高中文科数学公式大全
(完整版)文科高中数学公式大全(超全完美)
![(完整版)文科高中数学公式大全(超全完美)](https://img.taocdn.com/s3/m/75e2dbc3a2161479161128a8.png)
、函数、导数1.元素与集合的关系 : x A x C U A , x C U Ax A . ? A A集合 {a 1,a 2,L ,a n } 的子集个数共有 2n 个;真子集有 2n 1个;非空子集有 2n 1个;非空的真子集有 2n 2个 .2. 真值表5. 函数的单调性pq非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假假常见结论的否定形式;原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有 n 个 至多有( n 1)个 小于不小于至多有 n 个至少有( n 1)个对所有 x ,成立存在某 x ,不成立p 或q p 且 q 对任何 x ,不成立 存在某 x ,成立p 且qp 或 q四种命题的相互关系 ( 下图 ): (原命题与逆否命题同真同假;逆命题与否命题同真同假 原命题 互逆 逆命题 若p则q 若q则p .)否命题 若非p则非q 3. 充要条件(记 逆否命题若非q则非互逆 p 表示条件, q 表示结论) q ,则 p 是 q 充分条件 . p ,则 p 是 q 必要条件 . q ,且 q p ,则 p 是 q 充要条件 .则乙是甲的必要条件;反之亦然若p 若q若p( 1)充分条件: ( 2)必要条件: ( 3)充要条件: 注:如果甲是乙的充分条件,4. 全称量词 表示任意,表示存在; 的否定是的否定是 。
2 例: x R,x 2x 12 0 的否定是 x R,x 2互逆逆 逆否否互 否(2) 设函数 y f (x)在某个区间内可导,若 f (x) 0,则 f(x) 为增函数;若 f (x) 0,则 f (x) 为减函数 .6. 复合函数 y f[g(x)] 单调性判断步骤:(1)先求定义域(2)把原函数拆分成两个简单函数 y f (u)和 u g(x)( 3)判断法则是同增异减( 4)所求区间与定义域做交集7. 函数的奇偶性(1) 前提是定义域关于原点对称。
高中数学公式大全文科
![高中数学公式大全文科](https://img.taocdn.com/s3/m/fc38cc67dc36a32d7375a417866fb84ae45cc39c.png)
高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。
高中文科数学公式大全(完美攻略更新版)
![高中文科数学公式大全(完美攻略更新版)](https://img.taocdn.com/s3/m/2603e33b55270722192ef736.png)
新课标高中文科数学公式总结一、函数、导数1.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 2. 真值表3. 充要条件(记p 表示条件,q 表示结论)(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。
例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。
(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
8.若奇函数在x =0处有意义,则一定存在()00f =;若奇函数在x =0处无意义,则利用()()x x f f -=-求解;9.多项式函数110()n n n n P x a x a x a --=++⋯+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 10. 常见函数的图像:11. 函数的对称性(1)函数()y f x=与函数()y f x=-的图象关于直线0x=(即y轴)(2)对于函数)(xfy=(Rx∈),)()(xafxaf-=+恒成立,则函数ax=(3)对于函数)(xfy=(Rx∈),)()(xbfaxf-=+恒成立,则函数2bax+=; 12. 由)(xf向左平移一个单位得到函数)1(+xf由)(xf向右平移一个单位得到函数)1(-xf由)(xf向上平移一个单位得到函数1)(+xf由)(xf向下平移一个单位得到函数1)(-xf若将函数)(xfy=的图象向右移a、再向上移b个单位,得到函数y的图象;若将曲线0),(=yxf的图象向右移a、向上移b个单位,得到曲线,(-axf.13. 函数的周期性(1))()(axfxf+=,则)(xf的周期T a=||;(2)()()f x a f x+=-,则)(xf的周期2T a=||(3)1()()f x af x+=,则)(xf的周期2T a=||(4)()()f x a f x b+=+,则)(xf的周期T a b=|-|;14. 分数指数(1)mna=0,,a m n N*>∈,且1n>).(2)1mnmnaa-==0,,a m n N*>∈,且1n>).15.根式的性质(1)n a=.(2)当n a=;当n,0||,0a aaa a≥⎧==⎨-<⎩.16.指数的运算性质(1) (0,,)r s r sa a a a r s Q+⋅=>∈ (2) (0,,r s r sa a a a r s Q-÷=>∈(3) ()(0,,)r s rsa a a r s Q=>∈ (4) ()(0,0,r r rab a b a b r=>>17. 指数式与对数式的互化式:log baN b a N=⇔=(0,1,a a N>≠>18.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1)log()log loga a aMN M N=+; (2) log log loga a aMMN=-(3)log log()na aM n M n R=∈; (4) log log(,mnaanN N n mm=(5)1log =a a (6)01log =a19. 对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).倒数关系式:1log log =⨯a b b a20. 对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).21. 零点存在定理:如果函数)(x f 在区间(a, b )满足()()0f a f b ⨯<,则)(x f 在区间(a, b )上存在零点。
