第8章 遥感应用
遥感原理与应用复习题(Final Version)
遥感原理与应用复习题一、名词概念1. 遥感广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
狭义:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2. 传感器传感器是遥感技术中的核心组成部分,是收集和记录地物电磁辐射能量信息的装置,如光学摄影机、多光谱扫描仪等,是获取遥感信息的关键设备。
3. 遥感平台遥感平台是转载传感器进行探测的运载工具,如飞机、卫星、飞船等。
按其飞行高度不同可分为近地平台、航空平台和航天平台。
4. 地物反射波谱曲线地物的反射率随入射波长变化的规律称为地物反射波谱,按地物反射率与波长之间的关系绘成的曲线称为地物反射波谱曲线(横坐标为波长值,纵坐标为反射率)5. 地物发射波谱曲线地物的发射率随波长变化的规律称为地物的发射波谱。
按地物发射率与波长之间的关系绘成的曲线称为地物发射波谱曲线。
(横坐标为波长值,纵坐标为总发射)6. 大气窗口通常把通过大气而较少被反射、吸收或散射的透射率较高的电磁辐射波段称为大气窗口。
7. 瑞利散射当微粒的直径比辐射波长小许多时,也叫分子散射。
8. 遥感平台遥感平台:遥感中搭载传感器的工具统称为遥感平台。
遥感平台按平台距地面的高度大体上可分为地面平台、航空平台和航天平台三类。
9. TM即专题测图仪,是在MSS基础上改进发展而成的第二代多光谱光学-机械扫描仪,采用双向扫描。
10. 空间分辨率图像的空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬间视场或地面物体能分辨最小单元,是用来表征影像分辨地面目标细节能力的指标。
通常用像元大小、像解率或视场角来表示。
11. 时间分辨率时间分辨率指对同一地点进行遥感采样的时间间隔,即采样的时间频率,也称重访周期。
12. 波谱分辨率波谱分辨率指传感器在接收目标辐射的波谱时能分辨的最小波长间隔,也称光谱分辨率。
遥感技术与应用考试资料
第一、二章1.遥感:广义:遥远的感知。
狭义:不直接接触物体本身,从远处通过各种传感器探测和接收来自目标物体的信息,经过信息的传输及其处理分析,来识别物体的属性及其分布等特征的综合技术。
2.主动遥感:由探测器主动发射一定电磁波能量并接受目标的后向散射信号;被动遥感:传感器步向目标发射电磁波,仅被动接受目标物的自身发射和对自然辐射源的反射能量。
3.电磁波:由振源发出的电磁振荡在空气中传播。
4.电磁波谱:将各种电磁波在真空中的波长按其长短,依次排列制成的图表。
5.辐射通量密度:单位时间内通过单位面积的辐射能量。
6.黑体:在任何温度下,对各种波长的电磁辐射的吸收系数等于1(100%)的物体。
7.灰体:没有显著的选择吸收,吸收率虽然小于1,但基本不随波长变化的物体。
8.维恩位移定律:黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比。
9.瑞利散射:当大气中粒子的直径比波长小得多时发生的散射。
10.米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射。
11.辐射度:被辐射的物体表面单位面积的辐射通量。
12.大气窗口:电磁通过大气层时较少被反射、吸收或散射的,透过率较高的波段。
13.发射率(比辐射率):实际物体的辐射出射度Mi于同一温度、统一波长绝对黑体辐射出射度的关系(比例)M=εM014、光谱反射率:物体反射的辐射能量占总入射能量的百分比;15、光谱反射波普曲线:在平面坐标上表示地物反射率随波长变化规律的曲线。
遥感的特点视域范围大,具有宏观特性。
光谱特性:探测的波段从可见光向两侧延伸,,扩大了地物特性的研究范围。
周期性:周期成像,有利于进行动态研究和环境监测。
多源性:多平台、多时相、多波段((多尺度))遥感的特性航空与航天飞行器运行快、周期短,可获得多时相数据。
例如Landsat遥感数据太阳辐射经过大气层到达地面,一部分与地面发生作用后反射或地表辐射,再次经过大气层,到达传感器。
传感器将这部分能量记录下来,传回地面,即为遥感数据。
《遥感导论》教案.doc
1 单波段摄影像片的解译(1) 可见光黑白像片和黑白红外像片的解译(2) 彩色像片与彩红外像片的解译2 多光谱扫描图像的解译(1) 多光谱扫描图像的特点(2) 多光谱扫描图像的解译方法3 热红外图像的解译4 雷达图像的解译(1) 雷达图像的解译要素及其特点(2) 雷达图像的处理3 目视解译的认知过程(3) 典型地物的散射特征与图像解译第八章遥感图像的计算机分类一、章节教案1.教学目标及基本要求(1)回顾数字图像的性质与特点、表示方法;(2)掌握数字图像分类原理、监督分类、非监督分类的具体方法及两种分类方法的区别;(3)了解遥感图像多种特征的抽取;(4)了解基于知识的分类、面向对象的分类、人工神经网络分类、模糊分类等分类方法的原理与过程;(5)掌握遥感图形分类结果的误差与精度评价方法。
2.教学内容及学时分配第一节概述第二节监督分类(2学时)第三节非监督分类(2学时)第四节其他分类方法(2学时)第五节误差与精度评价(2学时)3.教学重点和难点重点:数字图像的性质与特点、表示方法、数字图像分类原理、监督分类、非监督分类、遥感图像多种特征的抽取、遥感图像分类的其他先进方法。
难点:监督分类和非监督分类。
4.教学内容的深化和拓宽利用ENVI软件和Landsat数据进行演示。
5.教学方式(手段)及教学过程中应注意的问题教学方式(手段):讲授法、演示法教学过程中应注意的问题:注重培养从的软件操作能力。
6.主要参考书目及网络资源《遥感技术基础与应用》,张安定等,科学出版社,2014。
《遥感导论》,梅安新,彭望琭,秦其明,等编著,北京:高等教育出版社,2001年。
《遥感概论》,彭望碌主编著,北京:高等教育出版社,2002年。
《遥感概论》修订版,吕国楷、洪启旺、郝允充等编著,北京:高等教育出版社,1995年。
