sin x a y b θθ=⎧⎨=⎩. 双曲线:12222=-by a x a>0,b>0,222b a c =-,离心率1>=a ce ,渐近线方程是x aby ±=. 抛物线:px y 22=,焦点)0,2(p ,准线2px -=;抛物线上的点到焦点距离等于它到准线的距离.36、双曲线的方程与渐近线方程的关系1若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=.2若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .3若双曲线与12222=-by a x 有公共渐近线,可设为λ=-2222b y a x 0>λ,焦点在x 轴上,0<λ,焦点在y 轴上.37、抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径2||0px PF +=.抛物线上的点到焦点距离等于它到准线的距离;38、过抛物线焦点的弦长p x x px p x AB ++=+++=212122. 六、立体几何39、证明直线与直线平行的方法1三角形中位线 2平行四边形一组对边平行且相等 40、证明直线与平面平行的方法1直线与平面平行的判定定理证平面外一条直线与平面内的一条直线平行 2先证面面平行41、证明平面与平面平行的方法平面与平面平行的判定定理一个平面内的两条相交....直线分别与另一平面平行 42、证明直线与直线垂直的方法 转化为证明直线与平面垂直 43、证明直线与平面垂直的方法1直线与平面垂直的判定定理直线与平面内两条相交....直线垂直 2平面与平面垂直的性质定理两个平面垂直,一个平面内垂直交线的直线垂直另一个平面44、证明平面与平面垂直的方法平面与平面垂直的判定定理一个平面内有一条直线与另一个平面垂直 45、柱体、椎体、球体的侧面积、表面积、体积计算公式圆柱侧面积=rl π2,表面积=222r rl ππ+ 圆椎侧面积=rl π,表面积=2r rl ππ+13V Sh =柱体S 是柱体的底面积、h 是柱体的高.13V Sh =锥体S 是锥体的底面积、h 是锥体的高.球的半径是R ,则其体积343V R π=,其表面积24S R π=.46、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算 47、点到平面距离的计算定义法、等体积法48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直;正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心;七、概率统计49、平均数、方差、标准差的计算平均数:n x x x x n ++=21 方差:])()()[(1222212x x x x x x n s n -+-+-=标准差:])()()[(122221x x x x x x ns n -+-+-=50、回归直线方程y a bx =+,其中()()()1122211n ni i i i i i n ni ii i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑. 51、独立性检验))()()(()(22d b c a d c b a bd ac n K ++++-=52、古典概型的计算必须要用列举法...、列表法...、树状图...的方法把所有基本事件表示出来,不重复、不遗漏八、复数53、复数的除法运算22)()())(())((dc iad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++. 54、复数z a bi =+的模||z =||a bi +九、参数方程、极坐标化成直角坐标55、⎩⎨⎧==y xθρθρsin cos ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρ。

(完整)高中文科数学公式大全(精华版),推荐文档

(完整)高中文科数学公式大全(精华版),推荐文档

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

(2)对数的换底公式 :log log log m a m NN a=.( 3)对数恒等式:①log log n a a b n b =; ②log log m na a nb b m=; ③log a NaN =; ④log 10a =; ⑤log 1a a =11、常见的函数图象12、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .13、正弦、余弦的诱导公式诱导公式一:sin(α+k ⋅2π)=sin(α+2k π)=sin α; cos(α+k ⋅2π)=cos(α+2k π)=cos α tan(α+k ⋅2π)=tan(α+2k π)=tan α 诱导公式二:sin(πα+)=-sin α; cos(πα+)=-cos α; tan(πα+)=tan α.诱导公式三:sin (α-)=-sin α; cos (α-)=cos α; tan (α-)=-tan α. 诱导公式四:sin(πα-)=sin α; cos(πα-)=-cos α; tan(πα-)=-tan α. 诱导公式五:sin(2πα-)=cos α;cos(2πα-)=sin α; 诱导公式六:sin(2πα+)=cos α;cos(2πα+)=-sin α.14、和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+)αϕ+;(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 15、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=16、三角函数的周期函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期2||T πω=,最大值为|A|;函数tan()y A x ωϕ=+(2x k ππ≠+)的周期||T πω=. 17.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔=== ::sin :sin :sin a b c A B C ⇔= 18.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-. 19.面积定理111sin sin sin 222S ab C bc A ca B ===.20、三角形角和定理在△ABC 中,有A B C π++= ()C A B dx π⇔=-+ 222C A B π+⇔=- 222()C A B π⇔=-+.21、三角函数的性质22、a 与b 的数量积:a ·b =|a |⋅|b |cos θ. 23、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=-- (2)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (3)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +. (6)设a =),(y x ,则22y x a +=24、两向量的夹角公式:21cosa b x a bθ⋅==+⋅;(a =11(,)x y ,b =22(,)x y ).25、平面两点间的距离公式:,A B d =||AB =26、向量的平行与垂直: 设a =11(,)x y ,b =22(,)x y ,则a ∥b ⇔b =λa 12210x y x y ⇔-=. a ⊥b ⇔a ·b=012120x x y y ⇔+=. 27、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩;( 数列{}n a 的前n 项的和为12n n s a a a =+++).28、等差数列的通项公式11(1)n a a n d dn a d =+-=+-;29、等差数列其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+. 30、等差数列的性质:①等差中项:2n a =1n a -+1n a +; ②若m+n=p+q ,则m a +n a =p a +q a ;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m 项的和,则m S ,2m S -m S ,3m S -2m S 成等差数列。

31、等比数列的通项公式 11n n a a q -=;32、等比数列前n 项的和公式为11(1),11,1n n a q q q s na q ⎧-≠⎪-=⎨⎪=⎩ 或 11,11,1n n a a q q q s na q -⎧≠⎪-=⎨⎪=⎩.33、等比数列的性质: ①等比中项:2n b =11n n b b -+⋅; ②若m+n=p+q ,则m n b b ⋅=p q b b ⋅;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m项的和,则m S ,2m S -m S ,3m S -2m S 成等比数列。

34、常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).35、直线的3种方程(1)点斜式:11()y y k x x -=-; (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式:y kx b =+;(b 为直线l 在y 轴上的截距). (3)一般式:0Ax By C ++=;(其中A 、B 不同时为0). 36、两条直线的平行和垂直若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠且; ②12121l l k k ⊥⇔⋅=-.37、点到直线的距离d =; (点00(,)P x y ,直线l :0Ax By C ++=).38、 圆的2种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.39、点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外; d r =⇔点P 在圆上; d r <⇔点P 在圆. 40、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 其中22BA C Bb Aa d +++=0d r >⇔⇔∆<相离方程组无解:;0d r =⇔⇔∆=相切方程组有唯一解:;0d r <⇔⇔∆>相交方程组有两个解:.41、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质①椭圆:22221(0)x y a b a b +=>>,焦点(±c,0),222b c a =-,离心率2=2a ce c a ==焦距长轴,参数方程是cos sin x a y b θθ=⎧⎨=⎩.②双曲线:12222=-b y a x (a>0,b>0),焦点(±c,0),222b a c =-,离心率2=2a c e c a ==焦距长轴,渐近线方程是x ab y ±=.③抛物线:px y 22=,焦点)0,2(p,准线2p x -=。

相关文档
最新文档