高中文科数学公式总结大全
![高中文科数学公式总结大全](https://img.taocdn.com/s3/m/43cb9c565bcfa1c7aa00b52acfc789eb172d9efe.png)
高中文科数学公式总结大全高中文科数学相对理科数学来说是比较简单的,但是其中的公式还是有许多。
为了节省同学们整理文科数学公式的时间。
下面是由小编为大家整理的“高中文科数学公式总结大全”,仅供参考,欢迎大家阅读。
高中文科数学公式总结大全一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb)tan(a-b)=(tana-tanb)/(1+tana*tanb)高中数学知识点速记口诀1.《集合与函数》内容子交并补集,还有幂指对函数。
(整理)高中文科数学公式大全(完美攻略极品版).
![(整理)高中文科数学公式大全(完美攻略极品版).](https://img.taocdn.com/s3/m/981fec39763231126fdb1106.png)
新课标高中文科数学公式总结一、函数、导数1.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 2. 真值表3. 充要条件(记p 表示条件,q 表示结论)(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。
例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。
(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
8.若奇函数在x =0处有意义,则一定存在()00f =;若奇函数在x =0处无意义,则利用()()x x f f -=-求解;9.多项式函数110()n n n n P x a x a x a --=++⋯+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 10. 常见函数的图像:11. 函数的对称性(1)函数()y f x=与函数()y f x=-的图象关于直线0x=(即y轴)(2)对于函数)(xfy=(Rx∈),)()(xafxaf-=+恒成立,则函数ax=(3)对于函数)(xfy=(Rx∈),)()(xbfaxf-=+恒成立,则函数2bax+=; 12. 由)(xf向左平移一个单位得到函数)1(+xf由)(xf向右平移一个单位得到函数)1(-xf由)(xf向上平移一个单位得到函数1)(+xf由)(xf向下平移一个单位得到函数1)(-xf若将函数)(xfy=的图象向右移a、再向上移b个单位,得到函数y的图象;若将曲线0),(=yxf的图象向右移a、向上移b个单位,得到曲线,(-axf.13. 函数的周期性(1))()(axfxf+=,则)(xf的周期T a=||;(2)()()f x a f x+=-,则)(xf的周期2T a=||(3)1()()f x af x+=,则)(xf的周期2T a=||(4)()()f x a f x b+=+,则)(xf的周期T a b=|-|;14. 分数指数(1)mna=0,,a m n N*>∈,且1n>).(2)1mnmnaa-==0,,a m n N*>∈,且1n>).15.根式的性质(1)n a=.(2)当n a=;当n,0||,0a aaa a≥⎧==⎨-<⎩.16.指数的运算性质(1) (0,,)r s r sa a a a r s Q+⋅=>∈ (2) (0,,r s r sa a a a r s Q-÷=>∈(3) ()(0,,)r s rsa a a r s Q=>∈ (4) ()(0,0,r r rab a b a b r=>>17. 指数式与对数式的互化式:log baN b a N=⇔=(0,1,a a N>≠>18.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1)log()log loga a aMN M N=+; (2) log log loga a aMMN=-(3)log log()na aM n M n R=∈; (4) log log(,mnaanN N n mm=(5)1log =a a (6)01log =a19. 对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).倒数关系式:1log log =⨯a b b a20. 对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).21. 零点存在定理:如果函数)(x f 在区间(a, b )满足()()0f a f b ⨯<,则)(x f 在区间(a, b )上存在零点。
高中文科数学公式大全(完美)
![高中文科数学公式大全(完美)](https://img.taocdn.com/s3/m/ca66001e227916888486d7c2.png)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数 ①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠.6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
