2013JA综述

合集下载

科技文献检索期末作业

科技文献检索期末作业

1. 结合自己专业自主选择一个与自己专业密切相关的课题题目,请列出中、外文检索词(Keywords)。

可依同义词,广义词,狭义词,相关词等方式列出,请各写5个以上。

(10分)研究主题:电子计算机X射线断层扫描技术中文检索词:断层扫描技术、X射线医学影像工具、三维断层图像重建、X射线CT、γ射线CT外文检索词:CT、X-CT、γ-CT、Computed Tomography、electronic computer X-ray tomography technique2. 请对所研究的主题进行综述,如课题所属领域、背景、拟解决的技术问题、采用的技术方案等相关技术内容(300字以内)。

(10分)CT技术是属于生物医学工程的一个学科领域。

CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器转为数字,输入计算机处理。

图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素。

扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵,数字矩阵可存贮于磁盘或光盘中。

经数字/模拟转换器把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素,并按矩阵排列,即构成CT图像。

本课题即要剖析CT机基本工作原理并研究其在医学领域利用医用X-CT诊断多种疾病的应用。

3.图书的检索。

利用图书馆网上检索系统,任选1个图书馆的中文馆藏目录检索中文图书。

(5分)检索的数据库名称:北京交通大学图书馆馆藏目录检索式:题名关键词= 生物医学工程检中文献篇数:14参考文献:[2] 田心主编. 生物建模仿真[M].北京:清华大学出版社,2010[3] 主编万柏坤, 明东. 波动理论及其在生物医学工程的应用[M].北京:机械工业出版社,20104. 中、外文期刊论文的检索。

在中、外文期刊库中,各任选1个中、外文期刊全文数据库,检索期刊论文。

茉莉酸甲酯综述Word文档

茉莉酸甲酯综述Word文档

茉莉酸甲酯综述Word⽂档茉莉酸甲酯的研究进展摘要:茉莉酸及其衍⽣物茉莉酸甲酯统称为茉莉酸盐,是⼴泛存在于植物中的⼀种⽣长调节物质,在植物体内起着重要的作⽤。

本⽂主要就茉莉酸和茉莉酸甲酯的⽣物合成、茉莉酸甲酯的⽣理⽣化作⽤、茉莉酸类物质在植物抗性⽅⾯的研究及其在植物⽣长代谢⽅⾯的作⽤进⾏了综述。

关键词:茉莉酸类物质;茉莉酸甲酯;抗逆性茉莉酸(JA)和茉莉酸甲酯(MeJA)作为与损伤相关的植物激素和信号分⼦, ⼴泛存在于⾃然界,是许多植物体内产⽣的天然化合物[1]。

外源应⽤类化合物能够激发防御植物基因的表达,诱导植物的化学防御,产⽣与机械损伤和昆⾍取⾷相似的效果。

⼤量研究表明,⽤茉莉酸类化合物处理植物可系统诱导蛋⽩酶抑制剂(PI)和多酚氧化酶(PPO),从⽽影响植⾷动物对营养物质的吸收,还能增加过氧化物酶、壳聚糖酶和脂氧合酶等防御蛋⽩的活性⽔平,导致⽣物碱和酚酸类次⽣物质的积累,增加并改变挥发性信号化合物的释放,甚⾄形成防御结构,如⽑状体和树脂导管。

茉莉酸甲酯可以从植物的⽓孔进⼊植物体内,在细胞质中被酯酶⽔解为茉莉酸,实现长距离的信号传导和植物间的交流,诱导邻近植物产⽣诱导防御反应。

⼤量的研究表明,茉莉酸类化合物具有⼴谱的⽣理效应,它不仅调节植物的⽣长和发育,如萌发、衰⽼、果实成熟、根的⽣长、花粉发育和球茎的形成、卷须的缠绕等[ 1 ,2 ] ,⽽且还参与植物对机械伤害、病害、⾍害等环境的胁迫做出防御响应,和经典植物激素或植物⽣长调节剂相似[3 ]。

因此,近年来茉莉酸类化合物引起了植物学家⼴泛的关注。

1 茉莉酸及其茉莉酸甲酯的⽣物合成茉莉酸(Jasmonic acid)及其挥发性茉莉酸甲酯(MeJA)是通过硬脂酸途径(octadecanoid pathway)产⽣的脂肪酸衍⽣物,是环戊酮衍⽣物(cyclopentanone derivatives)之⼀。

植物受到创伤、昆⾍咬⾷或病源菌感染后引发的局部及系统性的伤害信号,如寡糖激发⼦、多肽、脱落酸及甲壳素等,与细胞膜上的受体结合进⼊细胞,或不经与受体结合直接穿过细胞膜进⼊细胞. 进⼊细胞后的伤害信号诱导脂肪酶作⽤,使茉莉酸前体物亚⿇酸从细胞膜渗透⾄细胞内,经脂氧合酶(lipoxygenase,LOX)氧化成13-氢过氧化亚⿇酸(13-hydroperoxylinolenic acid),再经丙⼆烯氧化合酶(allene oxide synthase,AOS)及丙⼆烯环化酶(allene oxide cyclase,AOC)氧化⽣成12-氧-植物⼆烯酸(12-oxo-phytodienoic acid,12-OPDA)进⼊细胞质中,经12-氧-植物⼆烯酸还原酶(OPR)作⽤,再进⼊到过氧化物体中经3 次β氧化最后形成茉莉酸。

jafc综述投稿要求

jafc综述投稿要求

JACF综述投稿要求1.简介本文档旨在给予投稿者关于J AC F(J ou rn al of Ad va nc e dC om pu ta ti on alF i na nc e)综述文章投稿的具体要求和指导。

