整式的乘除经典讲义(可

合集下载

整式的乘除(讲义及答案)

整式的乘除(讲义及答案)

整式的乘除(讲义)课前预习1. 整式的分类:___________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2. ________________________________________________叫做同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3. 乘法分配律:()a b c +=_______________.4. 类比迁移:老师出了一道题,让学生计算52x y x ÷.小聪是这么做的:55232x y x x x x x y x y x x y x x x ⋅⋅⋅⋅⋅÷===⋅ 请你类比小聪的做法计算:22282m n m n ÷.知识点睛1. 单×单:_______乘以________,_________乘以________.2. 单×多:根据________________,转化为单×单.3. 多×多:握手原则.4. 单÷单:系数除以系数,字母除以字母.5. 多÷单:借用乘法分配律.精讲精练1. ①■342xy xy z ⋅=_______; ②2323(2)x y x y ⋅-=_______; ③231(4)2x y y ⎛⎫-⋅-= ⎪⎝⎭______;④322(3)(2)a a -⋅-; ⑤332(2)(2)x xy xy ⋅-⋅-.2. ①222(53)ab ab a b ⋅+______________________; ②221232ab c ab ab ⎛⎫-⋅= ⎪⎝⎭____________________; ③31(2)14a a ⎛⎫-⋅-= ⎪⎝⎭_________________;④222(2)()x y xy -⋅=_________________________; ⑤2222(3)x y z x x y -+-⋅=_________________________.3. 计算:①(34)(34)x y x y +⋅-; ②()(321)m n m n -⋅-+;③(2)(32)m n m n --⋅-; ④2(2)x y -;⑤()()a b c a b c +-⋅-+.4. 计算:①2 56(13)x x x x --+; ②210(23)(42)x x x --+.5. ①2212a b c ab ÷=_____;②3532(3)(0.5)m n m n -÷-=______; ③62(2)()xy xy -÷=______;④22(2)(_______)2a b a -÷=; ⑤4348()()3a b a b ⎡⎤-÷-=⎢⎥⎣⎦___________; ⑥23243(2)(7)14x y xy x y ⋅-÷.6. ①532(46)(2)x x x -÷-=_____________; ②2211322x y xy xy xy ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________; ③234432214633ab a b a b ab ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭___________________; ④23222()(2)a b a b ab -÷=_____________; ⑤43522(2)()m n m n mn --÷=________________; ⑥23(____________________)3231a a a ÷=-+-.7. 计算:①423322223(3)(2)(2)4a b ab a b a b a b --⋅---÷;②322()(2)(48)(4)a b a b ab a b ab +-+-÷-;③2222(1)(1)(2)a a a --++;④433222113()(2)22a a a a a a a ⎛⎫⎛⎫-+÷--÷⋅+ ⎪ ⎪⎝⎭⎝⎭.【参考答案】课前预习1.数字因数,指数和,多项式,次数最高2.所含字母相同,并且相同字母的指数也相同的项,把同类项的系数相加,字母和字母的指数不变3.ab +ac4.4n知识点睛1.系数,系数;字母,字母2.乘法分配律精讲精练1. ①248x y z②536x y - ③242x y④818a - ⑤7432x y2. ①10a 2b 3+ 6a 3b 2 ②232213a b c a b - ③4122a a +-④44252x y x y - ⑤3234226x y x y z x y --+3. ①22916x y -②22352m mn m n n ++-- ③2262m mn n -++④2244x xy y -+ ⑤2222a b bc c -+-4. ①32618x x x -+-②2286x x ++ 5. ①2abc②36n ③44 64x y④322a b ⑤66a b -⑥324x y - 6. ①323x x -+②621x y -+- ③22312182a b a b -- ④11b 44- ⑤232m n m --⑥532693a a a +-- 7. ①424a b -②223a ab b +- ③251a --④4361a a ---。