高中文科数学公式大全表
![高中文科数学公式大全表](https://img.taocdn.com/s3/m/8b8a4b8dba4cf7ec4afe04a1b0717fd5370cb252.png)
高中文科数学公式大全表1. 代数部分1.1 二次方程(Quadratic equation)二次方程的一般形式:ax^2 + bx + c = 0解的公式:x = (-b ± √(b^2 - 4ac)) / (2a)1.2 质因数分解(Prime factorization)将一个数分解为质数的乘积的过程1.3 指数公式(Exponential formula)a^n * a^m = a^(n+m)(a^n)^m = a^(n*m)1.4 对数公式(Logarithmic formula)log(a*b) = log(a) + log(b)log(a/b) = log(a) - log(b)log(a^n) = n * log(a)1.5 三角函数公式(Trigonometric formula)正弦函数:sin(x) = 垂直边 / 斜边余弦函数:cos(x) = 邻边 / 斜边正切函数:tan(x) = 垂直边 / 邻边余切函数:cot(x) = 邻边 / 垂直边1.6 等差数列(Arithmetic sequence)第n项公式:a_n = a_1 + (n-1)d前n项和公式:S_n = (n/2)(a_1 + a_n)1.7 等比数列(Geometric sequence)第n项公式:a_n = a_1 * r^(n-1)前n项和公式:S_n = a_1 * (1 - r^n) / (1 - r)2. 几何部分2.1 直角三角形(Right triangle)勾股定理:c^2 = a^2 + b^2(c为斜边,a和b为直角边)正弦定理:sin(A) / a = sin(B) / b = sin(C) / c余弦定理:c^2 = a^2 + b^2 - 2ab * cos(C)2.2 三角形(Triangle)海伦公式:S = √(s(s-a)(s-b)(s-c)) (S为面积,s为半周长)垂直平分线定理:垂直平分线经过三角形的顶点和对边中点,且与对边垂直且等分对边2.3 平行四边形(Parallelogram)面积公式:S = 底× 高2.4 梯形(Trapezoid)面积公式:S = (上底 + 下底) × 高 / 22.5 圆(Circle)周长公式:C = 2πr面积公式:S = πr²2.6 球(Sphere)表面积公式:S = 4πr²体积公式:V = (4/3)πr³3. 数据统计部分3.1 平均数(Arithmetic mean)平均数公式:平均值 = 总和 / 数据个数3.2 中位数(Median)对数据从小到大排序,如果数据个数为奇数,中位数为排序后的中间值;如果数据个数为偶数,中位数为排序后的两个中间值的平均数3.3 众数(Mode)数据中出现次数最多的数3.4 范围(Range)数据的最大值减去最小值3.5 标准差(Standard deviation)标准差公式:√[∑(xi-平均值)² / n] (xi为数据值,n为数据个数)4. 概率部分4.1 事件的概率(Probability of an event)事件的概率公式:P(A) = m / n (m为符合事件A的样本点个数,n为样本空间的样本点个数)4.2 独立事件(Independent events)两个事件A和B相互独立,满足P(A ∩ B) = P(A) × P(B)4.3 互斥事件(Mutually exclusive events)两个事件A和B互斥,满足P(A ∩ B) = 0以上是高中文科数学公式的大全表,这些公式覆盖了代数、几何、数据统计和概率等方面。
高中文科数学公式
![高中文科数学公式](https://img.taocdn.com/s3/m/4bfe0db34793daef5ef7ba0d4a7302768e996fc4.png)
高中文科数学公式
以下是一些常见的高中文科数学公式:
1.一次函数的方程:y = kx + b,其中 k 为斜率,b 为截距。
2.二次函数的方程:y = ax^2 + bx + c,其中 a、b、c 为常数。
3.立方函数的方程:y = ax^3 + bx^2 + cx + d,其中 a、
b、c、d 为常数。
4.指数函数的方程:y = a^x,其中 a 为底数。
5.对数函数的方程:y = loga(x),其中 a 为底数。
6.三角函数的方程:sin(x)、cos(x)、tan(x)、csc(x)、
sec(x)、cot(x)等。
7.平面几何中的勾股定理:a^2 + b^2 = c^2,其中 a、b、
c 分别为直角三角形的两个直角边和斜边的长度。
8.平面几何中的正弦定理:a/sinA = b/sinB = c/sinC,其中 a、b、c 为三角形的边长,A、B、C为对应的角度。
9.平面几何中的余弦定理:c^2 = a^2 + b^2 - 2abcosC,其中 a、b、c 为三角形的边长,C为夹角。
10.概率计算中的排列公式:P(n, r) = n!/(n-r)!,其中 n 为总数,r 为选取的数目。
以上是一些常见的高中文科数学公式,希望能够帮到你。
文科高考数学必背公式
![文科高考数学必背公式](https://img.taocdn.com/s3/m/cde4b705e418964bcf84b9d528ea81c758f52e1e.png)
文科高考数学必背公式在文科高考中,数学是一个重要的科目。
虽然数学不是文科生的强项,但是通过对一些必背公式的掌握,可以在考试中取得更好的成绩。
以下是文科高考数学必背公式。
1. 一次函数的表达式:y = kx + b。
其中,k为斜率,b为截距。
2. 二次函数的标准形式:y = ax² + bx + c。
其中,a、b、c为常数,且a≠0。
