实验三 编程实现列主元高斯消去法

合集下载

数值分析_列主元高斯消元法_直接LU分解

数值分析_列主元高斯消元法_直接LU分解

一.实验要求二.算法描述三.实验代码//列主元高斯消元法#include<iostream>#include<cmath>using namespace std;double A[100][100];//系数矩阵double b[100];//右端项double x[100];//结果double e;//用于溢出控制int n;//矩阵n*n大小int main(){cout << "----列主元高斯消元法----\n";cout << "请输入矩阵的大小n及e:"; cin >> n >> e;//1.输入A,b,ecout << "请输入系数矩阵:" << endl;for (int i = 1; i <= n; i++)for (int j = 1; j <=n; j++)cin >> A[i][j];cout << "请输入右端矩阵:" << endl;for (int i = 1; i <= n; i++)cin >> b[i];for (int k = 1; k <= n - 1; k++)//2.选主元及消元{double T = A[k][k]; int ik = k;for(int l = k + 1; l <= n; l++)if(A[l][k]>T){ T = A[l][k]; ik = l; }if (T < e){ cout << "求解失败." << endl; exit(0);}if (ik != k){double temp;for (int l = 1; l <= n; l++)//交换ik行和k行{temp = A[ik][l]; A[ik][l] = A[k][l]; A[k][l] = temp;}temp = b[ik]; b[ik] = b[k]; b[k] = temp;//交换b_ik 和bk}for (int i = k + 1; i <= n; i++){T = A[i][k] / A[k][k];b[i] = b[i] - T*b[k];for (int j = k + 1; j <= n; j++){A[i][j] = A[i][j] - T*A[k][j];}}}//3.回代if (abs(A[n][n]) <= e){ cout << "求解失败." << endl; exit(0); }x[n] = b[n] / A[n][n];for (int i = n - 1; i >= 1; i--){double sum = 0;for (int j = i + 1; j <= n; j++)sum += A[i][j] * x[j];x[i] = (b[i] - sum) / A[i][i];}cout << "结果:" << endl;//打印xifor (int i = 1; i <= n; i++)cout << x[i] << " ";cout << endl;return 0;}//直接LU分解法#include<iostream>#include<cmath>using namespace std;double A[100][100];//系数矩阵double b[100];//右端项double u[100][100];//u矩阵double l[100][100];//l矩阵double y[100];//中间变量double x[100];//结果double e;//用于溢出控制int n;//矩阵n*n大小int main(){cout << "----直接LU分解法----\n";cout << "请输入矩阵的大小n及e:"; cin >> n >> e;//1.输入A,b,ecout << "请输入系数矩阵:" << endl;for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)cin >> A[i][j];cout << "请输入右端矩阵:" << endl;for (int i = 1; i <= n; i++)cin >> b[i];//2.计算u_kj,l_ikfor (int k = 1; k <= n; k++){for (int j = k; j <= n; j++){double sum = 0;for(int m = 1; m <= k - 1; m++)sum += l[k][m] * u[m][j];u[k][j] = A[k][j] - sum;if (abs(u[k][k])<e){ cout << "求解失败." << endl;exit(0); }for (int i = k + 1; i <= n; i++){sum = 0;for (int m = 1; m <= k - 1; m++)sum += l[i][m] * u[m][k];l[i][k] = (A[i][k] - sum) / u[k][k];}}//3.求解LY=by[1] = b[1];for (int i = 2; i <= k; i++){double sum = 0;for(int j = 1; j <= i - 1; j++)sum += l[i][j] * y[j];y[i] = b[i] - sum;}//4.求解UX=Yx[n] = y[n] / u[n][n];for (int i = n - 1; i >= 1; i--){double sum = 0;for(int j = i + 1; j <= n; j++)sum += u[i][j] * x[j];x[i] = (y[i] - sum) / u[i][i];}}cout << "结果:" << endl;//5.打印xifor (int i = 1; i <= n; i++)cout << x[i] << " ";cout << endl;return 0;}四.实验结果。

高斯消去法和列主元高斯消去法解线性方程组的程序(C语言)精品资料

高斯消去法和列主元高斯消去法解线性方程组的程序(C语言)精品资料
高斯消去法和列主元高斯消去法解线性方程组的程序(C语言)
//Gauss消去法解线性方程组
//参考教材《计算方法教程》第二版,西安交通大学出版社
#include<stdio.h>
int main(void)
{
float A[7][7]={{3,-5,6,4,-2,-3,8},
{1,1,-9,15,1,-9 ,2},
for(k=0;k<size-1;k++)
{
max=fabs(A[k][k]);
col=k;
//查找最大元素所在的行
for(i=k;i<size;i++)
{
if(max<fabs(A[i][k]))
{
max=fabs(A[i][k]);
col=i;
}
}
printf("col:%d\n",col);
for(j=k;j<size;j++)
printf("\n\n");
//消去过程
for(k=0;k<size-1;k++)
{
if(!A[k][k])
return -1;
for(i=k+1;i<size;i++)
{
Aik=A[i][k]/A[k][k];
for(j=k;j<size;j++)
{
A[i][j]=A[i][j]-Aik*A[k][j];
{
A[i][j]=A[i][j]-Aik*A[k][j];
}
b[i]=b[i]-Aik*b[k];
}

解线性方程组的列主元素高斯消去法和LU分解法实验报告

解线性方程组的列主元素高斯消去法和LU分解法实验报告

解线性方程组的列主元素高斯消去法和LU 分解法一、实验目的:通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

