代数式与整式提优

合集下载

中考第一轮复习讲义 第二讲 代数式与整式

中考第一轮复习讲义 第二讲  代数式与整式

第二讲 代数式与整式一.考点分析考点一.列代数式(含规律探索)例题1.一次知识竞赛共有20道选择题,规定答对一题得5分,不答或答错扣1分,如果某学生答对题数为x ,用代数式表示该学生的得分为( )A.5x-(20-x)B.100-(20-x)C.5xD.5x-5(20-x)-(20-x)例题2.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.例题3.观察下列数据:3579,,,,, (357911)x x x x x 它们是按一定规律排列的,依照此规律,第n 个数据是 (用含n 的式子表示).例题4.如图,观察各图中小圆点的摆放规律,并按这样的规律摆放下去,则第10个图形中小圆点的个数为 .考点二.代数式求值例题1.已知4a+3b=1,则整式8a+6b-3的值为 . 例题2.已知3,6x y xy +==,则22x y xy +的值为 .例题3.如果x=1时,代数式3234ax bx ++的值是5,那么x=-1时,代数式3234ax bx ++的值是 .例题4.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .考点三.非负数的性质例题1.120x y ++-=,那么xy= .例题2.若25(3)0a b -++=,则a-2b= .例题3.若21(2)3322102x y z -++-=,则式子2x yz 的值为 .考点四.整式的相关概念例题1.若单项式22m x y 与41-3n x y 可以合并成一项,则m n = . 例题2.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有( ) A.5个整式 B.4个单项,3个多项式 C.6个整式,4个单项式 D.6个整式,单项式与多项式个数相同例题3.(1)单项式-22xy π的系数是 ,次数是 ; (2)多项式125323+--xy y x 的次数 . 考点五.整式的运算例题1.下列计算正确的是( )A.325(3)6a a a -=B.331a a a a÷= C.22(-21)441a a a -=++ D.235235a a a += 例题2.4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a+b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2,若S 1=2S 2,则a ,b 满足( )A.2a=5bB.2a=3bC.a=3bD.a=2b例题3.先化简,再求值:2(2)(43)a b a a b +-+,其中1,2a b ==.例题4.先化简,再求值:23(21)(21)(1)(2)(8)m m m m m +---+÷-,其中m 是方程220x x +-=的根.考点六.因式分解例题1.分解因式:44ax ay -= .例题2.下列等式从左到右的变形,属于因式分解的是( )A.2221(1)x x x +-=-B.22()()a b a b a b +-=-C.2244(2)x x x ++=+D.22(1)ax a a x -=-例题3.分解因式:22(2)(2)y x x y +-+= .例题4.若21x x +=,则433331x x x +++的值为 .例题5.把下列各式分解因式(1))()()(y x c x y b y x a -+---; (2)2296y xy x +-;(3)y x y x 2222-+-; (4)22216)4(x x -+.二.同步练习 1.4y x 33-它的系数为 ,次数为 . 2.多项式4423x xy 2y y 5x +--是 次 项式,它的最高次项是 ,二次项系数为 ,把这个多项式按y 降幂排列得 .3.若m 10y x 41与4n 13y x 31+是同类项,则m n = . 4.若05a a 2=-+,则20082a 2a 2++的值为 .5.计算:_______43=⋅-a a , 2a a a +⋅= , (a+2)(a-1)= .3条2条1条图66.若3,5==nm aa,则___________32=+nma.7.在多项式142+x中,添加一个单项式使其成为一个完全平方式,则添加的单项式是(只写出一个即可).8.把下列各式分解因式:(1)x2-xy=;(2)4x2-16=;(3)2x2+4x+2=;(4)x2-6x-7=;(5)a3-a2+a-1=.9.已知1)1(+-=nna,当1=n时,01=a;当2=n时,22=a;当3=n时,03=a…则654321aaaaaa+++++= .10.如图是小亮用8根,14根,20根火柴搭的1条,2条,3条“金鱼”,按此方法搭n条“金鱼”需要火柴根.(用含n的代数式表示)11.已知5,3a b ab-==,则代数式32232a b a b ab-+的值为 .12.观察下列各等式的数字特征:85358535⨯=-,1192911929⨯=-,17107101710710⨯=-……,将你所发现的规律用含字母a,b的等式表示出来: .13.下列运算正确的是()A.12-=÷xxx B. 33332244)2(yxxyx-=⋅-C.653)()(xxx-=-⋅-- D.22941)321)(321(yxyxyx-=+--14.下列从左到右的变形,属于因式分解的是()A.(x+2)(x+3)=x2+x+6B.ax-ay+1=a(x-y)+1C.8a2b3=2a2·4b3D.x2-4=(x+2)(x-2)15.计算:(1)22462(32)2m m m m⎡⎤--+-⎣⎦; (2)223()(3)(7)4a bc ab ac-÷-•-.16.先化简,再求值:(1),3)12(2)12(2++-+a a 其中2=a ; (2)2()()()x y x y x y x ⎡⎤-++-÷⎣⎦,其中11,2x y =-=.17.把下列各式因式分解:(1)x 3-4x ; (2)x 2-3xy -10y 2; (3) x 2-y 2-4x +4; (4)x 4-5x 2+4.18.对于实数a ,b ,c ,d 规定一种运算bc ad d c b a -=,如220)2(12201-=⨯--⨯=-, 那么当255)3(42=--x 时,求x 的值.三.拓展练习1.某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%,经过两次降价后的价格为 元(结果用含m 的代数式表示).2.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A. 52a b =B.a=3bC.72a b = D.a=4b3.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( )A. 20192B.201812C.201912D.2020124.代数式2221126,4,,,2,5x y xy z y xy x x a b +-+-+-+ 中,不是整式的有 个.5.化简222222123323a b ab a b ab a b +-+--并按字母a 的降幂排列为 .6.若823x y a b +-与234y x y a b -的和是单项式,则x y += . 7.12x n a b -与223m a b -是同类项,则()2xm n -= .8.单项式0.25b c x y 与单项式1210.125m n x y ---的和是0.625n m ax y ,则abc = .9.若249x mx ++是一个完全平方式,则m 的值为 .10.已知22412x x m -+是一个完全平方式,则m 的值为 .11.计算2200120002002-⨯的结果是 .12.计算:(1)2200920072008⨯-; (2)22007200720082006-⨯;(3)22003451()(2)542x π--⎛⎫⎛⎫⎛⎫÷-+---÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (4)24643(21)(21)(21)1++++;(5)22222111111)(1)(1)(1)(1)234910-----(;(6)12345678921234567890123456789112345678902⨯-.13.求24832(21)(21)(21)(21)(21)(21)1-++++++的个位数字.14. 已知5m a =,3n a =,求23m n a +的值.15. 已知5m a =,275m n a +=,求n a 的值.16. 已知33m a =,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值.17. △ABC 中,a b c 、、为其三边长,且222a b c ab bc ac ++=++,试判断△ABC 的形状.18. 若20002001a x =+,20002002b x =+,20002003c x =+,求222a b c ab bc ac ++---的值.19.已知15a a +=,则221a a += ;21()a a-= . 20.若244210x x x-+=,则的值为 . 21.化简:(1)221111())2525a b a b ---(; (2)231)(231)a b a b -++-(;(3)222(9)(3)(3)(9)a a a a +-+-+.22. 已知()()31222a b ab a b +==--,,化简的结果是 . 23. 已知2012x xy xy y x y -=-=-,,则的值为 .24.若22ab =,则代数式()253ab a b ab b ---的值为 .25.若22011x y xy x xy y +==--+,,则的值为 .26.已知2()4x y -=,2()64x y +=,求①22x y +;②xy 的值.27. 已知:212x xy +=,215xy y +=,求()2x y +-()()x y x y +-的值.28. 已知:2(1)()5a a a b ---=-求代数式222a b ab +-的值.29. 已知2226100a b a b +-++=,求20061a b-的值.30. 先化简,再求值:2(23)(23)(3)a b a b a b +-+-,其中15,3a b =-=.31. 已知2215,31,3A x x B x x =-+=-+ 当23x =时,求2A B -的值.32.若()()2210231a b b ab ab ab +++=---⎡⎤⎣⎦,则的值是 .33.已知()()()()312m x y x y x y x y -⋅-⋅-=-,求()()22421225m m m m ++---的值.34.若0a b c ++=,则()()()a b b c c a abc ++++= .35.若2,3,5a b b c c d -=-=--=,则 ()()()a c b d a d --÷-= .36.已知3a b a b-=+,则()()()243a b a b a b a b +--=-+ . 37.若210m m +-=,则3222010m m +-= .38.若3220x x x ---= ,则4322451x x x x +---= .39.若2310x x x +++= ,则2320111x x x x +++++= .40.已知多项式731ax bx cx +++,当2x =-时,多项式的值为2010,则当2x =时,这个多项式的值为 .41.已知等式()()()221111x x ax x b x c x ++=+++++是关于x 的恒等式,则a= ,b= ,c= .42.如果2231x x +-与()()211a x b x c -+-+是同一个多项式,则a b c += . 43.已知()6212111021211102101x x a x a x a x a x a x a -+=++++++则01212a a a a ++++= ,12312a a a a ++++= ,02412a a a a ++++= ,121110921a a a a a a -+-++-= . 44.若a ,b ,c ,d 是整数,b 是正整数,且满,,a b c b c d c d a +=+=+=,则a b c d +++的最大值是 .45.已知0a b c d +++=,则()()()()()()333333a b a c b c b d a d c d +++++++++++= .46.已知等式()()222121k x k y k k z +-+--=与k 值无关,则x = ;y = ;z = .47.若()()2283a pa a a q ++-+中不含有32a a 和项,则p = ,q = .48.当x = ,y = 时,多项式22494121x y x y +-+-有最小值,此时这个最小值是 .49.若()()023236x x ----有意义,则x 的取值范围是 .50.若代数式2214250x y x y +-++的值为0,则x = ,y = .51.已知23a =,26b =,272c =,试问a b c 、、之间有什么关系?请说明理由.52.已知552a =,443b =,334c =,比较a b c 、、的大小.。

初一整式提高练习题及答案

初一整式提高练习题及答案

整式提高训练:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、简答题总分得分〔说明:这套题难度稍大。

1~20题是整式相关概念的理解题。

21~27题是列代数式的应用类习题,难度稍大,对以后的学习有好处。

28题和29题是中考常出的类型题。

30~31题是两道开放探索题。

I可以作为测验的最后压轴题处理)一、选择题1、以下说法正确的选项是〔〕A、-xy2是单项式B、ab没有系数C、-是一次一项式D、3 不是单项式2、以下说法正确的选项是〔〕A.不是单项式B.是五次单项式C.是单项式D.是单项式3、以下说法中,正确的有〔〕个.①单项式,次数是3②单项式a的系数为0,次数是1③24a b2c的系数是2,次数为8④一个n次多项式〔n为正整数〕,它的每一项的次数都不大于nA、1B、2C、3D、44、以下关于单项式一的说法中,正确的选项是〔〕A.系数是-,次数是4 B.系数是-,次数是3 C.系数是-5,次数是4 D.系数是-5,次数是3 5、单项式的系数和次数分别为A.1与7 B.1与8 C.4与5 D.4与66、一个五次项式,它任何一项的次数( ).A.都等于5B.都大于5C.都不大于5D.都不小于57、假设代数式的值为2,则等于〔〕A.1 B.-1 C.5 D.-58、给出以下判断:① 2πa2b与是同类项;②多项式5a+4b-1中,常数项是1;③是二次三项式;④,,都是整式.其中判断正确的选项是〔〕A.①②③B.①③C.①③④D.①②③④9、多项式的各项分别是〔〕A. B. C. D.10、在代数式中,整式有〔〕A.3个B.4个C.5个D.6个11、以下说法正确的选项是〔〕A、πx2的系数是B、xy2的系数为xC、-5x2的系数为5D、-x2的系数为-112、以下各组中的两项,不是同类项的是( )A.23,32B.3m2n3,-n3m2C.pq,23pqD.2abc,-3ab13、以下说法中,正确的选项是( )(A)单项式-x的系数和次数都是1 (B) 34x3是7次单项式(C)的系数是2 (D)0是单项式14、如果代数式与代数式是同类项,那么、的值分别是〔〕A. B. C. D.二、填空题15、已知:当x=1时,代数式ax3+bx+5的值为﹣9,那么当x=﹣1时,代数式ax3+bx+5的值为16、观察以下单项式:x,4x2,9x3,16x4,…,根据你发现的规律,第8个式子是,第n个式子是.17、多项式是______次_____项式,最高次项的系数是_______,常数项是______.18、单项式的系数是________.19、单项式是次单项式,系数为。

七年级数学上册第4章代数式4.4整式教学设计新版浙教版

七年级数学上册第4章代数式4.4整式教学设计新版浙教版

七年级数学上册第4章代数式4.4整式教学设计新版浙教版一. 教材分析本节课的内容是浙教版七年级数学上册第4章代数式4.4整式。

这部分内容是学生在学习了有理数、分数、方程等基础知识后的进一步拓展,是学生初步接触代数的重要阶段。

本节课主要介绍整式的概念、性质和运算,为学生今后学习更高级的代数知识打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于概念的理解和运算的掌握都有一定的能力。

但是,由于整式是代数的基础,学生对于整式的理解和应用可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出整式,培养学生的抽象思维能力。

三. 教学目标1.了解整式的概念,掌握整式的性质。

2.学会整式的运算,能够进行简单的整式运算。

3.能够运用整式解决实际问题,提高学生的应用能力。

四. 教学重难点1.整式的概念和性质。

2.整式的运算方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生主动探索,培养学生的抽象思维能力。

通过案例分析,让学生了解整式在实际问题中的应用,提高学生的应用能力。

通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.相关案例资料。

3.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入整式的概念,如:某商店进行打折活动,原价为100元,打8折后的价格是多少?引导学生从实际问题中抽象出整式,激发学生的学习兴趣。