3. 二次函数的顶点坐标:顶点的横坐标为x = -b/2a,纵坐标为y = -Δ/4a。
其中,Δ为判别式,Δ = b² - 4ac。
4.一元二次方程的解:解为x=(-b±√Δ)/2a。
5.二次函数的对称轴方程:x=-b/2a。
6. 三角函数的定义:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边。
7. 三角函数的正负关系:sinθ、tanθ在0~π范围内非负,cosθ在π/2时为0,在0~π/2范围内非负,在π/2~π范围内非正。
8. 三角函数的周期性:sin(θ ± 2πn) = sinθ,cos(θ ± 2πn) = cosθ,tan(θ ± πn) = tanθ。
其中,n为整数。
9. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。
10. 三角函数的倍角公式:sin2θ = 2sinθcosθ,cos2θ =cos²θ - sin²θ,tan2θ = (2tanθ) / (1 - tan²θ)。
11.平面几何中的相似三角形:对应角相等,对应边成比例。
12.平行线的性质:同位角互等、内错角互补、同旁内角互补。
13. 同余式的性质:如果a≡b (mod m),则a±c≡b±c (mo d m),ac≡bc (mod m)。
高中文科数学公式大全(精华版)
![高中文科数学公式大全(精华版)](https://img.taocdn.com/s3/m/59a3c347767f5acfa1c7cdba.png)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-==0,,a m n N *>∈,且1n >)..根式的性质(1)n a=(2)当n当n(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论log m nab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中必备数学公式大全文科
![高中必备数学公式大全文科](https://img.taocdn.com/s3/m/986bbff1d05abe23482fb4daa58da0116d171f45.png)
高中数学公式大全高考文科必背数学公式整理乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h高中文科数学必背公式总结公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)公式七:两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)公式八:二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]公式九:半角公式半角的正弦、余弦和正切公式(降幂扩角公式) sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)公式十:万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]公式十一:三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))提高高中数学成绩的方法有哪些1.主动预习预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
高中文科数学公式大全精品
![高中文科数学公式大全精品](https://img.taocdn.com/s3/m/fe9db2f668dc5022aaea998fcc22bcd126ff42fc.png)
高中文科数学公式大全精品
一、几何公式
1、三角形的面积公式:
S=1/2ab sinC,其中a、b分别为三角形的两条边,C为其夹角。
2、海伦公式:
S=√p(p-a)(p-b)(p-c),其中a、b、c分别为三角形的三个边长,p=1/2(a+b+c)。
3、四边形面积公式:
S=a×b,其中a、b分别为四边形的两条对边。
4、圆的面积公式:
S=πr²,其中r为圆的半径。
5、球体的表面积公式:
S=4πr²,其中r为球体的半径。
6、球体的体积公式:
V=4/3πr³,其中r为球体的半径。
二、代数公式
1、二次根式公式:
x1、x2=(-b±√b²-4ac)/2a,其中a、b、c分别为二次多项式ax²+bx+c的系数。
2、求和公式:
Sn=a1+a2+…+an,其中a1、a2、…、an分别为相加数,n为相加个数。
3、等比数列求和公式:
Sn=a1(1-qⁿ)/(1-q),其中a1为等比数列的首项,q为公比,n为项数。
4、等差数列求和公式:
Sn=n/2(a1+an),其中a1为等差数列的首项,an为末项,n为项数。
5、分式的乘积公式:
(a/b)(c/d)=ac/bd,其中a、b、c、d分别为分式的分母和分子。
三、数列公式
1、等比数列通项公式:
an=a1qⁿ-1,其中a1为等比数列的首项,q为公比,n为项数。
2、等差数列通项公式:
an=a1+(n-1)d,其中a1为等差数列的首项,d为公差,n为项数。
3、等比数列极限公式:。
高考文科数学公式汇总(精简版)
![高考文科数学公式汇总(精简版)](https://img.taocdn.com/s3/m/be57270977c66137ee06eff9aef8941ea76e4bfb.png)
高考文科(wénkē)数学公式汇总(精简版)高考文科(wénkē)数学公式汇总(精简版)高中(gāozhōng)数学公式汇总〔文科(wénkē)〕一、复数(fùshù)1、复数的除法运算abicdi(abi)(cdi)(cdi)(cdi)(acbd)(bcad)ic2d2.2、复数zabi的模|z|=|abi|=a2b2.二、三角函数、三角变换、解三角形、平面向量3、同角三角函数的根本关系式sincos1,tan=22sincos.4、正弦、余弦的诱导公式k的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;k2的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。