二、实验内容:解下列两个线性方程组(1)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 三、实验要求:(1) 用你熟悉的算法语言编写程序用列主元高斯消去法和LU 分解求解上述两个方程组,输出Ax=b 中矩阵A 及向量b, A=LU 分解的L 及U ,detA 及解向量x.(2) 将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。

(3) 将方程组(2)中的2.099999改为2.1,5.900001改为5.9,用列主元高斯消去法求解变换后的方程组,输出解向量x 及detA ,并与(1)中的结果比较。

(4)用MATLAB的内部函数inv求出系数矩阵的逆矩阵,再输入命令x=inv(A)*b,即可求出上述各个方程组的解,并与列主元高斯消去法和LU分解法求出的解进行比较,体会选主元的方法具有良好的数值稳定性。

用MATLAB的内部函数det求出系数行列式的值,并与(1)、(2)、(3)中输出的系数行列式的值进行比较。

四、实验过程:(1)列主元高斯消去法的主程序为function [RA,RB,n,X]=liezhuY(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;D=det(A)if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp endend解方程组(1)在MATLAB工作窗口输入>>A=[3.01 6.03 1.999;1.27 4.16 -1.23;0.987 -4.819.34];b=[1;1;1];[RA,RB,n,X]=liezhuY(A,b)运行后输出结果为请注意:因为RA=RB=n,所以此方程组有唯一解. D=-0.1225RA =3 RB =3 n =3X = 397.8654-157.6242-123.1120解方程组(2)在MATLAB工作窗口输入>>A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2];b=[8;5.900001;5;1];[RA,RB,n,X]=liezhu(A,b)运行后输出结果为请注意:因为RA=RB=n,所以此方程组有唯一解. D=-762.0000RA =4 RB =4 n =4X =0.0000-1.00001.00001.0000LU分解法及MATLAB主程序为function hl=zhjLU(A)[n n] =size(A); RA=rank(A);D=det(A)if RA~=ndisp('请注意:因为A的n阶行列式hl等于零,所以A不能进行LU分解.A的秩RA如下:'), RA,hl=det(A);returnendif RA==nfor p=1:nh(p)=det(A(1:p, 1:p));endhl=h(1:n);for i=1:nif h(1,i)==0disp('请注意:因为A的r阶主子式等于零,所以A不能进行LU分解.A 的秩RA和各阶顺序主子式值hl依次如下:'), hl;RAreturnendendif h(1,i)~=0disp('请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:')for j=1:nU(1,j)=A(1,j);endfor k=2:nfor i=2:nfor j=2:nL(1,1)=1;L(i,i)=1;if i>jL(1,1)=1;L(2,1)=A(2,1)/U(1,1); L(i,1)=A(i,1)/U(1,1); L(i,k)=(A(i,k)- L(i,1:k-1)*U(1:k-1,k))/U(k,k);elseU(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j);endendendendhl;RA,U,Lendend解方程组(1)在MATLAB工作窗口输入>>A=[3.01 6.03 1.999;1.27 4.16 -1.23;0.987 -4.819.34];h1=zhjLU(A)运行输出结果为请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:D=9.8547RA =3U =3.0100 6.0300 1.99900 4.1600 -2.07340 0 5.3016L =1.0000 0 00.4219 1.0000 00.3279 -1.6316 1.0000h1 =3.0100 4.8635 -0.1225解方程组(2)在MATLAB工作窗口输入>>A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 02];h1=zhjLU(A)运行后输出结果为请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:D=-762.0000RA =4U =10.0000 -7.0000 0 1.00000 2.1000 6.0000 2.30000 0 -2.1429 -4.23810 -0.0000 0 12.7333L =1.0000 0 0 0-0.3000 1.0000 0 00.5000 1.1905 1.0000 -0.00000.2000 1.1429 3.2000 1.0000h1 =10.0000 -0.0000 -150.0001 -762.0001(2)在MATLAB工作窗口输入>>A=[3.01 6.03 1.999;1.27 4.16 -1.23;0.987 -4.819.34];b=[1;1;1];A(1,1)=3;A(1,3)=0.990;[RA,RB,n,X]=liezhu(A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3 RB =3 n =3X = -4.02641.91931.5210hi = 3.0000 4.8219 9.8547在MATLAB工作窗口输入x=[397.8654;-157.6242;-123.1120]';x1=[-4.0264;1.9193;1.5210]';wucha=x1-x运行后输出结果为wucha =-401.8918 159.5435 124.6330(3)在MATLAB工作窗口输入>>A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2];A(2,2)=2.1;b(2,1)=5.9;b=[8;5.900001;5;1];[RA,RB,n,X]=lie zhu(A,b)运行后输出结果为请注意:因为RA=RB=n,所以此方程组有唯一解.RA =4 RB =4 n =4X =0.0000-1.00001.00001.0000h1 =10.0000 -0.0000 -150.0000 -762.0000在MATLAB工作窗口输入>>x=[0;-1;1;1]';x1=[0;-1;1;1]';wucha=x1-x运行后输出结果为wucha = 0 0 0 0(4)解方程组(1)在MATLAB工作窗口输入>>A=[3.01 6.03 1.999;1.27 4.16 -1.23;0.987 -4.81 9.34];B=inv(A)运行后结果为B =-268.9293 538.3418 128.4529106.7599 -213.4281 -50.956183.3992 -166.8022 -39.7090在MATLAB工作窗口输入>>b=[1;1;1];x=inv(A)*b运行后结果为x =397.8654-157.6242-123.1120在MATLAB工作窗口输入>>A=[3.01 6.03 1.999;1.27 4.16 -1.23;0.987 -4.81 9.34];A(1,1)=3;A(1,3)=0.990;B=inv(A)运行输出结果为B = 3.3424 -6.1983 -1.1705-1.3269 2.7442 0.5020-1.0365 2.0682 0.4893在MATLAB工作窗口输入>>b=[1;1;1];x=inv(A)*b运行后输出结果为x =-4.02641.91931.5210解方程组(2)在MATLAB工作窗口输入>>A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2];B=inv(A) 运行后结果为B =-0.0223 -0.0984 0.1181 0.1686-0.1601 -0.1181 0.1417 0.26900.0108 0.1063 0.0724 -0.07550.1024 0.1575 -0.1890 0.1969在MATLAB工作窗口输入>>b=[8;5.900001;5;1];x=inv(A)*b运行后输出结果为x = 0-1.00001.00001.0000在MATLAB工作窗口输入>>A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2];A(2,2)=2.1;B=inv(A)运行后输出结果为B =-0.0223 -0.0984 0.1181 0.1686-0.1601 -0.1181 0.1417 0.26900.0108 0.1063 0.0724 -0.07550.1024 0.1575 -0.1890 0.1969在MATLAB工作窗口输入>>b=[8;5.900001;5;1];b(2,1)=5.9;x=inv(A)*b运行后输出结果为x =-0.0000-1.00001.00001.0000五、实验结果分析:实验的数学原理很容易理解,也容易上手。