通过遵循这些要求,作者将有更大的机会获得文章被JA CF 接受的机会。

2.投稿要求2.1主题与范围投稿的综述文章主要应对计算金融领域的前沿问题提供扎实的综述和分析。

这些问题可以包括但不限于金融市场模型、金融工程、投资组合管理、风险管理、衍生品定价等。

2.2长度要求综述文章的字数要求不少于2500字。

2.3样式要求-综述文章应采用通俗易懂的语言,尽量避免使用学术领域专属术语,或者有专门解释的术语需要给予明确解释。

-正文需要以空一行来分割段落,提高文章可读性。

-文章需要包含多个有副标题的章节,以便读者能够清晰地了解文章的结构和内容安排。

3.投稿流程3.1网上投稿投稿者需要在JA CF的官方网站上进行在线投稿。

在投稿时,请务必遵循网站上的投稿要求和格式,并在投稿材料清单中上传您的综述文章。

3.2匿名评审所有投稿的综述文章将进行匿名评审。

为了确保匿名性,请确保在文章的正文、参考文献和任何其他可能泄露作者身份的地方,都不要出现作者的姓名或其他身份信息。

3.3审稿周期一旦投稿完成,J ACF将安排专家对您的综述文章进行评审。

审稿周期一般为2-4周,具体时间根据投稿数量和评审专家的时间安排而定。

3.4修改建议如果评审专家提出修改建议,请作者根据意见进行修订,并在规定的时间内提交修改后的综述文章。

3.5最终决策经过评审委员会讨论决策后,您将会收到关于综述文章是否被接受或拒绝的最终决定。

如果被接受,您将需要按照JA CF的要求进行最终修订和投稿。

4.结语本文档总结了JA CF关于综述投稿的具体要求和流程。

希望作者们能够严格遵守这些要求,并认真准备投稿材料。

祝您在J AC F发表综述文章取得成功!。

2013期刊影响因子

2013期刊影响因子

期刊英文名中文名影响因子Nature自然31.434Science科学28.103Nature Material自然(材料)23.132Nature Nanotechnology自然(纳米技术)20.571Progress in Materials Science材料科学进展18.132Nature Physics自然(物理)16.821Progress in Polymer Science聚合物科学进展16.819Surface Science Reports表面科学报告12.808Materials Science & Engineering R-reports材料科学与工程报告12.619Angewandte Chemie-International Edition应用化学国际版10.879Nano Letters纳米快报10.371Advanced Materials先进材料8.191Journal of the American Chemical Society美国化学会志8.091Annual Review of Materials Research材料研究年度评论7.947Physical Review Letters物理评论快报7.180Advanced Functional Materials先进功能材料6.808Advances in Polymer Science聚合物科学发展6.802Biomaterials生物材料6.646Small微观?6.525Progress in Surface Science表面科学进展5.429Chemical Communications化学通信5.34MRS Bulletin材料研究学会(美国)公告5.290Chemistry of Materials材料化学5.046Advances in Catalysis先进催化4.812Journal of Materials Chemistry材料化学杂志4.646Carbon碳4.373Crystal Growth & Design晶体生长与设计4.215Electrochemistry Communications电化学通讯4.194The Journal of Physical Chemistry B物理化学杂志,B辑:材料、表面、界面与生物物理4.189 Inorganic Chemistry有机化学4.147Langmuir朗缪尔4.097Physical Chemistry Chemical Physics物理化学4.064International Journal of Plasticity塑性国际杂志3.875Acta Materialia材料学报3.729Applied Physics Letters应用物理快报3.726Journal of power sources电源技术3.477Journal of the Mechanics and Physics of Solids固体力学与固体物理学杂志3.467 International Materials Reviews国际材料评论3.462Nanotechnology纳米技术3.446Journal of Applied Crystallography应用结晶学3.212Microscopy and Microanalysis 2.992Current Opinion in Solid State & Materials Science固态和材料科学的动态2.976Scripta Materialia材料快报2.887The Journal of Physical Chemistry A物理化学杂志,A辑2.871Biometals生物金属2.801Ultramicroscopy超显微术2.629Microporous and Mesoporous Materials多孔和类孔材料2.555Composites Science and Technology复合材料科学与技术2.533Current Nanoscience当代纳米科学2.437Journal of the Electrochemical Society电化学界2.437Solid State Ionics固体离子2.425IEEE Journal of Quantum ElectronicsIEEE量子电子学杂志2.413Mechanics of Materials材料力学2.374Journal of nanoparticle research纳米颗粒研究2.299CORROSION SCIENCE腐蚀科学2.293Journal of Applied Physics应用物理杂志2.201Journal of Biomaterials Science-Polymer Edition生物材料科学—聚合物版2.158IEEE Transactions on NanotechnologyIEEE 纳米学报2.154Progress in Crystal Growth and Characterization of Materials晶体生长和材料表征进展2.129 Journal of Physics D-Applied Physics物理杂志D——应用物理2.104Journal of the American Ceramic Society美国陶瓷学会杂志2.101Diamond and Related Materials金刚石及相关材料2.092Journal of Chemical & Engineering Data化学和工程资料杂志2.063Intermetallics金属间化合物2.034Electrochemical and Solid State Letters固体电化学快报2.001Synthetic Metals合成金属1.962Composites Part A-Applied Science and Manufacturing复合材料A应用科学与制备1.951 Journal of Nanoscience and Nanotechnology纳米科学和纳米技术1.929Journal of Solid State Chemistry固体化学1.91Journal of Physics: Condensed Matter物理学学报:凝聚态物质1.9Urnal of Bioactive and Compatible Polymer生物活性与兼容性聚合物杂志1.896 International Journal of Heat and Mass Transfer传热与传质1.894Applied Physics A-Materials Science & Processing应用物理A-材料科学和进展1.884Thin Solid Films固体薄膜1.884Surface & Coatings Technology表面与涂层技术1.860Materials Science & Engineering C-Biomimetic and Supramolecular Systems材料科学与工程C—仿生与超分子系统1.812Materials Research Bulletin材料研究公告1.812International Journal of Solids and Structures固体与结构1.809Materials Science and Engineering A-Structural Materials Properties Microst材料科学和工程A—结构材料的性能、组织与加工1.806Materials Chemistry and Physics材料化学与物理1.799Powder Technology粉末技术1.766Materials Letters材料快报1.748Journal of Materials Research材料研究杂志1.743Smart Materials & Structures智能材料与结构1.743Solid State Sciences固体科学1.742Polymer Testing聚合物测试1.736Nanoscale Research Letters纳米研究快报1.731Surface Science表面科学1.731Optical Materials光学材料1.714International Journal of Thermal Sciences热科学1.683Thermochimica Acta热化学学报1.659Journal of Biomaterials Applications生物材料应用杂志1.635Journal of Thermal Analysis and Calorimetry1.63Journal of Solid State Electrochemistry固体电化学杂志1.597Journal of the European Ceramic Society欧洲陶瓷学会杂志1.58Materials Science and Engineering B-Solid State Materials for Advanced Tech材料科学与工程B—先进技术用固体材料1.577Applied Surface Science应用表面科学1.576European Physical Journal B欧洲物理杂志B1.568Solid State Communications固体物理通信1.557International Journal of Fatigue疲劳国际杂志1.556Computational Materials Science计算材料科学1.549Cement and Concrete Research水泥与混凝土研究1.549Philosophical Magazine Letters哲学杂志(包括材料)1.548Current Applied Physics当代应用物理1.526Journal of Alloys and Compounds合金和化合物杂志1.51Wear磨损1.509Journal of Materials Science-Materials in Medicine材料科学杂志—医用材料1.508 Advanced Engineering Materials先进工程材料1.506Journal of Nuclear Materials核材料杂志1.501International Journal of Applied Ceramic Technology应用陶瓷技术1.488Chemical Vapor Deposition化学气相沉积1.483COMPOSITES PART B-ENGINEERING复合材料B工程1.481Composite Structures复合材料结构1.454Journal of Non-crystalline Solids非晶固体杂志1.449Journal of Vacuum Science & Technology B真空科学与技术杂志B1.445Semiconductor Science and Technology半导体科学与技术1.434Journal of SOL-GEL Science and TEchnology溶胶凝胶科学与技术杂志1.433Science and Technology of Welding and Joining焊接科学与技术1.426Metallurgical and Materials Transactions A-Physical Metallurgy and Material冶金与材料会刊A——物理冶金和材料1.389Modelling and Simulation in Materials Science and Engineering材料科学与工程中的建模与模拟1.388Philosophical Magazine A-Physics of Condensed Matter Structure Defects andMechanical Properties哲学杂志A凝聚态物质结构缺陷和机械性能物理1.384Philosophical Magazine哲学杂志1.384Ceamics International国际陶瓷1.369Oxidation of Metals材料氧化1.359Modern Physics Letters A现代物理快报A1.334Cement & Concrete Composites水泥与混凝土复合材料1.312Journal of Intelligent Material Systems and Structures智能材料系统与结构1.293Journal of Magnetism and Magnetic Materials磁学与磁性材料杂志1.283Journal of Electronic Materials电子材料杂志1.283Surface and Interface Analysis表面与界面分析1.272Science and Technology of Advanced Materials1.267Journal of Computational and Theoretical Nanoscience计算与理论纳米科学1.256IEEE TRANSACTIONS ON ADVANCED PACKAGINGIEEE高级封装会刊1.253Materials Characterization材料表征1.225International Journal of Refractory Metals & Hard Materials耐火金属和硬质材料国际杂志1.221Physica Status solidi A-Applied Research固态物理A——应用研究1.205PHASE TRANSITIONS相变1.201Journal of Thermal Spray Technology热喷涂技术杂志1.2International Journal of Nanotechnology纳米工程1.184Journal of Materials Science材料科学杂志1.181Journal of Vacuum Science & Technology A-VACUUM Surfaces and Films真空科学与技术A真空表面和薄膜1.173PHYSICA STATUS SOLIDI B-BASIC RESEARCH固态物理B—基础研究1.166MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING半导体加工的材料科学1.158 International Journal of Fracture断裂学报1.147Journal of Materials Processing Technology材料加工技术杂志1.143Metals and Materials International国际金属及材料1.139IEEE TRANSACTIONS ON MAGNETICSIEEE磁学会刊1.129Vacuum真空1.114Journal of Applied Electrochemistry应用电化学1.111Materials & Design材料与设计1.107JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS固体物理与化学杂志1.103Journal of Experimental Nanoscience实验纳米科学1.103POLYMER COMPOSITES聚合物复合材料1.054Journal of Materials Science-Materials in Electronics材料科学杂志—电子材料1.054Journal of Composite Materials复合材料杂志1.034Journal of the Ceramic Society of Japan日本陶瓷学会杂志1.023JOURNAL OF ELECTROCERAMICS电子陶瓷杂志0.99ADVANCES IN POLYMER TECHNOLOGY聚合物技术发展0.979IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIESIEEE元件及封装技术会刊0.968Journal of Porous Materials多孔材料0.959IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURINGIEEE半导体制造会刊0.957 CONSTRUCTION AND BUILDING MATERIALS结构与建筑材料0.947Journal of Engineering Materials and Technology-Transactions of The ASME工程材料与技术杂志—美国机械工程师学会会刊0.938FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES工程材料与结构的疲劳与断裂0.934IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITYIEEE应用超导性会刊0.919ACI STRUCTURAL JOURNAL美国混凝土学会结构杂志0.895Materials Science and Technology材料科学与技术0.894Materials and Structures材料与结构0.892Reviews on Advanced Materials Science先进材料科学评论0.891International Journal of Thermophysics热物理学国际杂志0.889JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY粘着科学与技术杂志0.869Journal of Materials Science & Technology材料科学与技术杂志0.869High Performance Polymers高性能聚合物0.86BULLETIN OF MATERIALS SCIENCE材料科学公告0.858Mechanics of Advanced Materials and Structures先进材料结构和力学0.857PHYSICA B物理B0.822EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS欧洲物理杂志—应用物理0.822 CORROSION腐蚀0.821International Journal of Materials Research材料研究杂志0.819JOURNAL OF NONDESTRUCTIVE EVALUATION无损检测杂志0.808METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY ANDMATERIALS冶金和材料会刊B—制备冶金和材料制备科学0.798Materials Transactions材料会刊0.753Aerospace Science and Technology航空科学技术0.74Journal of Energetic Materials金属学杂志0.723Advanced Powder Technology先进粉末技术0.716Applied Composite Materials应用复合材料0.712Advances in Applied Ceramics先进应用陶瓷0.708Materials and Manufacturing Processes材料与制造工艺0.706Composite Interfaces复合材料界面0.69JOURNAL OF ADHESION粘着杂志0.685INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS理论物理国际杂志0.675JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS电化学系统新材料杂志0.67 Journal of Thermophysics and Heat Transfer热物理与热传递0.647Materials and Corrosion-Werkstoffe Und Korrosion材料与腐蚀0.639RESEARCH IN NONDESTRUCTIVE EVALUATION无损检测研究0.630JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN计算机辅助材料设计杂志0.605 JOURNAL OF REINFORCED PLASTICS AND COMPOSITES增强塑料和复合材料杂志0.573ACI MATERIALS JOURNAL美国混凝土学会材料杂志0.568SEMICONDUCTORS半导体0.565FERROELECTRICS铁电材料0.562INTERNATIONAL JOURNAL OF MODERN PHYSICS B现代物理国际杂志B0.558MATERIALS RESEARCH INNOVATIONS材料研究创新0.54GLASS TECHNOLOGY -PART A玻璃技术0.529JOURNAL OF MATERIALS IN CIVIL ENGINEERING土木工程材料杂志0.526NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY新型金刚石和前沿碳技术0.500 SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES中国科学E技术科学0.495 ATOMIZATION AND SPRAYS雾化和喷涂0.494SYNTHESE合成0.477HIGH TEMPERATURE高温0.469Journal of Phase Equilibria and Diffusion相平衡与扩散0.457INORGANIC MATERIALS无机材料0.455MECHANICS OF COMPOSITE MATERIALS复合材料力学0.453BIO-MEDICAL MATERIALS AND ENGINEERING生物医用材料与工程0.446PHYSICS AND CHEMISTRY OF GLASSES玻璃物理与化学0.429JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION武汉理工大学学报-材料科学版0.424ADVANCED COMPOSITE MATERIALS先进复合材料0.404Journal of Materials Engineering and Performance材料工程与性能杂志0.403Solid State Technology固体物理技术0.400FERROELECTRICS LETTERS SECTION铁电材料快报0.375JOURNAL OF POLYMER MATERIALS聚合物材料杂志0.373JOURNAL OF INORGANIC MATERIALS无机材料杂志0.37GLASS SCIENCE AND TECHNOLOGY-GLASTECHNISCHE BERICHTE玻璃科学与技术0.365 POLYMERS & POLYMER COMPOSITES聚合物与聚合物复合材料0.355Surface Engineering表面工程0.354RARE METALS稀有金属0.347HIGH TEMPERATURE MATERIAL PROCESSES高温材料加工0.34JOURNAL OF TESTING AND EVALUATION测试及评价杂志0.324AMERICAN CERAMIC SOCIETY BULLETIN美国陶瓷学会公告0.324MATERIALS AT HIGH TEMPERATURES高温材料0.323MAGAZINE OF CONCRETE RESEARCH混凝土研究杂志0.315SURFACE REVIEW AND LETTERS表面评论与快报0.309Journal of Ceramic Processing Research陶瓷处理研究0.294JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERIN日本机械工程学会国际杂志系列A-固体力学与材料工程0.291MATERIALS TECHNOLOGY材料技术0.288ADVANCED COMPOSITES LETTERS先进复合材料快报0.27HIGH TEMPERATURE MATERIALS AND PROCESSES高温材料和加工0.268INTEGRATED FERROELECTRICS集成铁电材料0.242MATERIALS SCIENCE材料科学0.226MATERIALS EVALUATION材料评价0.21POWDER METALLURGY AND METAL CERAMICS粉末冶金及金属陶瓷0.201RARE METAL MATERIALS AND ENGINEERING稀有金属材料与工程0.162 INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY材料与生产技术国际杂志0.157METAL SCIENCE AND HEAT TREATMENT金属科学及热处理0.157JOURNAL OF ADVANCED MATERIALS先进材料杂志0.14ADVANCED MATERIALS & PROCESSES先进材料及工艺0.129MATERIALS WORLD材料世界0.122SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS复合材料科学与工程0.098 MATERIALS PERFORMANCE材料性能0.074。