5、和角与差角公式sin()sincoscossin;cos()coscossinsin;tan()tantan1tantan.6、二倍角公式sin2sincos.cos2cossin2cos112sin.2222tan22tan1tan2cos22.1cos2,cos1cos2,sin221cos221cos22;;公式变形:2sin27、三角函数的周期函数ysin(某),某∈R及函数ycos(某),某∈R(A,ω,为常数,且A≠0,ω>0)的周期T2;函数ytan(某),某k2,kZ(A,ω,为常数,且A≠0,ω>0)的周期T.8、函数ysin(某)的周期、最值、单调区间、图象变换9、辅助角公式yasin某bcos某a2b2sin(某)其中tanba10、正弦定理asinAbsinBcsinC2R.11、余弦定理第1页〔共6页〕abc222bc2bccosA;ca2cacosB;ab2abcosC.、三角形面积公式S12absinC12bcsinA12casinB.13、三角形内角和定理在△ABC中,有ABCC(AB)14、a与b的数量积(或内积)ab|a||b|cos15、平面向量的坐标运算(1)设A(某1,y1),B(某2,y2),那么ABOBOA(某2某1,y2y1).(2)设a=(某1,y1),b=(某2,y2),那么ab=某1某2y1y2.(3)设a=(某,y),那么a16、两向量的夹角公式设a=(某1,y1),b=(某2,y2),且b0,那么cosabab2某2y2某1某2y1y2某1y12某22y2217、向量的平行与垂直a//bba某1y2某2y10.ab(a0)ab0某1某2y1y20.三、函数、导数18、函数的单调性(1)设某1、某2[a,b],某1某2那么f(某1)f(某2)0f(某)在[a,b]上是增函数;f(某1)f(某2)0f(某)在[a,b]上是减函数.(2)设函数yf(某)在某个区间内可导,假设f(某)0,那么f(某)为增函数;假设f(某)0,那么f(某)为减函数.19、函数的奇偶性对于定义域内任意的某,都有f(某)f(某),那么f(某)是偶函数;对于定义域内任意的某,都有f(某)f(某),那么f(某)是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式及知识点一、函数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f0,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意x ,都有)()(x f x f -=-,则)(x f 是奇函数。
3. 常见函数的图像4. 函数的对称性(1) 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
(2)对于函数)(x f y =(R x ∈),)()(x a f x a f -=+恒成立,则函数a x = (3)对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数2ba x +=; 5. 由)(x f 向左平移一个单位得到函数)1(+x f 由)(x f 向右平移一个单位得到函数)1(-x f由)(x f 向上平移一个单位得到函数1)(+x f由)(x f 向下平移一个单位得到函数1)(-x f若将函数)(x f y =的图象向右移a 、再向上移b 个单位,得到函数y 若将曲线0),(=y x f 的图象向右移a 、向上移b 个单位,得到曲线0f 的图象.6. 函数的周期性(1))()(a x f x f +=,则)(x f 的周期T a =||; (2)()()f x a f x +=-,则)(x f 的周期2T a =||(3)1()()f x a f x +=,则)(x f 的周期2T a =|| (4)()()f x a f x b +=+,则)(x f 的周期T a b =|-|;7. 分数指数 (1)m na=0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).8.根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9.指数的运算性质(1) (0,,)rsr sa a aa r s Q +⋅=>∈ (2) (0,,)r s r s a a a a r s Q -÷=>∈(3) ()(0,,)r s rsa a a r s Q =>∈ (4)()(0,0,)rr rab a b a b r Q =>>∈.10. 指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>.11.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+ (2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈ (4) log log (,)m na a n N N n m R m=∈(5)1log =a a (6)01log =a12. 对数的换底公式 log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).13.倒数关系式1log log =⨯a b b a14. 对数恒等式 log a Na N =(0a >,且1a ≠, 0N >).15. 零点存在定理如果函数)(x f 在区间(a, b )满足()()0f a f b ⨯<,则)(x f 在区间(a, b )上存在零点。