整式的乘除讲义

整式的乘除讲义
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
6、完全平方公式可以逆用,即:
十一、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。
零指数幂
负指数幂
整式的加减
单项式与单项式相乘
单项式与多项式相乘
整式的乘法多项式与多项式相乘
整式运算平方差公式
完全平方公式
单项式除以单项式
整式的除法
多项式除以单项式
一、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
五、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n= am÷an(a≠0)。
六、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
七、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

第一讲 整式的乘除(一)讲义北师大版数学七年级下册

第一讲 整式的乘除(一)讲义北师大版数学七年级下册

第一讲 整式的乘除(一)【知识梳理】1.同底数幂乘法法则:=n m a a · (m.n 都是正整数);逆运算=+n m a .2.幂的乘方法则:()=nma (m.n 都是正整数);逆运算=mn a .3.积的乘方法则:()=nab (n 为正整数);逆运算=n n b a .4.同底数幂除法法则:=÷n m a a (a ≠0,m.n 都是正整数);逆运算=-n m a .5.零指数的运算:=0a )(0≠a ; 6.负整数指数幂的运算:=-pa.,是正整数)(p a 0≠ 【重点难点】同底数幂的计算法则及其逆运算的运用,必须做到非常熟练。

【典例精析】例1:计算:(1)3352a a a a a ⋅⋅+⋅ (2)()3823222b a b a ⋅-(3)()()2442432a a a a a -++⋅⋅ (4)()3-30311-32⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛(5)()1-2-331-211⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+- (6)()02-1-32018-31312∏+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-(7)()()4322a b b a -⋅- (8)()()()y x x y y x -⋅-⋅-510例2:已知5,3==n ma a,求(1)n m a 32+的值;(2)n m a 2-3的值.变式练习2:(1)已知2x a =,3y a =,求3x y a +;yx a -2(2)如果339+=x x,求x 的值;(3)已知2x m =,2y n =,求8x y +的值(用m 、n 表示).例3:计算:(1)(-4)2×0.252 (2)0.1253×(-8)3 (3)()20042002200315.132-⨯⨯⎪⎭⎫⎝⎛变式练习3: (1)(-0.125)2007×(-8)2008(2)20102011324143⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-【巩固练习】1. 计算(3a 2b 3)3,正确的结果是( )A .27a 6b 9B .27a 8b 27C .9a 6b 9D .27a 5b 62.()()()2323a a a -⋅⋅-的结果正确的是( ) A.11a B.11-a C.10-a D.13a3. 下列运算中,正确的是( )A.5552a a a =+ B.1055a a a =+C. 10552a a a =+D.3322y x xy y x =+4. 计算3221⎪⎭⎫⎝⎛-y x 的结果正确的是( )A.y x2441 B. y x 3681 C. yx 3581- D. yx3681-5. 下列各计算题中正确的是( ). A .m ma a a22=⋅ B .624)(a a = C .623x x x x =⋅⋅ D .632)(ab ab =6.下列计算: ① 0(1)1-=- ② 1(1)1--=- ③ 21222-⨯=④ 2213(0)3a a a-=≠ ⑤ 22()()m m a a -=- ⑥ 32321a a a a÷⨯=正确的有( ) A. 2个 B. 3个 C. 4个 D. 5个 7.a 为任意实数,则下列等式中恒成立的是( )A.236a a a =÷B.632a a a =•C.2842a a a =⨯D.a a a =-2334 8.下列运算中,正确的是( )A .32523a a a =+ B.532a a a =⋅ C.832)(a a = D.326a a a =÷9.下列计算正确的是( ) A.0)2.0(0=- B.1)1.0(3=- C.33310=÷- D.)0(44≠=÷a a a a11.(x ﹣y )4•(y ﹣x )3可以表示为( ) A .(x ﹣y )7 B .﹣(x ﹣y )7 C .(x ﹣y )12 D .﹣(x ﹣y )1212.计算(1)()()3122122-+⎪⎭⎫ ⎝⎛+----π (2)()1012201021---+⎪⎭⎫ ⎝⎛π(3)()()1-02013221-3-1-3-3-⎪⎭⎫ ⎝⎛∏⨯++ (4)()()()3310a b a b b a -÷-÷-(5)3221--÷⎪⎭⎫⎝⎛---)()(πx (6)()()()()a b b a a b b a -•-+-•-432(7)()()()()()()x x x x x x x x -⋅-⋅--⋅-+223322422413.(1)若4323==yx ,求y x -27的值.(2)已知2x +5y -3=0,求yx324⋅的值.(3)若63=m,23=n,求1323+-n m 的值.【强化训练】1. 填空题:(1)=⋅⋅53a a a (2)()()=⋅a a 33 (3)=⋅⋅-+11m m m X X X .(4)()()=+⋅+2355x x (5)54253a a a a ⋅+⋅= .(6)()()()()()=++++-+⋅+5432574n m n m n m n m n m .2. 若34m a a a =,则=m ____;若416a x x x =,则=a ____;3. 若2,5m n a a ==,则m n a += ;4. 若310510==n m ,,求n m 3210-的值。