2.呈现(10分钟)介绍整式的概念、性质和运算方法。

通过PPT展示相关知识点,让学生初步了解整式的基本概念和性质,掌握整式的运算方法。

3.操练(10分钟)让学生进行一些整式的运算练习,巩固所学知识。

可以设置一些具有代表性的题目,让学生独立完成,然后进行讲解和分析。

4.巩固(10分钟)通过一些具体的案例,让学生了解整式在实际问题中的应用。

可以让学生分组讨论,每组选取一个案例进行分析,最后进行分享和交流。

苏科版(2024)七年级上册数学第3章 代数式3.3 整式的加减 教案

苏科版(2024)七年级上册数学第3章 代数式3.3 整式的加减 教案

苏科版(2024)七年级上册数学第3章代数式3.3 整式的加减教案【教材分析和学情分析】教材分析:整式的加减是苏科版七年级上册代数式这一章的重要内容,主要介绍了如何对含有相同字母的多项式进行合并同类项,以及如何在实际问题中应用整式的加减法则。

这一部分的知识点是代数运算的基础,为后续的代数学习,如解一元一次方程、二次方程等奠定了基础。

教材通过丰富的实例和练习,引导学生理解并掌握整式加减的规则,同时培养他们的抽象思维能力和逻辑推理能力。

此外,通过解决实际问题,也锻炼了学生应用数学知识解决实际问题的能力。

学情分析:七年级的学生已经学习了基本的代数知识,如变量、常量、单项式、多项式等,对数学符号和运算规则有一定的理解和应用能力。

然而,对于抽象的整式加减,尤其是如何识别和合并同类项,可能会感到一定的困难。

部分学生可能还停留在具体的数的运算上,对于字母表示的数的运算可能会感到陌生和困惑。

此外,这个阶段的学生好奇心强,喜欢探索,但注意力集中时间可能较短,需要教师通过生动有趣的教学方式,激发他们的学习兴趣,保持他们的学习动力。

【教学目标】1. 知识与技能:学生应能理解整式的加减运算法则,掌握同类项的概念,能正确地进行整式的加减运算。

2. 过程与方法:通过实例,让学生经历整式加减的抽象过程,培养他们的观察、比较、抽象和概括能力,提高他们的运算能力。

3. 情感态度与价值观:培养学生严谨的数学思维习惯,体验数学的简洁美,提高学习数学的兴趣。

【教学重难点】1. 整式的加减运算法则及其应用。

2. 同类项的识别和整式加减的简化过程。

【教学过程】一、情境导入1. 展示几个生活中的实际问题,如:苹果和香蕉的总数,两本书的总价格等,引出含有加减运算的数学表达式。

二、新知探究1. 整式和同类项的概念:通过实例,引导学生总结出整式的定义,即字母和数字的乘积,且字母可以是任意次幂。

引导学生发现同类项的特征,即字母相同,字母的指数也相同的项。

【七年级】2021年七年级数学上册第三章代数式提优试卷(有答案)

【七年级】2021年七年级数学上册第三章代数式提优试卷(有答案)

【七年级】2021年七年级数学上册第三章代数式提优试卷(有答案)m第三章代数优化试验卷(总分100分时间60分钟)一、(每题2分,共20分)1.下面各式中,不是代数式的是()a、 3a+bb.3a=2bc.8ad.02.以下代数式书写规范的是()a、(a+b)÷2B。

YC。

1XD。

X+y厘米3.计算-5a2+4a2的结果为()a、-3ab.-ac.-3a2d.-a24.(2021.山东济南)化简5(2x-3)+4(3-2x)的结果为()a、 2x-3b.2x+9c.8x-3d.18x-35.如果单项式5xay5与是同类项,那么a、b的值分别为()a、 2,5b.-3,5c.5,3d.3,56.代数式-23xy3的系数与次数分别是()a、 -2,4b.-6,3c.-2,7d.-8,47.若0<x<1,则x,,x2的大小关系是()a、 <x<x2b.x<x2c.x2<x<d.<x2<x8.根据如图3-1所示的程序计算输出结果.若输入的x的值是,则输出的结果为() a、不列颠哥伦比亚省。

9.已知整式x2-x=6,则2x2-5x+6的值为()a、 9b.12c.18d.2410.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n 元(m>n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()a、利润B.损失C.无赢无亏D.损益不确定二、题(每小题2分,共20分)11.单项式3x2y的系数为___12.对代数式4a作出一个合理解释:____________________________.13.当x=1且y=3x(2x+3Y)-x(x-y)=____14.若代数式-4x6y与x2ny是同类项,则常数n的值为_______.15.观察如图所示的图形:它们是按照一定规律排列的,依照此规律,第n个图形中共有_______个★.16.将(a-b)作为一个整体,合并类似的项目7(a-b)-3(a-b)-2(a-b)=___17.若m、n互为相反数,则5m+5n-5=_______.18.假设a是关于a的三次多项式,B是关于a的二次多项式,a+B的次数是___19.已知当x=1时,3ax2+bx的值为2,则当x-3时,ax2+bx的值为_______.20.如果已知-B2+14ab+a=7a2+4ab-2b2,则a=___三.解答题(本题共7小题,共60分)21.(10分)简化:(1)(7x-3y)-(8x-5y);(2) 5(2x-7y)-4x-10y。

2020-2021学年度初一数学整式的加减优生提升训练题(附答案)

2020-2021学年度初一数学整式的加减优生提升训练题(附答案)