关于胚胎干细胞的文献

关于胚胎干细胞的文献

关于胚胎干细胞的文献
1. Thomson JA等人在1998年首次成功地从人类胚胎中分离出ESC,并在Science杂志上发表了相关研究。

这项研究标志着胚胎干
细胞领域的重要突破,引起了广泛的关注。

2. 《Nature》杂志于2006年发表了一篇综述文章,探讨了胚
胎干细胞的特性、来源、分化潜能以及其在再生医学和药物研发领
域的应用前景。

该综述提供了对胚胎干细胞研究的全面概述。

3. 《Cell Stem Cell》杂志是一个专门刊登干细胞研究的期刊,其中包括了大量关于胚胎干细胞的研究论文。

浏览该期刊的相关文
章可以获取最新的研究进展和突破。

4. 《Stem Cells》杂志也是一个重要的期刊,涵盖了广泛的干
细胞研究领域。

在该期刊中,你可以找到关于胚胎干细胞的最新研
究成果和评论。

5. 《Developmental Biology》杂志发表了一些关于胚胎干细
胞的发育生物学研究,这些研究有助于我们理解胚胎干细胞的分化
和发展过程。

此外,还有一些专门关注胚胎干细胞伦理和法律问题的文献:
1.《Science》杂志上发表的一篇综述文章讨论了胚胎干细胞研究的伦理和法律挑战,以及各国政策和法规的差异。