初二数学上册讲义(第五章 整式的乘除)

初二数学上册讲义(第五章 整式的乘除)

第五章 整式的乘除一、幂的运算1.同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+同底数幂的乘法法则可以逆用:即n m n m p a a a a ∙==+如:⎪⎩⎪⎨⎧⋅=⋅=⋅==+++434352526617x x x x x x x x x x【例题分析】1、()()________45=-∙-x y y x2、若a m =2,a n =3,则a m+n =3、若6422=-a ,则a= ;若8)3(327-=⨯n ,则n= .【同类练习】1. ()()()=-⋅-⋅-232x y x y y x2. 若,35,25==n m 那么35++n m 的值为 。

3.已知x m -n ·x 2n+1=x 11,且y m -1·y 4-n =y 7,则m =____,n =____.4. 若125512=+x ,求x x +-2009)2(的值。

2.幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn p a a a a )()(=== 如:23326)4()4(4==【例题分析】1.若2,x a =则3x a =2.计算()[]()[]mnx y y x 2322--=3. 已知63m =,29=n ,求1423++n m 的值。

【同类练习】1.若32=n a ,则n a 6= .2.设4x =8y−1,且9y =27x−1,则x-y 等于 。

3. 若,512=+n a 求36+n a 的值。

3.积的乘方法则:n n n b a ab =)((n 是正整数)。

积的乘方等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙- 积的乘方法则可以逆用:即()()⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧-=-=⎥⎦⎤⎢⎣⎡-⋅=⎪⎪⎭⎫ ⎝⎛-⋅==⋅=⎪⎪⎭⎫ ⎝⎛⋅=,为奇数,1为偶数,11)1(1,11)1(1常见:,n n a a a a a a a a ab b a nnn n n n nn n nn 【例题分析】 1. 计算:()[]()()[]43p pm n n m m n -⋅-⋅-2. 已知332=-b a ,求96b a 的值为 3. 若13310052+++=⨯x x x , 求x 的值。

第9讲(学生)第1章 整式的乘除 两数和的平方

第9讲(学生)第1章 整式的乘除 两数和的平方

第9讲 乘法公式两数和的平方 学习目标:能根据完全平方公式的特点,正确运用完全平方公式进行简单计算学习重点:掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算. 学习难点: 综合运用平方差公式与完全平方公式进行计算.学习流程1.问题:根据乘方的定义,我们知道:a 2=a ·a ,那么(a+b )2 应该写成什么样的形式呢?(a+b )2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=__ p 2+2p+1; (m+2)2=_ p 2-2p+1__;(2)(p-1)2=(p-1)(p-1)=________; (m-2)2=_______ 完全平方公式:(a+b )2= a 2+2ab+b 2、 (a-b )2=a 2-2ab+b 2两数和的平方,等于它们的平方和,加上它们的积的2倍.回答问题.(1)公式的左边是什么形式?(2)公式的右边是什么形式?(3)公式的右边有多少项?(4)公式的右边的符号有什么特点? 公式特点:1、积为二次三项式2、积中两项为两数的平方和;3、另一项是两数积的2倍,且与乘式中间的符号相同。