(7) 列主元高斯消去法的实现

(7) 列主元高斯消去法的实现

列主元高斯消去法是一种用于解线性方程组的经典算法,其实现过程包括主元选取、互换行、消元和回代等步骤。

本文将从理论基础、算法描述、实现步骤和代码示例等方面介绍列主元高斯消去法的实现方法,希望可以帮助读者更好地理解和掌握这一算法。

一、理论基础列主元高斯消去法是求解线性方程组的一种经典方法,其基本思想是通过逐步消去未知数,最终得到方程组的解。

在实际应用中,通常将线性方程组表示为增广矩阵的形式,然后通过主元选取、互换行、消元和回代等操作,逐步将增广矩阵转化为阶梯形矩阵或行阶梯形矩阵,最终获得方程组的解。

列主元高斯消去法的关键在于主元的选取,通过选取适当的主元可以避免出现数值不稳定的情况,从而提高求解的准确性和稳定性。

二、算法描述列主元高斯消去法的基本算法描述如下:1. 将线性方程组表示为增广矩阵的形式2. 从第一行开始,选择当前列中绝对值最大的元素作为主元,并将其所在行与当前行交换3. 通过第一个主元,将当前列下方的元素消为零,得到一个新的增广矩阵4. 重复以上步骤,直到得到一个阶梯形矩阵或行阶梯形矩阵5. 利用回代的方法,求解得到线性方程组的解三、实现步骤基于上述算法描述,可以将列主元高斯消去法的实现步骤总结如下:1. 主元选取:对于当前列,在所有未处理的元素中选择绝对值最大的元素作为主元,并将其所在行与当前行交换2. 互换行:如果选取的主元为零,则需要考虑互换行的操作,以避免出现除零错误3. 消元:利用当前列的主元将下方的元素消为零4. 回代:通过阶梯形矩阵或行阶梯形矩阵进行回代,求解得到线性方程组的解在实现列主元高斯消去法时,需要注意处理数值计算中可能出现的特殊情况,如零主元和除零错误等,并进行合理的异常处理。

四、代码示例下面是列主元高斯消去法的简单实现代码示例,该示例使用Python 语言编写:```pythonimport numpy as npdef gauss_elimination(A, b):n = len(b)for i in range(n):pivot = ifor j in range(i+1, n):if abs(A[j, i]) > abs(A[pivot, i]):pivot = jA[[i, pivot]] = A[[pivot, i]]b[[i, pivot]] = b[[pivot, i]]for j in range(i+1, n):factor = A[j, i] / A[i, i]b[j] -= factor * b[i]A[j] -= factor * A[i]x = np.zeros(n)for i in range(n-1, -1, -1):x[i] = (b[i] - np.dot(A[i, i+1:], x[i+1:])) / A[i, i]return x```以上代码示例实现了列主元高斯消去法的求解过程,通过调用该函数可以求解给定的线性方程组。

实验三 高斯消去法和三角分解法1

实验三 高斯消去法和三角分解法1

实验报告实验三 高斯消去法与矩阵的三角分解一、实验目的1、掌握列主元素消去法,并且能够用MATLAB 编写相关程序,实现高斯消去法的求解。

2、能够用矩阵理论理解与研究高斯消去法,通过对矩阵的初等变换实现高斯消去法。

3、学会矩阵的三角分解,并且能够用MATLAB 编写相关程序,实现矩阵的三角分解,解方程组。

二、上机内容⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡2822171310871234567112345611123451111234111112311111121111111764321x x x x x x1、用列主元素高斯消去法求解方程组。

2、用列主元消去法求解方程组(实现PA=LU) 要求输出: (1)计算解X;(2)L,U;(3)正整型数组IP(i),(i=1,···,n) (记录主行信息)。

三、实验原理1、列主元素消去法用高斯消去法求解方程组时,为了减小误差,在消去的过程中要避免用绝对值较小的主元素。

因此在高斯消去法的每一步应该在系数矩阵货消去后的低阶矩阵中选取绝对值较大的元素作为主元素,保持|m ik |<=1,以减小计算过程中的舍入误差对计算解的影响。

此方法为完全主元素消去法。

完全主元素消去法在选主元素时花费一定的计算机时间,因此实际计算中常用列主元消去法。

列主元消去法在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。

装订 线第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定t使(2)如果t≠k,则交换[A,b]第t行与第k行元素。

