三角函数公式
(完整版)三角函数公式大全
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
最全的三角函数公式
最全的三角函数公式三角函数是数学中一个重要的概念,广泛应用于几何、物理和工程等领域。
在本文中,我将为您介绍最全的三角函数公式,包括基本公式、倒数公式、和角公式、和差公式、倍角公式、半角公式、和积公式、和商公式以及其他一些特殊的三角函数公式。
一、基本公式1. 正弦公式:sinθ = 对边/斜边2. 余弦公式:cosθ = 邻边/斜边3. 正切公式:tanθ = 对边/邻边二、倒数公式1. 余切公式:cotθ = 邻边/对边2. cosec公式:cscθ = 1/sinθ3. sec公式:secθ = 1/cosθ三、和角公式1. 正弦和:sin(α+β) = sinαcosβ + cosαsinβ2. 余弦和:cos(α+β) = cosαcosβ - sinαsinβ3. 正切和:tan(α+β) = (tanα + tanβ)/(1 - tanαtanβ)四、差角公式1. 正弦差:sin(α-β) = sinαcosβ - cosαsinβ2. 余弦差:cos(α-β) = cosαcosβ + sinαsinβ3. 正切差:tan(α-β) = (tanα - tanβ)/(1 + tanαtanβ)五、倍角公式1. 正弦倍角:sin2θ = 2sinθcosθ2. 余弦倍角:cos2θ = cos²θ - sin²θ3. 正切倍角:tan2θ = 2tanθ/(1 - tan²θ)六、半角公式1. 正弦半角:sin(θ/2) = ±√[(1 - cosθ)/2]2. 余弦半角:cos(θ/2) = ±√[(1 + cosθ)/2]3. 正切半角:tan(θ/2) = ±√[(1 - cosθ)/(1 + cosθ)] (其中分母不等于0)七、和积公式1. 正弦和积:sin(α+β) = 2sin(α/2)cos(β/2)2. 余弦和积:cos(α+β) = 2cos(α/2)cos(β/2)3. 正切和积:tan(α+β) = (tanα + tanβ)/(1 - tanαtanβ)八、和商公式1. 正弦和商:sin(α+β) = sinαcosβ + cosαsinβ/cosαcosβ - sinαsinβ2. 余弦和商:cos(α+β) = cosαcosβ - sinαsinβ/cosαcosβ + sinαsinβ3. 正切和商:tan(α+β) = (tanα + tanβ)/(1 - tanαtanβ)九、其他特殊公式1. 倍角余弦1:cos2θ = 1 - 2sin²θ2. 倍角余弦2:cos²θ = (1 + cos2θ)/23. 倍角正弦:sin2θ = 2sinθcosθ4. 差角正切:tan(α-β) = (tanα - tanβ)/(1 + tanαtanβ)这些三角函数公式是三角学中最基本且最重要的公式。
三角函数常用公式
三角函数常用公式一两角和三角函数公式sin(a+b) = sinacosb+cosasinbsin(a-b) = sinacosb-cosasinbcos(a+b) = cosacosb-sinasinbcos(a-b) = cosacosb+sinasinb二倍角三角函数公式三三倍角三角函数公式四半角三角函数公式五和差化积三角函数公式六积化和差三角函数公式七诱导三角函数公式八万能三角函数公式九其他三角函数公式十双曲函数公式十一其他三角函数公式01三角函数公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα02三角函数公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα03三角函数公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα04三角函数公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα05三角函数公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα06三角函数公式六:07公式七:。
三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点,记:),(y x P 22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:yx =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:,,。
1cos sin 22=+αααα22sec tan 1=+αα22csc cot 1=+三、诱导公式⑴παk 2+)(Z k ∈、α−、απ+、απ−、απ−2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ−2、απ+23、απ−23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅−⋅=−βαβαβαsin sin cos cos )cos(⋅−⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=− βαβαβαtan tan 1tan tan )tan(⋅−+=+βαβαβαtan tan 1tan tan )tan(⋅+−=−五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos −=−=−=…)(∗ ααα2tan 1tan 22tan −=二倍角的余弦公式)(∗有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=−2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα−=−六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +−=,ααα2tan 1tan 22tan −=。
三角函数常用公式大全
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