首平方,尾平方,积的2倍在中央4、公式中的字母a ,b 可以表示数,单项式和多项式。

乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:(1)切勿把此公式与公式()222b a ab = 混淆,而随意写成()222b a b a +=+ .(2)切勿把“乘积项”ab 2中的2丢掉.(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算完全平方公式:222()2a b a ab b ±=±+,记忆口诀:首平方,尾平方,两倍乘积放中央, 加减看前方,同号加 异号减。

(完整版)整式的乘除法专题讲义

(完整版)整式的乘除法专题讲义

第151讲整式的乘除法专题一、知识框架二、本节重点1.幂的乘法运算:(1)同底数幂的乘法:同底数幂相乘底数不变指数相加.(注意当底数互为相反数时要化成同底数幂,再运用同底数幂乘法法则进行运算).表示:m n m na a a+⋅=(,m n都是整数)(2)幂的乘方:幂的乘方,底数不变指数相乘.表示:()n m mna a=(,m n都是整数);逆运算:()()n mmn m na a a==(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.表示:()n n nab a b=(n是整数);逆运用:()nn na b ab=2.同底数幂的除法:同底数幂相除,底数不变,指数相减.表示:m n m na a a-÷=(0,,a m n≠都是整数).3.整式的乘法运算:(1)单项式乘法法则:单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有字母,连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.4.整式的除法运算:(1)单项式除以单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数.三、学生笔记四、经典题型题型一:幂的乘法运算1. 计算(1)()()()3225a a a a -⋅-⋅-⋅ (2)()()()24s t t s s t -⋅-⋅-(3)()()3224233a b ab ⋅- (4)()()()()32232228x y x x y +⨯-⨯-(5)()()2003200231515530.12522135⎛⎫⎛⎫⋅+⋅ ⎪ ⎪⎝⎭⎝⎭ (6)()()23m n x y y x ⎡⎤⎡⎤-⋅-⎣⎦⎣⎦2. (1)如果1128164n n ⋅⋅=,则_________n =.(2)已知()()535,7x y x y +=+=,则()812x y +的值为_____________. (3)已知333,2m n a b ==,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值_________________. 3. 若()22nab -与29m a b -互为相反数,求m n 的值.4. (1)已知31416181,27,9a b c ===,则,,a b c 的大小关系____________________.(2)比较5554443333,4,5的大小______________________.题型二:同底数幂的除法5. (1)()()()()33323423a a a a ⎡⎤⋅-÷÷⎢⎥⎣⎦(2)1381x =6. 用科学记数法表示下列各数:(1)0.0000512(2)-0.00000717. 计算:(用科学记数法表示结果)(1)()()479101810⨯÷-⨯ (2)()()347210210---⨯÷-⨯8. 若34,97x y ==,则23x y -的值____________.9. 已知()321x x +-=,整数x 的值为________________.10. 计算21103,105αβ--==,求6210αβ+的值.题型三:整式的乘法运算11. (1)()()3252345a a a a -+-⋅-(2)()()2221354a b ab a b a ab b ⎡⎤+--⎣⎦(3)()()()3121x x x x +---+ (4)()()()()221124x x x x -+---12. (1)已知56x y +=,求2530x xy y ++的值.(2)已知+5,6x y xy ==,求22x y xy +的值.13. ()()222762x xy y x y x y A x y B -----=-+++.求__________,___________A B ==.14. 若多项式28x px ++和多项式23x x q -+的乘积中不含3x 和2x 项,求p 和q 的值.15. 先化简,再求值:()()()()122322x y x y x y x y ----+,其中22,5x y =-=.题型四:整式的除法运算16. (1)()35223123a b c a b -÷- (2)232443232113248a b c ab c a b ⎡⎤⎛⎫⎛⎫⎛⎫--÷÷-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦17. 化简求值:()()()2544545x y y x y x ⎡⎤+-+÷-⎣⎦,其中1,3x y =-=.18. 若x 取整数,则使分式6321x x +-的值为整数的x 值有___________个. 19. 若13x x+=,则2421x x x ++的值为_______________.。