2020-2021学年度初一数学整式的加减优生提升训练题(附答案) 一、单选题 1.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种规律下去,第n 次移动到点A n ,如果点A n ,与原点的距离不少于20,那么n 的最小值是( )A .11B .12C .13D .202.观察等式:1+2+22=23﹣1;1+2+22+23=24﹣1;1+2+22+23+24=25﹣1;若1+2+22+…+29=210﹣1=a ,则用含a 的式子表示210+211+212+…+218+219的结果是( )A .a 20﹣1B .a 2+aC .a 2+a +1D .a 2﹣a3.a 是不为1的有理数,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A .3B .23C .12-D .无法确定 4.已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,322a a =-+,433a a =-+,…,依次类推,则2013a 的值为( )A .1006-B .1007-C .2012-D .2013-5.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10096.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上;先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.若数轴绕过圆周99圈后,数轴上的一个整数点刚好落在圆周上数字1所对应的位置,则这个整数是()A.297 B.298 C.299 D.3007.观察下列等式:71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,那么:71+72+73+…+72 016的末位数字是()A.9 B.7 C.6 D.08.下列运算正确的是 ( )A.a2a3=a6B.(-y2) 3=y6C.(m2n) 3=m5n3D.-2x2+5x2=3x2 9.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数是()A.102 B.91 C.55 D.3110.如图图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第13个图形中●的个数为().…①②③④A.92 B.96 C.103 D.118二、填空题11.将123456719101121314……依次写到第2020个数字,组成一个2020位数,那么此数除以9的余数为________.12.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=101312-,即1+3+32+33+ (3100)101312-,仿照以上推理计算:1+5+52+53+…+52015的值是_____.13.大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m分解后,其中有一个奇数为1799,则m的值为____________.14.把正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用(1,1)=MA表示正奇数M是第1组第1个数(从左往右数),如7(2,3)A=,则(5,3)表示的数为_______,1015A=_________.15.观察规律并填空:112,124-,138,1416-,……,第2012个数是_____________;16.一列数1a,2a,3a,… 满足条件:112a=,111nnaa-=-(n≥2,且n为整数),则2016a= .17.如图,已知A1(1,0),A2(1,−1),A3(−1,−1),A4(−1,1),A5(2,1),…,则点A18的坐标是______.18.如图,用灰白两色正方形瓷砖铺设地面,第2019个图案中白色瓷砖块数为_____________.19.已知M=x2-3x-2,N=2x2-3x-1,则M______N.(填“<”“>”或“=”)20.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.三、解答题21.现用a根长度相同的火柴棒,按如图①摆放时可摆成m个正方形,按如图②摆放时可摆成2n个正方形.(1)如图①,当m=3时,a=;如图②,当n=2时,a=;(2)当a=37时,若按图①摆放可以摆出了几个正方形?若按图②摆放可以摆出了几个正方形?22.如图,一扇窗户,窗框为铝合金材料,下面是由两个大小相等的长方形窗框构成,上面是由三个大小相等的扇形组成的半圆窗框构成,窗户半圆部分安装彩色玻璃,两个长方形部分安装透明玻璃(本题中π取3,长度单位为米).(1)一扇这样窗户一共需要铝合金多少米?(用含x,y的代数式表示)(2)一扇这样窗户一共需要玻璃多少平方米?铝合金窗框宽度忽略不计(用含x,y的代数式表示)(3)某公司需要购进20扇窗户,在同等质量的前提下,甲、乙两个厂商分别给出如下报价:铝合金(米/元) 彩色玻璃(平方米/元)透明玻璃(平方米/元)当x =2,y =3时,该公司在哪家厂商购买窗户合算?23.先化简,再求值.(1)351112()()33x y x y --+-+,其中x =﹣23,y =﹣1. (2)﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.24.观察下列等式: 第1个等式:111113132a ⎛⎫==- ⎪⨯⎝⎭第2个等式:2111135235a ⎛⎫==- ⎪⨯⎝⎭ 第3等式:3111157257a ⎛⎫==- ⎪⨯⎝⎭第4个等式:3111179279a ⎛⎫==- ⎪⨯⎝⎭ 请解答下列问题:()1按以上规律写出第5个等式:5a = ____________.()2用含n 的式子表示第n 个等式:n a =____________(n 为正整数). ()3求12342018a a a a a ++++⋅⋅⋅+的值.25.观察以下等式:111111111,,12223233434=-=-=-⨯⨯⨯ 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯ (1)猜想并写出:1(1)n n =+____________. (2)直接写出下列各式的计算结果:①1111 (12233420062007)++++=⨯⨯⨯⨯_____________;②1111...122334(1)n n ++++=⨯⨯⨯+___________. (3)探究并计算:1111 (24466820082010)++++⨯⨯⨯⨯ (4)1511914117111234567892612203042567290-+-+-+-+=___________. 26.如图,某花园护栏是用直径为厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加厘米.设半圆形条钢的总个数为(为正整数),护栏总长度为厘米.(1)当,时,护栏总长度为________厘米; (2)当时,用含的代数式表示护栏总长度(结果要化简);(3)在第(2)题的条件下,若要使护栏总长度保持不变,而把改为50,就要共用个半圆形条钢,请求出的值.27.已知a ,b ,x ,y 满足3a b x y +=+=,7ax by +=,求()()2222a b xy ab x y +++的值.28.先阅读下面的文字,然后按要求解题:例:1+2+3+ … +100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98= … =50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+ … +100=(1+100)+(2+99)+(3+98)+ … +(50+51)=101×____________=____________ .(1)补全例题的解题过程;(2)计算:()(2)(3)(99)(100)a a b a b a b a b a b +++++++++++29.点C B A 、、在数轴上表示的数c b a 、、满足()23240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.(1)a 的值为____ ____,b 的值为___ ____,c 的值为____ ____;(2)已知点P 、点Q 是数轴上的两个动点,点P 从点A 出发,以3个单位/秒的速度向右运动,同时点Q 从点C 出发,以7个单位/秒的速度向左运动:① 若点P 和点Q 经过t 秒后在数轴上的点D 处相遇,求出t 的值和点D 所表示的数; ② 若点P 运动到点B 处,动点Q 再出发,则P 运动几秒后这两点之间的距离为5个单位?30.阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A ,B ,C 三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D ,E 两件物品,两人的估价如表四所示(其中0<m-n <15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)参考答案1.C【解析】【分析】当n为奇数的点在点A的左边,各点所表示的数依次减少3,当n为偶数的点在点A的右侧,各点所表示的数依次增加3.【详解】根据题目已知条件,A1表示的数,1﹣3=﹣2;A2表示的数为﹣2+6=4;A3表示的数为4﹣9=﹣5;A4表示的数为﹣5+12=7;A5表示的数为7﹣15=﹣8;A6表示的数为7+3=10,A7表示的数为﹣8﹣3=﹣11,A8表示的数为10+3=13,A9表示的数为﹣11﹣3=﹣14,A10表示的数为13+3=16,A11表示的数为﹣14﹣3=﹣17,A12表示的数为16+3=19,A13表示的数为﹣17﹣3=﹣20.所以点A n与原点的距离不小于20,那么n的最小值是13.故选C.【点睛】本题考查了数字变化的规律,根据数轴发现题目规律,按照规律解答即可.2.B【解析】【分析】根据题意由已知规律可得:1+2+22+…+29+210+211+212+…+218+219=220﹣1,再由已知1+2+22+…+29=210﹣1=a,进而分析求得.【详解】解:由已知可得1+2+22+…+29+210+211+212+…+218+219=220﹣1,∵1+2+22+…+29=210﹣1=a,∴210+211+212+…+218+219=220﹣1﹣210+1=220﹣210,∵210﹣1=a,∴220﹣210=a(a+1),故选:B.【点睛】本题考查数字的规律;能够通过已知的数的规律,利用整式的运算性质进行求解是解题的关键.3.B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.4.A【解析】【分析】根据条件求出前几个数的值,再分n为奇数和n为偶数时写出n a与n的关系式,然后把n=2013代入求值即可.【详解】解:10a =,21|1|a a =-+=|01|-+=1-,322a a =-+=|12|--+=1-433a a =-+=|13|--+=2-544a a =-+=|24|--+=2-…,∴当n 是奇数时,12n n a -=-;当n 是偶数时,2n n a =-. ∴201320131=2a --=1006-. 故选:A【点睛】本题考查数字的变化规律,根据所给的数字,观察出n 为奇数和n 为偶数时结果的变化规律是解答此题的关键.5.B【解析】【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.【详解】观察图形可知:点2n A 在数轴上,2n OA n =, 2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S 1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.6.B【解析】【分析】根据题意先找出正半轴上的整数与圆周上的数字建立的对应关系,找出规律进行解答即可.【详解】解:∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.当n=99时,3×99+1=298.故选:B.【点睛】本题考查的是图形的变化规律,注意掌握数轴的特点并根据题意找出规律是解答此题的关键.7.D【解析】【分析】分析题意,可得7的正整数次幂的结果的个位数字依次为7、9、3、1、7、9、3、1……,得到规律为:每4个数字为一个循环;用2016除以4,判断有几个循环周期,再求出一个循环所得和的末尾数字,即可解答.【详解】∵71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,∴个位数字以7、9、3、1每4个为一个循环÷=∵20164504∴共有504个循环∵7+9+3+1=20∴经过一个循环周期所得和的末尾数字是0∴经过504个循环周期所得和的末尾数字是0故选D【点睛】本题以有理数乘方为背景,考查规律探究类题目的解法,解答本题的关键是从7n的结果中找出末尾数字的规律.8.D【解析】试题分析:根据同底数幂相乘,底数不变,指数相加,可知a2a3=a5,故不正确;根据幂的乘方,可知(-y2) 3=-y6,故不正确;根据积的乘方,等于各个因式分别乘方,可知(m2n) 3=m6n3,故不正确;根据合并同类项法则,可知-2x2+5x2=3x2,故正确.故选:D9.B【解析】【分析】观察发现,第①个图形有正方形的个数为1;第②个图形有正方形的个数为:1+4=5;第③个图形有正方形的个数为:1+4+9=14;…;第n个图形有正方形的个数为:1+4+9+…+n2,从而得到答案.【详解】解:观察发现:第①个图形含有正方形的个数为1,第②个图形含有正方形的个数为:1+4=5,第③个图形含有正方形的个数为:1+4+9=14,…第n个图形含有正方形的个数为:1+4+9+…+n2,∴第⑥个图形含有正方形的个数为:1+4+9+16+25+36=91,故选:B.【点睛】此题考查了图形的变化规律,解题的关键是仔细观察图形并找到规律,利用规律解决问题.10.D【解析】【分析】根据已知图形得出图n中点的个数为(n+1)2-(1+2+3+…+n-1),据此可得.【详解】因为图①中点的个数为4=22-0,图②中点的个数为8=32-1,图③中点的个数为13=42-(1+2),图④中点的个数为19=52-(1+2+3),……所以图10中点的个数为112-(1+2+3+…+9)=121-45=76,故选:D.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知图形得出第n个图形中点的个数为(n+1)2-(1+2+3+…+n-1).11.8【解析】【分析】首先求出这个2020位数是从1开始,依次写到了709,继续写了710的前面一个数字,再根÷余7,即可得余数只能由后面7个据每相邻9个数之和必可被9整除,然后由7099=77数及7组成的数:即7037047057067077087097除以9的余数决定,则可求得答案.【详解】∵从1开始,依次写到9, 一共9个数字,组成—个9位数;+⨯=个数字,组成一个189位数;从1开始,依次写到99, 一共9290189+⨯⨯=个数字,组成一个2889位数;从1开始,依次写到999, 一共9290+39002889而28892020189>>,∴将123456719101121314……依次写到2020个数字,组成一个2020位数时,最后写出的一个数是三位数,∵()20201893610-÷=余1,即三位数写了完整的610个,余一位数字又∵61099709+=,∴从1开始,依次写到709,再写了710的前面一个数字,组成一个2020位数设相邻的9个数第一个为n,则其他分别为n+1, n+2,—直到n+8∵1238936n n n n n n +++++++++=+能被9整除,∴每相邻9个数之和必可被9整除,∵7099=77÷余7,∴余数只能由后面7个数及7组成的数决定,而7037047057067077087097除以9的余数为8 ∴组成的这个2020位数除以9的余数为8.答:此数除以9的余数是8.【点睛】本题考查了余数的运算问题,掌握每相邻9个数之和必可被9整除、余数的性质是解题的关键.12.2016514-. 【解析】试题解析:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=2016514- . 故答案为:2016514- . 13.42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m =(2)(1)2m m +-, ∵1799=899×2+1, ∴奇数1799是从3开始的第899个奇数, ∵(412)(411)=8602+-,(422)(421)9022+-=, ∴第899个奇数是底数为42的数的立方分裂的奇数的其中一个,即m=42,故答案为:42.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.14.37 A 1015=(23,24)【解析】【分析】根据题意可以发现题目中的数据都是奇数,从第一组开始,每组中的奇数都是奇数个,然后再根据现用(1,1)=M A 表示正奇数M 是第1组第1个数(从左往右数),从而可以计算(5,3)表示的数;再计算出1015是第508个数,然后判断第508个数在第几组,再判断是这一组的第几个数即可.【详解】解:(5,3)表示的数为第5组的第3个数,为37,即:37(5,3)=A∵1015是第101515082+=个奇数, ∴设1015在第n 组,则1+3+5+7+…+(2n-1)≥508,即(121)5082+-≥n n 解得:n≥508,当n=22时,1+3+5+7+…+61=484;当n=23时,1+3+5+7+…+63=529;故第508个数在第23组,第529个数为:2×529-1=1057, 第23组的第一个数为:2×485-1=969, 则1015是10159692-+1=24个数. 故A 1015=(23,24),故答案为(23,24).【点睛】此题考查了数的规律变化,需要明确题意,熟练掌握其中的方法与技巧,在规律不好发现的时候可以用试一试的办法找其规律.15.2012120122- 【解析】试题分析:根据题意可知第n 个数的整数部分是1(1)n n +-,分子是1,分母是2n .据此规律可推出第2012个数分别是.故答案为. 考点:规律型.16.-1.【解析】 试题分析:根据题意可知,112a =,,,,.......,由此可得这组数据3个一循环,2016÷3=672,所以2016a 是第672个循环中的第3个数,即2016a =-1.考点:规律探究题.17.(5,-5).【解析】由图形列出部分点的坐标,根据坐标发现规律“A4n(-n,n),A4n-1(n,n-1),A4n-2(n,-n),A4n-3(-n,-n)”,根据该规律即可求出点A18的坐标.【详解】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵18=4×5-2;∴A18的坐标在第四象限,横坐标为5;纵坐标为-5,∴点A18的坐标是(5,-5).故答案为:(5,-5).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.18.6059.【解析】【分析】观察图形,分别数出第1、2、3个图案中白色瓷砖的数量,从中找出规律,由此推算第n个图案中白色瓷砖的数量,于是可计算出第2019个图案中白色瓷砖块数.【详解】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,第3个图案中白色瓷砖又多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n-1)=3n+2.所以第2019个图案中白色瓷砖块数=3×2019+2=6059.故答案是:6059.【点睛】本题考查图形规律问题,关键是观察图形进行分析,注意前后两个图形之间的联系.19.<【解析】直接得出M﹣N的值,即可得出M,N的大小关系.【详解】解:∵M=x2-3x-2,N=2x2-3x-1,∴M﹣N=(x2-3x-2)﹣(2x2-3x-1)=-x2﹣1<0,∴M<N.故答案为:<.【点睛】本题主要考查了整式的加减以及代数式比较大小的方法,得出M﹣N的值是解题的关键.20.9.【解析】【分析】由已知可知尾数四个一循环,每四个的尾数和是0,因为2019÷4=504…3,即可求.【详解】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0.∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9.故答案为:9.【点睛】本题考查数字的变化规律;能够通过所给的数的特点,找到尾数的循环规律是解题的关键.21.(1)10;12;(2)按图①摆放可以摆出了12个正方形,若按图②摆放可以摆出14个正方形【解析】【分析】(1)根据每多一个正方形多用2根火柴棒写出摆放m个正方形所用的火柴棒的根数,然后把m=3代入进行计算即可得解;(2)利用(1)的结论把a=37代入其中计算即可求解;解:(1)由图可知,图①每多1个正方形,多用3根火柴棒,∴m 个小正方形共用31+m 根火柴棒,图②每多2个正方形,多用5根火柴棒,∴2n 个小正方形共用52n +根火柴棒,当3m =时,33110a ⨯+==,图②可以摆放2512⨯=个小正方形;故答案为:10;12;(2)当37a =时,373125m n ++⨯==,∴12m =,7n =;∴按图①摆放可以摆出了12个正方形,若按图②摆放可以摆出14个正方形;【点睛】本题是对图形变化规律的考查,观察出正方形的个数与火柴棒的根数之间的变化关系是解题的关键.22.L =112x +2y (2)S =xy +38x 2(3)公司在甲厂商购买窗户合算,理由见解析. 【解析】【分析】(1)求出制作窗框的铝合金材料的总长度即可;(2)按照矩形与半圆的面积的和即为窗框的面积;(3)分别求出甲、乙的费用比较大小即可判断.【详解】(1)4x +2y +π•12x =(112x +2y )米, 答:一扇这样窗户一共需要铝合金(112x +2y )米; (2)xy +12×π•(2x )2=(xy +38x 2)米2, 答:一扇这样窗户一共需要玻璃(xy +38x 2)平方米; (3)20个这样的窗户共用铝合金为20×(112232⨯+⨯)=340(米),共用彩色玻璃为20×2328⨯=30(平方米),共用透明玻璃为20×2×3=120(平方米),甲的费用:340×200+100×90+(120-100)×70+30×80=68000+9000+1400+2400=80800元;乙的费用:(340-120×0.1)×220+120×80+30×60=72160+9600+1800=83560元, ∵80800<83560,∴公司在甲厂商购买窗户合算.【点睛】本题考查了列代数式,代数式求值,弄清题意,正确列式是解题的关键.23.(1)35211333x y y -++,2;(2)2ab -,-4. 【解析】试题分析:根据整式的加减,去括号,合并同类项,进行化简,然后代入求值即可. 试题解析:(1)35111233x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭ =1-2x+323y -x+513y =1-3x+352133y y +, 当x =﹣23,y =﹣1时,原式=1+22133--=2. (2)﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b )=﹣a 2b +3ab 2﹣a 2b ﹣4ab 2+2a 2b=- ab 2当 a =1,b =﹣2时,原式=-4.24.(1) 1911⨯=1112911⎛⎫⨯- ⎪⎝⎭;(2) ()()12121n n -+=11122121n n ⎛⎫⨯- ⎪-+⎝⎭ ;(3) 20184037 【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可; (2)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可; (3)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)a 5119112==⨯(11911-). 故答案为:1911⨯=1112911⎛⎫⨯- ⎪⎝⎭; (2)()()1121212n n =-+(112121n n --+). 故答案为:()()12121n n -+=11122121n n ⎛⎫⨯- ⎪-+⎝⎭; (3)12342018a a a a a ++++⋅⋅⋅+111111111++23235240354037⎛⎫⎛⎫⎛⎫=⨯-+⨯-⋅⋅⋅⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111123351140354037⎛⎫=⨯-+-+⋅⋅⋅+ ⎝-⎪⎭ 11124037⎛⎫=⨯- ⎪⎝⎭ 20184037=. 【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题,找出数字之间的规律是解题的关键.25.(1)111n n -+;(2)①20062007;②1n n +;(3)2511005;(4)1910. 【解析】【分析】(1)根据题意所给定的等式,进行观察分析即可得出答案;(2)①根据题意所给定的等式,可以运用(1)所得出得结论进行变形计算;②根据题意进行变形,进而进行两两抵消运算即可;(3)由题意先对式子进行变形提取公因数14,进而即可进行裂项相消计算; (4)根据题意对式子进行变形化为正数和分数部分,进而即可进行裂项相消计算.【详解】解:(1)由题意可知111(1)1n n n n =-++. 故答案为:111n n -+. (2)①1111 (12233420062007)++++⨯⨯⨯⨯ 111111 (22320062007)=-+-++- 112007=- 20062007= ②()1111...122334n n 1++++⨯⨯⨯+ 111111 (2231)n n =-+-++-+ 111n =-+ 1n n =+. (3)1111 (24466820082010)++++⨯⨯⨯⨯ 11111111 (412423434410041005)=⨯+⨯+⨯++⨯⨯⨯⨯⨯ 11111(...)412233410041005=⨯++++⨯⨯⨯⨯ 11111111(1...)42233410041005=⨯-+-+-++- 11(1)41005=⨯- 1100441005=⨯ 2511005=. (4)1511914117111234567892612203042567290-+-+-+-+1111111111335577992612203042567290=+-+++-+++-+++-+++ 11111111112612203042567290=+++++++++ 11111111111223344556677889910=+++++++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1111111111111111111223344556677889910=+-+-+-+-+-+-+-+-+- 11110=+- 1910= 【点睛】本题考查数字类规律问题,根据题意找出其规律即裂项相消并进行分析计算是解题的关键. 26.(1)(2)60x+20(3)x=41. 【解析】试题分析:(1)根据题意可得:y=80+a (x-1),把,代入计算可得y=130;(2)y=80+a (x-1),把代入计算可得y=60x+20;(3)当时, 护栏总长度,然后根据护栏总长度保持不变可列出方程,解方程即可.试题解析:解:(1)3分 (2)当时, 护栏总长度5分 =7分 (3)当时, 护栏总长度9分10分 护栏总长度保持不变12分13分考点:1.列代数式;2.一元一次方程的应用.27.14.【解析】【分析】将()()2222a b xy ab x y +++展开,再因式分解得到()()ay bx ax by ++,再由3a b x y +=+=得到()()9a b x y ax ay bx by ++=+++=【详解】()()22222222a b xy ab x y a xy b xy abx aby +++=+++()()()()2222a xy abx b xy aby ax ay bx by bx ay =+++=+++()()ay bx ax by =++,又3a b x y +=+=,()()9a b x y ax ay bx by ∴++=+++=.7ax by +=,2bx ay ∴+=,∴原式2714=⨯=.【点睛】本题考查已知多项式的值,求另一多项式的值,解题关键在于应用运算法则,对多项式进行变形.28.(1)50,5050;(2)1015050a b +【解析】【分析】(1)根据数的个数可找出总共有50个101,由此即可得出结论;(2)仿照(1)找出规律,由此即可求出结论.【详解】解:(1)1+2+3+4+5+ (100)=(1+100)+(2+99)+(3+98)+…+(50+51),=101×50,=5050.故答案为:50;5050.(2)原式=2399100a a b a b a b a b a b +++++++++++ =(2399100)a a a a a a b b b b b ++++++++++++=1015050a b +【点睛】本题考查了规律型中数字的变化类,观察数列,找出“首尾相加=第二项+倒数第二项=…”是解题的关键.29.(1) -6;-3;24;(2)①3;3;②3.2秒或4.2秒.【解析】试题分析:(1)由非负数的性质可得b+3=0,c-24=0,由多项式为五次四项式得325a ++=,解得a 、b 和c 的值;(2)①利用点P 、Q 所走的路程=AC 列出方程;②此题需要分类讨论:相遇前和相遇后两种情况下PQ=5所需要的时间.试题解析:(1) 由题意得,b+3=0,c-24=0,325a ++=,-a ≠0,解得b=-3,c=24,a=-6,故答案是:-6;-2;24;(2)①依题意得 3t+7t=|-6-24|=30,解得 t=3,则3t=9,所以-6+9=3,所以出t 的值是3和点D 所表示的数是3;②设点P 运动x 秒后,P 、Q 两点间的距离是5.当点P 在点Q 的左边时,3x+5+7(x-1)=30,解得 x=3.2.当点P 在点Q 的右边时,3x-5+7(x-1)=30,解得 x=4.2.综上所述,当点P 运动3.2秒或4.2秒后,这两点之间的距离为5个单位.考点:数轴;非负数的性质;动点问题.30.(1)甲:拿到物品C 和200元;乙:拿到:450元;丙:拿到物品A 、B ,付出650元;(2)详见解析.【解析】【分析】(1)按照分配方案的步骤进行分配即可;(2)按照分配方案的步骤进行分配即可. 【详解】解:(1)如下表:故分配结果如下:甲:拿到物品C和现金:750-100-350100=2003+元.乙:拿到现金750-100-350350=4503+元.丙:拿到物品A,B,付出现金:750-100-350750-=6503元.故答案为:甲:拿到物品C和现金: 200元. 乙:拿到现金450元.丙:拿到物品A,B,付出650元. (2)因为0<m-n<15所以1515300,15 2222m n n m--+<<<<所以3022 n m m n -+->即分配物品后,小莉获得的“价值"比小红高.高出的数额为:30-=n-m+15 22n m m n-+-所以小莉需拿(n-m+15)元给小红.所以分配结果为:小红拿到物品D和(152n m-+)元钱,小莉拿到物品E并付出(152n m-+)元钱.【点睛】本题考查了代数式的应用,正确读懂题干,理解分配方案是解题的关键.。