《遥感应用分析原理与方法》,赵英时等编著.北京:科学出版社,2003年。
7.思考题和习题比较监督分类和非监督分类的优缺点?二、每课时单元教案1.教学时数2学时2.教学方式(手段)讲授法、演示法3.师生活动设计教师提问,学生回答。
《遥感原理与应用》教学大纲
遥感原理与应用一、课程说明课程编号:010517Z10课程名称:遥感原理与应用/Remote Sensing Principle and Application课程类别:专业教育课程学时/学分:48/3先修课程:数字图像处理适用专业:地理信息科学,地质工程教材、教学参考书:1.梅安新主编.遥感导论.北京:高等教育出版社.2010年;2.孙家炳主编.遥感原理与应用(第三版).武汉:武汉大学出版社.2013年;3.吴俐民编著.卫星遥感影像专题信息提取技术与应用.成都:西南交通大学出版社.2013年;4.周廷刚主编.遥感原理与应用.北京:科学出版社.2015年;5.彭望琭主编.遥感概论.北京:高等教育出版社2002年。
二、课程设置的目的意义该课程是地理信息科学专业的核心必修课程,主要目的是使学生掌握遥感的基本概念、基本原理和方法,并熟悉遥感在各领域中的简单应用,培养学生对遥感技术及其应用方面的兴趣,增强学生创新意识和创新思维,提高实际动手能力和创新能力。
通过本课程的学习,为学生进一步学习《遥感影像分析》、《地理国情监测》、《空间数据挖掘》和《毕业设计/论文》等课程奠定基础。
三、课程的基本要求知识:掌握遥感成像的物理基础;掌握地物光谱的基本特征;熟悉1-2个主要遥感软件的基本操作;能完成遥感影像基本处理;掌握遥感图像解译的基本原理与方法;掌握遥感在各领域的简单应用。
能力:熟悉主要遥感软件的特点与功能,具备应用遥感软件进行遥感影像处理的能力;具备利用遥感影像进行地理空间信息获取、处理、分析、理解与应用的基本能力;掌握文献检索、资料查询及运用现代信息技术获取相关信息的基本方法,具有一定的归纳分析、撰写论文、参与学术交流的能力;具有良好的科学思维和科学方法,具有创新意识和协同攻关能力和科学研究的初步能力。
素质:既能独立工作,又具有团队协作精神,适应竞争学会合作;具有良好的心理承受能力及科学的工作心态;具有良好的自学能力和独立解决问题的能力。
遥感原理与应用总结
第一章:1. 遥感的定义遥感是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息的记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。
2. 遥感的分类(1)按遥感平台分类:地面遥感、航空遥感、航天遥感(2)按工作方式:主动式遥感、被动式遥感(3)按工作波段:紫外遥感、可见光遥感、红外遥感、微波遥感、多光谱和高光谱遥感(4)按记录方式:成像遥感、非成像遥感(5)按遥感应用领域分类:从大的研究领域:外层空间遥感、大气遥感、陆地遥感、海洋遥感),从具体应用领域(城市遥感、环境遥感、农业遥感和林业遥感、地质遥感、气象遥感、军事遥感)3. 遥感技术系统的组成部分:信息获取、信息记录与传输、信息处理、信息应用第二章:1.电磁波谱:将电磁波按波长或频率递增或递减顺序排列红外波段:0.76-1000um(近红外(识别植物类型,分析植物长势,监测植被的病虫害) (热红外遥感主要使用3-15um的红外线,探测地下热源、火山、森林火灾、热岛效应)2.辐射通量:电磁辐射单位时间内通过某一表面的能量辐射通量密度:通过单位面积的辐射通量辐射出射度:单位面积发射出的辐射通量辐射照度(辐照度):投射到单位面积上的辐射通量3.绝对黑体:如果一个物体对任何波长的电磁辐射都全部吸收而毫无反射和透射,则称这个物体为绝对黑体(黑体辐射与温度成正相关)4.(1)太阳辐射的特性:1地球上的能源来源于太阳,太阳是被动遥感最主要的辐射源2在距离地球一个天文单位内,太阳辐射在大气上界处的垂直入射的辐射通量密度称为太阳常数3地球大气层以外的太阳光谱辐照度曲线为平滑的连续曲线(2)地球辐射特性:1地球上的能源来源于太阳的直射能量与天空漫入射的能量2被地表吸收的太阳辐射能,又重新被地表辐射(3)比辐射率:单位面积上地物发射的某一波长的辐射通量密度与同温度下黑体在同一波长上的辐射通量密度之比,又称发射率6.电磁辐射能与地表的相互作用有三种基本物理过程:反射、吸收和透射(1)物体对电磁波的反射可表现的三种形式:镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角漫反射:当入射能量在所有方向均匀反射,即入射能量以入射点为中心在整个半球空间内向四周各向同性反射能量的现象(即伯朗反射)一个完全的漫反射体称为伯朗体方向反射:介于伯朗表面和镜面之间的,其反射方向各不相同,而具有明显的方向性,即在某些方向上反射最强烈的现象7.光谱反射率:地物在某波段的反射通量与该波段的入射通量之比地物的反射波谱特性:地物波谱反射率随波长变化而改变的特性8.水体的反射主要在蓝绿光波段,在近红外、中红外有很强的吸收带植物在绿光附近有一个反射波峰,两侧的蓝光和红光有两个吸收带9.影像地物反射光谱特性的因素:1太阳位置即太阳高度和方位角2传感器位置即观测角和方位角3不同的地理位置、太阳位置、地理景观、海拔高度大气透明度4地物本身性质的变异5时间的变化、季节的变化10.大气对电磁辐射传输作用大气对电磁辐射传输的作用过程的影响包括:散射、吸收、反射、扰动、折射和偏振,对遥感数据,主要是散射和吸收(1)大气吸收:将电磁波辐射能量转换成分子的热运动,使能量减少,主要吸收水蒸气、二氧化碳和臭氧电磁波辐射在大气传输中透过率较高的波段称为大气窗口(2)大气散射:电磁波在传播过程中遇到微粒而使传播方向发生改变,并向各个方向散开瑞利散射:引起散射的大气粒子直径远小于入射电磁波波长(蓝天)米氏散射:。
测绘学概论第8章 遥感科学与技术
遥
感
➢ 空间分辨率:通常指一个像素对应
图
地面的实际大小。一般遥感图像分
像
辨率指的是地面分辨率;
中
➢ 光谱分辨率:成象范围内波谱带数