整式的乘除-单元复习-讲义

整式的乘除-单元复习-讲义

永成教育一对一讲义教师: 学生:日期:2014. 星期:时段:完全平方公式:()=+2b a ,()=-2b a练习2:计算①)15()31(2232b a b a -⋅ ②xy y xy y x 3)221(22⋅+-③)86)(93(++x x ④)72)(73(y x y x -+ ⑤2)3(y x -3、整式的除法 复习巩固例题精讲类型一 多项式除以单项式的计算 例1 计算:(1)(6ab+8b)÷2b ; (2)(27a 3-15a 2+6a)÷3a ;练习: 计算:(1)(6a 3+5a 2)÷(-a 2); (2)(9x 2y-6xy 2-3xy)÷(-3xy);(3)(8a 2b 2-5a 2b +4ab)÷4ab.类型二 多项式除以单项式的综合应用 例2 (1)计算:〔(2x+y)2-y(y+4x)-8x 〕÷(2x)(2)化简求值:〔(3x+2y)(3x-2y)-(x+2y)(5x-2y)〕÷(4x) 其中x=2,y=1练习:(1)计算:〔(-2a 2b )2(3b 3)-2a 2(3ab 2)3〕÷(6a 4b 5).(2)如果2x-y=10,求〔(x 2+y 2)-(x-y)2+2y(x-y)〕÷(4y)的值3、测评填空:(1)(a 2-a)÷a= ;(2)(35a 3+28a 2+7a)÷(7a)= ; (3)( —3x 6y 3—6x 3y 5—27x 2y 4)÷(53xy 3)= . 选择:〔(a 2)4+a 3a-(ab)2〕÷a = ( ) A.a 9+a 5-a 3b 2 B.a 7+a 3-ab 2 C.a 9+a 4-a 2b 2 D.a 9+a 2-a 2b 2 计算:(1)(3x 3y-18x 2y 2+x 2y)÷(-6x 2y); (2)〔(xy+2)(xy-2)-2x 2y 2+4〕÷(xy).4、拓展提高:(1)化简 3422222++⨯⨯-n nn ; (2)若m 2-n 2=mn,求2222m n n m +的值.小结:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

整式的乘除复习讲义

整式的乘除复习讲义

整式的乘除复习讲义复习整式的乘除复习讲义1. 知识结构总结:2. 公式总结:(1)幂的运算性质:① (、为正整数) ② (为正整数) ③ (、为正整数) ④(、为正整数,且)() (,为正整数)(2)整式的乘法公式: ①②③3. 科学记数法,其中4. 思想方法总结(1)化归方法 (2)整体代换的方法 (3)逆向变换的方法5. 需注意的问题(1)乘法公式作为多项式乘法的特殊形式,在今后学习中有着广泛应用,要注意这些公式的结构特点,以便正确使用公式。

(2)注意运算中的符号,区别与,,【典型例题】⒈幂的运算⑴ 23653p p ⋅= ; ⑵ ()()236a ab -⋅-= ;⑶224)2()6(a b a -⋅-=⑷ = ⑸()()73410105102⋅⨯⋅⨯=2.乘法公式计算:⑴(2x+3)(3x-1) ⑵t 2-(t+1)(t-5) ⑶ (3m-n)(n+3m)()325a a ÷⑷ (a+2b)2⑸(3x-2y)2 ⑹例, 计算:1、(a -2b)2-(a +2b)2 2、(a +b +c)(a -b -c)练习,1、 2、20082-2009×2007 3、 (2a-b)2(b+2a)23.整式的乘除 [例1] 已知,求的值。