苏科版七年级上册第三章代数式:3.4~3.6阶段性提优复习学案(无答案)

苏科版七年级上册第三章代数式:3.4~3.6阶段性提优复习学案(无答案)

苏科版七年级上册第三章代数式:3.4~3.6阶段性提优复习学案【教学目的】1.理解同类项的概念,掌握判断同类项的方法,能纯熟地进展合并同类项;2.掌握去括号法那么,经历得出去括号法那么的过程,理解去括号法那么的根据;3.会综合运用合并同类项和去括号法那么纯熟进展整式的加减运算.【知识点】1. 所含字母一样,并且一样字母的指数也一样的项叫做同类项,两个常数项也叫做同类项.2.根据乘法分配律把同类项合并成一项叫做合并同类项.3.在合并同类项时,把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变,解题过程中,建议同学们先用记号标注同类项,再分别进展合并,纯熟后可不标注.4.去括号法那么:括号前面是“﹢〞号,把括号和它前面的“﹢〞号去掉,括号里各项的符号都不变;括号前面是“﹣〞号,把括号和它前面的“﹣〞号去掉,括号里各项的符号都要改变.去括号法那么可概括为“去正不变,去负全变〞.5.遇到去多重括号时,一般由里向外去括号,即先去小括号,再去中括号,最后去大括号,去括号的过程中可合并同类项.6.对于形如a (b +c )的代数式,我们可以根据乘法分配律把它化为ab +ac 的形式,这样也能到达去括号的目的.7.添括号法那么:所添括号前面是“﹢〞号,括到括号里的各项的符号都不改变;所添括号前面是“﹣〞号,括到括号里的各项的符号都改变.8.整式的加减,实际上就是去括号和合并同类项.进展整式加减运算的一般步骤是:〔1〕根据去括号法那么去掉括号;〔2〕准确找出同类项,按照合并同类项法那么合并同类项.9.在解决求代数式的值的题目时,应运用整式的加减先化简,即:有括号的先去括号,再合并同类项,最后代值进展计算.10.与整式的加减有关的题型,一般是与其他知识结合的综合应用题,如对含有绝对值符号的式子的化简,用整体思想进展整体代入的求值题等等.【例题精讲】例1.判断以下说法或计算是否正确.〔1〕23xy 与3yx 是同类项; 〔2〕322a b -与325b a 的和仍是一个单项式; 〔3〕23m n 与22m n 是同类项; 〔4〕23m n π与22m n 的差仍是一个单项式; 〔5〕3210t ⨯与21.510t ⨯是同类项;〔6〕527a b ab +=; 〔7〕23nm mn mn -=-;〔8〕33355a b a b a b +=; 〔9〕422xy xy -=;〔10〕22220a b ba -=.例2.合并以下各式中的同类项.〔1〕222111246x x x --; 〔2〕2220.26 1.4 4.8a b ab a b ab a b ---++;〔3〕322348742104x x x x x x +-+-++-;〔4〕2248966733ab a ab a -+-+-+; 〔5〕222542625x y xy xy x y xy -+-+++;〔6〕225()()2()2()m n m n m n m n +-+++++.例3.〔1〕假如单项式31y xa +-与221x yb 是同类项,那么a 、b 的值分别为 ; 〔2〕代数式x axy 212-与241bxy x -的和是单项式,那么a 、b 的关系是 ; 〔3〕假设代数式325222+-+x y mx 的值与字母x 的取值无关,那么m 的值是 .例4.先去括号,再合并同类项.〔1〕)3(5b a a +-; 〔2〕)23()1(422a a a a +---+; 〔3〕)]3(4[32b a a b a ----; 〔4〕)(5)()(3b a b a b a +-+-+; 〔5〕)2()(2mn pq mn pq -++-; 〔6〕)2(4)(3y x y x x -+---.例5.〔1〕假设关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,那么m= ;〔2〕不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-〞号的括号中,那么该式可写成 ;〔3〕有理数a 、b 、c 在数轴上的位置如以下图所示;化简:c c b b a a --++-〔4〕|x -y -3|+|x +y +3|=0,那么4(x -y )-3x -3y +2的值为 .例6.求以下代数式的值:〔1〕)3(2)2(23222a a a a a -++-,其中2-=a ; 〔2〕xy y xy x y x ++-----)3()12(32222,其中21-=x ,1=y ; 〔3〕xy y xy x y x ++-----)3()12(32222,其中21-=x ,1=y ; 〔4〕21=+t s ,923=-n m ,求多项式)]26([)92(t n m s +---的值; 〔5〕53-=-b a ,求多项式5248)3(52-+--b a a b 的值.例7.1232A 2--+=x xy x ,1B 2-+-=xy x .〔1〕求3A +6B 的值;〔2〕假设3A +6B 的值与x 的取值无关,求y 的值.例8.在“先化简,再求值:222352324a ab a b ab a --+-+-,其中52-=a ,3=b 〞的解题过程中,小芳把52-=a 错写成52=a ,而小丽错写成53-=a ,但她们的答案都是正确的.你知道这是什么原因吗?【课堂练习】1.以下选项中,与2xy 是同类项的是A .22xy -B .y x 22C .xyD .22y x2.y x y x y x b a 2234-=+-,那么b a +的值为A .1B .2C .3D .43.以下运算正确的选项是A .﹣2(3x ﹣1)=﹣6x ﹣1B .﹣2(3x ﹣1)=﹣6x +1C .﹣2(3x ﹣1)=﹣6x ﹣2D .﹣2(3x ﹣1)=﹣6x +24.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“〞的图案,如图2,再将剪下的两个小矩形拼成一个新的矩形,如图3,那么新矩形的周长可表示为A .2a ﹣3bB .4 a ﹣8bC .2 a ﹣4bD .4 a ﹣10b5.化简﹣[x ﹣(2y ﹣3z )]= .6.当k = 时,代数式105145346346++--y x x y kx x 中不含34y x 项. 7.有理数a 、b 、c 在数轴上的位置如下图,试着化简:﹣5|a |+|b ﹣a |﹣|a +c |= .8.假设212=-mn m ,152-=-n mn ,那么=-22n m ,=+-222n mn m .9.A =5a +3b ,B =3a 2﹣2a 2b ,C =a 2+7a 2b ﹣2,当a =1,b =2时,求A ﹣2B +3C 的值.10.小明在研究数学问题时发现一个有趣的现象:请你用不同的三位数再做做,发现什么有趣的现象?用您所学过的知识解释.【课后作业】1.两个关于x 、y 的单项式3238--b b y x 与a b a y ax ---23之差还是单项式,那么a +b 的值是A .3或2B .2C .2或0D .32.将多项式2a ﹣3ab +4b 2﹣5b 的一次项放在前面带有“+〞号的括号里,二次项放在前面带有“-〞的括号里:以下答案不正确的选项是A .2a ﹣3ab +4b 2﹣5b =+(2a ﹣5b )﹣(3ab ﹣4b 2)B .2a ﹣3ab +4b 2﹣5 =﹣(﹣4b 2+3ab )+(2a ﹣5b )C .2a ﹣3ab +4b 2﹣5b =+(2a ﹣3ab )﹣(5b ﹣4b 2)D .2a ﹣3ab +4b 2﹣5b =+(2a ﹣5b )﹣(﹣4b 2+3ab )3.假设0<a ,0<ab ,那么41---+-b a a b 的值是 A .3 B .﹣3 C .2b ﹣2a +5 D .2a ﹣2b ﹣54.如图,把四张形状大小完全一样的小长方形卡片不重叠地放在一个底面为长方形〔长为a ,宽为b 〕的盒子底部,盒子底面未被卡片覆盖的局部用阴影表示,那么这两块阴影局部小长方形周长的和为A .a +2bB .4aC .4bD .2a +b5.把(x ﹣y )看成一个整体合并同类项,那么5(x ﹣y ) 2+2(x﹣y )﹣3(x ﹣y ) 2+0.5(x ﹣y )﹣3.5= .6.假设a +b =3,ab =﹣2,那么(4a ﹣5b ﹣3ab )﹣(3a ﹣6b +ab )= .7.假设223P b ab a ++=,223Q b ab a +-=,那么代数式=-----)]Q P (P 2Q [P .8.有依次排列的3个数:a ,b ,c .对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:a ,b ﹣a ,b ,c ﹣b ,c ,这称为第一次操作;做第二次同样的操作后也可以产生一个新数串:a ,b ﹣2a ,b ﹣a ,a ,b ,c ﹣2b ,c ﹣b ,b ,c ,继续依次操作下去,问:从数串a ,b ,c 开场操作至第10次后产生的新数串所有数之和是 .9.a 、b 、c 在数轴上的对应点如下图,化简:|a |﹣|a +b |+|c ﹣a |+|b +c |.10.:A ﹣2B =7a 2﹣7ab ,且B =﹣4a 2+6ab +7.〔1〕求A 等于多少?〔2〕假设|a +1|+(b ﹣2)2=0,求A 的值.。

湘教版2020七年级数学第二章代数式自主学习优生提升测试卷(附答案详解)

湘教版2020七年级数学第二章代数式自主学习优生提升测试卷(附答案详解)

湘教版2020七年级数学第二章代数式自主学习优生提升测试卷(附答案详解) 1.下列运算正确的是( ) A .a +b =abB .a 2·a 3=a 6C .a 2+2ab -b 2= (a +b )2D .3a -2a =a2.用代数式表示:x 与y 两数的平方差的2倍是( ) A .2(x 2-y 2) B .(x 2-y 2)2 C .2(x-y)2 D .2(x 2-y 2)23.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355aab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ) A .+2abB .+3abC .+4abD .-ab4.如果单项式232a x y +-与13b xy -是同类项,那么ab 的值为( ) A .4B .-4C .8D .-85.下列为同类项的一组是( )A .x 3与23B .﹣xy 2与 yx 2C .7与﹣D .ab 与7a 6.—22a +2(3)a -的结果为( ) A .2aB .72aC .—52aD .—112a7.用字母表示如图所示的阴影部分的面积是( )A .()()2214b a b a b π+-+ B .()()2212b a b a b π+-+ C .()2212ab a bπ-+D .()2214ab a bπ-+8.一套住房的平面图如图所示,其中卫生间、厨房的面积和是( )A 4xyB 3xyC 2xyD xy9.某商品原价为x ,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( ) A .0.88xB .1.08xC .0.968xD .x10.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73811.正整数按图中的规律排列.由图知,数字6在第二行,第三列.请写出数字2019在第______行,第________列.12.如果关于字母x 的代数式-3x 2+mx +nx 2-x +10的值与x 的取值无关,则m =_________,n =_________。

代数式培优2

代数式培优2

海豚教育个性化简案学生姓名:年级:科目:授课日期:月日上课时间:时分------ 时分合计:小时教学目标1. 理解用字母表示数的意义。

能用字母和代数式表示以前学过的运算律和计算公式;2. 通过数学活动,探索数学规律,并能够用数学语言和式子表示规律;3. 让学生在探索现实世界数量关系的过程中,逐步建立符号意识,提高抽象思维的能力。

重难点导航1. 体会字母表示数和代数式表示规律的含义;2. 探索一般规律并用代数式表示规律.教学简案:一、个性化教案二、个性化作业三、错题汇编授课教师评价:□ 准时上课:无迟到和早退现象(今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况(大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字:备注:请交至行政前台处登记、存档保留,隔日无效(可另附教案内页)大写:壹贰叁肆签章:海豚教育个性化教案(真题演练)1.(2014•达州)一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?()A.甲B.乙C.一样D.无法确定2.(2014•六盘水)如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1海豚教育个性化教案代数式培优(2)【典型例题】一、选择题1.在代数式222515,1,32,,,1x x x x xx π+--+++中,整式有()A.3个B.4个C.5个D.6个 2、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12 x C 、-5x 2的系数为5 D 、-x 2的系数为-13.下面计算正确的是( ) A .2233x x -= B 。