(3)消元计算(4)回代求解计算流程图回代求解 b=b/a (当a nn ≠0)b ←(b -∑a x )/adet=a nn *det输出计算解及行列式及detk=1,2,…,n-1输入n ,A,b,εdet=1按列主元|a i(k),k |=max|a ik |C 0=a i(k),k换行 a ik a i(k)j(j=k,…n ) b k b j(k), 消元计算 (i=k+1,…,n ) a ik=a ik -a kk *m ik a ij=a ij -a kj *m ik (j=k+1,…,n )|C 0|<εi k =kdet=a kk det否否是是k<=n-1输出det(A)=0停机停机2. 矩阵的三角分解法 (1)定理设 n n R A ⨯∈ 。

数学实验“线性方程组高斯消去法”实验报告(内含matlab程序)

数学实验“线性方程组高斯消去法”实验报告(内含matlab程序)

西京学院数学软件实验任务书实验一实验报告一、实验名称:线性方程组高斯消去法。

二、实验目的:进一步熟悉理解Guass 消元法解法思路,提高matlab 编程能力。

三、实验要求:已知线性方程矩阵,利用软件求解线性方程组的解。

四、实验原理:消元过程:设0)0(11≠a ,令乘数)0(11)0(11/a a m i i -=,做(消去第i 个方程组的i x )操作1i m ×第1个方程+第i 个方程(i=2,3,.....n )则第i 个方程变为1)1(2)1(2...i n in i b x a x a =++ 这样消去第2,3,。

,n 个方程的变元i x 后。

原线性方程组变为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++)1()1(2)1(2)1(2)1(22)1(22)0(1)0(11)0(11... . .... ...n n nn n n n n n b x a x a b x a x a b x a x a 这样就完成了第1步消元。

回代过程:在最后的一方程中解出n x ,得:)1()1(/--=n nn n n n a b x再将n x 的值代入倒数第二个方程,解出1-n x ,依次往上反推,即可求出方程组的解:其通项为3,...1-n 2,-n k /)()1(1)1()1(=-=-+=--∑k kk n k j j k kj k k k a x a bx五、实验内容:function maintest2clcclear allA=[1 3 4;2 4 5;1 4 6];%系数矩阵 b=[1 7 6]'%常数项num=length(b)for k=1:num-1for i=k+1:numif A(k,k)~=0l=A(i,k)/A(k,k); A(i,:)=A(i,:)-A(k,:).*l; b(i)=b(i)-b(k)*l; endendendAb%回代求xx(num)=b(num)/A(num,num);for i=num-1:-1:1sum=0;for j=i+1:numsum=sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);endxEnd六、实验结果:A =1.0000 3.0000 4.0000 0 -2.0000 -3.00000 0 0.5000b =1.00005.00007.5000x =16 -25 15。

实验三 编程实现列主元高斯消去法

实验三   编程实现列主元高斯消去法

实验三编程实现列主元高斯消去法1.实验目的:实现高斯主消元法,对计算过程加深理解。

2.实验内容:编写c++程序,实现对角占优方程组的编程求解。

3.实验步骤1、设计方程组的存储为二位数组,最大方程组数为100,第i行j列的元素值代表第i个方程的第j个系数,输入时没有的系数项填0。

2 对于每个方程按主消元法从0~n-1依次消元。

3迭代求解,对于第i个未知数的值,依次迭代i+1~n-1已求出的结果4.实验结果分析:对于除数很小的情况程序不能很好的解决,对于不是对角占优的也不能搜索出主元素,以后在进一步解决上述问题。

#include<iostream>using namespace std;const int MAX=100;double str[MAX][MAX];int main(){while(1){cout<<"输入方程组个数0<n<100"<<endl;int n,m,i,j,k,flag=0;cin>>n;if(n<=0||n>=100)break;cout<<"输入方程组的系数"<<endl;for(i=0;i<n;i++){for(j=0;j<=n;j++){cin>>str[i][j];if(i==j&&str[i][j]==0)flag=1;}}if(flag==1){cout<<"方程组不是对角占优的,此程序不能解决"<<endl;system("pause");return 0;}for(i=0;i<n;i++){for(j=n;j>=i;j--)//对角变一str[i][j]/=str[i][i];for(k=i+1;k<n;k++)//方程消元{double tem=str[k][i]/str[i][i];for(j=i;j<=n;j++){str[k][j]-=str[i][j]*tem;}}}double ans[MAX]={0};ans[n-1]=str[n-1][n];for(i=n-2;i>=0;i--){ans[i]=str[i][n];for(j=n-1;j>i;j--)ans[i]-=str[i][j]*ans[j];}for(i=0;i<n;i++)cout<<"X"<<i+1<<" = "<<ans[i]<<endl;system("pause");}}。

计算方法-实验三列主元高斯消去法

计算方法-实验三列主元高斯消去法

计算方法课程设计报告实验三高斯列主元消去法姓名:黄仁化学号:031010151551017班级:计算机科学与技术2004班日期:二○○六年六月十日一、实验目的:1、掌握高斯消去法的基本思路和迭代步骤。