[例2] 已知,,求的值。

[例3]已知,求的值。

[例4] 已知,,求的值。

例5练习1 若a m =10 b n =5求2m +b 3n3己知x+5y=6 , 求 x 2+5xy+30y 的值。

七,小结:本节重点符号语言, 运算法则, 公式, 转化,整体思想。

22,b a b +-已知a+b=5 ab=3 求a 的值22111a a a a-=+2 已知求的值32232242()55x y x y x y -+÷()2a b c ++3.4. (为偶数)5. 0.00010490用科学记数法表示为6.7.8.9.10. 若,那么二. 选择题:1. 若,,则()A. 4B. 5C. 8D. 162. 如果,那么=()A. B. C. D.3. 所得结果是()A. B. C. D. 24. 已知为正整数,若能被整除,那么整数的取值范围是()A. B. C. D.5. 要使成为一个完全平方式,则的值为()A. B. C. D.6. 下列各式能用平方差公式计算的是()A. B.C. D.7. 下列计算不正确的是()A. B.C. D.8. 为有理数,那么与的大小关系为()A. B.C. D. 前面三种答案都可能三. 解答题:1. 计算:(1)(2)(3)(为正整数)(4)2. 化简求值:已知,求的值。

七年级数学整式的乘法(学生讲义)

七年级数学整式的乘法(学生讲义)

七年级数学整式的乘法(学生讲义)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2章:整式的乘除与因式分解一、基础知识1.同底数幂的乘法:m n m n=,(m,n都是正整数),即同底数幂相乘,底a a a+数不变,指数相加。

2.幂的乘方:()m n mn=,(m,n都是正整数),即幂的乘方,底数不变,指数a a相乘。

3.积的乘方:()n n n=,(n为正整数),即积的乘方,等于把积的每一个ab a b因式分别乘方,再把所得的幂相乘。

4.整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m(a+b+c)=ma+mb+mc(a、b、c都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差”,即用字母表示为:(a+b)(a-b)=a2-b2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a、b都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式.如(3x+y-2)2=(3x+y)2-2×(3x+y)×2+22=9x2+6xy-12x+y2-4y+4,或者(3x+y-2)2=(3x)2+2×3x (y-2)+ (y-2)2=9x2+6xy-12x+y2-4y+4.前者是把3x+y看成是完全平方公式中的a,2看成是b;后者是把3x看成是完全平方公式中的a,y-2看成是b.(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。

整式的乘除复习讲义资料

整式的乘除复习讲义资料
• 单项式乘多项式的应用: a. 计算复杂表达式 b. 解决实际问题
• a. 计算复杂表达式 • b. 解决实际问题
多项式乘多项式
乘法法则:多项式乘多项式,用每个单项式分别乘以另一个多项式的每一项,再把所得 的积相加
乘法公式:(a+b)(c+d)=ac+ad+bc+bd
乘法性质:乘法满足交换律、结合律和分配律
乘法和除法可以交换顺序,但 需要保证结果的正确性
整式乘除法中,要注意符号的 变化和结果的简化
代数公式的正确使用
牢记公式:牢记整式乘除法的基本公式,如乘法公式、除法公式等。 理解公式:理解公式的含义,知道公式中每个符号代表的意义。 正确运用:在解题过程中,根据题目要求,正确运用公式进行计算。 注意细节:注意公式中的细节,如符号、系数等,避免因疏忽而导致的错误。
例子:3x^2 * 2y^3 = 6x^2y^3
注意事项:系数和同底数幂 相乘时,要注意符号和指数
的变化
单项式乘多项式
• 单项式乘多项式:单项式乘以多项式,等于单项式乘以多项式的每一项,再把所得的积相加。
• 单项式乘多项式的步骤: a. 单项式乘以多项式的每一项 b. 将所得的积相加
• a. 单项式乘以多项式的每一项 • b. 将所得的积相加
单项式除以多项式
单项式除以多项式,首先将多项式分解为两个因式,其中一个因式与单项式相同,另一个因式 与单项式相乘。
计算结果等于两个因式的乘积,即单项式除以多项式的商。
如果多项式不能分解为两个因式,则不能进行除法运算。
除法运算的步骤:分解多项式、计算商、验证结果。
多项式除以多项式
除法运算:多 项式除以多项 式,结果仍是
多项式