的
目;
分
辨
➢ 时间分辨率:重复获取某地区图像
率
的周期;
➢ 温度分辨率(热红外):可探测的
温度变化幅度。
应用需求
资源
农业
环境
森林
国防
高光谱
多光谱
交通
城市
光谱分辨率
全色
100 m
公司 ESA NOAA
发射时间 1995 1994-1995
NASDA 1995 ISRO 1996-1997 中国 1997
位置 0o
75135oW 135oE 75oE 105oE
8.3 遥感信息获取
太阳同步极轨气象卫星系统
系统 公司
NOAA- NOAA 14
NOAA-K NOAA
FY-
中国
1A/1B
非图像方式(主动式和被动式)
雷达高度计 合成孔径雷达 微波辐射计 红外辐射计
…
8.2 遥感的电磁波谱
电磁波谱
8.2 遥感的电磁波谱
遥感技术使用的电磁波分类名称和波长范围
名称
波长范围
紫外线 可见光
近红外
100 A°~0.4μm 0.4~0.7μm 0.76~3.0μm
紫 0.38~0.43μm 蓝 0.43~0.47μm 青 0.47~0.50μm
radarsat
Landsat
SPOT
ers SEASAT
JERS
NOAA
航天遥感传感器搭载的主要平台是卫星。 上图是目前国外常用的遥感卫星。
遥感数字图像处理-第8章 图像增强
(1)伪彩色处理:对灰度图像的每一个灰度值都赋予一种独立的颜色。 (2)密度分割:将图像的灰度值进行分层(或分段),每一层包含了一 定的灰度值范围,分别给每个层赋予不同的颜色。
18
四、图像融合
图像融合:把那些在时间或空间中存在冗余或者互补的多
源数据按照一定的法则进行运算,从而获得比任何单一数据 都更为精确、信息更为丰富的合成图像。
y f x
式中,f 是一个变换函数,常见的变换函数如线性变换、分段线性变换和 非线性变换等。
5
一、空间域图像增强
邻域运算
邻域运算的卷积滤波器分为平滑和锐化两种类型。 在图像增强中主要是指利用锐化滤波器对图像作锐化处理,将图像中灰 度值缓慢变化的区域滤去,使图像反差增加,突显边缘。 图像锐化的应用: (1)增强图像边缘,使模糊的图像更加清晰,一般是将图像锐化结果与原 图像相加以突出原图像的细节信息。 (2)用于目标物的边缘提取,并可进一步利用这些提取的边缘信息对图像 进行分割、目标区域识别、区域形状提取等,从而为进一步的图像理解 与分析奠定基础。
9
二、变换域图像增强(补充知识)
带通滤波
仅保留某个固定范围内的频率信息而屏蔽掉其它的频率信息
(1)理想带通滤波器
0 H (u, v) 1 0
D(u,
v)<D0
w 2
D0
w 2
D(u,
v)
D0
w 2
D(u,
v)>D0
+
w 2
式中,D0是理想带通滤波器频带的中心频率;w为频带的宽度;D(u, v)是 从频率平面的中心原点到点(u, v)的距离,即D(u,v)= (u2+ v2)1/2。
常用的图像变换算法: • 傅里叶变换 • 小波变换 • 颜色空间变换
遥感原理与应用复习重点整理
绪论1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的关系的一门现代应用技术学科。
遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。
2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。
按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。
按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。
按照资料的记录方式:成像方式、非成像方式。
按照传感器工作方式分类:主动遥感、被动遥感。
3、遥感起源于航空摄影、摄影测量等。
第一章1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相互联系传播的过程。
电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒子性。
2、波长最长的是无线电波,最短的是γ射线。
3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。
4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。
反射率随入射波长变化而变化。
反射类型:漫反射、镜面反射、方向反射。
5、影响地物反射率的3个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。
附:影响地物光谱反射率变化的因素:a太阳的高度角和方位角。
B传感器的观测角和方位角c不同的地理位置d地物本身的变异e时间、季节的变化6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。
1.不同地物在不同波段反射率存在差异2. 同类地物的反射光谱具有相似性,但也有差异性。
不同植物;植物病虫害3. 地物的光谱特性具有时间特性和空间特性。
(同物异谱,同谱异物)。
7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照标准。
8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。
遥感概论复习