三角函数半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))三角函数倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)三角函数两角和与差公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)平方关系公式sin²α+cos²α=1cos²a=(1+cos2a)/2tan²α+1=sec²αsin²a=(1-cos2a)/2cot²α+1=csc²α倒数关系公式tanα·cotα=1sinα·cscα=1cosα·secα=1商数关系公式tana=sina/cosacota=cosa/sinatan(A-B)=(tanA-tanB)/(1+tanAtanB)三角函数积化和差sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数和差化积sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 三角函数诱导公式诱导公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)诱导公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数的万能公式sin(A)=[2tan(A/2)]/[1+tan2(A/2)]cos(A)=[1-tan2(A/2)]/[1+tan2(A/2)]tan(A)=[2tan(A/2)]/[1-tan2(A/2)]。
所有三角函数的公式大全
所有三角函数的公式大全在学习三角函数的过程中,公式是很重要的基础之一。
掌握了三角函数的公式,我们就能够更好地理解三角函数的性质,从而更好地解题。
以下是所有三角函数的公式大全。
一、正弦函数(sin)1. 定义:在一个直角三角形中,正弦函数的值等于其对边的长度与斜边的长度的比值。
2. 周期性:sin(x + 2π) = sin(x),其中π为圆周率。
3. 奇偶性:sin(-x) = -sin(x),即sin函数是奇函数。
4. 余角公式:sin(π - x) = sin(x)sin(π + x) = -sin(x)sin(2π - x) = -sin(x)5. 和差公式:sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)6. 二倍角公式:sin(2x) = 2sin(x) cos(x)sin²(x) = (1 - cos(2x)) / 27. 三倍角公式:sin(3x) = 3sin(x) - 4sin³(x)8. 多倍角公式:sin(nx) = 2^(n-1) sin(x) cos(x) cos(2x) ...cos((n-1)x)9. 单位圆上的正弦函数:sin(x) = y,其中x为角度,称为弧度制下的角度。
在单位圆上,角度为x对应的点的y坐标即为sin(x)的值。
二、余弦函数(cos)1. 定义:在一个直角三角形中,余弦函数的值等于其邻边的长度与斜边的长度的比值。
2. 周期性:cos(x + 2π) = cos(x),其中π为圆周率。
3. 奇偶性:cos(-x) = cos(x),即cos函数是偶函数。
4. 余角公式:cos(π - x) = -cos(x)cos(π + x) = -cos(x)cos(2π - x) = cos(x)5. 和差公式:cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)6. 二倍角公式:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)7. 三倍角公式:cos(3x) = 4cos³(x) - 3cos(x)8. 多倍角公式:cos(nx) = 2^(n-2) cos²(x) - 2^(n-4) cos⁴(x) ...(-1)^(n-1) cos((n-1)x)9. 单位圆上的余弦函数:cos(x) = x,其中x为角度,称为弧度制下的角度。
三角函数公式大全
三角函数公式大全一、正弦函数公式。
正弦函数是最基本的三角函数之一,其公式如下:sinθ = 对边/斜边。
其中,θ为角度,对边为与角度θ相对的直角三角形的边长,斜边为直角三角形的斜边长度。
正弦函数的图像是一个周期性的波动曲线,具有一定的对称性和周期性。
二、余弦函数公式。
余弦函数是另一个重要的三角函数,其公式如下:cosθ = 邻边/斜边。
其中,θ为角度,邻边为与角度θ相邻的直角三角形的边长,斜边为直角三角形的斜边长度。
余弦函数的图像也是一个周期性的波动曲线,与正弦函数的图像有一定的相似性。
三、正切函数公式。
正切函数是三角函数中的另一个重要概念,其公式如下:tanθ = 对边/邻边。
其中,θ为角度,对边为与角度θ相对的直角三角形的边长,邻边为与角度θ相邻的直角三角形的边长。
正切函数的图像也是一个周期性的波动曲线,但与正弦函数和余弦函数的图像有着明显的不同。
四、三角函数的基本关系。
在学习三角函数时,还需要了解三角函数之间的基本关系,如正弦函数与余弦函数、正切函数与余切函数之间的关系。
这些关系可以通过三角恒等式来表示,如sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ等。
五、三角函数的诱导公式。
三角函数的诱导公式是指通过某个角的正弦、余弦、正切等函数值,来推导其他角的正弦、余弦、正切等函数值的公式。
例如,利用角度为θ的正弦函数值,可以求得角度为π/2-θ的余弦函数值,从而得到诱导公式sin(π/2-θ) = cosθ。
六、三角函数的图像和性质。
除了掌握三角函数的公式外,还需要了解三角函数的图像和性质。
正弦函数、余弦函数、正切函数等在坐标平面上的图像特点,以及它们的周期、对称性、增减性等性质都是非常重要的。
七、三角函数在实际问题中的应用。
三角函数在实际问题中有着广泛的应用,如在航海、测量、建筑等领域都需要用到三角函数的知识。
掌握三角函数公式和性质,能够帮助我们更好地解决实际问题。
总结。
三角函数相关所有公式