2. 《Nature Reviews Genetics》杂志发表了一些关于胚胎干细胞伦理和社会问题的综述文章,对胚胎干细胞研究的伦理和社会影响进行了深入探讨。

需要注意的是,以上只是一些代表性的文献和期刊,胚胎干细胞研究领域的文献非常广泛。

如果你有特定的研究方向或者更具体的问题,我可以提供更详细的信息。

公司多元化经营外文文献及文献综述

公司多元化经营外文文献及文献综述

本份文档包含:关于该选题的外文文献、文献综述一、外文文献标题: The effects of institutional ownership on the value and risk of diversifiedfirms 作者: Mohammad Jafarinejada, Surendranath R. Joryb, Thanh N. Ngoc, 期刊: International Review of Financial Ana lys is (Volume 40 2015): 207-219年份: 2015The effects of institutional ownership on the value and risk of diversified firmsAbstractWe study the link between institutional ownership and firms' diversification strategy, value and risk. Our sample includes US-listed firms with segment data from 1998 to 2012. We find that not a ll kinds of diversification are value-destroying; unlike industria lly-diversified firms, global single-segment firms are trading at a premium relative to their imputed va lue. The presence of institutional investors and the stability of their shareholdings positively influence the likelihood that a firm is diversified. The proportion (volatility) of institutional ownership is higher (lower) among diversified firms compared to domestic s ingle-segment firms. More importantly, the higher the proportions of institutional shareholdings, the higher the excess value of the diversified firm and the lower the firm idiosyncratic risk. Institutional ownership volatility, on the other hand, is inversely related to a firm excess value but positively related to its idiosyncratic risk. Thus, the presence of long-term stable institutional investors enhances the value of diversified firms. Our findings remain robust to various model specifications and estimation techniques. Ke yw or ds: Institutional ownership; Corporate diversification; Diversification discount;1.IntroductionThe effect of diversification on firm value continues to attract considerable research interest. There are two main types of diversification: product- and geographic diversification (Vachani, 1991 and Martin, 2008). Product diversification refers to the degree to which firms are involved in different industries (we refer to them asbusiness segments). Geographic diversification refers to the extent to which firms are involved in different countries (we refer to them as geographic segments). Bodnar, Tang, and Weintrop (1997) find that global diversification is associated with higher firm value. In contrast, Denis, Denis, and Yost (2002) find that diversification decreases firm value. Other studies that suggest that diversification adversely affects firm value include Berger and Ofek (1995), Fauver, Houston, and Naranjo (2004); a nd Kim and Mathur (2008).Corporate diversification is appealing to investors. Under the premise that corporations are better at diversification than shareholders, corporate diversification should lower shareholders' investment risk at a fraction of the cost incurred by individual investors (see Agmon and Lessard (1977); Doukas and Travlos (1988); Harris and Ravenscraft (1991);Sanders and Carpenter (1998)). However, the diversity of operations at conglomerate firms makes it harder for ordinary investors to monitor them (Fatemi, 1984), opening the possibility for management to pursue self-interest objectives at the expense of the shareholders (Palich, Cardinal, & Miller, 2000). Such agency problems will reduce shareholders' return on investment and/or increase their risk. As a consequence, if there is a group out there who is better at monitoring managers, it is better to follow their lead. Jensen and Meckling (1976),and Shleifer and Vishny (1986) suggest that large investors could well be that group. We propose to consider the contribution to firm value and risk brought about by such an important group of investors at diversified firms, i.e., institutional investors.Institutional investors —inc luding mutual funds, hedge funds, pension funds, banks and insurance companies —are leading players in the financial markets as well as the primary owners of US corporate equity (Gillan & Starks, 2000). Estimates of their shareholdings at US firms range from 35% in the 1980s and 60% in the 2000s to 66% by the end of 2010. Given the size of their equity investments, they tend to exert considerable pressure on management to create wealth for investors (see also, Shleifer and Vishny (1986)). Jarrell and Poulsen (1987), Brickley, Lease, and Smith (1988); Agrawal and Mandelker (1990) suggest a direct link between institutional investors and shareholders' wealth. Consequently, managers pay a lot of attention tomeet the financial targets set by these investors (Easley and O'hara, 1987, Kyle, 1985 and Clay, 2002). Actions taken by the investors tend to generate a lot of press and media attention, especially at large and diversified firms. Many institutional investors believe that diversified firms can generate more profit by restructuring their divis ions; examples include campaigns by investors demanding restructuring at big firms like PepsiCo, Sony, Timken, and McGraw-Hill.Do institutional investors —as effective monitors of firm performance —support diversification and add value to diversified firms by virtue of their presence? We attempt to answer the question and analyze the importance of two measures of institutional ownership on diversified firms' value and risk, i.e., the proportion of the shares held by the institutional investors (IOPr) and the institutional ownership volat ility (IOV). The first measure is extensively used in the literature, though mostly focused on domestic firms. An emerging literature on the effects of institutional ownership on firm value suggests that in addition to the proportion of shares held by investors, it is equally important to consider institutional ownership stability. They argue that not all institutional investors stay with a firm for the long-term. Some are short-term and would leave at the first s ign of trouble. E lyasiani and J ia (2010),and Ca lle n and Fa ng (2013)ar gue that ―stable‖institutiona l inves tor s are m ore incentivized to monitor target firms and improve shareholder welfare.To the extent that diversification destroys value while institutional investors add value, we test whether their presence at diversified firms adds value. We hypothesize that diversified firms w ith higher proportions of shares held by institutional investors(IOPr) and lower variability in the proportions (IOV) are associated with higher excess values. Similar ly, we posit that firm risk is inversely related to IOPr and positively related to IOV. Managers would be under scrutiny not to cripple the firm with non-value added diversifications when more shares are held by institutional investors (IOPr). Conversely, if a firm pursues the wrong type of diversification, then there is little reason for the investors to hold onto their shares. Thus, we should observe a higher volatility in institutional shareholdings (IOV) among this subgroup of firms.We examine the universe of firms listed in COMPUSTAT from 1998 to 2012. We break the universe of COMPUSTAT firms into four groups: (i) domestic single-segment firms (DS), (ii) domestic multi-segment firms (DM), (iii) global single-segment firms (GS) and (iv) global mult i-segment firms (GM). We find that unlike domestic firms, the trend is to go global, i.e., we observe a fall in the number of domestic firms and a rise in the number of global firms over time. We find that not all kinds of diversification are associated with negative excess values. As opposed to industrially-diversified firms, global single-segment firms trade at a premium relative to their matched domestic s ingle-segment firms. The idiosyncratic risk levels are l ower for diversif ied firms compared to domestic s ingle-segment firms.The proportion of shares held by institutional investors (IOPr) is higher and the volatility in those proportions (IOV) is lower at diversif ied firms compared to domestic single-segment firms. Using probit regressions, we find that the likelihood to diversify is pos itively associated with the proportion of shares held by institutional investors (IOPr) and inversely related to its volatility (IOV).Univariate analyses suggest the existence of a positive relationship between IOPr and firm's excess value and an inverse relationship between IOPr and firm's idiosyncratic risk. Conversely, IOV is inversely related to excess value and positively related to idiosyncratic risk. The evidence suggests that there exists a significant relationship between the presence of long-term stable institutional investors and the ability of diversified firms to create wealth.Consistent with the univariate findings, the coefficient of IOPr is positive and that of IOV is negative in panel f ixed-effect regressions of firms' excess values. The coefficients of DMand GM, representing domestic multi-segment firms and globally diversified multi-segment firms, respectively, are both negative and highly significant. On the other hand, globa l single segment (GS) firms are associated with higher excess values.In regressions of firms' idiosyncratic risk, the coefficients of IOV and IOPr are positive and negative, respectively, suggesting that firms with lower proportions of equity held by institutional investors and higher volatility in that proportion areperceived as riskier and carrying more idiosyncratic risk. Overall, the empirical evidence suggests that diversified firm value is linked to investors with considerable and stable shareholdings. Furthermore, the absence of stable, long-term institutional investors increases the idiosyncratic risk of diversified firms. Our empirical findings are robust to alternative control variables, various model specifications and estimation techniques.Beyond complementing and extending the literature on the diversification discount, this study also contributes to the emerging literature on the role of institutional ownership stability on firm governance and performance. To the bestof our knowledge, our study is the first to assess the impact of institutional ownership stability among diversified firms. We consider the effect of institutional investors in lessening the diversification discount. We also examine the link between institutional investors and firm risk. The remainder of the paper is organized as follows. Section 2 reviews the literature and formulates the hypotheses. Section 3presents the data. Section 4 presents the methods used. We present and discuss the findings in Section 5, and conclude the paper in the final section.2.Literature review and hypotheses developmentAt the firm leve l, institutional investors tend to resist counterproductive strategies while supporting beneficial ones, especially shareholder driven ones (Bethel and Liebeskind, 1993, Hill and Snell, 1988, Holderness and Sheehan, 1985 and Mikkelson and Ruback, 1991). They tend to lobby senior executives to implement restructuring strategies that are beneficial to all the shareholders (see also Bethel and L iebeskind (1993)). Attig et al. (2012)argue that long-term institutional investors have greater incentives and efficiencies —economies of scale in the collection and processing of corporate information —to engage in effective monitoring, which in turn mitigate the asymmetric information dilemma and a ssociated agency problems.Barclay, Holderness, and Pontiff (1993) find that investors va lue the skills and demands of block purchasers and that firm value increases follow ing a block trade.They document a high turnover in management following these trades and a decline in firm va lue when the block holders either fail to achieve control and/or face resistance from management. Navissi and Naiker (2006) find that shareholding by active institutional investors of up to 30% positively influences corporate value. Beyond30%, the ownership tends to reduce firm value, which suggests that there exists a non-linear relationship between the two. When these shareholders become too large, there exists a signif icant risk that they will join forces with management to safeguard their common interests at the expense of the other shareholders, especially minority/individual ones. The authors find that passive investors do not affect firm value. Cornett et a l. (2007) find that the percentages of institutional investor involvement in a firm, as well as their numbers, are associated with better operating cash flow returns. However, the findings only hold when the investors have no business relation w ith the firm; else there is no significant relationship between institutional investors and firm performance.In theory, a conglomerate firm with multiple business segments should trade at the same price as the sum of the individual segments as standalone businesses. Yet, the literature finds that this is rarely the case. This inequality is due to asymmetric information and agency conflicts along the lines explained by M yers (1984); Myers and Majluf (1984). However, recent studies on institutional ownership and stability suggest that institutional investors can help solve such problems. We study whether the involvement of institutional investors can turn the fortunes of diversified firms given the evidence of a diversification discount (Fauver et al., 2004, Jory & Ngo,2012).H1.There exists a positive relationship between diversified firms' value and the proportion of the shares held by institutional investors.Nonetheless, not all institutional investors are equally motivated to ensure the long-term well-being of a firm. There exist some investors with an interest in short-term trading, quick profits and turnaround. They are not w illing to incur long-term monitoring costs and are not interested in monitoring firm'smanagement. Callen and Fang (2013) review some scenarios suggestive of a short-term bias. In the first case, the cost of monitoring far exceeds the combined costs of selling the shares and investing in another company. Second, many institutional investors hold well-diversif ied portfolios that do not require them to monitor actively every company in their portfolio. Third, the benefits of short-term gains far exceed those of long-term investing. With their constant buying and selling, these investors cause a lot of variability/volatility in the proportion of shares held by them in the company. Thus, we hypothesize that for value creation, stable institutional investors are more desirable than transient ones.H2.There exists an inverse relationship between firm value and institutional ownership volatility.Institutional investors tend to be large ones buying signif icant stakes in the companies they invest. Given the size of their investments, they pay particular attention to the risk-taking activity at target firms, and they have sufficient influence to lobby senior executives to sway risk-taking decisions in their favor. We hypothesize that the presence of these investors would dissuade managers from taking excessive idiosyncratic risks —for instance, engaging in unrelated diversification abroad where the managers have little know ledge of, thus increasing the risks the firm faces.Institutional investors have their own stakeholders to satisfy —for instance, pension funds and insurance companies have to make regular payments to their subscribers — and they would resist changes that would disrupt those relationships. To the extent that their required return on investment is linked to changes in the value of the firm, they would withstand actions that would increase the variance of the firm returns and adversely affect its ability to pay dividend. This would also be true for institutional investors who have selected targets based on their current business strategies and are satisfied with the status quo; those who lack the expertise and/or incentives to monitor new ventures and risky undertakings; and, investors whose wealth is concentrated in the target company.There are two types of risks faced by a firm, i.e., market and idiosyncraticrisks.Management can more directly affect the latter. Thus, for the purpose of our study, we consider a firm's idiosyncratic risk. To minimize its impact on the value of their equity investment, we test the hypothesis that the presence of institutional investors helps to m inimize idiosyncratic risk.H3.There exists an inverse relationship between firm idiosyncratic risk and the proportion of shares held by institutional investors.Financial markets comprise investors and traders of different time horizons (Malagon, Moreno, & Rodriguez, 2015). Investors engaging in frequent trading are more interested in short- rather than long-term gains. They could lobby for makeshift corporate changes at the expense of changes that would have benefited all the shareholders in the long run. Their presence will a lso do little in alleviat ing the risks associated with misalignment of objectives, opportunistic behavior and earnings management at the investee firm and, consequently, accentuate the firm's idiosyncratic risk. Frequent trading in the shares of a firm — caused by short-term traders — will lead to an increase in the volatility of the proportions of shares held by its investors. Conversely, long-term investors — those who are more like ly to buy and hold and cause less volatility in the proportions of shares held by investors —are more incentivized to monitor firm activities and improve shareholder value. Thus, we test the hypothesis that there exists a positive association between the volatility in the p roportions of shares held by investors and a firm's idiosyncratic risk.H4.There exists a positive association between firm idiosyncratic risk and institutional ownership volatility.3.DataOur sample of firms is from the COMPUSTAT database and our sample period starts in 1998 and ends in 2012. We define a diversified firm as one that reports data on the industry and/or geographic segments in the COMPUSTAT segment data tapes. Similar to He (2009), we start the sample period in 1998 because the Financial Accounting Standards Board (FASB) issued SFAS 131 in 1997, which significantlyaffects the way businesses report segment data.Following, we exclude the follow ing firms from our sample: (i) firms with SIC codes 4900–4999 (i.e., utility firms) and 6000–6999 (i.e., financial firms) since they are heavily regulated; (ii) firm-year observations with segment sales less than $20 million; and (iii) firm-year observations where the difference between the total sales of all its segments and the reported total sales for the entire firm i s greater than 1%. We further obtain accounting and financial data from COMPUSTAT, ownership data from Thomson Financial and stock price data from the Center for Research in Security Prices (CRSP) databases. The Thomson Financial database reports institutional 13F common stock holdings and transactions. It includes common stock holdings and transactions of institutional money managers where holdings of the managing company /filer's level are as per the 13F filing itself. It covers all NYSE,AMEX, NASDAQ common stocks and includes all managers filing 13F reports w ith the SEC.We present the sample descriptives in Table 1. We break the sample into four groups as follows: domestic single-segment (DS, i.e., not diversified), domestic multi-segment (DM, i.e., industrially diversified only), global single-segment (GS, i.e., geographically diversified only) and global mult i-segment (GM, i.e., both industrially and geographically diversified). The trend is toward more globally diversif ied firms; from 18% in 1998, their proportion as a percentage of the entire sample increases to 33% by 2012. We have 53,481 firm-year observations obtained from 11,882 firmsdistributed as follows, 63% DS, 12% DM, 15% GSand 10% GM firms.4.Methodology4.1.Measuring excess valueTo explore the valuation consequences of diversification, we use the same measure of excess value as in Berger and Ofek (1995); and Bodnar et al. (1997). The excess value of firm i is calculated as the natural log of the ratio of the firm's market v alue to its imputed value.4.2.Measuring idiosyncratic riskTo compute a fir m's idios yncra tic risk we use the Fama and French,1992 and Fama and French, 1993 model and add the excess return on a world portfolio to the equation as follows (see also Stulz (1999)):5.Results5.1.Probit regressionsWe model a firm's propensity to diversify as a function of the characteristics of the firm, its industry, its macroeconomic environment and, more importantly, the institutional ownership variables of IOPr and IOV. Table 2 reports the probit estimates from two different models. Model (1) contains the IOPr variable while Model (2) c ontains both the IOPr and the IOVvariables.value of the coefficient representing the variable IOPr is positive and statistically significant. Conversely, the value of the coefficient IOV is negative and statistically signif icant. The margina l effects of IOPr and IOV are positive and negative,respectively. Thus, diversified firms are associated with higher proportions of institutional ownership and lower volatility in that ratio over time.We also find that the odds that a firm is diversified are positively associated to: firm size (ln(AT)), profitability (EBITS), being listed on a major US stock exchange (MAJOR), the number of diversified firms in the industry (NUMDIVF), the proportion of sales generated by diversified firms (PrINDS), and the number of M&As occurring in the industry (NUMA). Conversely, capital-intensive firms (CAPX), growth firms as measured by the Q ratio, as well as growth industries (INDUSTRYQ), growth in GDP (GDPGr) and the industry's dollar amount of deals (VOLMA) are inversely related to a firm's propensity to diversify.5.2.Excess value and idiosyncratic risk of diversified firmsWe present the mean and median excess values of industrially- (i.e., DM, GM) and geographically diversified (i.e., GS, GM) firms in Table 3. We compare the excess values to that of the sample of DS (i.e., domestic single-segment) firms and various portfolios comprising DS firms. More precisely and following Villalonga (2004), we calculate each firm's predicted probability to diversify using the probit model of Eq. For each diversified firm, we form a portfolio comprising domestic single-segment firms w ith probability values from the same quartile. Since we run two versions of theprobit model, we present our findings based on two portfolios of matched domestic single-segment firms (i.e., portfolios 1 and 2, respectively) for every diversified firm.The excess values of DM (mean of − 8.20% in Panel A) and GM (mean of 16.20% in Panel C) firms are significantly lower than the corresponding values of both portfolios of matched domestic single-segment firms. Thus, industrial diversification is associated with lower excess values. Conversely, the excess values of global single segment firms (GS firms in Panel B) are positive and significantly higher than those of domestic single-segment firms. Our findings are consistent with Denis et a l. (2002), Kim and Mathur (2008); and Jory and Ngo (2012).We also compare the idiosyncratic risks of the four groups of firms. The idiosyncratic risk measures of the diversified firms (i.e, DM, GS and GM firms) are all significantly lower compared to either the sample of domestic single-segment firms or matching portfolios of domestic s ingle-segment firms. The combination of different business and/or geographic units leads to a portfolio effect that dampens the individual risk of each unit causing a diversified firm to report lower risk measures.5.3.The percentage of shares owned by institutional shareholders (IOPr) and the volatility of institutional ownership (IOV)We present the values of IOPr and IOV by diversification type in Table 4. We compare the figures with various subsamples of DM firms. The mean and median IOPr figures are 21% and 7%, respectively for domestic single-segment firms, i.e., non-diversified firms. In contrast, the proportion of company shares held by institutional investors is higher among diversified firms (both industria lly- and geographically-diversified firms). For instance, the mean values of IOPr at DM, GS and GM firms are 39%, 52% and 56%, respectively. The corresponding median figures are 38%, 57% and 64%, respectively. Thus, institutional investors hold a higher proportion of the shares at diversified firms when compared to non-diversified ones.6 ConclusionWhile single-segment domestic firms still dominate the corporate landscape, we observe a gradual decline in their numbers and an increase in the frequency ofglobally-diversified firms. We find that not all kinds of diversification are value-destroying and that global single-segment firms trade at a premium compared to matched domestic single-segment firms. Industrially-diversified firms though (either domestic or global) are associated with lower excess values. Nonetheless, the combination of the different business and/or geographic units exerts a portfolio effect that causes the overall enterprise risk to decline causing diversified firms to report lower risk measures compared to domestic single-segment firms.We provide empirical evidence that institutional ownership is a core value driver of diversified firms. They are associated with higher levels of institutional shareholdings and more stable shareholdings over time. The proportion and stability of institutional ownership are positively related to firm value and inversely related to its idiosyncratic risk. Our results indicate that the presence of long-term stable institutional investors is a source of value for diversified corporations.二、文献综述公司多元化经营文献综述摘要公司多元化经营的相关问题是近年来公司战略管理、产业经济学和公司金融领域的一个研究热点,也是一个在理论界颇具争议的话题。