问题第一章--绪论1、遥感的基本概念2、遥感探测系统组成3、遥感与常规观测手段的区别重点:遥感的概念及应用领域1.遥感的广义理解和狭义理解?P12.遥感探测系统包括哪几个部分?P13.遥感的特点?P54.遥感的信息源?遥感探测的依据?P35.遥感的类型?P3第二章--电磁辐射与地物光谱特征1、电磁波谱与电磁辐射的概念及特点2、太阳辐射及大气对辐射的影响3、地球的辐射与地物波谱重点:地物波谱特征难点:电磁辐射原理1.大气层次与成分?P262.散射现象的实质?P293.大气散射的三种情况?P294.根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾能力而可见光不能?P295.物体的反射状况?(镜面反射、漫反射、实际物体反射)P376.大气窗口对于遥感探测的重要意义?P317.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象?8.从地球辐射的分段特性说明为什么对于卫星影象解译必须了解地物反射波谱特性?P35 9.黑体辐射定律?P19第三章--电磁辐射与地物光谱特征1、了解主要的遥感平台及各平台的工作特点。
2、摄影成像的基本原理及图像特征。
3、扫描成像的基本原理及扫描图像的特征。
4、微波成像与摄影、扫描成像的区别。
5、评价遥感图像质量的方法。
重点:摄影成像的基本原理及图像特征、评价遥感图像质量的方法难点:中心投影的原理1.主要遥感平台是什么,各有何特点?P462.摄影成像的基本原理是什么?其图象有什么特征?P53、P573.扫描成像的基本原理是什么?P674.扫描成像和摄影图象有何区别?5.微波成像与摄影、扫描成像有何本质的区别?6.如何评价遥感图象的质量?P80-P837.气象卫星特点?P488.海洋遥感的特点?P529.中心投影与垂直投影的区别?P5810.中心投影的透视规律?P5911.光/机扫描成像的概念?P6712.瞬时视场角(像元)的概念?P6813.总视场角的概念?P6814.固体自扫描成像的概念?P6915.高光谱成像光谱扫描的概念?P7016.微波遥感的特点?P7217.微波遥感方式和传感器?P74-P8018.遥感解译人员需要通过遥感图像获取的信息?P8019.遥感图像的特征?P80-P83第四章--遥感图象处理1、光学原理与光学处理2、数字图像的校正3、数字图像增强4、多源信息复合重点:数字图象的增强难点:数字图象的校正及数字图象增强的原理与计算方法1.影响亮度值的两个物理量?P982.引起辐射畸变的两个原因?P983.辐射校正的方法(直方图最小值去除法、回归分析法)?P1004.遥感影像变形的原因?P1035.几何畸变校正的方法(最近邻法、双线性内插法、三次卷积内插法)?P1076.空间滤波的概念以及手段?P1167.彩色变换?P1208.图像运算(差值运算、比值运算)?P1229.多光谱变换(主成分变换、缨帽变换)?P12310.遥感信息的复合(不同传感器的遥感数据复合、不同时相的遥感数据复合)?P128 11.遥感与非遥感信息的复合?P13012.简述多波段彩色变换的不同方法?P120第五章--遥感图像目视解译与制图1、遥感图像目视解译原理2、遥感图像目视解译基础3、遥感制图1.遥感图像目标地物识别特征?P1352.图像知觉形成的客观条件?P1423.摄影像片的特点?P1454.摄影像片的解译标志?P1455.遥感摄影像片的判读方法?P1496.遥感扫描影像的判读?P1537.遥感扫描影像特征?P1618.遥感影像主要解译方法?P1619.微波影像的特点?P16310.微波影像解译标志及地物影像特征?P16611.微波影像的判读方法?P17112.目视解译方法?P17113.目视解译步骤?P17414.遥感影像地图的主要特征?P17615.对比分析MSS影像与TM影像的不同特点?P154第六章--遥感数字图像计算机解译1、遥感数字图像的性质与特点2、遥感数字图像的计算机分类3、遥感图像多种特征的抽取重点与难点:遥感数字图像的计算机分类方法1.遥感数字图像计算机解译的概念及其难度?P1872.按波段数量,遥感数字图像的类型?P1903.多波段数字图像的存储与分发通常采用的数据格式?P1904.航空像片的数字化过程?P1925.遥感数字图像计算机分类原理?P1936.遥感数字图像计算机分类方法(监督分类方法、非监督分类方法)?P195、P196 7.遥感数字图像计算机分类基本过程?P1958.植被、水体及土壤反射波谱特征?P399.计算机分类存在的问题?P20110.地物边界跟踪的方法?P20311.遥感图像解译专家系统的组成?P214-P21712.计算机解译的主要技术发展趋势?P219第七章--遥感应用1、地质遥感的主要原理与应用2、水体遥感的主要原理与应用3、植被遥感的主要原理与应用4、土壤遥感的主要原理与应用5、高光谱遥感的应用1.地质遥感的任务?基础?P2252.从遥感影像上识别地质构造的内容?P2313.岩石的反射光谱特征是什么?如何对沉积岩、岩浆岩、变质岩的影像进行识别?P225-P230 4.如何进行地质构造识别?P2315.水体的光谱特征是什么?水体识别可包括哪些内容?P237-P2396.植物的光谱特征是什么?如何区分植物类型,监测植物长势?P240-P2447.作物估产的原理和方法是什么?P2458.土壤的光谱特征是什么?如何进行土类的识别?P249-P2529.什么是高光谱遥感?它与传统遥感手段有何区别?P25310.高光谱提取地质矿物成分的主要技术方法是什么?P25411.高光谱在植被研究中有哪些应用?主要技术方法是什么?P256第八章--3S综合应用1.GIS的基本概念及其基本功能?P2612.GPS的基本原理、作用及其组成?P2643.RS的作用?P267概念第一章--绪论1.传感器(遥感器):接收、记录目标物电磁波特征的仪器2.遥感平台:装载传感器的平台,包括地面平台、空中平台、空间平台3.地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等4.航空遥感:传感器设置于航空器上,主要是飞机、气球等5.航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等6.航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测7.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号8.被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量9.