整式的乘除讲义.rtf

整式的乘除讲义.rtf

3. 若x2+mx-15=(x+3) (x+n),则m的值为(
)
A.-5
B.5
C.-2
【板块四】单项式除以单项式
D.2
4. 下列各式中,计算结果为x3y4的是(
)
A.x3y÷xy
B.x2y3÷xy
C.x3y2 xy2 【板块五】多项式除以单项式
D.(-x3y3)2÷x3y2
ab
ab
5. 若多项式M与 2 的乘积为-4a3b3+3a2b2- 2 ,则M为( )
(-4a)(2a2+3a-1)=______________;
(-3x)(x3+2x2-3 x-5)=______________;
(x2-x-1)·(-x)2=______________;
(x2-2y)·(xy2)2=______________; -3x3·(5xn-1) =______________. 7. 下列计算正确的有( )
③(-a+b) (-a-b)(a2+b2)
④(xn-3)(xn+5)
⑤(a6 a2) 2÷[(a9 a3) a2]
⑥(-2a3b2c)2÷4a2b2c2
20. 先化简,再求值:(a+b) (a-b) +(4ab3-8a2b2)÷4ab,其中a=2,b=1.
三、测试提高
【板块一】单项式乘以单项式
整式的乘除
一、知识体系
1. 单×单
单项式与单项式相乘,把它们的 、
分别相乘,其余____连同它
的____不变,作为

2. 单×多
单项式与多项式相乘,就是根据________用单项式去乘多项式的________,再

整式的乘除 复习讲解

整式的乘除 复习讲解

整式的乘除复习讲义知识点回顾一 同底数幂的乘法法则同底数幂相乘,底数不变指数相加。

(m,n都是正数)是幂的运算中最基本的法则,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)二.幂的乘方与积的乘方1. 幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. .3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a34.底数有时形式不同,但可以化成相同。

5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=a n+b n(a、b均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

五. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,5公式可以逆用,即可以从右边计算到左边;6此公式也适用于三个或三个以上的同底数幂相除,如(为正整数,)六. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

整式乘除经典讲义可直接用

整式乘除经典讲义可直接用

整式的乘除讲义同底数幂的乘法同底数幕的乘法法则:a m a n a m n(m,n都是正数)是幕的运算中最基本的法则,在应用法则运算时, 要注意以下几点:①法则使用的前提条件是:幕的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1 时,不要误以为没有指数;③不要将同底数幕的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幕相乘时,法则可推广为a m a n a p a m n p(其中m n、p均为正数);⑤公式还可以逆用:a mn a m a n(m n均为正整数)幂的乘方与积的乘方1.幕的乘方法则:(a m)n a mn(m,n都是正数)是幕的乘法法则为基础推导出来的,但两者不能混淆.2.(a m)n(a n)m a mn(m, n 都为正数).3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a34.底数有时形式不同,但可以化成相同。

5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=a n+b n(a、b均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幕相乘,即(ab)n a n b n(n 为正整数)。

7.幕的乘方与积乘方法则均可逆向运用。

同底数幕的除法1.同底数幕的除法法则:同底数幕相除,底数不变,指数相减,即a m a n a mn(a工0,m、n都是正数,且m>n).2.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幕相除”而且0不能做除数,所以法则中a^ 0.②任何不等于0的数的0次幕等于1,即a0 1(a 0),如100 1 ,(-2.5 °=1),则0°无意义•③任何不等于0的数的-p次幕(p是正整数),等于这个数的p的次幕的倒数,即(a^ 0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;④ 运算要注意运算顺序整式的乘法1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项 式里含有的字母,连同它的指数作为积的一个因式。

第四讲——整式地乘除与因式分解讲义

第四讲——整式地乘除与因式分解讲义

整式的乘除与因式分解一、根底知识1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法如此:n m n m a a a +=⋅〔n m ,都是正整数〕同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