SAE USCAR-2-2013第6版中文

SAE USCAR-2-2013第6版中文

汽车电连接器系统性能规范SAE/USCAR-2第6版2013.2ISBN:978-0-7680-7998-2SAE/USCAR-2第6版颁布日期1997年8月修订日期2013年2月汽车电连接器系统的性能规范目录1.范围 (3)2.试验顺序 (3)3.参考文档 (3)3.1文件的层次 (3)3.2零件图 (4)3.3产品设计规范 (4)3.4测试要求/指令 (4)3.4.1样品,测试类型,和特殊测试 (4)3.4.2测试要求/指令说明 (4)3.4.3性能和耐久性测试说明 (4)3.5本规范中所提到的文档 (4)4.一般要求 (5)4.1纪录保存 (5)4.2样品文件 (5)4.3样品数量 (5)4.4默认测试公差 (5)4.5设备 (6)4.6测量精确度 (6)4.7测试重复性&校准 (6)4.8一致性测定 (7)4.9样品的处置 (7)4.10零件的耐久性 (7)5.测试和验收要求 (7)5.1总则 (7)5.1.1性能要求 (7)5.1.2尺寸特性 (7)5.1.3材料特性 (7)5.1.4分类等级 (8)5.1.5试验端板&直接连接组件 (9)5.1.6端子样品准备 (10)5.1.7连接器和/或端子循环 (10)5.1.8外观检验 (11)5.1.9电路连续性监测 (12)5.1.10多腔(垫)导体密封样品准备 (14)The research data,analysis,conclusion,opinions and other contents of this document are solely the product of the authors.Neither the SAE International(SAE)nor the United States Council for Automotive Research(USCAR)certifies the compliance of any products with the requirements of nor makes any representations as to the accuracy of the contents of this document nor to its applicability for purpose.It is the sole responsibility of the user of this document to determine whether or not it is applicable for their purposes.Copyright©2013USCAR Printed in U.S.A. All rights reserved.QUESTIONS REGARDING THIS DOCUMENT:(248)273-2470FAX(248)273-2494TO PLACE A DOCUMENT ORDER:(724)776-4970FAX(724)776-07905.2端子机械测试 (14)5.2.1端子到端子的啮合/分离力 (14)5.2.2端子抗弯性 (15)5.3端子-电器性能试验 (17)5.3.1干电路电阻 (17)5.3.2电压降 (19)5.3.3最大试验电流能力 (21)5.3.4电流循环 (24)5.4连接器-机械性能试验 (25)5.4.1端子至连接器插入/保持和前止力 (25)5.4.2连接器至连接器插入/拔出/保持/锁扭转力(非辅助) (29)5.4.3连接器到连接器的插拔力(机械辅助) (31)5.4.4极性特征有效性 (34)5.4.5混合组件的啮合分离力 (35)5.4.6振动/机械冲击 (37)5.4.7连接器到连接器可听见的咔哒响 (44)5.4.8连接器跌落测试 (44)5.4.9模腔损坏系数 (45)5.4.10端子/型腔极性测试 (46)5.4.11连接器安装特征机械强度 (47)5.4.12机械辅助完整性–(仅有机械辅助的连接器) (49)5.4.13连接器密封保持-未插合的连接器 (50)5.4.14连接器密封保持-插合的连接器 (52)5.5连接器-电气性能测试 (52)5.5.1绝缘电阻 (52)5.6连接器环境测试 (53)5.6.1热冲击 (53)5.6.2温湿度循环 (54)5.6.3高温暴露 (55)5.6.4耐流体性能 (56)5.6.5浸泡 (57)5.6.6压力/真空泄露 (58)5.6.7高压喷射 (60)5.7端板测试 (61)5.7.1端板插针保持力 (61)5.8剧烈任务试验 (63)5.9测试顺序 (63)5.9.1一般说明 (63)5.9.2测试流程图 (63)5.9.3端子机械性能测试顺序 (64)5.9.4端子电气性能测试顺序 (64)5.9.5连接器系统机械性能测试顺序 (64)5.9.6连接器系统电气性能测试顺序 (65)5.9.7密封性连接器系统环境性能测试顺序 (66)5.9.8非密封性连接器系统环境性能测试顺序 (67)5.9.9独立密封性能测试顺序 (67)6.附录 (68)6.1附录A:术语 (68)6.2附录B:缩略语 (70)6.3附录C:对于新的或移动工具和材料变更的测试 (72)6.4附录D:对于新的/现有的端子或连接器设计的测试 (73)6.5附录E:来源列表 (74)6.6附录F:设计说明:温度和额定电流 (75)6.7附录G:修订 (76)1.范围本规范中包含的程序旨在涵盖在低电压(0-20VD C)道路车辆应用中组成电气连接系统的电气终端、连接器和部件的开发、生产和现场分析的所有阶段的性能测试。