成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图象10.非成像遥感:传感器接收的目标电磁辐射信号不能形成图象第二章--电磁辐射与地物光谱特征1.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列2.朗伯源:辐射亮度与观察角无关的辐射源3.绝对黑体:一个对于任何波长的电磁辐射都全部吸收的物体4.太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量5.太阳光谱:通常指光球产生的光谱,是连续光谱,且辐射特性与绝对黑体辐射特性基本一致6.散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开7.大气窗口:电磁波通过大气层时较少被反射、吸收或者散射的,透过率较高的波段8.比辐射率=发射率第三章--电磁辐射与地物光谱特征1.遥感平台:搭载传感器的工具2.低轨:近极地太阳同步轨道,卫星每天在固定的时间(地方时)经过每个地点的上空,使资料获得时具有相同的照明条件3.高轨:指地球同步轨道4.摄影机:成像遥感最常用的传感器,有分幅式和全景式摄影机之分,通常的遥感探测和制图大都采用分幅式摄影5.垂直摄影:摄影机主光轴垂直于地面或偏离垂线在3°以内,取得的像片称水平像片或垂直像片6.倾斜摄影:摄影机主光轴偏离垂线大于3°,有时为了获取较好的立体效果且对制图要求不高时采用7.像点位移:在中心投影的像片上,地形的起伏除引起像片比例尺变化外,还会引起平面上的点位在像片位置上的移动的现象,位移量就是中心投影与垂直投影在同一水平面上的"投影误差",位移量与摄影高度(航高)成反比8.感光特征曲线:横坐标为曝光量的对数值,纵坐标为胶片的光学密度9.光学密度:指胶片经感光显影后,影象表现出的深浅程度10.感光度:指胶片的感光速度。
遥感原理与方法习题库
遥感原理与方法习题集第一章遥感概述1、阐述遥感的基本概念。
2、遥感探测系统包括哪几个部分?3、与传统对地观测手段比较,遥感有什么特点?举例说明。
4、遥感有哪几种分类?分类依据是什么?5、试述当前遥感发展的现状及趋势。
第二章遥感的物理基础1、大气对通过其中传播的电磁波的散射有哪几类?他们各有什么特点。
2、什么是大气窗口?常用于遥感的大气窗口有哪些?3、综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。
4、请绘出小麦、湿地、沙漠、雪的典型光谱曲线图,并分别对这些光谱反射率曲线的特征及其成因作出说明。
5、遥感某火电厂冷却水的热污染(温度梯度为90-50度),试问在哪个波段、选用何种传感器,在每天什么时刻及天气状况下,遥感最为有利,为什么(b=2.898×10-3m.K,计算精确到0.1um)。
6、熟悉颜色的三个属性。
明度、色调、饱和度,选取自然界的某些颜色例如:树叶、鲜花、土地等,比较它们三种属性区别。
7、光的合成怎样推算新颜色?用色度图说明。
8、加色法和减色法在原理上有什么不同?举例说明什么时候用加色法,什么时候用减色法?9、利用标准假彩色影像并结合地物光谱特征,说明为什么在影像中植被呈现红色,湖泊、水库呈蓝偏黑色,重盐碱地呈偏白色。
第三章遥感图象获取原理1、主要遥感平台有哪些,各有何特点?2、摄影成像的基本原理是什么?其图像有何特征?3、扫描成像的基本原理是什么?扫描图像与摄影图像有何区别?4、如何评价遥感图像的质量?第四章航空遥感与航空像片1、按摄影机主光轴与铅垂线的关系,航空摄影可公为哪几类?2、影响航空像片比例尺的因素有哪些?怎样测定像片的比例尺?3、比较航空摄影像片与地形图的投影性质有什么差别?4、什么是像点位移?引起像点位移的主要原因是什么?第五章航天遥感与卫星图像1、试从技术特性和应用两方面,对航天(卫星)遥感与航空遥感作一比较。
2、航天遥感平台主要有哪些?各有什么特点?3、地球资源卫星主要有哪些?常用的产品有哪几类?4、简述卫星图像的主要特征。
遥感概论第8章 高光谱遥感数据 72.8 第8章 高光谱遥感数据
遥感技术的发展: 全色摄影 彩色摄影
多光谱
高光谱
前面章节所学习的遥感数据如SPOT的HRV、Landsat的MSS和 TM分别提供了4、4、7个波段,每个波段的宽度较大(属于 多光谱)
本章主要介绍高光谱,即将以前的宽波段再进行细分,形 成许多宽度很窄的波段,如AVIRIS能够获得224个波段,每 个波段宽约10nm
光谱技术领域诸光谱仪按其搭载的平台,可分为机载成像光谱仪和星 载成像光谱仪。
2000年底,NASA地球观测1号(EO-1)卫星携带的高光谱 遥感传感器HYPERION发射升空,成为新一代航天成像光谱 仪的代表。
EO-1 Hyperion 高光谱数据
该数据共有242波段,其中1~70 波段是可见光近红外波段 (visible near infrared,VNIR),71~242 波段是短波红外 波段(short wave infrared,SWIR), (其中可见光35个 波段,近红外35个波段,短波红外172个波段)
光谱分辨率为10nm,空间分辨率为30m。
首先删除2 个重复、20 个受水汽影响严重及44 个未定标波 段,剩余176 个波段;然后对剩余波段进行处理,包括坏 线修复、条纹去除以及smile 效应去除;最后,对处理后的 图像进行检验,继续删除质量差的波段7 个,剩余169 个 波段。利用FLAASH软件对剩余的169 个波段进行大气纠 正,得到反射率图像。大气纠正后,采用 1∶50 000地形 图对影像进行几何纠正,总误差是0.35 个像元。
高光谱遥感指的就是高“光谱分辨率”遥感,与传统多光 谱遥感相似,但也有很多无可比拟的优势
高光谱遥感原理
高光谱遥感的基本概念 高光谱遥感(Hyperspectral Remote Sensing)是指利用很
遥感应用分析原理与方法