2、 培养编程与上机调试能力。

二、高斯列主元消去法的基本思路与计算步骤:列主元高斯消去法计算步骤:将方程组用增广矩阵[]()(1)ij n n B A b a ⨯+==表示。

步骤1:消元过程,对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+使得,max k i k ikk i n a a ≤≤=(2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。

(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+。

(4) 消元,对,,i k n =,计算/,ik ik kk l a a =对1,,1j k n =++,计算.ij ij ik kj a a l a =-步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。

(2) ,1/;n n n nn x a a +=对1,,2,1i n =-,计算,11/ni i n ij j ii j i x a a x a +=+⎛⎫=-⎪⎝⎭∑三:程序流程图四:程序清单:function X=uptrbk(A,b)% A 是一个n 阶矩阵。

% b 是一个n 维向量。

% X 是线性方程组AX=b 的解。

[N N]=size(A);X=zeros(1,N+1);Aug=[A b];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A是奇异阵,方程无惟一解'breakendfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endend% 这里用到程序函数backsub来进行回代。

列主元高斯消去法c++程序

列主元高斯消去法c++程序

列主元高斯消去法c++程序#include#include#includeusing namespace std;int main(){int N,row,colum; //定义方程组的阶数row=0; //列主元所在行colum=0; //主元所在列int L1=0; ////int L2=0;double max;double L0=1; //系数cout<<"请输入方程组的阶数"<<endl; cin>>N;double *B=new double[N+1];double **A=new double*[N]; //定义增广矩阵for (int i=0;i<n;i++)A[i]=new double[N+1]; //指针//A[N][N+1]={5,3,7,8,9,3,6,7,5,6,5,3};cout<<"请输入增广矩阵"<<endl;for ( i=0;i<n;i++){for (int j=0;j<n+1;j++){cin>>A[i][j];}}max=A[0][0];cout<<"增广矩阵A为:"<<endl;for ( i=0;i<n;i++){for (int j=0;j<n+1;j++){cout<<setw(5)<<a[i][j];}cout<<'\n';}for (L1=0;L1<n-1;l1++){for (i=L1;i{if(max{max=A[i][L1]; //L2换成L1row=i;} //列主元所在行,L1表示初始列元所在行}for (int j=0;j{B[j]=A[row][j];A[row][j]=A[L1][j];A[L1][j]=B[j];}cout<<"选取主元后的增广矩阵A为:"<<endl; for ( i=0;i<n;i++){for (int j=0;j<n+1;j++){cout<<setw(15)<<a[i][j];}cout<<'\n';}//消主元for ( i=L1+1;i<n;i++){L0=A[i][L1]/A[L1][L1]; //L0=A[i][L2]/A[L1][L2];for (int j=0;j<n+1;j++){A[i][j]=A[i][j]-A[L1][j]*L0;}}cout<<"第"<<l1+1<<"一次消元后的矩阵为"<<endl; for ( i=0;i<n;i++){for (int j=0;j<n+1;j++){cout<<setw(15)<<a[i][j];}cout<<'\n';}}return 0;}</setw(15)<<a[i][j];</n+1;j++)</n;i++)</l1+1<<"一次消元后的矩阵为"<<endl; </n+1;j++)</n;i++)</setw(15)<<a[i][j];</n+1;j++)</n;i++)</endl;</n-1;l1++)</setw(5)<<a[i][j];</n+1;j++)</n;i++)</endl;</n+1;j++)</n;i++)</endl;</n;i++)</endl;。

列主元高斯消元法的C语言编程及列管式换热器设计

列主元高斯消元法的C语言编程及列管式换热器设计

列主元高斯消元法的C语言编程及列管式换热器设计主元高斯消元法(Gaussian Elimination)是一种线性代数中常用的求解线性方程组的方法。

它可以被用于列管式换热器的设计中,来计算热交换器的换热性能。

下面是用C语言实现主元高斯消元法的代码:```c#include <stdio.h>#include <stdlib.h>#define SIZE 10void swapRow(double matrix[SIZE][SIZE], int row1, int row2, int n)for(int i = 0; i <= n; i++)double temp = matrix[row1][i];matrix[row1][i] = matrix[row2][i];matrix[row2][i] = temp;}void printMatrix(double matrix[SIZE][SIZE], int n)for(int i = 0; i < n; i++)for(int j = 0; j <= n; j++)printf("%lf ", matrix[i][j]);}printf("\n");}void gaussianElimination(double matrix[SIZE][SIZE], int n) for(int i = 0; i < n; i++)//列中绝对值最大的元素int maxRow = i;for(int j = i + 1; j < n; j++)if(abs(matrix[j][i]) > abs(matrix[maxRow][i]))maxRow = j;}}//交换行swapRow(matrix, i, maxRow, n);//消元for(int j = i + 1; j < n; j++)double factor = matrix[j][i] / matrix[i][i];for(int k = i; k <= n; k++)matrix[j][k] = matrix[j][k] - factor * matrix[i][k];}}}void backSubstitution(double matrix[SIZE][SIZE], double solution[SIZE], int n)for(int i = n - 1; i >= 0; i--)solution[i] = matrix[i][n];for(int j = i + 1; j < n; j++)solution[i] -= matrix[i][j] * solution[j];}solution[i] /= matrix[i][i];}int maiint n;printf("请输入未知数的个数:");scanf("%d", &n);double matrix[SIZE][SIZE];double solution[SIZE];//输入方程组的系数矩阵和常数列printf("请输入方程组的系数矩阵和常数列(以空格分隔):\n"); for(int i = 0; i < n; i++)for(int j = 0; j <= n; j++)scanf("%lf", &matrix[i][j]);}}//打印输入的矩阵printf("输入的矩阵为:\n");printMatrix(matrix, n);//利用高斯消元法求解方程组gaussianElimination(matrix, n);//利用回代法求解解向量backSubstitution(matrix, solution, n);//打印解向量printf("解向量为:\n");for(int i = 0; i < n; i++)printf("x%d = %lf\n", i+1, solution[i]);}return 0;```上述代码实现了主元高斯消元法的求解过程,通过键盘输入方程组的系数矩阵和常数列,然后计算出解向量。