235325a a a += C .33x x += D 。

浙教版七上数学第4章《代数式》单元培优测试题

浙教版七上数学第4章《代数式》单元培优测试题

七上数学第4章《代数式》单元培优测试题一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在式子a 2+2, ,ab 2 , ,﹣8x ,0中,整式有( )A. 3个B. 4个C. 5个D. 6个 2.计算2a-3a ,结果正确的是( )A. -1B. 1C. -aD. a3.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了15%,则2月份的产值是( )A. (1+15%)x 万元B. (1-15%x)万元C. (x-15%)万元D. (1-15%)x 万元 4.当a=-1 时,(-a 2)3 的结果是( )A. -1B. 1C. a 6D. 以上答案都不对 5.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A. B. C.D. 6.下列结论中,正确的是( )A. 单项式 的系数是3,次数是2.B. 单项式m 的次数是1,没有系数.C. 单项式﹣xy 2z 的系数是﹣1,次数是4.D. 多项式5x 2-xy+3是三次三项式.7.如果2x 3y n +(m-2)x 是关于x ,y 的五次二项式,则m ,n 的值为 ( )A. m=3.N=2B. m ≠ 2,n=2C. m 为任意数,n=2D. m#2,n=3 8.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A. 8x 2+13x ﹣1B. ﹣2x 2+5x+1C. 8x 2﹣5x+1D. 2x 2﹣5x ﹣1 9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A. -1B. 1C. -2D. 210.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( )A. B. ba C. D. 11.当x=1时,代数式x 3+x+m 的值是7,则当x=-1时,这个代数式的值是( )A. 7B. 3C. 1D. -712.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(m-n)cm二、填空题(本大题有6小题,每小题3分,共18分)13.写出一个含字母x ,y 的三次单项式________(只写出一个即可)14.当x=1,y=31 时,代数式x 2+2xy+y2的值是________.15.单项式3x m+2n y8与-2x2y3m+4n的和仍是单项式,则m+n= ________ .16.若+|n+3|=0,则m+n的值为________ .17.某城市3年前人均收入为x元,预计今年人均收入是3年前的2倍多500元,那么今年人均收入将达________元.18.若x2+2x=1,则2x2+4x+3的值是________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(8分)先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.20.(6分)已知的平方根是±3,的立方根是2,求的平方根.21.(8分)填写下表,观察下列两个代数式的值的变化情况:用代入检验的方法说明取哪个整数时,哪个代数式的值先超过100?22.(10分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

2-1 整式(提升训练)(原卷版)

2-1 整式(提升训练)(原卷版)

2.1 整式【提升训练】 一、单选题1.如图,阴影部分面积的表达式为( ).A .ab -18πa 2B .ab -12πa 2C .ab -πa 2D .ab -14πa 2 2.己知整数123,,,a a a 满足下列条件:10a =,211a a =-+,322a a =-+,433a a =-+,…依此类推,则2021a 的值为( ) A .2021B .-2021C .-1010D .10103.把圆形按如图所示的规律拼图案,其中第①个图案中有1个圆形,第①个图案中有5个圆形,第①个图案有11个圆形,第①个图案有19个圆形,…,按此规律排列下去,第7个图案中圆形的个数为( )A .42B .54C .55D .564.已知代数式32x ﹣4x 的值为9,则92x ﹣12x ﹣6的值为( ) A .3B .24C .21D .185.定义一种对正整数n 的“F 运算”:①当n 为奇数时,运算结果为3n +5;①当n 为偶数时,结果为2k n(其中k 是使2kn为奇数的正整数),并且运算重复进行,例如,取n =26,则若n =898,则第2021次“F 运算”的结果是( ) A .488B .1C .4D .86.正方形ABCD 在数轴上的位置如图所示,点,D C 对应的数分别为0和1,若正方形ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;按此规律继续翻转下去,则数轴上数2021所对应的点是 ( )A .点AB .点BC .点CD .点D7.观察下列一组图形中点的个数,其中第①个图形中共有3个点,第①个图形中共有9个点,第①个图形中共有18个点,按此规律,第①个图形中共有点的个数是( )A .45B .63C .84D .1088.下列说法中,正确的是( ) A .1不是单项式 B .5xy的系数是﹣5 C .﹣x 2y 是3次单项式D .2x 2+3xy ﹣1是四次三项式9.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数为( )A .3B .2C .0D .-110.如图①是1个小正方体木块水平摆放而成,图①是由6个小正方体木块叠放而成,图①是由15个小正方体木块叠放而成,……,按照这样的规律继续叠放下去,第①个叠放的图形中,小正方体木块总个数是( )A .61B .66C .91D .12011.图①是一个三角形,分别连接这个三角形三边的中点得到图①,再分别连接图①中间小三角形三边的中点,得到图①.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n -12.元旦,是公历新一年的第一天“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正逆元旦之春”.中国古代间以腊月、十月等的月首为元旦.1949年中国华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(100x >),则购买该商品实际付款的金额(单位:元)是( ) A .80%20x -B .()80%20x -C .20%20x -D .()20%20x -13.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的整数为( )A .1-B .0C .2D .514.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .4315.下列代数式中,全是单项式的一组是( ) A .1a ,2,3ab B .2,a ,12ab C .2a b-,1,π D .x +y ,-1,13(x -y) 16.下列图形是按一定规律排列的.依照此规律,第①个图形需( )根火柴棒A .40B .41C .42D .4317.一串数字的排列规律是:第一个数是2,从第二个数起每一个数与前一个数的倒数之和为1,则第2020个数是( ) A .12-B .1-C .2-D .218.如图为O A B C 、、、四点在数轴上的位置图,其中O 为原点,且1AC =,OA OB =,若点C 所表示的数为x ,则点B 所表示的数为( )A .(1)x -+B .(1)x --C .1x +D .1x -19.如图,①是一个三角形,分别连接这个三角形三边中点得到图①,再连接图①中间小三角形三边的中点得到图①,按这样的方法进行下去,第n 个图形中共有三角形的个数为( )A .2n ﹣3B .4n ﹣1C .4n ﹣3D .4n ﹣220.下面两个多位数1248624…,6248624…,都是按照如下方法得到的:从首位数字开始,将左边数字乘以2,若积为一位数,将其写在右边数位上,若积为两位数,则将其个位数字写在右边数位上.依次再进行如上操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,按如上操作得到一个多位数,则这个多位数前2020位的所有数字之和是( )A.10091B.10095C.10099D.1010721.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为()A.160B.1168C.1252D.128022.观察一列单项式:x,3 x2,5 x 2,7x,9x2,11 x2,…,则第2020个单项式是().A.4040x B.4040 x 2C.4039 x D.4039 x223.一组数据排列如下:12 3 43 4 5 6 74 5 6 7 8 9 10…按此规律,某行最后一个数是148,则此行的所有数之和是()A.9801B.9603C.9025D.810024.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第20个这样的图案需要黑色棋子的个数为()A.448B.452C.544D.60225.按照规律排列的一列数:-1,2,-4,8,-16,32,……则第2020个数应为( ). A .20192-B .20192C .20202-D .2020226.福州市某学校七年级的小高同学喜迎国庆,用五角星按一定规律摆出如下图案,则第9个图案需要的五角星的颗数为( ).A .24B .27C .28D .3027.将连续正整数按如图所示的位置顺序排列:根据排列规律,则2021应在( )A .A 处B .B 处C .C 处D .D 处28.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( )A .201451- B .201351-C .2014514-D .2013514-29.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,剪的次数记为n ,得到的正三角形的个数记为n a ,则2020a =( )A .6053B .6058C .6061D .606230.已知整数1a ,2a ,3a ,4a …满足下列条件:10a =,211a a =-+,322a a =-+,433a a =-+…依此类推,则2021a 的值为( ) A .1010-B .1011-C .2021-D .2020-31.如图,用火柴棍摆出一列正方形图案,其中第一个图(图①)有4根火柴棍,第二个图(图①)有12根火柴棍,第三个图(图①)有24根火柴棍,,则第n 个图中火柴棍的根数是( )A .2n (n +1)B .n (n +2)C .4n (n +1)D .4n (n -1)32.观察下面有规律的三行数:2-,4、8-,16,32-,64,① 0,6,6-,18,30-,66,① 1,2-,4,8-,16,32-,①设x ,y ,z 分别为第①①①行的第2020个数,则22x y z -+的值为( ) A .20202B .2-C .0D .233.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( ) A .600B .618C .680D .71834.携带着2公斤珍贵月壤的嫦娥五号返回器于2020年12月17日凌晨1时32分,降落在内蒙古市四子王旗,实现了中国版的“空间跳跃”.在科幻电影《银河护卫队》中,星际之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成,如图所示,两个星球之间的路径只有一条,三个星际之间的路径有3条,四个星际之间的路径有6条,...,按此规律,则10个星际之间的路径有( )A .45条B .21条C .42条D .38条35.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上36.下列说法正确的是( ) A .单项式x 的系数是0B .单项式﹣32xy 2的系数是﹣3,次数是5C .多项式x 2+2x 的次数是2D .单项式﹣5的次数是137.长度相同的木棒按一定规律拼搭图案,第1个需7根木棒,第2个需13根木棒,…,第11个需要木棒的个数为( )A .156B .157C .158D .15938.下列说法中,正确的是( ) A .单项式21πxy 2的系数12B .单项式25x y -的次数为2C .多项式x 2+2xy+18是二次三项式D .多项式12 x 3 -2 3x 2y 2-1次数最高项的系数是12 39.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=11649,…,那么:71+72+73+…+72022的末位数字是( ) A .0B .6C .7D .940.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.6060二、填空题41.观察下列式子:①2⨯+=;①279811802527126⨯+=;……可猜⨯+=;①213127918⨯+=;①2想第2021个式子为________.42.小刚在做数学题时,发现下面有趣的结果:第1行:3﹣2=1第2行:8+7﹣6﹣5=4第3行:15+14+13﹣12﹣11﹣10=9第4行:24+23+22+21﹣20﹣19﹣18﹣17=16……+=______.根据以上规律,“2021”在第m行,从左往右数第n个,那么m n43.在无限大的正方形网格中按规律涂成的阴影如图所示,第1、2、3个图中阴影部分小正方形的个数分别为5个、9个、15个,根据此规律,则第20个图中阴影部分小正方形的个数是_____.n=,2,3,…)的末位数字是按照一定规律变化的.末位数字0,1,2,3,44.一个自然数的n次方(14,5,6,7,8,9的n次方后的末位数字如下表所示.那么2021673末位数字是____________.45.如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动,当微型机器人移动了2021cm时,它停在_____点.三、解答题46.用火柴棒按图中的方式搭图形:按图示规律填空:(1)a=__________,b=__________;(2)按照这种方式搭下去,则搭第n个图形需要火柴棒的根数为_________;(用含n的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2021个图形需要的火柴棒根数.47.仔细观察下列规律:()()()2113222433322=2212,222212,222212--=-=-=-=-=……请完成下列题目(结果可以保留指数形式)(1)计算:1009922-=________(直接写出答案)(2)发现:122n n +-=__________(直接写出答案)(3)计算:2019201820172......222221----48.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图①,然后沿同一底边再剪去一个边长为14的等边三角形后得到图①,依次剪去一个边长为18、116、132…的等边三角形后,得到图①、①、①、…,记图n (n ≥3)中的卡纸的周长为C n ,则C n ﹣C n ﹣1=_____.49.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为500元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客八折优惠;而乙旅行社是免去一位带队老师的费用,其余老师八五折优惠.(1)如果设参加旅游的老师共有()10x x >人,则甲旅行社的费用为___________元,乙旅行社的费用为___________元;(要求用含x 的代数式表示,并化简.)(2)假如某校组织18名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.50.汽车下坡时,速度和时间之间的关系如下表:(1)写出速度v 与时间t 之间的关系式;(2)计算当t =12时,汽车的速度.51.观察如图所示的图形,回答下列问题:(1)按甲方式将桌子拼在一起.4张桌子拼在一起共有___________个座位,n 张桌子拼在一起共有___________个座位;(2)按乙方式将桌子拼在一起.5张桌子拼在一起共有___________个座位,m 张桌子拼在一起共有___________个座位;(3)某食堂有,A B 两个餐厅,现有90张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a 张桌子放在A 餐厅,按甲方式每3张拼成1张大桌子;将其余桌子都放在B 餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有370个座位,问,A B 两个餐厅各有多少个座位? 52.(1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是b 元/m 2,那么购买地砖至少需要多少元?(2)房屋的高度为hm ,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是a 元/m 2,贴1m 2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)53.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,把这三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n ⨯+= .(2)直接写出下列各式的计算结果:①111112233445+++⨯⨯⨯⨯=;①1111122334(1)n n++++⨯⨯⨯⨯+=.(3)探究并计算:1111 24466820182020 ++++⨯⨯⨯⨯.(4)拓展:从111111,,,,,,234599100中找出10个相加为1的数.(并列式验证)54.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图形中共有_______根火柴,第6个图形中共有_______根火柴;(2)第n个图形中共有_______根火柴(用含n的式子表示);(3)请判断上组图形中前2021个图形火柴总数是2021的倍数吗?请说明理由.(参考:()11232n nn+⨯++++=,例如求解()1991239452+⨯++++==)55.按如下规律摆放三角形:(1)图①中分别有个三角形?(2)按上述规律排列下去,第n个图形中有个三角形?(3)按上述规律排列下去,第2021个图形中有个三角形?56.某大型商场销售一种茶具和茶碗,茶具每套定价200元,茶碗每只定价20元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一套茶具送一只茶碗;方案二,茶具和茶碗按定价的九五折付款,现在某客户要到商场购买茶具30套,茶碗x只(x>30).(1)若客户按方案一,需要付款元;若客户按方案二,需要付款元.(用含x的代数式表示)(2)若x=40,试通过计算说明此时哪种购买方案比较合适?(3)当x=40,能否找到一种更为省钱的方案,如果能,写出你的方案,并计算出此方案应付钱数;如果不能,说明理由.57.观察下面的三行单项式x,2x2,4x3,8x4,16x5…①2x,﹣4x2,8x3,﹣16x4,32x5…①3x,5x2,9x3,17x4,33x5…①根据你发现的规律,完成以下各题:(1)第①行第7个单项式为;第①行第7个单项式为.(2)第①行第n个单项式为.(3)取每行的第10个单项式,令这三个单项式的和为A.计算当x=12时,256[3A﹣2(A+14)]的值.58.观察下列图形及图形所对应的等式,探究图形阴影部分的面积变化与对应等式其中的规律,并解答下列问题:22﹣12=2×1+1×1;32﹣22=3×1+2×1;42﹣32=4×1+3×1;52﹣42=.(1)补全第四个等式,并直接写出第n个图对应的等式;(2)计算:12﹣22+32﹣42+52﹣62+…+992﹣1002.59.观察下面三行数:①-3,9,-27,81,-243,729,…;①0,12,-24,84,-240,731,…;①-6,18,-54,162,-486,1458,….(1)第①行数按什么规律排列?(2)第①①行数与第①行数分别有什么关系?(3)取每行数的第n个数,计算这三个数的和.60.已知下列等式:①22﹣12=3;①32﹣22=5;①42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第①个式子: ;(2)请你找出规律,写出第n 个式子 .(3)利用(2)中发现的规律计算:1+3+5+7+…+2019+2021.61.高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和",许多同学都采用了依次累加的计算方法,计算起来非常烦琐,并且容易出错,聪明的小高斯经过探索后,给出了下面漂亮的解答过程:解:设123100s =++++,① 则10099981=+++s ,①①+①,得 ()()()()21001100110011001=++++++++s . ()12s=100100∴⨯+,100(1001)50502⨯+==s ① 1231005050∴++++=.后来人们将小高斯的这种解答方法概括为“倒序相加法.....” (1)请你运用高斯的“倒序相加法”计算:123450+++++;(2)请你认真观察上面解答过程中的①式及你运算过程中出现类似的①式,猜想123n ++++= (用含n 的代数式表示);(3)计算:101102103104200+++++.62.观察下列一组单项式:2a ,2a -,345a ,457a -,…. (1)直接写出第5个单项式为____,第6个单项式_____;(2)直接写出第n 个单项式(n 为正整数);(3)是否存在某一项的系数为713-的情况?如果存在,求出这是第几项;如果不存在,请说明理由. 63.观察下面三行数:第一行:2-、4、8-、16、32-、64、…第二行:1、7、5-、19、29-、67、…第三行:5、1-、11、13-,35、61-、…探索它们之间的关系,寻求规律解答下列问题:(1)直接写出第二行第8个数:______.(2)直接写出第二行第n 个数:______;第三行第n 个数:______.(3)取每行的第n 个数,若存在这样的3个数使它们的和为122-,请求出n 的值.64.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3;…,以后每次只在上次得到图形的左上角的正方形中画线.尝试(1)第3次画线后,分割成______个互不重叠的正方形;第4次画线后,分割成______个互不重叠的正方形.发现(2)第n 次画线后,分割成______个互不重叠的正方形,并直接..写出第2021次画线后得到互不重叠的正方形的个数.探究(3)若干次画线后﹐能否得到1005个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.65.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将前三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:()11n n =⨯+ . (2)计算:111112233420202021++++⨯⨯⨯⨯; (3)参照上述解法计算:111124466820182020++++⨯⨯⨯⨯ 66.如图,将一张正方形纸片剪成四个大小、形状一样的小正方形,然后将其中一个小正方形再按同样的方法剪成四个小正方形,再将其中一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表:(2)如果剪n次,那么共剪出多少个小正方形?(3)如果要剪出502个小正方形,那么需要剪多少次?。