遥感应用分析原理与方法绪论:1.为什么说遥感是以电磁波与地球表面物质相互作用为基础揭示地球各要素空间与时空分布规律的?电磁波遥感即利用航天、航空(包括近地面)遥感平台上的遥感仪器,获取地球表层(包括陆圈、水圈、生物圈、大气圈)特征的反射或发射电磁辐射能的数据,通过数据处理和分析,定性、定量地研究地球表层的物理过程、化学过程、生物过程、地学过程,为资源调查、环境监测等服务。
这里把地球作为遥感研究对象。
因此,可以说,遥感是以电磁波与地球表面物质相互作用为基础,揭示地球各要素空间与时空分布规律的。
2. 解释三高两多高光谱,高几何分辨率,高灵敏度,多角度,多类型遥感器3.如何理解遥感的多学科性?在整个遥感过程中,数据获取应用到物理学,电子学,空间科学,信息科学等方面的内容;数据处理分析运用到数学,计算机学等知识;数据应用则广泛运用到地球科学,生命科学等方面内容。
4.数据处理方法的发展趋势。
过去以像元为最小处理单位,以亮度值为处理对象,以二维空间为理论基础的常规方法已不能满足需求:续发展混合像元模型,将最小处理单位由像元向亚像元过度,发展纹理特征和空间特征为基础的遥感数据处理分析,提高图像识别的智能化水平,发展神经网络,专家系统在遥感数据处理中的应用,同时借用GIS引入大量费遥感数据建立背景数据库,在GPS准确的定位基础上,实现多元多位复合分析第一章1.什么是电磁波二象性电磁波二象性即电磁波的波动性和粒子性。
即电磁波是一种伴随电场和磁场的横波,同时电磁辐射除了它的连续波动状态外还能一离散形式存在。
2.大气散射对遥感造成哪些影响?大气散射对遥感,遥感数据运输的影响极大。
大气散射降低了太阳直射的强度,改变了太阳辐射的方向,削弱了到达地面或地面向外的辐射,产生了漫反射的天空散射光(又叫天空光或天空辐射),增强了地面的辐射和大气本身的“亮度”。
散射使地面阴影呈现暗示而不是黑色,是人们有可能在阴影处得到物体的部分信息。
《遥感导论》课后练习题
《遥感导论》课后练习题第一章遥感概述1. 遥感的基本概念,并区分遥感的广义和狭义。
2. 简述遥感探测系统组成。
3. 根据不同目的或手段,简述遥感的类型。
4. 简述遥感的特点,并举例。
5. 试述全球及我国遥感技术的进展和发展趋势,并结合地学发展阐述个人的看法或观点。
第二章电磁辐射与地物光谱特征1. 电磁波含义及电磁波的性质。
2. 电磁波谱的含义,电磁波区段的划分是怎样的?3. 辐射通量,辐射通量密度的物理意义。
4. 简述辐照度,辐射出射度和辐射亮度的物理意义,其共同点和区别是什么?5.朗伯源和黑体的概念?6.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感和微波遥感的区别,说明为什么微波具有穿云透雾的能力而可见光不能?7. 什么是大气窗口?对照书内卫星传感器表中所列波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。
8. 综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整体过程中所发生的物理现象。
9. 从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。
10. 列举几种可见光与近红外波段植被、土壤、水体、岩石的地物反射波谱曲线实例。
11. 在真空中电磁波速为3×108 s m(1)可见光谱的波长范围从约3.8×10-7 m 的紫色光到约7.6×10-7m 的红色光,其对应的频率范围为多少?(2)X 射线的波长范围约5×10-9—1.0×10-11m,其对应的频率范围是多少?(3)短波无线电的频率范围约为1.5MH Z ---300MH Z 其对应的波长范围是多少?12.在地球上测得太阳的平均辐照度I=1.4×1032m w设太阳到地球的平均距离约为1.5×1011m 试求太阳的总辐射能量。
13.假定恒星表面的辐射与太阳表面辐射一样都遵循黑体辐射规律。
如果测得到太阳辐射波谱λ=0.51μm,的北极星的λ=0.35μm ,试计算太阳和北极星的表面温度及每单位表面积上所发射出的功率是多少? 14.已知日地平均距离为天文单位,1天文单位≈1.496×103m ,太阳的线半径约为6.96×105KM(1)通过太阳常数I 0,计算太阳的总辐射通量E 。
遥感图像分类ppt课件
– 假设遥感图像有K个波段,则(i,j)位置的像素在
每个波段上的灰度值可以构成表示为X=(x1,
T
5
8.1 概述
• 8.1.2 分类方法
– 根据是否需要分类人员事先提供已知类别及其 训练样本,对分类器进行训练和监督,可将遥 感图像分类方法划分为监督分类和非监督分类。
– 事先己经知道类别的部分信息(即类别的先验知 识),对未知类别的样本进行分类的方法称之为 监督分类(Supervised Classification)。事先没 有类别的先验知识,对未知类别的样本进行分 类的方法称之为非监督分类(Unsupervised Classification)
14
8.4 非监督分类
• 非监督分类,是指人们事先对分类过程不
施加任何的先验知识,仅凭据遥感影像地 物的光谱特征的分布规律,随其自然地进 行盲目的分类。其分类的结果,只是对不 同类别进行了区分,并不确定类别的属性, 其属性是通过事后对各类的光谱响应曲线 进行分析,以及与实地调查相比较后确定 的。
• 非监督分类的理论依据:遥感图像上的同
4
8.1 概述
• 8.1.1 基本原理
– 同类地物在相同的条件下(光照、地形等)应该 具有相同或相似的光谱信息和空间信息特征。 不同类的地物之间具有差异根据这种差异,将 图像中的所有像素按其性质分为若干个类别 (Class)的过程,称为图像的分类。
– 遥感图像分类以每个像素的光谱数据为基础进 行。
9
8.2 相似性度量
3.马氏(Mahalanobis)距离