Gauss消去法和列主元消去法

Gauss消去法和列主元消去法
while s<=n
max=abs(C(s,s));big=0;
if det(C(s:n,s:n))==0
disp('此方程无解');
answer=0;
break;
end
for i=s:n
if max<abs(C(i,s))
max=abs(C(i,s));
k=i;
big=1;
else continue
for i=n:(-1):1
X(i,1)=C(i,n+1);
for j=(i+1):n
X(i,1)=X(i,1)-E(i,j)*X(j,1);
end
X(i,1)=X(i,1)/E(i,i);
ห้องสมุดไป่ตู้end
disp('此方程的解为:')
X
end
5、实验结果
请输入未知数系数矩阵A:
A=[2,-1,3;4,2,5;1,2,0]
3、实验原理
高斯列主元消去法
4、实验内容
clc;clear;format short
disp('请输入未知数系数矩阵A:');
A=input('A=');
disp('请输入常数项列向量B:');
B=input('B=');
C=[A,B];
[m,n]=size(A);
s=1;answer=1;P=zeros(1,n);L=zeros(n);I=eye(n);
y=a(i,k:n+1);a(i,k:n+1)=a(k,k:n+1);a(k,k:n+1)=y;
break;

高斯消元法与列主元消去法实验报告

高斯消元法与列主元消去法实验报告

实验报告:Gauss消元法小组成员:李岚岚、邱粉珊、缪晓浓、杨水清学号:0917020040、0917010078、0917010073、0917010112一、实验问题编写两个程序,分别利用Gauss消元法和列主元消去法求解方程组二、分析及其计算过程Gauss顺序消元法:源程序:function [x]=gaussl(A,b)[n1,n2]=size(A);n3=size(b);if n1~=n2|n2~=n3|n1~=n3disp('A的行和列的维数不同!');return;endif det(A)==0disp('系数矩阵A奇异');return;end%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[1 2/3 1/3;9/20 1 11/20;2/3 1/3 1];>>b=[2 2 2];>> [x]=gaussl(A,b)x =1 1 1Gauss列主元消去法:源程序:function [x]=gaussll(A,b) [n1,n2]=size(A);n3=size(b);if n1~=n2|n1~=n3|n2~=n3disp('输入的方程错误!');return;endif det(A)==0disp('系数矩阵A奇异');return;endmax=zeros(n1);for m=1:n1%找主元for i=m:n1if abs(A(i,m))>maxmax=A(i,:);A(i,:)=A(m,:);A(m,:)=max;maxb=b(i);b(i)=b(m);b(m)=maxb;endend%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endendend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[-0.002 2 2;1 0.78125 0;3.996 5.5625 4]; >>b=[0.4 1.3816 7.4178];>>[x]= gaussll(A,b)x =1.9273 -0.6985 0.9004。

实验三 高斯消去法

实验三  高斯消去法

实验三 高斯消去法一、实验目的(1)熟悉求解线性方程组的有关理论和方法; (2)能编程实现列主元高斯消去法; (4) 根据不同类型的方程组,选择合适的数值方法。

二、实验内容用选主元高斯消去求方程组⎪⎩⎪⎨⎧=+--=-+-=--2.453.82102.7210321321321x x x x x x x x x三、算法基本原理 A. nn m nn n m nn n nb b b b b a a a a A ...)1(.........)1(..................||111111111-=-=== ;B. 消元结果直接存储在系数矩阵中;C. 当消元过程发生两行对调的情况为偶数次时,行列式值为对角线乘积,否则为对角线乘积的相反数。