北师大版七年级数学上册第三章整式及其加减单元提优测试题【含答案】

北师大版七年级数学上册第三章整式及其加减单元提优测试题【含答案】

北师大版七年级数学上册第三章整式及其加减单元提优测试题一、选择题1.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣2.下列式子中,符合代数式书写格式的有()①;②;③;④m+2天;⑤A.2个B.3个C.4个D.5个3.在整式大家庭中,有5个成员:①-ab;②x2;③;④0.8;⑤x2+1,其中属于单项式家族的有()A.1个B.2个C.3个D.4个4.买了n千克橘子,花了m元,则这种橘子的单价是()元/千克.A. B. C.m D.m-n5.下列计算正确的是()A.x2y﹣2xy2=﹣x2yB.2a+3b=5abC.a3+a2=a5D.﹣3ab﹣3ab=﹣6ab6.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2;B.m=-2,n=2;C.m=-1,n=2;D.m=2,n=-1。

7.已知一个多项式与3x2+9x的和等于3x2+4x-1,则此多项式是()A.-6x2-5x-1B.-5x-1C.-6x2+5x+1D.-5x+18.如果代数式8y2-4y+5的值是13,那么代数式2y2-y+1的值等于()A.2B.3C.-2D.49.已知|a+13|+|b﹣10|=0,则a+b的值是()A.-3B.3C.23D.-2310.百位数字是a,十位数字是b,个位数字是c,这个三位数是()A.abcB.a+b+cC.100a+10b+cD.100c+10b+a11.代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9B.﹣9C.18D.﹣18二、填空题12.﹣的系数是________,次数是________.13.代数式ab﹣πxy﹣x3的次数是________,其中﹣πxy项的系数是________.14.已知2x m y3与3xy n是同类项,则代数式m﹣2n的值是________.15.若a m+1b3与﹣3a4b n+7的和是单项式,则m+n的值为________.16.计算:(8a2b﹣4ab2)÷(﹣ab)=________.17.联欢会上,小红按照4个红气球,3个黄气球,2个绿气球的顺序把气球串起来,装饰会场,则第52个气球的颜色为________.三、解答题18.先去括号,再合并同类项:(1)5a-(a+3b);(2)(a2+2ab+b2)-(a2-2ab+b2);(3)3(2x2-y2)-2(3y2-2x2);(4)(-x2+5x+4)+2(5x-4+2x2).19.化简求值:(3a2b﹣2ab2)﹣(ab2﹣2a2b+7),其中a=﹣1,b=2.20.先化简,再求值:(1)(﹣x2+5+4x)+(5x﹣4+2x2),其中x=﹣2(2)5(3a2b﹣ab2﹣1)﹣(﹣5ab2+3a2b﹣5),其中a=﹣1,b=.21.已知m﹣n=4,mn=﹣1.求:(﹣2mn+2m+3n)﹣(3mn+2n﹣2m)﹣(m+4n+mn)的值.22.已知:m2与-2n2的和为A,1+n2与-2m2的差为B,求3A-4B的值.23.某中学七年级A班有50人,某次活动中分为四组,第一组有a人,第二组比第一组的一半多6人,第三组的人数等于前两组人数的和.(1)求第四组的人数.(用含a的式子表示)(2)试判断a=14时,是否满足题意.参考答案一、选择题1.B2.A3.C4.B5.D6.C7.B8.B9.A10.C11.B二、填空题12.﹣;313.3;14.﹣515.﹣116.﹣16a+8b17.黄色三、解答题18.(1)解:原式=5a-a-3b=4a-3b.(2)解:原式=a2+2ab+b2-a2+2ab-b2=4ab.(3)解:原式=6x2-3y2-6y2+4x2=10x2-9y2.(4)解:原式=-x2+5x+4+10x-8+4x2=3x2+15x-4.19.解:原式=3a2b﹣2ab2﹣ab2+2a2b﹣7=5a2b﹣3ab2﹣7,当a=﹣1,b=2时,原式=10+12﹣7=1520.(1)解:原式=(﹣x2+2x2)+(4x+5x)+(5﹣4)=x2+9x+1,当x=﹣2时,原式=x2+9x+1=﹣13(2)解:原式=15a2b﹣5ab2﹣5+5ab2﹣3a2b+5=12a2b,当a=﹣1,b=时,原式=12a2b=421.解:原式=﹣2mn+2m+3n﹣3mn﹣2n+2m﹣m﹣4n﹣mn=﹣6mn+3m﹣3n=﹣6mn+3(m﹣n)把m﹣n=4,mn=﹣1代入得:原式=6+12=18.22.解:∵A=m2-2n2,B=1+n2-(-2m2)=1+n2+2m2∴3A-4B=3(m2-2n2)-4(1+n2+2m2)=3m2-6n2-4-4n2-8m2=-5m2-10n2-423.(1)解:=38﹣3a(2)解:当a=14时,第四组人数为:38﹣3×14=﹣4,不符合题意,∴当a=14时不满足题意.。

第十四章整式的乘除 中档题专题提优2024-2025学年人教版八年级数学上册(无答案)

第十四章整式的乘除 中档题专题提优2024-2025学年人教版八年级数学上册(无答案)

第十四章整式的乘除专题一幂的运算核心考点一同底数幂的乘法(m,n都是正整数) ,即:同底数幂相乘,底数不变,指数相加.03. 若则n= .核心考点二幂的乘方(m,n都是正整数),即:幂的乘方,底数不变,指数相乘.06. 已知可变形为则a, b,c的大小关系是 .核心考点三积的乘方(其中a为正整数),即:积的乘方,每一个因数分别乘方.08. 已知则核心考点四逆用幂的运算法则09.已知: 则值为 ( )A. 17B. 36C. 48D. 7210. 已知: 则:11. 已知: 则12. 已知: 则m= , n= .13.已知:2"=a, 3"=b, n是正整数,则用含有a,b的式子表示( 的值为.14. 若则A. 2B. 3C. 6D. 1215.已知: 3"=a, 81"=b, m, n为正整数, 则3³ᵐ⁺¹²ⁿ的值为 ( )A. a³b³B. 27abC. 3a+12b16按一定规律排列的一列数: 2¹, 2², 2³, 2⁵,2⁸, 2¹³, …, 若x, y, z表示这列数中的连续三个数,猜想x,y,z满足的关系式是 .核心考点五幂的运算法则综合运用17. 已知求的值. 18. 已知求的值.19. 是否存在整数a, b, c满足若存在,求出a,b,c的值;若不存在,说明理由.专题二整式的乘除核心考点一单项式与单项式的乘法单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.01. 计算:1202. 计算:核心考点二单项式与多项式的乘法单项式与多项式相乘,就是根据分配律用单项式去乘以多项式的每一项,再把所得的积相加.核心考点三多项式与多项式的乘法多项式与多项式相乘,先用一个多项式的每一项去乘以另一个多项式的每一项,再把所得的积相加,即|①|②| ①②③④(a+b)(m+n)= am+ an+ bm+ bn|③↑④↑04. (1) (x+2)(x-4)= ,核心考点四整式的除法08. [(2x-y)(2x+y)+y(y-6x)]÷2x.核心考点五降次代换09. 若则10. 已知则代数式的值是 ( )A. 31B. -31C. 41D. -4111. 已知. 求(x-1)(x-3)(x-5)(x-7)的值.核心考点六多项式相乘展开后与待定参数12. 若的积中不含x的二次项,则常数m的值为 ( )A. 0 B13. 若的展开式中不含x³项和x²项,则m"的值= .14. 已知a, b, x, y满足a+b=x+y=3, ax+ by=7, 求的值.15. 已知将x=0代入这个等式中可以求出a₀=1.用这种方法可以求得的值为( )A. -16B. 16C. -1D. 116. 若则:(1) a+b+c+d+e+f= ; (2) f= .17已知, 若多项式. 被x+3整除,说明时,多项式的值为0,即当x=-3时,多项式为0,我们可以把x=-3代入多项式,值为0,可得方程,求出k的值为若多项式.去除以x+3时,余数为6,说明. 时,多项式的值为6,即当. 时,多项式为6,我们可以把x=-3代入多项式,值为6,可得方程,求出k的值为- 结合上述知识,解决下列问题:(1) 若能被x-2整除,则a的值为;(2) 若除以x+2时, 余数为4, 则a的值为 ;(3) 若能被x-2与x+3整除, 则a-b的值为 ;(4) 若去除以x-2时,余数为1去除以x+3时,余数为- 求a, b的值.核心考点一整式的运算与求值01 计算:02先化简, 再求值: 其中x=0.5, y=-1.核心考点二待定参数03.已知( 其中p,q为正整数,则04. 如果二次三项式中有一个因式是3a-2,那么k的值为 .05以下关于x的各个多项式中, a, b, c, m, n均为常数.(1) 根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)22(2x+1)(3x-2)6-2( ax+b)( mx+n) am bn(2) 已知既不含二次项,也不含一次项,求的值;(3)多项式M与多项式的乘积为则2a+b+c的值为.核心考点一整式的运算与图形01.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆.若a+b=4,求剩下的钢板的面积.02.如图将一个边长为a的小正方形与四个边长均为b的大正方形拼接在一起(其中a<b) , 则四边形ABCD的面积为 ( )03.在长方形ABCD内, 将两张边长分别为a和b(a>b) 的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S₁,图2 中阴影部分的面积为S₂.当AD-AB=2时, 的值为 ( )A. 2aB. 2bC. 2a-2bD. -2b核心考点二图形的拼接与整式的乘法04有足够多的如图所示的正方形和长方形的卡片.(1)选取1号,2号,3号卡片若干张,拼成一个正方形(不重叠无缝隙),并能运用拼图前后面积之间的关系说明公式( 成立,请画出这个正方形;(2) 小明想用类似(1) 的方法解释多项式乘法( 那么用2号卡片张,3号卡片张;(3)如果选取1号,2号,3号卡片分别为1张,2张,3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图.专题五平方差公式的应用及构造平方差公式: (核心考点一平方差公式的基本应用01. 计算: (2) (b+2a)(2a-b);(3) (-x+2y)(-x-2y);核心考点二平方差公式在多项式计算中的应用02. (1) (y+2)(y-2)-(y-1)(y+5);核心考点三平方差公式的构造03. 计算:04. 计算下列各式,完成所提出的问题:…计算:① ;05.若则(06. 已知实数a, b, x, y满足求的值.07. 设a, b, c, d都是自然数, 且求d-b的值.专题六 完全平方公式完全平方公式:核心考点一 完全平方公式的基本应用01. 计算:核心考点二 含参数的完全平方式02. 若是关于x ,y 的完全平方式,则03. 若 是一个完全平方式,则m 的值为 .核心考点三 完全平方公式的拓展应用04. 计算:(5) 求证: 1999×2000×2001×2002+1是一个整数的平方, 并求出这个整数.核心考点四完全平方公式补充公式的应用05. 已知且a=1, 试求( 的值.06. 设求的值.07. 已知求的最小值.专题七完全平方公式的变形与应用核心考点一利用完全平方公式求a+b, a-b, ab, a²-b²的值01.已知求 xy和x-y的值;02. 已知求和x+y的值;03.若(2026-a)(2025-a)=2024, 则(核心考点二利用完全平方公式求的值04.例: 已知求的值.解:因为所以则所以观察以上解答,解答以下问题:已知(1) 求下列各式的值:(2) 直接写出的值 .05. 已知:x²-3x+1=0, 则的值为 .06. 已知则的值为 ( )A. 136B. 169C. 194D. 19607. 若则专题八配方法与完全平方式的构造核心考点一配方构造完全平方式01. 将二次三项式进行配方,正确的结果是 ( )B. (x-2)²-1 D. (x-2)²+302.关于x的二次三项式有最小值-10, 则常数a= .03.a, b为实数, 整式的最小值是 ( )A. -13B. -4C. -9D. -504.已知, 则x+y+z= .05.已知a, b, c满足则a-b+c的值为 ( )A. -1B. 5C. 6D. -7核心考点二配方构造完全平方式求最值、比较大小06.简读以下材料井解决问题:①若a-b≥0,则a≥b;若a-b≤0,则a≤b;有最小值1;有最小值-9.(1)求的最小值;(2) 已知比较P与Q的大小.核心考点三配方法求最值应用题07.我们已学习了完全平方公式:观察下列式子:x并回答下列问题.则(2) 解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块长方形花圃,为了设计一个面积尽可能大的花圃,按图设长方形一边长度为x米,回答下列问题:①列式:用含x的式子表示花圃的面积:;②请说明当x取何值时,花圃的最大面积是多少平方米?专题九 乘法公式的几何背景核心考点一 乘法公式与图形结合01如图1,在长为2b ,宽为b 的长方形中去掉两个边长为a 的小正方形. 然后将图2中的阴影部分剪下,并将剪下的阴影部分从中间剪开,得到两个形状,大小完全相同的小长方形. 将这两个小长方形与剩下的图形拼成如图3 中的长方形,上述操作能够验证的等式是( )02.四张长为a, 宽为b(a>b) 的长方形纸片, 按如图的方式拼成一个边长为 (a+b) 的正方形,图中空白部分的面积为阴影部分的面积为S₂, 若则a:b= .03. 探究:如图1,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿线剪开,如图所示,拼成图2的长方形.(1) 请你分别表示出这两个图形中阴影部分的面积 ; ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示);应用:请应用这个公式完成计算:04.(1) 用边长分别为a ,b 的两个正方形和长宽分别为a ,b 的两个长方形按如图摆放可拼成一个大正方形,用两种不同的方法可以表示图中阴影部分的面积和. 请你用一个等式表示( a²+b², ab 之间的数量关系 ;(2) 根据(1) 中的数量关系,解决如下问题:①已知 求m-n 的值;②已知(求的值.05. 我们知道,在学习了课本阅读材料:《综合与实践一面积与代数恒等式》后,利用图形的面积能解释得出代数恒等式,请你解答下列问题:(1)如图,根据3个正方形和6个长方形的面积之和等于大正方形ABCD 的面积. 可以得到代数恒等式:(2) 已知求 ab+ ac+ bc的值;(3) 若n, t满足如下条件:,求t的值.核心考点二杨辉三角与整式乘法06.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如下图所示) 就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)"(n为正整数) 的展开式(按a的次数由大到小的顺序排列) 的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着展开式中各项的系数等等.(1) 根据上面的规律,展开式的各项系数中最大的数为;(2) 直接写出式于的值为;(3)若求的值.专题十因式分解核心考点一因式分解的定义01. 下列各式从左到右的变形,是因式分解的是 ( )核心考点二提公因式法02. 把下列各式分解因式:(4) 2a(b+c)-3(b+c); (5)6(x-2)+x(2-x);核心考点三运用公因式法03. 把下列各式分解因式:(1) 1-25b²;(6) x⁴-y⁴;核心考点四分组分解法04. 分解因式:(2) 2ax-10ay+5by- bx;核心考点五 十字相乘法05. 把下列各式分解因式:核心考点六 配方法06. 分解因式:核心考点七 换元法07. 把下列各式分解因式:专题十一因式分解的应用核心考点一对因式分解结果的判断01.下列因式分解结果正确的是 ( )02.下列因式分解结果正确的是 ( )核心考点二多步骤因式分解03.因式分解:(2) (p-3)(p-1)+1.04. 因式分解:05.将下列多项式因式分解:06.因式分解:核心考点三利用因式分解求值07. 若则a-b= .08.若则a+b-c的值是 ( )A. 2B. 5C. 20D. 5009. 已知a, b满足则x, y的大小关系是 ( )A. x≤yB. x≥yC. x>yD. x<y10.已知( 则((x-2027)²的值是 .11. 已知a=2019x+2016, b=2019x+2017, c=2019x+2018, 求多项式( 的值.核心考点四利用图形理解因式分解12.如图,将下列四个图形拼成一个大长方形,再据此写出一个多项式的因式分解:核心考点五试根法因式分解13. 对于多项式我们把. 代入此多项式,发现. 能使多项式的值为0,由此可以断定多项式. 中有因式( (注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式( 于是我们可以把多项式写成:分别求出m,n后再代入就可以把多项式. 因式分解.(1) 求式子中m, n的值;(2) 以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式.。