马氏距离是一种加权的欧氏距离,它通 过协方差矩阵来考虑变量的相关性。这 是由于在实际中,各点群的形状是大小 和方向各不相同的椭球体,如图所示, 尽管K点距MA的距离DA比距MB的距离 DB小,即DA<DB ,但由于B点群比A点 群离散得多,因而把K点划入B类更合 理。加权可以这样理解,计算的距离与 各点群的方差有关。方差愈大,计算的 距离就愈短。如果各个点群具有相同的 方差,则马氏距离是欧氏距离的平方。
《遥感导论》课后练习题
《遥感导论》课后练习题《遥感导论》课后练习题第⼀章遥感概述1. 遥感的基本概念,并区分遥感的⼴义和狭义。
2. 简述遥感探测系统组成。
3. 根据不同⽬的或⼿段,简述遥感的类型。
4. 简述遥感的特点,并举例。
5. 试述全球及我国遥感技术的进展和发展趋势,并结合地学发展阐述个⼈的看法或观点。
第⼆章电磁辐射与地物光谱特征1. 电磁波含义及电磁波的性质。
2. 电磁波谱的含义,电磁波区段的划分是怎样的?3. 辐射通量,辐射通量密度的物理意义。
4. 简述辐照度,辐射出射度和辐射亮度的物理意义,其共同点和区别是什么?5.朗伯源和⿊体的概念?6.⼤⽓的散射现象有⼏种类型?根据不同散射类型的特点分析可见光遥感和微波遥感的区别,说明为什么微波具有穿云透雾的能⼒⽽可见光不能?7. 什么是⼤⽓窗⼝?对照书内卫星传感器表中所列波段区间和⼤⽓窗⼝的波段区间,理解⼤⽓窗⼝对于遥感探测的重要意义。
8. 综合论述太阳辐射传播到地球表⾯⼜返回到遥感传感器这⼀整体过程中所发⽣的物理现象。
9. 从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。
10. 列举⼏种可见光与近红外波段植被、⼟壤、⽔体、岩⽯的地物反射波谱曲线实例。
11. 在真空中电磁波速为3×108 s m(1)可见光谱的波长范围从约3.8×10-7 m 的紫⾊光到约7.6×10-7m 的红⾊光,其对应的频率范围为多少?(2)X 射线的波长范围约5×10-9—1.0×10-11m,其对应的频率范围是多少?(3)短波⽆线电的频率范围约为1.5MH Z ---300MH Z 其对应的波长范围是多少?12.在地球上测得太阳的平均辐照度I=1.4×1032m w设太阳到地球的平均距离约为1.5×1011m 试求太阳的总辐射能量。
13.假定恒星表⾯的辐射与太阳表⾯辐射⼀样都遵循⿊体辐射规律。
如果测得到太阳辐射波谱λ=0.51µm,的北极星的λ=0.35µm ,试计算太阳和北极星的表⾯温度及每单位表⾯积上所发射出的功率是多少? 14.已知⽇地平均距离为天⽂单位,1天⽂单位≈1.496×103m ,太阳的线半径约为6.96×105KM(1)通过太阳常数I 0,计算太阳的总辐射通量E 。
遥感应用分析原理与方法
《遥感应用分析原理与方法》各章问题思考绪论1. 什么是遥感?2. 广义的遥感,其数据采集形式有哪些?3. 遥感的过程可以分为哪几个环节?4. 为什么说所有被动遥感所利用的能源都是太阳辐射能?5. 什么是大气窗口?6. 电磁波与地表相互作用形式有哪些?其最主要的特点是什么?7. 电磁辐射再次经过大气到达传感器,为什么说此次的大气效应对遥感影响较大?8. 什么是遥感系统?如何分类?9. 遥感数据形式有哪些?并简要说明。
10. 遥感辅助数据有哪些?它们有什么作用?11. 遥感数据解译、分析有哪两种形式?12. 遥感有哪些特点?13. 我国遥感发展的关键问题是什么?如何理解?14. 举例说明遥感技术本身的局限性以及人们认识上的局限性。
15. 解释“三高两多”:高几何分辨率、高光谱、高定位精度,多角度、多类型。
16. 遥感数据处理分方法的发展趋势有哪些?17. 如何理解遥感的多学科性?第1章遥感原理1. 什么是电磁辐射?2. 什么是偏振?3. 电磁辐射的度量有哪些?分别是如何定义的?它们之间关系如何?4. 简述电磁辐射三定律的内容以及用途?5. 太阳辐射和地球辐射的特点有哪些?6. 大气按照热力学性质如何划分层次?每一层有什么特点?7. 什么是大气散射?大气散射有哪几种类型?特点是什么?大气散射对遥感造成哪些影响?8. 解释下面几种现象:蓝天,白云,夕阳如血。
9. 列举大气吸收气体和吸收波长,以及遥感常用的大气窗口。
10. 结合示意图(图1.10)描述太阳辐射与大气的相互作用。
11. 什么是大气校正?为什么要进行大气校正?为什么说进行大气校正是定量遥感尤为重要?12. 常用的大气校正方法有哪几种?请举例说明。
13. 试介绍6S模型?14. 电磁波与地表相互作用有哪些物理过程?15. 什么是反射?反射有哪几种类型?16. 简述朗伯余弦定律。
17. 什么是方向反射?18. 解释BRDF与BRF,并画出示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
遥感原理及应用 Remote Sensing
植被指数
植被指数(Vegetation Index, VI)
选用多个特征波段的遥感数据,经加、减、乘、除 等线性或非线性组合运算,产生某些对植被长势、 生物量等有一定指示意义的专题数值,称为植被指 数。
遥感原理及应用 Remote Sensing
遥感原理及应用 Remote Sensing
AVHRR植被指数产品
AVHRR PAL数据集
包括12个波段,除NDVI外,保留了5个原始波段、3个观测 几何信息、数据时间、云标记和质量控制标记信息。
时间范围:1981年7月至2001年12月(缺1994.9~1995.1) 空间分辨率:8km 合成周期:10Day 数据格式:HDF
植被指数
在植被指数的计算中,通常选用R波段和NIR 波段。
建立植被指数的关键
增强植被信息的同时, 使非植被信息最小化。
遥感原理及应用 Remote Sensing
比值植被指数
比值植被指数(RVI)
RVI = NIR R
由于绿色植物 R值低、NIR值高,则 RVI值高(一般高 于 2);而对于无植被的地面(如裸土、人工特征物、水 体)以及枯死或受胁迫植被,因不显示这种特殊的光谱响 应,则 RVI值低(一般近于1)。因此, RVI 能增强植被 与土壤背景之间的辐射差异。
6
遥感原理及应用 Remote Sensing
林火遥感监测
阈值法
判识可能火点 T3 ≥ 315k ?