四、算法设计与实现列主元高斯消去法:列主元;0||max ||≠=≤≤ik ni k lk a a 消元)...,,1,()()()1()()()1(n k j i bm b b a m a a k k ik k i k i k kj ik k ij k ij +=⎩⎨⎧-=-=++ 回代)1...,,()(1)()(n i a x a b x i ii n i j j i ij i ii =-=∑+=图4.2列主元的约当消去约当消去)...,,1(//)()()1()()()1(n k j a b b a a a k kk k k k k k kk k kj k kj +=⎩⎨⎧==++ )...,,1,..1,1..1()()()1()()()1(n k j n k k i b a b b a a a a k k ik k i k i k kj ik k ij k ij +=+-=⎩⎨⎧-=-=++ 关键点://选主元素for(k=0;k<n-1;k++){max=a[k][k];max_i=k;for(i=k+1;i<n;i++)if(fabs(a[i][k])>fabs(max)){max=a[i][k];max_i=i;}if(max==0)break;if(max_i!=k)//交换两行for(j=k;j<n+1;j++){t=a[k][j];a[k][j]=a[max_i][j];a[max_i][j]=t;}for(i=k+1;i<n;i++){a[i][k]=a[i][k]/-a[k][k];for(j=k+1;j<n+1;j++)a[i][j]=a[i][j]+a[i][k]*a[k][j];}//消元}for(k=n-1;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(a[k][n]-sum)/a[k][k];}//回代五、计算用例的参考输出六、源代码Gauss.h#include<iostream>#include<cmath>using namespace std;#define MAX 50void input(double a[MAX][MAX+1],int n){cout<<"输入原方程组的增广矩阵"<<endl;for(int i=0;i<n;i++)for(int j=0;j<n+1;j++)cin>>a[i][j];}void output(double x[],int n){cout<<"Gauss消去法得到的原方程组的解为"<<endl;for(int k=0;k<n;k++)cout<<x[k]<<" ";}GaussXiaoqu.cpp#include"Gauss.h"int main(){double a[MAX][MAX+1],x[MAX],sum,max,t;int n,i,j,k,max_i;cout<<"输入原方程组的阶"<<endl;cin>>n;input(a,n);for(k=0;k<n-1;k++)//选主元素{max=a[k][k];max_i=k;for(i=k+1;i<n;i++)if(fabs(a[i][k])>fabs(max)){max=a[i][k];max_i=i;}if(max==0)break;if(max_i!=k)//交换两行for(j=k;j<n+1;j++){t=a[k][j];a[k][j]=a[max_i][j];a[max_i][j]=t;}for(i=k+1;i<n;i++){a[i][k]=a[i][k]/-a[k][k];for(j=k+1;j<n+1;j++)a[i][j]=a[i][j]+a[i][k]*a[k][j];}//消元}if(max==0)cout<<"原方程组无解"<<endl;else{for(k=n-1;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(a[k][n]-sum)/a[k][k];}//回代output(x,n);cout<<endl;}return 0;}。

选列主元的高斯消去法实验报告2

选列主元的高斯消去法实验报告2

选列主元的高斯消去法实验报告令狐烈一,实验目的:(1)掌握gauss消去法的基本算法思想和学会编写其MATLAB代码。

(2)掌握选列主元的gauss消去法的基本算法思想和学会编写其MATLAB代码。

(3)分析选列主元的gauss消去法相比于gauss消去法的优点。

(4)对选列主元的gauss消去法和gauss消去法进行误差分析二,实验原理对于非奇异矩阵A,求解线性方程组Ax=b可以使用gauss消去法进行。

但是,gauss消去法要求系数矩阵A的顺序主子式非奇异。

为此做出改进:每次消元之前,首先选出第i列(i<=k)中最大的作为列主元,这样,就能保证消元乘数不仅不被系数矩阵A的顺序主子式非奇异的限制,还这样就能有效的防止误差的传播与放大。

算法:(1)对增广矩阵[a b]进行第i次消元,首先选取列主元a(i,k)=Max|a(I,i:n),交换第i行与第k行;(2)以列主元进行消元,计算公式为a(k,i)= a(k,i)/a(i,i); (k=i+1:n)a(k,j)=a(k,j)-a(k,i)*a(i,j); (j=i:n)(3)回代法计算结果,计算公式为:x(n)=b(n)/a(n,n);x(p)=[b(p)-∑a(p,j)x(j)]/a(p,p) (j=p+1:n)注:gauss(a,b)为选取列主元gauss消去法,gauss2(a,b)为gauss消去法。

三,实验MATLAB程序代码实验的MATLAB程序代码如下四,实验结果与分析1,两种算法对系数矩阵的顺序主子式奇异线性方程的效果分析实验结果(如图一)对于顺序主子式奇异的系数矩阵,使用gauss消去法(gauss2(a,b))不能解出,而使用选列主元的gauss消去法(gauss(a,b))能够解出。

主要是选列主元的gauss消去法每次都选出最大的列主元,从而保证了每次用作除数的a(I,i)≠0.图一:两种算法对系数矩阵的顺序主子式奇异线性方程的效果2,两种算法对舍入误差的放大效应分析用随机生成函数random('Normal',1,7,10,10)生成10*10矩阵,分别gauss消去法和选列主元的高斯消去法解出,并用公式er(x)=||x−x∗||||x||≤cond(a)∗||r||||b||估计其误差,结果如下图。

计算方法实验报告_列主元高斯消去法

计算方法实验报告_列主元高斯消去法
double row_first; //行首元素 //主对角元素单位化 for(int i=0;i<n;i++) {
row_first=A[i][i]; for(int j=0;j<n+1;j++)
计算方法实验报告
{ A[i][j]=A[i][j]/row_first;
} }
for(int k=n-1;k>0;k--) {
for(int i=0;i<N;i++) {
for(int j=0;j<N;j++) {
A_B[i][j]=A[i][j]; } A_B[i][N]=B[i][0]; } return A_B; }
3
//输出矩阵 A 的 row x col 个元素 void Show_Matrix(double **A,int row,int col) {
for(int i=0;i<N;i++)
{
int row=Choose_Colum_Main_Element(N,A_B,i);
if(Main_Element<=e) goto A_0;
Exchange(A_B,N+1,row,i);
Elimination(N,A_B,i);
cout<<"选取列主元后第"<<i+1<<"次消元:"<<endl;
double factor; for(int i=start+1;i<n;i++) {
factor=A[i][start]/A[start][start]; for(int j=start;j<n+1;j++) {

列主元高斯消去法的实现

列主元高斯消去法的实现

《数值分析课程设计》报告专业:学号:学生姓名:指导教师:一、题目列主元guess消去法求方程的解二、理论列主元高斯消去法是在高斯消去法的基础上而得到的一种比较快速合理的解线性方程组的方法。