专题整式知识点总结

专题整式知识点总结

专题整式知识点总结一、整式的含义整式是由数、变量和它们的系数与指数的有限多项式和乘积构成的代数表达式。

整式是代数中的一种基本运算形式,与分式相对应。

整式可以包含正负数、字母和字母的指数,可以进行加法、减法、乘法和乘方的运算。

二、整式的分类1. 单项式:由一个数与一个或多个字母相乘得到。

例如:3x、-5y^2、2ab。

2. 多项式:由多个单项式相加或相减得到。

例如:3x^2+5x-2、-2a^2b+4ab+7。

3. 带有根号的整式:含有根号的整式,例如:√2ab-3√5a^2+√7b^3。

4. 带有分数的整式:含有分数的整式,例如:2/3x-5/8y^2+1/2。

5. 含有幂次的整式:包含幂函数的整式,例如:x^2+3x-6。

三、整式的基本运算1. 整式的加法和减法:对于整式a+b和c+d,可以将a和c相加得到新的整式e,将b和d相加得到新的整式f,那么e和f再相加得到最终的整式。

2. 整式的乘法:对于整式a和b,将a中的每一项与b中的每一项相乘,然后将得到的乘积相加得到最终的整式。

3. 整式的乘方:对于整式a,可以将a进行平方、立方或更高次幂的乘方运算。

4. 整式的除法:整式的除法运算通常涉及到分式的运算,需要用到分式的除法规则。

四、整式的因式分解1. 整式的因式分解是指将一个复杂的整式分解为简单的乘积形式。

2. 整式的因式分解有很多种方法,包括公因式提取法、分组分解法、换元法、升幂降幂法、分解质因数等。

3. 因式分解的目的是使整式更容易计算,也有助于分析整式的性质和特点。

五、整式的应用1. 整式在代数表达式中广泛应用,例如在代数方程中、代数不等式中、函数表达式中。

2. 整式在数学、物理、化学、经济等领域都有着广泛的应用,例如在数学模型中描述问题、在物理公式中进行计算、在经济方程中分析变量关系等。

3. 整式的应用还包括在计算机编程、工程设计、金融分析等领域,是现代科学技术发展的重要数学工具。

六、整式的综合练习1. 利用多项式的加减法、乘法、乘方和除法等基本运算法则,练习整式的运算。

代数式运算的规则和步骤的简约总结

代数式运算的规则和步骤的简约总结

代数式运算的规则和步骤的简约总结代数式运算是指在数学中,对代数式进行加、减、乘、除等运算的过程。

在进行代数式运算时,需要遵循一定的规则和步骤。

下面是对代数式运算规则和步骤的简约总结:1.运算顺序:在进行代数式运算时,应先进行括号内的运算,然后按照从左到右的顺序进行乘、除运算,最后进行加、减运算。

2.同类项:同类项是指字母相同且相同字母的指数也相同的代数式。

在进行加减运算时,可以直接合并同类项,其系数相加减,字母部分不变。

3.乘法分配律:乘法分配律是指对于任意的代数式a、b和c,有a(b+c) = ab + ac。

这意味着在乘法运算中,可以先将乘数与括号内的每一项分别相乘,然后再将结果相加。

4.幂的运算:幂的运算规则包括同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,指数相乘;幂的除方,指数相除。

5.合并同类项:合并同类项是指将具有相同字母和相同指数的代数式相加减。

合并同类项时,只需将系数相加减,字母部分保持不变。

6.因式分解:因式分解是指将一个代数式分解成几个整式的乘积的形式。

因式分解的目标是找出代数式的所有因子,并将它们相乘得到原代数式。

7.分配律的应用:分配律在代数式运算中非常重要,它可以帮助简化代数式的运算过程。

例如,在计算(a+b)c时,可以使用分配律将其展开为ac+bc。

8.代数式的简化:代数式的简化是指将代数式进行变形,使其更加简洁。

简化代数式的方法包括合并同类项、因式分解等。

9.运算的优先级:在代数式运算中,乘方、乘除、加减的优先级不同。

应先进行乘方运算,然后进行乘除运算,最后进行加减运算。

10.代数式的运算步骤:代数式的运算步骤包括先进行括号内的运算,然后进行乘方运算,接着进行乘除运算,最后进行加减运算。

在每一步运算中,都需要遵循相应的运算规则。

通过以上简约总结,希望能帮助您更好地理解和掌握代数式运算的规则和步骤。

在实际运算过程中,多加练习,可以提高运算速度和准确性。

第3章 代数式(自主检测)(培优卷)(解析版)

第3章 代数式(自主检测)(培优卷)(解析版)