JA K2 V617F 基因突变检测技术新进展

JA K2 V617F 基因突变检测技术新进展

慢性 骨髓 增 殖 性疾 病 ( Ch r o n i c my e l o p r o l i f e r a —
t i v e d i s e a s e ,CMP D) 是 一组 异质 性 的造血 细胞 克 隆 性疾病, 包 括真 性红 细胞 增 多症 ( P o l y c y t h e mi a v e r a , P V) 、 原发性 血小板 增多症 ( Es s e n t i a l t h r o mb o c y —
J A l 【 2 Y 6 1 7 F M u l a t i o n
的 临床分 子诊 断实验 室 就将 J AK2突 变 检 测 纳 入 了
医疗保 险 范 畴 [ 2 ] 。有 研 究 表 明 , 在 P h( 一 ) 的 CM P D 中 J AK2 V6 1 7 F 点 突 变 的 发 生 率 ,PV 为 6 5 ~
9 7 ( 整体 检 出率 为 7 4 ) ,ET 为 2 3 ~5 7 ( 整 体检 出率 为 3 6 ) , P MF为 3 5 ~5 7 ( 整 体 检 出
率为 4 4 ) [ 3 ] 。2 0 0 9年 , W H0 则 将 J AK2 V6 1 7 F
虽然 直 接测 序 法 被认 为 是 最 直 观 、 最 特 异 的方
法, 但是 , 因为生 成 的 色谱 图像 会 有 本 底 干扰 , 从 而 导 致敏感 性 降低 , 同时 , 测 序 仪 器 昂贵 , 如 从 扩 增 到 完 成测序 耗 时较 长 , 因此 在 临床 基 因诊 断 实 验 室全 面推广 尚存 在 困难 。
变 可 能 与 CMP D 发病 有密 切关 联 , 才 受 到 医 学 界 的 广泛认 可 , 而 在 文 章 发 表 后 的 7个 月 内 , 美 国 和 欧 洲

j. am. chem. soc.的文章类型 -回复

j. am. chem. soc.的文章类型 -回复

j. am. chem. soc.的文章类型-回复在此我假设您是要求写一篇1500-2000字长的文章,这篇文章的主题是有关"j. am. chem. soc."(即"Journal of the American Chemical Society",简称JACS)的文章类型。

遵循您对于文章类型的要求,我将会一步一步回答。

文章类型是指在学术期刊中发表的文章,它们可以涵盖多种主题、研究方法和实验技术。

对于JACS这类顶级化学期刊,其文章类型多种多样。

以下是几种常见的JACS文章类型的介绍:1. Communication(通信):Communication是JACS中最常见的文章类型之一,它通常是对于某一最新研究成果的简短报道。

这类文章通常以简单的结构和语言,直接陈述研究发现,重点在于揭示其重要性和创新之处。

Communication的篇幅通常较短,一般不超过文章的3页。

2. Article(论文):Article是JACS中的一种全文研究论文,是对研究工作的全面描述和解释。

这类文章一般具有较完整的研究结构,包括引言、实验方法、结果与讨论、结论等部分。

Article的篇幅较长,可以超过10页,以便于作者充分呈现他们的研究发现和实验数据。

3. Perspective(展望):Perspective是JACS中的一类综述性文章,旨在对某一领域的最新进展进行总结和评价。

这类文章不仅会回顾过去的研究成果,还会展望未来的发展方向。

Perspective的篇幅通常较长,一般在5-20页之间。

4. Review(综述):Review是一种详尽综述性的文章类型,主要回顾和总结某一领域内的大量研究成果,以系统性的方式评估和综合现有的文献。

这类文章的目的是为读者提供对该领域广泛了解。

Review的篇幅往往很长,可以超过30页。

5. Feature Article(专题文章):Feature Article是JACS中的一类重要文章,它涉及到某一研究领域的深入探讨并提供了新的见解。

5_系铝合金车门内板冲压成形及回弹研究

5_系铝合金车门内板冲压成形及回弹研究

精 密 成 形 工 程第15卷 第12期106 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年12月收稿日期:2023-07-22 Received :2023-07-22基金项目:重庆市教委科技项目重点项目(KJZD-K202101101)Fund :Key Project of Science and Technology Project of Chongqing Municipal Education Commission (KJZD-K202101101) 引文格式:陈俊, 张玉成, 王博, 等. 5系铝合金车门内板冲压成形及回弹研究[J]. 精密成形工程, 2023, 15(12): 106-115. CHEN Jun, ZHANG Yu-cheng, WANG Bo, et al. Stamping Forming and Springback of 5 Series Aluminum Alloy Door Inner Panel[J]. Journal of Netshape Forming Engineering, 2023, 15(12): 106-115.5系铝合金车门内板冲压成形及回弹研究陈俊1,张玉成1,王博1,甘贵生2,彭波1,郑雪勇1,马相3(1.重庆赛力斯新能源汽车设计院有限公司,重庆 401335;2.重庆理工大学 材料科学与工程学院,重庆 401135;3.挪威科技工业研究院,奥斯陆 0314) 摘要:目的 在整体式车门内板上应用质量较轻的5系铝合金材质以达到新能源汽车的轻量化要求。

方法 在工艺设计阶段,采用AutoForm 数值分析软件及CAE 数值仿真分析技术预测零件的成形难点及回弹趋势;分析整体式车门内板的深度,并提出几种改善零件成形性的方案;根据回弹结果对模具型面进行回弹补偿;对模具加工、调试等重要环节进行深度管控。

近三年java参考文献

近三年java参考文献

近三年java参考文献在过去的三年里,Java作为一种流行的编程语言,得到了广泛的应用和发展。

许多研究人员和开发者都致力于改进和创新Java编程技术,并发布了许多有价值的参考文献。

一本值得一提的参考文献是《Effective Java》,这是Joshua Bloch 于2017年更新的第三版。

这本书探讨了Java编程中的最佳实践和设计模式,帮助开发者编写高质量、高效的代码。

它提供了许多实用的建议和示例,对于任何希望提高自己Java编程技能的开发者来说都是必读之作。

另一本重要的参考文献是《Java并发编程实战》,这是Brian Goetz 等人于2018年编写的一本书。

由于多核处理器和分布式系统的普及,Java并发编程变得越来越重要。

这本书详细介绍了Java中并发编程的原理、模型和设计准则,帮助开发者编写线程安全的代码并充分利用多核处理器的优势。

此外,2019年发布的《Java 11官方文档》也是一本不可或缺的参考文献。

这份官方文档详细介绍了Java 11的新特性、API文档和开发工具,提供了开发者在使用最新版本Java时的参考和指导。

它对Java 开发者来说是一个宝贵的资源,可以帮助他们了解和掌握Java编程语言的最新进展。

除了上述的参考文献,还有许多其他的研究论文、书籍和在线教程也对Java编程有重要的参考价值。

例如,《Java编程思想》是一本广受欢迎的Java编程入门书籍,被许多初学者和有经验的开发者用作学习和参考的书籍。

此外,许多大学和研究机构也发布了一些与Java 相关的研究论文,涵盖了从编程语言设计到性能优化的各个方面。

总之,近三年来,Java参考文献的数量和质量都有了显著的提升。

这些参考文献对于Java开发者来说是宝贵的资源,可以帮助他们提升编程技能、解决问题并跟上Java编程语言的最新发展。

无论是初学者还是有经验的开发者,都应该密切关注这些参考文献,并将它们作为自己学习和成长的重要指南。

水杨酸与茉莉酸调控植物抗性综述

水杨酸与茉莉酸调控植物抗性综述

本科毕业论文(设计)文献综述水杨酸和茉莉酸在植物两种防御反应中的作用摘要SAR与ISR是植物响应病原物侵染的主要途径,在植物抵抗生物胁迫上发挥了重要作用。

本文就现有研究成果介绍了SAR与ISR作用中关键的生物因子,以及生物因子间互相的作用,从而阐述了SA介导SAR作用与JA介导ISR作用的机理,并提出了相关研究的发展方向。

关键词: 系统获得抗性、诱导系统抗性、水杨酸、茉莉酸The Fountion of Salicylic Acid and Jasmonic Acid in Two PlantResistance ResponseAbstractSAR and ISR is the main way that plants respond to pathogen infection and play an important role in plant resistance to biotic stress. This paper describes the key biological factors in SAR and ISR and the action of biological factors between each other using the results of existing studies, which describes the mechanism ofSA-mediated SAR and JA-mediated ISR. This paper also proposed the development of related research direction.Key words Systemic acqui redresistance, Induced systemic resistance, Salicylic acid, Jasmonic acid植物与病虫害之间的关系是植物信号传递及相互关系研究领域中的一个热点。