二、三角函数、三角变换、解三角形、平面向量16、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .17、正弦、余弦的诱导公式 奇变偶不变,符号看象限18、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=m ;tan tan tan()1tan tan αβαβαβ±±=m .19、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=20、三角函数的周期函数sin()y x ωϕ=+,周期2T πω=;函数cos()y x ωϕ=+,周期2T πω=;函数tan()y x ωϕ=+,周期T πω=.21、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换(熟记)22、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan23、正弦定理2sin sin sin a b cR A B C===.24、余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.25、三角形面积公式111sin sin sin 222S ab C bc A ca B ===.26、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ 即sin()sin A B C += 27、与的数量积(或内积)θcos ||||⋅=⋅28、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r.(2)设=11(,)x y ,=22(,)x y ,则+=),(2121y y x x ++.(3)设a =11(,)x y ,b =22(,)x y ,则b a -=),(2121y y x x --. (4)设=11(,)x y ,=22(,)x y ,则⋅=2121y y x x +. (5)设=),(y x ,则22y x a +=29、两向量的夹角公式设=11(,)x y ,=22(,)x y ,且≠,则222221212121cos y x y x y y x x ba b a +⋅++=⋅=θ30、向量的平行与垂直//⇔λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅12120x x y y ⇔+=.三、数列31、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).32、等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;前n 项和公式:1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.等差数列}{n a 的中项公式: 2=(+ )/2等差数列}{n a 中,若m n p q +=+,则m n p q a a a a +=+等差数列}{n a 中,n s ,2n n s s -,32n n s s -成等差数列等差数列}{n a 中,若n 为奇数,则12n n s na +=33、等比数列 通项公式:1*11()n nn a a a q q n N q-==⋅∈;前n 项的和公式:11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.等比数列}{n a 的中项公式: 211n n n a a a -+=⨯等比数列}{n a 中,若m n p q +=+,则m n p q a a a a ⨯=⨯等比数列}{n a 中,n s ,2n n s s -,32n n s s -成等比数列四、不等式34、已知y x ,都是正数,则有xy yx ≥+2,当y x =时等号成立。
(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .五、解析几何35、直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).36. 斜率的计算公式(1)tan k α= (2)2121y y k x x -=- (3)直线一般式中Ak B=-37、两条直线的平行和垂直若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠&12,k k 均不存在②12121l l k k ⊥⇔=- &120,kk =不存在38、平面两点间的距离公式,A Bd =A 11(,)x y ,B 22(,)x y ).39、点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).40、 圆的三种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心坐标(,)22D E-- 半径= 2(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.41、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 弦长=222d r -其中22BA CBb Aa d +++=.42、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆:22221(0)x y a b a b +=>>,222b c a =-,离心率1<=a c e ,参数方程是cos sin x a y b θθ=⎧⎨=⎩.双曲线:12222=-b y a x (a>0,b>0),222b a c =-,离心率1>=a c e ,渐近线方程是x ab y ±=.抛物线:px y 22=,焦点)0,2(p ,准线2p x -=。