它的基本思想是每次在所在列对角线及以下元素中选择绝对值最大的元素作为主元进行消元计算。

使用列主元消去法相对于高斯消去法更能减少舍入误差的影响。

三、方法、算法与程序设计求解Ax=b第一步:写出增广矩阵[A| b];第二步:判断增广矩阵的秩r[A|b]与A的秩r[A]的关系:若r[A|b]= r[A],线性方程组有唯一解;若r[A|b]>r[A],线性方程组没有解;若r[A|b]<r[A],线性方程组有无穷多解;第三步:若|A|≠0,方程组有唯一解法一:求出A-1,x=A-1b法二:利用初等行变换将[A| b]中A化为对角阵计算矩阵行列式:直接调用Det[]函数计算计算矩阵条件数:第一步:求出矩阵的逆矩阵第二步:分别计算矩阵极其逆的无穷范数,一范数和二范数第三步:求解矩阵的条件数Cond(A)∞=||A-1||∞*||A||∞Cond(A)1=||A-1||1*||A||1Cond(A)2=||A-1||2*||A||2=(λmax(A的转置*A)/λmin(A的转置*A))1/2计算机求解第一步:消元对k=1,2,3,……n,进行:步骤1:选主元(第k列中第k个至第n个元素中绝对值较大者)步骤2:将主元所在行与第k行交换步骤3:消元第二步:回代求解流程图如下:k=1,2,……,ni=k+1,k+2,……,nlik =aik/akk得到aikj=k+1,k+2,……,n+1 a ij-a ik*a kj得到a ij三、算例、应用实例用列主元消去法解线性方程组Ax=b⑴ 3.10x1+ 6.03x2+1.99x3=11.27x1+ 4.16x2-1.23x3= 1 ;0.983x1-4.81x2+ 9.34x3=1⑵ 3.00x1+ 6.03x2+ 1.99x3=11.27x1+ 4.16x2-1.23 x3 = 1.0.990x1 -4.81x2+9.34 x3=1分别输出A ,b ,detA,解向量x,⑴中A的条件数。

列选主元高斯消去法

列选主元高斯消去法

列选主元高斯消去法
列选主元高斯消去法是一种常用的线性方程组求解方法,在求解大规模线性方程组时具有较高的数值稳定性和计算效率。

该方法的基本思想是,通过选取主元来消除非主元系数的影响,以减小计算误差。

具体步骤如下:
1. 首先将线性方程组的系数矩阵进行列选主元,即对每一列选取绝对值最大的元素所在的行,然后将该行与第一行交换位置。

2. 对于第一列,将选取的主元所在行除以主元的值,使主元变为1。

3. 利用第一行的主元,通过消去操作将其他行的第一列元素变为零。

具体操作是,对于每一行,将该行与第一行乘以适当的倍数后相减,使得第一列元素为零。

4. 重复以上步骤,对第二列以及其后的列重复进行列选主元和消去操作,直到系数矩阵变成上三角矩阵。

5. 根据上三角矩阵进行回代求解,从最后一行开始,依次代入已求解的变量值,计算出未知数的值。

需要注意的是,在进行列选主元时,要注意避免主元为零或接近零的情况,以免造成计算错误或数值不稳定性。

列选主元高斯消去法可以有效地提高线性方程组的求解精度和计算效率,特别适用于存在较大数值差异或特殊矩阵结构的情况。

然而,在某些情况下,该方法可能会导致数值不稳定性或计算量较大,因此在实际应用中需综合考虑问题的特点和求解需求,选择合适的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三编程实现列主元高斯消去法
1.实验目的:实现高斯主消元法,对计算过程加深理解。

2.实验内容:
编写c++程序,实现对角占优方程组的编程求解。

3.实验步骤
1、设计方程组的存储为二位数组,最大方程组数为100,第i行j列的元素值代表第i个方程的第j个系数,输入时没有的系数项填0。

2 对于每个方程按主消元法从0~n-1依次消元。

3迭代求解,对于第i个未知数的值,依次迭代i+1~n-1已求出的结果
4.实验结果分析:
对于除数很小的情况程序不能很好的解决,对于不是对角占优的也不能搜索出主元素,以后在进一步解决上述问题。

#include<iostream>
using namespace std;
const int MAX=100;
double str[MAX][MAX];
int main()
{
while(1)
{
cout<<"输入方程组个数0<n<100"<<endl;
int n,m,i,j,k,flag=0;
cin>>n;
if(n<=0||n>=100)break;
cout<<"输入方程组的系数"<<endl;
for(i=0;i<n;i++)
{
for(j=0;j<=n;j++)
{
cin>>str[i][j];
if(i==j&&str[i][j]==0)flag=1;
}
}
if(flag==1){cout<<"方程组不是对角占优的,此程序不能解决"<<endl;system("pause");return 0;}
for(i=0;i<n;i++)
{
for(j=n;j>=i;j--)//对角变一
str[i][j]/=str[i][i];
for(k=i+1;k<n;k++)//方程消元
{
double tem=str[k][i]/str[i][i];
for(j=i;j<=n;j++)
{
str[k][j]-=str[i][j]*tem;
}
}
}
double ans[MAX]={0};
ans[n-1]=str[n-1][n];
for(i=n-2;i>=0;i--)
{
ans[i]=str[i][n];
for(j=n-1;j>i;j--)
ans[i]-=str[i][j]*ans[j];
}
for(i=0;i<n;i++)
cout<<"X"<<i+1<<" = "<<ans[i]<<endl;
system("pause");
}
}。

相关文档
最新文档