20 铁心磁化模型文献综述

20 铁心磁化模型文献综述

B
Bs




p x, y dxdy 1 。
因 Preisach 函数的四条性质约束是 Preisach 模型能够描述非线性磁滞特性的充分必要条件。 y 3 x 2 x3 y2 y1 x1 同时,上述两个特性也极大限制了经典 Preisach Hs H Hs 模型的应用,其局限性表现为:在极限磁滞回线 内,两个相同的外施磁场极大值之间局部磁滞回 线是全等的;在磁滞回线的饱和区域,微分磁导 率是零;起始磁导率为零。 Bs 经典 Preisach 模型的上述不足通过在磁化强 图 2 偶极子的磁化特性 度中引入可逆磁化分量得到改善,且根据计及可 任意一个偶极子的磁滞特性通过下降沿翻 逆磁化分量方式的不同形成了移动 Preisach 模型 转磁场强度 y 和上升沿翻转磁场强度 x 进行描 和乘积 Preisach 模型。经典 Preisach 模型、移动 述,Bs 和 Hs 分别为磁性材料的饱和磁场强度和 Preisach 模型和乘积 Preisach 模型在磁化过程中 饱和磁感应强度,铁磁材料的宏观磁化特性即为 均未计及偶极子的响应时间。实际磁化过程中, 统计规律条件下基本偶极子磁滞特性的累积效 偶极子对外施磁场的响应是有延时的,且高频情 应。当磁场 H 增加时,处于-Bs 状态的偶极子若 况下延时会使磁滞回线的面积增大。为研究高 满足 x<H 则翻转至+Bs 状态;当 H 减小时,处于 频、涡流效应等对磁化过程的影响,出现了动态 +Bs 状态的偶极子若满足 y>H 则翻转至-Bs 状态。 Preisach 模型。此外,Preisach 模型应用的难点在 变量 x 和 y 按统计规律分布,分布函数 p(x,y)服 于其偶极子概率分布密度函数 p(x,y)的确定,这 从二元随机变量的联合分布。基于 Preisach 函数 个过程一般需要大量的测试数据和数据处理工 的四条基本性质,可得便于磁化过程分析的 作。为简化其应用,S.R.Naidu 等人[4]将 p(x,y) Preisach 图。图 3 给出了初始磁化曲线建立的过 分解为可分离变量的函数并进行函数变换,从而 程。 可由极限磁滞回线直接计算 p(x,y),但其铁心磁 磁感应强度 B 与磁场强度 H 的关系式为 滞回线的描述依然相当复杂。 B H s p x, y dxdy 基 于 经 典 Preisach 理 论 进 行 改 进 的 动 态 S Preisach 模型虽然可以从数学角度描述铁磁材料 s p x, y dxdy 的磁化特性,如不对称局部磁滞回线、涡流损耗 (3) S 等,但未能从物理角度给出合理的解释,且该模

ei检索类型ca和ja有哪些区别

ei检索类型ca和ja有哪些区别

ei检索类型ca和ja有哪些区别EI检索是指国际信息检索系统(英文名为Engineering Village),涵盖了工程、科技、医学、生物、环保等领域的文献。

在EI检索中,文献检索的方式分为不同的类型,其中包括CA和JA两种类型。

这两种类型的区别在搜索的范围、检索方式、特点和应用场景等方面有所不同。

下面我会分别从不同的角度来进行分析和比较。

一、搜索的范围1.CA(Compendex Abstracts)是指工程领域文摘集,覆盖了主要的工程技术领域,包括机械、电子、电气、信息技术、航空航天、化学等方面的文献,涵盖了工程学、材料学、物理学、计算机科学、数学等学科。

CA涵盖了工程领域的杂志、学术论文、博士论文、会议论文、报告、标准、专利等文献类型。

CA文献的检索范围广泛,包括了许多学术期刊、会议和出版物中的文章、抽象、摘要和书评。

2.JA(Inspec)是指电子工程、计算机、控制系统和信息技术领域文献,涵盖了主要的学术期刊、学术论文、白皮书、标准、专利等,专门检索电子工程、计算机科学、光电子学、通讯技术、控制工程、信号处理等领域的文献。

JA的文献类型与CA相似,同时包括杂志、会议论文、博士论文、技术报告、白皮书、标准、专利等。

二、检索方式1.CA的检索方式较为灵活,可通过单个或多个关键词的组合来进行检索。

此外,CA还提供了高级搜索、分类检索、作者检索、期刊检索等多种检索方式,方便用户进行精准的文献检索。

2.JA的检索方式与CA相似,同样提供了灵活的单词和短语检索,以及高级检索、主题分类检索、作者检索、期刊检索等多种方式。

值得一提的是,JA提供了自主词汇检索、CPC分类检索和文献类型检索等新型检索方式,使得用户能够更加准确地查找文献。

三、特点1.CA的特点是以工程技术学科为主,覆盖范围广泛,对工程师、科技人员和工程技术专业人员具有重要意义。

其核心文献为英文文献,可用于信息检索、论文编写、研究资料整理等方面。

2013年SCI收录复合材料期刊24种

2013年SCI收录复合材料期刊24种

2013年SCI收录复合材料期刊24种,其中SCI收录6种,SCIE 收录24种。

2012年JCR收录复合材料期刊24种,其中影响因子3以上有1种、影响因子2以上有4种、影响因子1以上有3种,2012年复合材料期刊影响因子前5名期刊如下:1、COMPOSITES SCIENCE AND TECHNOLOGY《复合材料科学与技术》Semimonthly ISSN: 0266-3538,2012年影响因子3.328、5年影响因子4.1412、COMPOSITES PART A-APPLIED SCIENCE ANDMANUFACTURING《复合材料A辑:实用科学与制造》 Monthly ISSN: 1359-835X,2012年影响因子2.744、5年影响因3.4533、CEMENT & CONCRETE COMPOSITES《水泥与混凝土复合材料》Bimonthly ISSN: 0958-9465,2012年影响因子2.523、5年影响因3.3594、COMPOSITE STRUCTURES《复合材料结构》 SemimonthlyISSN: 0263-8223,2012年影响因子2.231、5年影响因2.5505、COMPOSITES PART B-ENGINEERING《复合材料B辑:工程》Bimonthly ISSN: 1359-8368,2012年影响因子2.143、5年影响因2.6466、 COMPOSITE INTERFACES《复合材料界面》Bimonthly ISSN:0927-64402013年SCI收录复合材料学科期刊24种目录SCIENCE CITATION INDEX EXPANDEDMATERIALS SCIENCE, COMPOSITES - JOURNAL LISTTotal journals: 24SCI收录6种SCIE收录24种1. ADVANCED COMPOSITE MATERIALS《高级复合材料》 Bimonthly ISSN: 0924-3046TAYLOR & FRANCIS LTD, 4 PARK SQUARE, MILTON PARK,ABINGDON, ENGLAND, OXON, OX14 4RN2. ADVANCED COMPOSITES LETTERS《高级复合材料快报》Bimonthly ISSN: 0963-6935ADCOTEC LTD, PREMIER HOUSE, STE 501, 77 OXFORD ST, LONDON, ENGLAND, W1R 1RB3. APPLIED COMPOSITE MATERIALS《应用复合材料》 Bimonthly ISSN: 0929-189XSPRINGER, VAN GODEWIJCKSTRAAT 30, DORDRECHT,NETHERLANDS, 3311 GZ4. BETON- UND STAHLBETONBAU《混凝土与钢筋混凝土结构》Monthly ISSN: 0005-9900ERNST & SOHN, ROTHERSTRASSE 21, BERLIN, GERMANY,DEUTSCHLAND, 102455. CEMENT & CONCRETE COMPOSITES《水泥与混凝土复合材料》Bimonthly ISSN: 0958-9465ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE,KIDLINGTON, OXFORD, ENGLAND, OXON, OX5 1GB6. CEMENT WAPNO BETON《水泥,石灰,混凝土》Bimonthly ISSN: 1425-8129STOWARZYSZENIE PRODUCENTOW CEMENTU, UL LUBELSKA 29 LOK 4-5, KRAKOW, POLAND, 30-0037. COMPOSITE INTERFACES《复合材料界面》Bimonthly ISSN:0927-6440TAYLOR & FRANCIS LTD, 4 PARK SQUARE, MILTON PARK,ABINGDON, ENGLAND, OXON, OX14 4RN8. COMPOSITE STRUCTURES《复合材料结构》 Semimonthly ISSN: 0263-8223ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE,KIDLINGTON, OXFORD, ENGLAND, OXON, OX5 1GB9. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING 《复合材料A辑:实用科学与制造》 Monthly ISSN: 1359-835XELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND, OXON, OX5 1GB10. COMPOSITES PART B-ENGINEERING《复合材料B辑:工程》Bimonthly ISSN: 1359-8368ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE,KIDLINGTON, OXFORD, ENGLAND, OXON, OX5 1GB11. COMPOSITES SCIENCE AND TECHNOLOGY《复合材料科学与技术》Semimonthly ISSN: 0266-3538ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE,KIDLINGTON, OXFORD, ENGLAND, OXON, OX5 1GB12. JOURNAL OF COMPOSITE MATERIALS《复合材料杂志》 Biweekly ISSN: 0021-9983SAGE PUBLICATIONS LTD, 1 OLIVERS YARD, 55 CITY ROAD, LONDON, ENGLAND, EC1Y 1SP13. JOURNAL OF COMPOSITES FOR CONSTRUCTION《建筑复合材料杂志》Bimonthly ISSN: 1090-0268ASCE-AMER SOC CIVIL ENGINEERS, 1801 ALEXANDER BELL DR, RESTON, USA, VA, 20191-440014. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES《增强塑料与复合材料杂志》Semimonthly ISSN: 0731-6844 SAGE PUBLICATIONS LTD, 1 OLIVERS YARD, 55 CITY ROAD, LONDON, ENGLAND, EC1Y 1SP15. JOURNAL OF SANDWICH STRUCTURES & MATERIALS《夹层结构与材料杂志》Quarterly ISSN: 1099-6362SAGE PUBLICATIONS LTD, 1 OLIVERS YARD, 55 CITY ROAD, LONDON, ENGLAND, EC1Y 1SP16. JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS《热塑性复合材料杂志》 Bimonthly ISSN: 0892-7057SAGE PUBLICATIONS LTD, 1 OLIVERS YARD, 55 CITY ROAD, LONDON, ENGLAND, EC1Y 1SP17. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES《先进材料力学与结构力学》Bimonthly ISSN: 1537-6494 TAYLOR & FRANCIS INC, 325 CHESTNUT ST, SUITE 800,PHILADELPHIA, USA, PA, 1910618. MECHANICS OF COMPOSITE MATERIALS《复合材料力学》Bimonthly ISSN: 0191-5665SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 1001319. PLASTICS RUBBER AND COMPOSITES《塑料、橡胶和复合材料》 Monthly ISSN: 1465-8011MANEY PUBLISHING, STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS, ENGLAND, W YORKS, LS3 1AB20. POLYMER COMPOSITES《聚合物复合材料》 Monthly ISSN: 0272-8397WILEY-BLACKWELL, 111 RIVER ST, HOBOKEN, USA, NJ,07030-577421. POLYMERS & POLYMER COMPOSITES《聚合物与聚合物复合材料》Bimonthly ISSN: 0967-3911ISMITHERS, SHAWBURY, SHREWSBURY, SHROPSHIRE, ENGLAND, SY4 4NR22. PROGRESS IN RUBBER PLASTICS AND RECYCLING TECHNOLOGY 《橡胶、塑料与再生技术进展》 Quarterly ISSN: 1477-7606 ISMITHERS-IRAPRA TECHNOLOGY LTD, SHAWBURY,SHREWSBURY, ENGLAND, SHROPS, SY4 4NR23. SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS《复合材料科学与工程》Quarterly ISSN: 0334-181XWALTER DE GRUYTER GMBH, GENTHINER STRASSE 13, BERLIN,GERMANY, D-1078524. STEEL AND COMPOSITE STRUCTURES《钢铁与混合结构》 Bimonthly ISSN: 1229-9367TECHNO-PRESS, PO BOX 33, YUSEONG, DAEJEON,SOUTH KOREA, 305-600COMPOSSCITECHNOL 详 评 文 介composites science and technology 0266-3538 3.328 COMPOS PART A-APPLS 详 评 文 介composites part a-applied science and manufacturing 1359-835X 2.744 CEMENTCONCRETECOMP 详 评 文 介cement & concrete composites 0958-9465 2.523 COMPOS STRUCT 详 评 文 介composite structures 0263-8223 2.231 COMPOSPARTB-ENG 详 评 文 介composites part b-engineering 1359-8368 2.143 POL YMCOMPOSITE 详 评 文 介polymer composites0272-8397 1.482 J COMPOS CONSTR 详 评 文 介 journalofcompositesfor 1090-0268 1.307APPL COMPOSMATER 详评文介0929-189X 1.048 applied composite materialsJ COMPOS MATER详评文介0021-9983 0.936 journal of composite materialsSTEEL COMPOSSTRUCT详评文介1229-9367 0.933 steel & composite structuresJ REINF PLASTCOMP 详评文介0731-6844 0.902 journal of reinforced plastics andcompositesJ THERMOPLASTCOMPOS详评文介0892-7057 0.75 journal of thermoplastic compositematerialsPLAST RUBBERCOMPOS 详评文介1465-8011 0.631 plastics rubber and compositesCOMPOSINTERFACE详评文介0927-6440 0.628 composite interfacesSCI ENG COMPOSMATER详评文介0334-181X 0.579 science and engineering ofcomposite materialsMECH COMPOS0191-5665 0.436 MATER 详评文介ADV COMPOSLETT 详评文介0963-6935 0.422advanced composites lettersADV COMPOSMATER 详评文介0924-3046 0.358advanced composite materialsPOL YM POL YMCOMPOS 详评文介0967-3911 0.309polymers & polymer compositesMECH COMPOS MATERST详评文介1075-9417 mechanics of composite materialsand structuresJ COMPOS TECHRES详评文介0884-6804 journal of composites technology &research。