去除伪火点 T3-T4 ≤ 14k ? T4 ≤ 260k ? Ch2 > 0.22 T4-T5 > 4.1K ? Land use/Land cover
遥感原理及应用 Remote Sensing
遥感原理及应用 Remote Sensing
归一化植被指数
典型的地面覆盖类型的NDVI值域
云、水、雪
R > NIR,则 NDVI < 0
岩石、裸土
R ≌ NIR,则 NDVI ≌ 0
植被
R < NIR,则 NDVI > 0
遥感原理及应用 Remote Sensing
增强型植被指数
AVHRR LTDR数据集
包含地标反射率和植被指数两种产品 时 间 范 围 : 1981 年 7 月 至 1999 年 12 月 (缺1994.9~
1995.1) 空间分辨率:0.05° 合成周期:10天 数据格式:HDF
遥感原理及应用 Remote Sensing
植被指数时间序列重建
林火遥感监测
NDVNI法 NDVNI = Ch3 − Ch1 Ch3 + Ch1
⎧⎪NDVNI ≥ 0.35 ⎨ ⎪⎩T 4 ≥ 300K
遥感原理及应用 Remote Sensing
林火遥感监测
邻近像元法
∑ Tavg
(i,
j)
=
1 25
2
T
n = −2
(i
+
n,
j
+
n)
ΔT (i, j) = Tf (i, j) − Tavg (i, j)
遥感原理及应用 Remote Sensing
土地覆盖遥感
土地覆盖(Land cover)的概念
土地覆盖是随着遥感技术的发展而出现的一个较新 的概念,指地球表面当前所具有的自然和人为影响 所形成的覆盖物,是以土地类型为主体,并具有的 一系列自然属性和特征的综合体。
土地覆盖以土地和植被类型为核心,涵盖多要素、 多维空间信息。
根据经验,参数C1 = 6.0、C2=7.5和 L=1.0 EVI在植被高覆盖度时提高了敏感性
2
遥感原理及应用 Remote Sensing
植被指数产品
常用的传感器
NOAA-AVHRR SPOT-VEGETATION EOS-MODIS
遥感原理及应用 Remote Sensing
植被指数产品
第八章 遥感应用
遥感原理及应用 Remote Sensing
本章内容
8.1 植被遥感 8.2 土地遥感 8.3 水体遥感 8.4 城市热环境遥感 8.5 大气遥感 8.6 地质遥感 8.7 遥感在其它领域中的应用
8.1 植被遥感
遥感原理及应用 Remote Sensing
fv
=
NDVI − NDVI0 NDVIv − NDVI0
遥感原理及应用 Remote Sensing
农作物估产
用遥感手段大面积地对某种作物做出产量预 测,为国家进行国民经济重大决策提供基础信 息。
遥感估产的前提
大面积单一作物
遥感原理及应用 Remote Sensing
农作物估产
遥感数据的采集与预处理 根据区域分布、作物类别、农事历等特点,选择合适的 遥感数据。
植被的光谱特征
绿峰 红谷
植被叶片的光谱特征
遥感原理及应用 Remote Sensing
植被的光谱特征
叶片光谱的影响因素
可见光波段:叶绿素、胡萝卜素等吸收
叶绿素吸收红、蓝光,形成绿色反射峰 胡萝卜素吸收蓝光
近红外波段:叶片内部的细胞结构反射
叶子的细胞壁和细胞空隙间折射率不同,导致多重散射引 起的
空间、光谱分辨率选择:AVHRR + TM 时相选择:选择作物最易识别或对产量最有意义的生长期
预处理:辐射纠正、几何纠正、大气校正、叠加行政界 线等。
遥感原理及应用 Remote Sensing
农作物估产
作物识别与面积提取
遥感数据的分类 绿度分层 混合像元分解
遥感原理及应用 Remote Sensing
目的
多时相合成的目的在于减少云以及太阳-目标-传感器几何 角度所带来的影响,最大程度的获得全球信息。
遥感原理及应用 Remote Sensing
植被指数产品
多时相合成MVC方法
最大植被指数合成法 逐像元比较合成周期内各天的植被指数大小并选取
最大的植被指数值作为该像元的合成值。
遥感原理及应用 Remote Sensing
遥感原理及应用 Remote Sensing
AVHRR植被指数产品
AVHRR GIMMS数据集
只有NDVI一个波段 时间范围:1981年7月至2006年12月 空间分辨率:8km 合成周期:半月 数据格式:二进制/GeoTIF
遥感原理及应用 Remote Sensing
AVHRR植被指数产品
遥感原理及应用 Remote Sensing
林火遥感监测
过火探测
随着林火的燃烧,在燃烧区内的NDVI差值将明显下降。因 此可用着火前后NDVI的差值分析火情,然后选用一个适当 的阈值将火点分开。
利用NDVI监测林火面积最好应在森林着火后不久,这时候 着火前后的差异最为明显。
7
8.2 土地遥感
ΔT (i, j) ≥ 5K
遥感原理及应用 Remote Sensing
林火遥感监测
阈值法
遥感原理及应用 Remote Sensing
林火遥感监测
邻近像元法
思路
利用火点和周围像元的温度特征差异来判定火点
方法
以像元和周围25个(或16个)点的平均陆面温度(波段4 亮温)作为该像元邻域的背景,把该像元的虚拟火场温度 (波段3亮温)和背景温度的差值作为判断可疑火点的标 准,然后再借助一些辅助方法排除伪火点。
短波红外波段:水分吸收
1.4μm 、1.9μm 、2.7μm为中心的水吸收带
遥感原理及应用 Remote Sensing
植被的光谱特征
冠层光谱的影响因素
叶面积指数(LAI) 单位地表面积上方植物单叶面积的总和
覆盖度 单位面积的植被覆盖比例
叶倾角分布(LAD) 用分布函数表征,它确定了沿入射方向和观测方向叶片的不同 平均投影面积,可分为倾斜型、均匀型、喜平型、喜直型等
农作物估产
作物长势分析
常以植被指数作为评价作物生长状态的定量标准。 某一时刻的植被指数是该时刻作物长势和面积的函
数,在面积变化很小的情况下,植被指数的变化主 要与作物长势有关,能够直接建立植被指数与作物 长势的关系。
5
遥感原理及应用 Remote Sensing
农作物估产
作物估产模型
植被指数的多时相合成
概念
植被指数的多时相合成是将若干天卫星观测的反射率、植 被指数、角度信息和质量认证信息用最优的方法综合在一 起,按照一定的周期间隔形成一幅植被指数图像。
合成周期:8天合成、旬合成、月合成
遥感原理及应用 Remote Sensing
植被指数产品
植被指数的多时相合成
叶面积指数LAI
计算方法
经验模型 理论模型
遥感原理及应用 Remote Sensing
植被覆盖度
概念
单位面积内植被的垂直投影面积所占比例
NDVI = fv ⋅ NDVI v + (1 − fv ) ⋅ NDVI 0
NDVI为像元NDVI值,fv为像元的植被覆盖度,NDVIv和 NDVI0分别为植被覆盖部分和非植被覆盖部分的NDVI值。
遥感原理及应用 Remote Sensing
林火遥感监测
火点监测
阈值法 NDVNI法 邻近像元法
遥感原理及应用 Remote Sensing
林火遥感监测
阈值法
原理 利用燃烧的火点的热能,采用阈值判断火灾。
关键 消除由于云的反射、热裸地和水体对太阳光反射等造成的错误 火点。