5、幂的乘方法如此:mn n m a a =)(〔n m ,都是正整数〕幂的乘方,底数不变,指数相乘。

幂的乘方法如此可以逆用:即m n n m m n a a a )()(== 6、积的乘方法如此:n n n b a ab =)(〔n 是正整数〕 积的乘方,等于各因数乘方的积。

7、同底数幂的除法法如此:nm n m a a a -=÷〔n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。

8、 零指数和负指数;10=a ,即任何不等于零的数的零次方等于1。

p p aa 1=-〔p a ,0≠是正整数〕,即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、单项式的乘法法如此:单项式与单项式相乘,把他们的系数,一样字母分别相乘,对于只在一个单项式里含有的字母,如此连同它的指数作为积的一个因式。

注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②一样字母相乘,运用同底数幂的乘法法如此。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除经典讲义(可直接用)整式的乘除讲义同底数幂的乘法同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)幂的乘方与积的乘方1. 幂的乘方法则:mn nm a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2.),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nn nb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ②任何不等于0的数的0次幂等于1,即)0(10≠=a a,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即ppa a 1=-( a≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx+++=++)())((2平方差公式1.平方差公式:两数和与这两数差的积,等于它们的平方差, 即22))((b a b a b a -=-+。

其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

完全平方公式1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即2222)(b ab a b a +±=±; 口决:首平方,尾平方,2倍乘积在中央;2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

3.运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。

整式的除法1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; 2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

(一)填空题1.x 10=(-x 3)2·_________=x 12÷x ( )2.4(m -n )3÷(n -m )2=___________. 3.-x 2·(-x )3·(-x )2=__________.4.(2a -b )()=b 2-4a 2.5.(a -b )2=(a +b )2+_____________.6.(31)-2+π0=_________;4101×0.2599=__________.7.用科学记数法表示-0.0000308=___________.8.(x -2y +1)(x -2y -1)=( )2-( )2=_______________.9.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________. (二)选择题11.下列计算中正确的是……………………………………………………………( )(A)a n·a2=a2n (B)(a3)2=a5 (C)x4·x3·x=x7 (D)a2n-3÷a3-n=a3n-612.x2m+1可写作…………………………………………………………………………()(A)(x2)m+1 (B)(x m)2+1 (C)x·x2m (D)(x m)m+113.下列运算正确的是………………………………………………………………()(A)(-2ab)·(-3ab)3=-54a4b4 (B)5x2·(3x3)2=15x12(C)(-0.16)·(-10b2)3=-b71×10n)=102n(D)(2×10n)(214.化简(a n b m)n,结果正确的是………………………………………………………()(A)a2n b mn (B)n m n b a2(C)mnn ba2(D)nmn ba215.若a≠b,下列各式中不能成立的是………………………………………………()(A)(a+b)2=(-a-b)2 (B)(a+b)(a-b)=(b+a)(b-a)(C)(a-b)2n=(b-a)2n16.下列各组数中,互为相反数的是……………………………………………… ( )(A )(-2)-3与23 (B )(-2)-2与2-2(C )-33与(-31)3 (D )(-3)-3与(31)3 17.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x 2(D )(x -3)(x -9)=x 2-2718.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b(三)计算19.(1)(-3xy 2)3·(61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(2a -3b )2(2a +3b )2; (4)(2x +5y )(2x -5y )(-4x 2-25y 2);(5)(20a n-2b n-14a n-1b n+1+8a2n b)÷(-2a n-3b);(6)(x-3)(2x+1)-3(2x-1)2.(四)解答题(每题6分,共24分)20.已知a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab的值.21.已知a+b=5,ab=7,求222ba ,a2-ab +b2的值.22.已知(a+b)2=10,(a-b)2=2,求a2+b2,ab的值.23.已知a2+b2+c2=ab+bc+ac,求证a=b =c.。

相关文档
最新文档