三角函数相关所有公式1.正弦函数公式:正弦函数表示为:y = sin(x)关系:sin(x) = y/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:奇函数,即sin(-x) = -sin(x)- 周期性:周期为2π,即sin(x+2π) = sin(x)2.余弦函数公式:余弦函数表示为:y = cos(x)关系:cos(x) = x/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:偶函数,即cos(-x) = cos(x)- 周期性:周期为2π,即cos(x+2π) = cos(x)3.正切函数公式:正切函数表示为:y = tan(x)关系:tan(x) = sin(x)/cos(x)性质:- 定义域:(-∞, +∞),且除去一些点使得tan(x)无定义(如x = π/2 + nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即tan(-x) = -tan(x)- 周期性:周期为π,即tan(x+π) = tan(x)4.余切函数公式:余切函数表示为:y = cot(x)关系:cot(x) = cos(x)/sin(x)性质:- 定义域:(-∞, +∞),且除去一些点使得cot(x)无定义(如x = nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即cot(-x) = -cot(x)- 周期性:周期为π,即cot(x+π) = cot(x)5.正弦函数和余弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))cot(x ± y) = (cot(x)cot(y) ∓ 1)/(cot(y) ± cot(x))6.正弦函数和余弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))7.正弦函数和余弦函数的半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)8.正弦函数和余弦函数的和积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这些是三角函数常见的公式,它们在数学和物理中有广泛的应用。
三角函数的所有公式
三角函数的所有公式诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosxtan(-x)=-tanx(3)sin(π+x)=-sinxcos(π+x)=-cosxtan(π+x)=tanx(4)sin(π-x)=sinxcos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosxcos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinxtan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosxcos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinxtan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinx cos(π-x)=cosπcosx+sinπsinx=-cosx。
三角函数公式大全
三角函数公式三角函数是数学中属于中的的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义城为整个城。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷敖列的和的解,将其定义扩展到复数系。
公式分类锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式sin2A=2sinA?cosAcos2A=cosA;方-sinA方;A=1-2sin²A=2cos²A-1tan2A=(2tanA)÷(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2co sαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:cos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[]内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
三角函数公式大全
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是学习方法网为大家整理的三角函数公式大全:锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))学习方法网[]三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n] =0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]= 0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
三角函数公式(最全)
正弦定理变形可得:
五、其他公式
2、余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC, 有:
3、降幂公式
sin²α=[1-cos(2α)]/2 cos²α=[1+cos(2α)]/2 tan²α=[1-cos(2α)]/[1+cos(2α)]
4、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγ
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2* 4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表 示双阶乘)
1
一、定义公式
三角函数公式
锐角三角函数 任意角三角函数
正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc) 正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc)
1、倒数关系
二、函数关系
三角函数公式大全
三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a) 半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a]a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容。