第3章 代数式 (自主检测)(培优卷)一.选择题(每小题2分,共12分)1.下列说法不正确的是( )A .1,a -都是单项式B .28a -+是多项式C .0不是整式D .π,26a b+都是整式【答案】C【解析】A 、1,-a 都是单项式,该说法正确,故本选项错误;B 、-a 2+8是多项式,该说法正确,故本选项错误;C 、0是整式,该说法错误,故本选项正确;D 、π,26a b+都是整式,该说法正确,故本选项错误.故选C .2若单项式2m n x y -与单项式2312m n x y +-是同类项,那么这两个多项式的和是()A .4612x yB .2312x yC .2332x yD .233 2x y【答案】B【解析】∵单项式x 2y m-n 与单项式-12x 2m+n y 3是同类项,∴223m n m n +=⎧⎨-=⎩,解得:5343m n ⎧=⎪⎪⎨⎪=-⎪⎩,则原式=x 2y 3-12x 2y 3=12x 2y 3,故选:B .3.一个两位数的个位数是a ,十位数比个位数大a ,则这个两位数为( )A .3aB .21aC .12aD .11a【答案】B【解析】这个两位数可表示为:20a +a =21a .故选B .4.代数式3a 2-2a+6的值是8,则32a 2-a+1的值是( ). A .1 B .2 C .3 D .4【答案】B .【解析】试题分析:因为3a 2-2a+6=8,所以3a 2-2a =2,32a 2-a+1=()213212a a -+=1212⨯+=2. 故选:B .5.如果A 是3m 2﹣m+1,B 是2m 2﹣m ﹣7,且A ﹣B+C=0,那么C 是( )A .﹣m 2﹣8B .﹣m 2﹣2m ﹣6C .m 2+8D .5m 2﹣2m ﹣6 【答案】A【解析】解:A-B+C=3m 2﹣m+1-(2m 2﹣m ﹣7)+C=0,解得C=﹣m 2﹣8,故选:A.6.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A .6B .8C .12D .9【答案】C 【解析】解:设重叠部分的面积为c ,∴()()352312a b a c b c -=+-+=-=;故选择:C.二.填空题(每小题2分,共20分)7.写出一个整式,具备以下两个条件:()1它是一个关于字母x 的二次三项式;()2各项系数的和等于10;________.【答案】28x x ++【解析】如x 2+x+8,该整式总共三项最高项是2次,各项系数和为:1+1+8=10.所以该整式满足条件.8.若两个单项式﹣3x m y 2与﹣12xy n 的和仍然是单项式,则这个和的次数是_____. 【答案】3 【解析】因为两个单项式-3x m y 2与-12xy n 的和仍然是单项式, 所以m=1,n=2,所以这个和的次数是1+2=3,故答案为:3 9.已知P=xy ﹣5x+3,Q=x ﹣3xy+2,当x≠0时,3P ﹣2Q=5恒成立,则y=______.【答案】179【解析】∵P=xy-5x+3,Q=x-3xy+2,∴3P-2Q=3xy-15x+9-2x+6xy-4=9xy-17x+5,当9xy-17x=0,即y=179时,3P-2Q=5恒成立, 故答案为179. 10.如图,是由两个半圆组成的图形,已知大的半圆的半径是a ,小的半圆的半径是b ,则图中阴影部分的面积是________.【答案】221122a b ππ- 【解析】图中阴影部分的面积是12πa 2−12πb 2. 故答案为221122a b ππ- 11.已知226x xy +=,2329y xy +=,则22489x xy y ++的值为________.【答案】39【解析】∵2x 2+xy =6,3y 2+2xy =9,∴原式=2(2x 2+xy )+3(3y 2+2xy )=12+27=39.故答案为39.12. 某蓄水池装有A ,B 两根进水管,每小时可分别进水a 吨,b 吨,若单独开放A 进水管,p 小时可将该水池注满.如果A ,B 两根水管同时开放,那么能提前 小时将蓄水池注满.【答案】【解析】设两管同开注满水的时间为t ,则有t (a+b )=ap ,根据题意可得:t ,提前的时间就是:单开A 管的注水时间减去两管同开的注水时间 p , 故答案为.13.如图,数轴上四点O ,A ,B ,C ,其中O 为原点,且3AC =,OA OB =,若点C 表示的数为x ,则点B 表示的数为 ;【答案】-(x-3).【解析】解:∵AC=3,点C 表示的数为x ,∴AO=3+(-x )=3-x=-(x-3),∵OA=OB ,∴点B 表示的数为:-(x-3).故答案为:-(x-3).14.某商店在甲批发市场以m 元/包的价格购进了30包茶叶,又在乙批发市场以n 元/包(m <n )的价格购进了相同的50包茶叶,并以2m n +元/包的价格将所购茶叶全部售出,那么该商家最终的盈亏情况是 【答案】盈利【解析】解:由题意得:总进价为:(30m+50n )元,共进了30+50=80(包), ∵商家以每包2m n +元的价格卖出, ∴总收入为:2m n +×80=(40m+40n )元, ∴利润为:(40m+40n )-(30m+50n )=40m+40n -30m -50n=10m -10n=10(m -n ),∵m >n ,∴10(m -n )>0,∴盈利了.故答案为盈利15.若实数x ,y ,z 满足132345x y z --+==,则代数式3x y z --=_______.【答案】2 【解析】解:设132345x y z k --+===, ∴31x k =+,43y k =+,52z k =-,∴()()()33314352x y z k k k --=+-+--=934352k k k +---+=2故答案为:2.16.将9个数填入幻方的九个格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等,如表一.如表二:将满足条件的另外9个数中的三个数填入了表二,则这9个数的和为 (用含a 的整式表示)【答案】9a+27【解析】如图所示:a+2a+5﹣x+3a+10﹣2x =a+a+7+x ,解得x =a+2,a+a+7+x =2a+7+a+2=3a+9,3(3a+9)=9a+27.故答案为9a+27.三.解答题(共68分)17.(6分)计算:(1)555322351132342224a b a a b a b b ⎛⎫---+- ⎪⎝⎭; (2)()()22224534a b ab a b ab ---【答案】(1)322328a b a b -;(2)22a b ab -.【解析】(1)原式55532235322323228328a b a a b a b b a b a b =--+-+=-.(2)原式2222224534a b ab a b ab a b ab =--+=-.18.(8分)先化简,再求值:(1)35(1)3(4)22m m m --+-,其中m 是最大的负整数. (2)()()232a b c a c b +----,其中a ﹣b=2,b ﹣c=﹣3,【答案】(1)17.(2) 1.【解析】(1)已知m 是最大的负整数,即m=-1()353513411231342222m m m m m m m ⎛⎫--+-=-++-=- ⎪⎝⎭m 1=-,13417m ∴-=(2)()()2322a 2b 2c 3a 3c 2a b c a c b b c a +----=+--+-=-a b 2b c 3==﹣,﹣﹣,a b b c 23∴+=-﹣﹣,a c 1-=-1c a ∴-=19.(10分)已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式;(2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值. 【答案】(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0.【解析】解:(1)∵2A +B =4a 2b ﹣3ab 2+4abc ,∴B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc)=4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc=-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc)=6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc=8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得 8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0. 20.(8分)一个长方形窗户的宽为(a+2b )米,长比宽多(a ﹣2b )米,(1)求这个长方形的长及周长;(2)若长方形的宽为3,面积为18,求a 、b 的值.【答案】(1)长为2a ,周长为6a+4b ;(2)a=3,b=0.【解析】(1)长方形的长为(a+2b)+(a−2b)=2a ,这个长方形的长及周长为2[2a+(a+2b)]=6a+4b ;(2)∵长方形的宽为3,面积为18,∴长方形的长为18÷3=6,即2a=6,a=3,∵a+2b=3,∴b=0.21.(8分)观察下列三行数:2-,4,8-,16,32-,64,…1-,3,7-,17,31-,65,…12-,1,2-,4,8-,16… ()1第①行数按什么规律排列?()2第②、③与第①行数分别有什么关系?()3取每行的第10个数,计算这三个数的和.【答案】()1第一行的数是按(2)n -排列的;()2第二行的数是(2)1n -+,第三行的数是1(2)4n -⨯;()83921⨯+.【解析】()1∵2-,4,8-,16,32-,64,…∴第一行的数是按(2)n -排列的;()2第二行的数是(2)1n -+,第三行的数是1(2)4n -⨯;()3第一行的第10个数是10(2)-;第一行的第10个数是10(2)1-+;第一行的第10个数是101(2)4-⨯; 所以1010101(2)(2)1(2)4-+-++-⨯ 8921=⨯+.22. (8分)某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x (20x >).(1)若该客户按方案一购买,需付款多少元(用含x 的式子表示)?若该客户按方案二购买,需付款多少元(用含x 的式子表示)?(2)若30x =,通过计算说明此时按哪种方案购买较为合算;(3)当30x =时,你能给出一种更为..省钱的购买方法吗?试写出你的购买方法和所需费用. 【答案】(1)方案一:403200x +,方案二:360036x +;(2)按方案一购买更合算;见解析;(3)先按方案一购买20套西装(送20条领带),再按方案二购买10条领带更省钱,共花费4360元.【解析】(1)方案一购买,需付款:()202004020403200x x ⨯+-=+(元),按方案二购买,需付款:()0.92020040360036x x ⨯⨯+=+(元);(2)把30x =分别代入:403200403032004400x +=⨯+=(元),360036360036304600x +=+⨯=(元). 因为44004600<,所以按方案一购买更合算;(3)先按方案一购买20套西装(送20条领带),再按方案二购买()20x -条领带,共需费用: ()202000.94020363280x x ⨯+⨯-=+,当30x =时,363032804360⨯+=(元)∵436044004600<<,∴先按方案一购买20套西装(送20条领带),再按方案二购买10条领带更省钱,共花费4360元.23.(10分)如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD ,其中,2GH cm =,2GK cm =,设BF xcm =.()1用含x 的代数式表示CM =________cm ,DM =________cm .()2当x=2时,求长方形ABCD 的面积.【答案】(1)()2;22x x ++;(2)140.【解析】解:(1)CM =(x +2)cm ,DM =MK =2(x +2)−2=2x +2(cm ),故答案为(x +2),2x +2;(2)长方形的长为:x +x +x +x +2+x +2=14cm ,宽为:4x +2=4×2+2=10cm . 所以长方形ABCD 的面积为:14×10=140cm 2. 24.(10分)如图,有一个形如六边形的点阵,它的中心是一个点,算做第一层,第二层每边两个点,第三层每边三个点,以此类推.(1)填写下表 层数1 2 3 4 5 该层对应的点数 1 6 12(2)写出第n 层对应的点数(n≥2);(3)如果某层一共有72个点,请你求出对应的层数.【答案】(1)18,24;(2) 6(n -1)(n≥2);见解析.(3)13.【解析】分析:(1)观察图形中点的排列规律得到第一层对应的点数为1,第二层对应的点数为6×2-6=6,第三层对应的点数为6×3-6=12,则第四层对应的点数为6×4-6=18,第五层对应的点数为6×5-6=24;(2)第n层对应的点数为6(n-1)(n≥2);(3)利用(2)的结论得到6(n-1)=72,然后解方程即可.详解:(1)第一层对应的点数为1,第二层对应的点数为6×2-6=6,第三层对应的点数为6×3-6=12,则第四层对应的点数为6×4-6=18,第五层对应的点数为6×5-6=24;故答案为18,24;(2)第n层对应的点数为6(n-1)(n≥2);(3)设72个点所对应的层数为n,根据(2)的结论得6(n-1)=72,解得n=13,即第13层对应的点数为72.。

湘教版2020七年级数学第二章代数式自主学习优生提升测试卷B卷(附答案详解)

湘教版2020七年级数学第二章代数式自主学习优生提升测试卷B卷(附答案详解)
12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数_____,2018应排在A,B,C,D,E中的_____位置.
13.按一定规律排成的一列数依次为: , , , , , ,…,按此规律下去,这列数中的第2019个数是_________.
4.若2个单项式 与 的和仍是单项式,则 的值为
A.8B.3C.-3D.2
5.下列各组代数式中是同类项的是()
A. B. 与 C. 与 D. 与
6.按如图所示的运算程序,能使输出的结果为15的是( )
A.x=3,y=-2B.x=-3,y=2
C.x=2,y=3D.x=3,y=-3
7.下列说法中正确的是
解:依题意得: 解得:
∴ =3 =3.
故选B.
【点睛】
本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则及同类项的定义.
5.C
【解析】
【分析】
根据同类项是字母相同且相同字母的指数也相同,可得答案.
【详解】
解:A、不是,因为字母的指数不同;
B、不是,因为字母的指数不同;
C、是,因为字母相同且字母的指数也相同.
【详解】
A: ,不是同类项不能合并,故A选项错误;
B: ,B选项正确;
C: ,故C选项错误;
D: ,故D选项错误.
所以答案为B选项.
【点睛】
本题主要考查了整式运算的法则,熟练掌握相关概念是解题关键.
2.C
【解析】
【分析】
根据同类项的定义,得出关于m,n的方程,求出m,n的值,代入计算即可求得m+n的值.

第三章代数式-苏教版初中数学知识点总结提炼

第三章代数式-苏教版初中数学知识点总结提炼

A BCDF 4.若0<x <1,则x ,1x,x 2的大小关系是 ( )A .1x<x <x 2 B .x <x 2 C .x 2<x <1xD .1x<x 2<x5.当x =2与x =-2时,代数式x 4-2x 2+3的两个值 ( ) A .相等 B .互为倒数C .互为相反数D .既不相等也不互为相反数 6.已知整式x 2-52x =6,则2x 2-5x + 6的值为 ( )A .9B .12C .18D .24 7.根据如图所示的程序计算输出结果.若输入的x 的值是32,则输出的结果为 ( )A .72 B .94 C .12 D .928.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n (m >n )的价格进了同样的60包茶叶,如果商家以每包2m n+元的价格卖出这种茶叶,卖完后,这家商店 ( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定9.一个商标图案如图中阴影部分,在长方形ABCD 中,AB =8cm ,BC =4cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是 ( )A .2(48)cm π+B .2(416)cm π+ C .2(38)cm π+ D .2(316)cm π+ 10.观察下列各式及其展开式: (a +b )2=a 2+2ab +b 2 (a +b )3=a 3+3a 2b +3ab 2+b 3 (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 (a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b )10的展开式第三项的系数是( ) A . 36B . 45C . 55D . 66二、填空题 (每小题2分,共20分)11.若代数式2ab n +5与-3a m -1b 2是同类项,则m + n = .12.某地区今天的最低气温是t℃,据气象台报道,明天的最低气温比今天还要低3℃,明天的最低气温是℃.13.合并同类项7(a-b)-3(a-b)-2(a-b) =.14.已知3x-2y=5,则代数式9x-6y-5的值是.15.当x=时,代数式12-x的值和3+4x的值互为相反数.16.已知-b2+14ab+A=7a2+4ab-2b2,则A=.17.已知当x=1时,3ax2 + bx的值为2,则当x=3时,ax2 + bx的值为.18.已知A是关于a的三次多项式,B是关于a的二次多项式,则A+B的次数是.19.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为131,则满足条件的x的值是.20.观察如图所示图形:它们是按照一定规律排列的,依照此规律,第九个图形中共有个★.三、解答题(共60分)21.计算(每小题4分,共16分)(1) 2xy-12x3 + 2xy+0.5x3+12;(2) 3x+(-5x3)-(-2x)-5x-(+3x2);(3) (a2 + 2ab + b2)-(a2-2ab + b2);(4) 4ab-3b2-[(a2 + b2)-(a2-b2)].22.先化简,再求值(每小题4分,共8分)(1) 已知t=12,求代数式2(t2-t-1)-(t2-t-1)+3(t2-t-1)的值;(2) abc-[2ab-(3abc-bc)+4abc],其中a=2,b=-12,c=-1.23.(6分) 已知代数式ax5 + bx3+cx当x=1时,值为1,求当x=-1时代数ax5 + bx3 +cx的值.24.(6分) 若a+10=b+9=c+8,求代数式(a-b)2+(b-c)2+(c-a)2的值.25.(6分) 我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米价为1.5元;乙市为:起步价10元,3千米后每千米价为1.2元.(1) 试问在甲,乙两市乘坐出租车s(s>3)千米的价差是多少元?(2) 如果在甲,乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些? 高多少?26.(6分) 定义一种对于三位数abc(a,b,c不完全相同)的“F运算”:重排abc的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc-213时,则.(1) 求579经过三次“F运算”的结果(要求写出三次“F运算”的过程);(2) 假设abc中a>b>c,则abc经过一次“F”运算得(用代数式表示);(3) 若任意一个三位数经过若干次“F ”运算都会得到一个固定不变的值,那么任意一个四位数也经过若干次这样的“F ”运算是否会得到一个定值,若存在,请直接写出这个定值,若不存在,请说明理由.27.(6分) 现用a 根长度相同的火柴棒,按如图①摆放时可摆成m 个小正方形,按如图②摆放时可摆成2n个小正方形.图①图②.(1) 当a =52时,若按图①摆放可以摆出了 个小正方形;若按图②摆放可以摆出了 个小正方形;(2) 写出m 与n 之间的关系式;(3) 用a (a >52) 根火柴棒摆成图①的形状后,若再拿这a 根火柴棒也可以摆成图②的形状,写出符合题意的a 的值 (直接写出一个值即可).28.(6分)已知点A ,B 在数轴上的位置所表示的数分别用a 、b 表示.利用数形结合思想回答下列问题: (1)观察下表:数 第1组 第2组 第3组 第4组 第5组 第6组 … a 5 -5 6 -6 -10 -2.5 … b3 0 -4 -4 2 -2.5 … A 、B 两点的距离2510212…(2)通过对上表中具体数据的研究和归纳,你发现数轴上表示x 和-2两点之间的距离表示为____________. (3)若x 表示一个有理数,则13x x -++的最小值是____________.(4)已知a 、b 满足161032a a b b -+-=-+--,则22a b +的最大值是__________.教务主任签字:___________。

《代数式》整式及其加减

《代数式》整式及其加减

与不等式结合
整式加减法也常常与不等式结合使用,通过不等式的 研究和分析,可以更好地掌握整式的加减法技能。
感谢您的观看
THANKS
整式的乘法运算
3. 多项式与多项式的乘法运算
将每个多项式分别展开,然后根据乘法分配律进行计算。
公式示例
$(2x^2 + 3x) \times (x + 2) = 2x^3 + 4x^2 + 3x^2 + 6x = 2x^3 + 7x^2 + 6x$。
整式的除法运算
• 总结词:整式的除法运算主要涉及单项式与单项式、单项式与 多项式、多项式与多项式的除法运算。
要点二
解决物理问题
整式加减法在解决物理问题中也有很多应用,例如牛 顿第二定律$F=ma$,其中$F$表示力,$m$表示质量 ,$a$表示加速度,通过整式加减法可以方便地求解加 速度。
在日常生活中的应用
计算购物优惠
在日常生活中,整式加减法可以用来计算购物优惠。例 如,如果一件商品的原价为$x$元,折扣为$y$元,那么 实际支付的金额为$(x-y)$元,这个可以通过整式加减法 来计算。
合并同类项
将相同项合并,简化表达式。
平方差公式
利用平方差公式简化表达式。
提取公因数
将公因数提取出来,简化表达式。
完全平方公式
利用完全平方公式简化表达式。
整式的约分技巧
找分子分母的最大公约数
约分的关键是找到分子分母的最大公约数。
将公约数约简
将分子分母同时除以它们的最大公约数。
化简分数
将分子分母化为互质的整数。
去括号、移项等基本技能。
02
提高解题速度
多做习题能够提高解题速度,因为熟能生巧。在面对考试时,能够更加
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档