(完整版)三角函数公式大全
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦函数:r y =αsin 余弦函数:r x =αcos 正切函数:x y=αtan 余切函数:y x =αcot 正割函数:xr=αsec 余割函数:y r =αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosαtan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z)公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos (απ-2)=sinα tan (απ-2)=cotα cot (απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos (απ+2)=-sinα tan (απ+2)=-cotα cot (απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin (απ-23)=-cosα cos (απ-23)=-sinαtan (απ-23)=cotα cot (απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin (απ+23)=-cosα cos (απ+23)=sinαtan (απ+23)=-cotα cot (απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
三角函数公式大全表
三角函数公式大全表三角函数公式大全表:1、正弦函数:正弦函数的定义为:y = sin x这里x表示弧度,y表示正弦函数的值,取值范围为(-1, +1).2、余弦函数:余弦函数的定义为:y = cos x这里x表示弧度,y表示余弦函数的值,取值范围为(-1, +1).3、正割函数:正割函数的定义为:y = tan x这里x表示弧度,y表示正割函数的值,取值范围为(-∞,+∞).4、反正弦函数:反正弦函数的定义为:x = arcsin y这里x表示弧度,y表示反正弦函数的值,取值范围为(-1, +1).5、反余弦函数:反余弦函数的定义为:x = arccos y这里x表示弧度,y表示反余弦函数的值,取值范围为(-1, +1).6、反正割函数:反正割函数的定义为:x = arctan y这里x表示弧度,y表示反正割函数的值,取值范围为(-∞,+∞).7、双曲正弦函数:双曲正弦函数的定义为:y = sinh x这里x表示弧度,y表示双曲正弦函数的值,取值范围为(-∞,+∞).8、双曲余弦函数:双曲余弦函数的定义为:y = cosh x这里x表示弧度,y表示双曲余弦函数的值,取值范围为(1, +∞)9、双曲正割函数:双曲正割函数的定义为:y = tanh x这里x表示弧度,y表示双曲正割函数的值,取值范围为(-1,+1).10、反双曲正弦函数:反双曲正弦函数的定义为:x = arcsinh y这里x表示弧度,y表示反双曲正弦函数的值,取值范围为(-∞,+∞).11、反双曲余弦函数:反双曲余弦函数的定义为:x = arccosh y这里x表示弧度,y表示反双曲余弦函数的值,取值范围为(0, +∞).12、反双曲正割函数:反双曲正割函数的定义为:x = arctanh y这里x表示弧度,y表示反双曲正割函数的值,取值范围为(-1, +1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式
函数公式倒数关系:
①
②
③
商数关系:
① ②
平方关系:
①
②
③
诱导公式
公式1:设为任意角,终边相同的角的同一三角函数的值相等:
公式2:设为任意角,与的三角函数值之间的关系:
公式3:任意角与的三角函数值之间的关系:
公式4:与的三角函数值之间的关系:
公式5:与的三角函数值之间的关系:
公式6:及与的三角函数值之间的关系:
记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
基本公式
【和差角公式】
◆二角和差公式
◆三角和公式
【和差化积公式】
口诀:
正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.【积化和差公式】
【倍角公式】
◆二倍角公式
◆三倍角公式
◆四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)]
cos4a=1+(-8*cosa^2+8*cosa^4)
tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆五倍角公式
◆半角公式
(正负由所在的象限决定)
◆万能公式
◆辅助角公式
◆余弦定理
◆三角函数公式算面积
定理:在△ABC中,其面积就应该是底边对应的高的1/2,不妨设BC边对应的高是AD,那么△ABC的面积就是AD*BC*1/2。
而AD是垂直于BC的,这样△ADC就是直角三角形
了,显然,由此可以得出,AD=ACsinC,将这个式子带回三角形的计算公式
中就可以得到:,同理,即可得出三角形的面积等于两邻边及其夹角正弦值的乘积的一半。
◆公式:
若△ABC中角A,B,C所对的三边是a,b,c:
则S△ABC=1/2absinC=1/2bcsinA=1/2acsinB.
◆反三角函数
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]
y=arccos(x),定义域[-1,1] ,值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】
◆反三角函数公式:
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x
当x∈〔0,π〕,arccos(cosx)=x
x∈(—π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似
若(arctanx+arctany)∈(—π/2,π/2),
则arctanx+arctany=arctan(x+y/1-xy)。