诱导植物抗虫性研究进展

诱导植物抗虫性研究进展

植物诱导抗虫性研究进展李许可(山东农业大学植物保护学院,山东泰安271018)摘要:本文综述了近年来植物诱导抗虫性的研究进展,分析了植物诱导抗虫性的一般特征,作用机理,诱导因子等。

浅析了外源茉莉酸(JA)和茉莉酸甲酸(MJA)胁迫诱导植物抗虫性的功能及作用;探讨了JA和MJA研究的意义,并展望了茉莉素可能的应用前景。

关键词:诱导抗虫性;茉莉酸;研究进展植物对植食性昆虫的抗性可包括两个方面,即植物的组成抗性(onstitutive resistanee)和诱导抗性(indueedresistanee)。

组成抗性是指植物在遭受植食性昆虫进攻前就已存在的抗虫特性;而诱导抗性是指植物在遭受植食性昆虫进攻后所表现出来的一种抗虫特性[l,2]。

根据作用世代的不同,诱导抗性又分为迅速的诱导抗性(raPidlyinducedre-sistanee,RIR)和滞后的诱导抗性(delayedindueedresistanee,DIR)。

前者是指对当前世代的植食性昆虫的影响,而后者是指对后续的1~几个世代的植食性昆虫的影响[3]。

植株内次生物质和营养物质发生变化是植物诱导抗虫的生理生化基础,这些变化起着直接的防御作用,一些研究报道都证实了这一点。

研究植物的诱导抗虫性,不仅能在理论上加深对植食性昆虫种群动态机制、昆虫与植物相互关系、昆虫种间种内相互作用以及昆虫群落构建机制等的认识[2,4],而且还能在实践上从一个侧面补充和完善害虫综合治理,如培育具强诱导抗虫性的作物品种、开发利用诱导剂、重新完善和制定EIL[5]等等。

因此,自70年代中后期开始有关植物诱导抗虫性的研究已受到各国学者的高度重视。

到目前为止,国内外已在多种植物系统上进行了诱导抗虫性的研究,其中既有一年生植物亦有多年生植物,既有落叶植物亦有常绿植物。

通过这些研究发现,除了植食性昆虫以外,还有其它多种生物(真菌、细菌、病毒等)和非生物(植物生长调节剂、除草剂、机械损伤、某些无机化合物等)因子,创亦能诱发植物的诱导抗虫性。

脑死亡的前世今生(综述)

脑死亡的前世今生(综述)

2013 年12 月12 日,一名13 岁女童Jahi McMath 因甲状腺、腺状体、赘余窦组织切除术的并发症在加利福尼亚州奥克兰市儿童医院(以下简称“医院”)被宣告死亡。

在那之后不久,关于是否应当继续生命支持措施,患儿家属、律师和医院之间闹起了纷争。

Jahi McMath 遗照医院方面认为,通过神经专科医师和儿科专科医师分别进行的2 次评估,可以从法律上明确患儿死亡;因此医院坚称没有义务继续应家属要求提供医疗护理措施。

与之相反,患儿家属声称患儿尚未死亡,因为她的心脏还在持续跳动,并可对外界接触有运动反应;患儿家属要求医院继续提供包括呼吸机支持在内的医疗护理措施,期待患儿能有恢复的可能。

患儿家属还坚持认为,医院没能继续提供患儿所需的医疗护理措施是对患儿及其家属宗教价值观念的不尊重。

本案例导致的司法难题自然引起了公众的关注和兴趣。

为了帮助要对此特殊案例相关问题做出回答的医师和其它人士,美国Mayo 医学中心的Christopher M. Burkle 博士等专家在近期的Neurology 杂志上发表了一篇综述性文章,对有关的医学、法律和伦理学观点进行分析。

该文基于公开信息写作,包括法庭记录、媒体报道和相关的医学文献。

(译者注:本文只代表作者个人观点。

翻译此文只是出于传递更多信息目的,与译者本人和丁香园网站的观点无关。

文中涉及的法律问题是基于美国法律得出的结论,和中国现行法律法规可能有所差异;文中所涉及伦理学观点和临床诊疗规范亦有可能与我国存在差异。

以上各点请读者在阅读时注意仔细甄别。

)脑死亡的诊断累及双侧大脑半球的急性灾难性脑损伤很少直接导致脑死亡。

脑干功能丧失才能称为脑死亡,因此典型的脑死亡是广泛大脑半球病灶压迫和破坏中脑、脑桥和延髓的结果。

因为脑干具有天然的恢复能力,所以罕见脑干完全停止功能的情况。

数个世纪以来,一直为人所认知的脑干基础神经学原理是,脑干是最后一个丧失功能的脑部结构;即使是神经学的奠基者之一Jean-Martin Charcot,也认为脑干是最后死亡的结构。

综述:热射病

综述:热射病

综述:热射病摘要背景:热射病是一种需要神经重症监护、危及生命的损伤。

然而,由于对热射病的定义及分类没有普遍接受、每隔几年才会发生热浪受害者等几个可能的原因,尚未对热射病进行全面的研究。

因此,在本综述中,我们阐明了热射病相关的定义、分类、病理生理学和预后因素,并总结了目前有关热射病管理的研究结果,包括血管内气囊导管系统应用,血液净化治疗,连续的脑电图监测和抗凝治疗。

主体:热射病的定义、分类有两种方式:即布沙马定义和日本急症医学协会标准。

根据对危险因素的详细分析,热射病的预防策略非常重要,例如使用空调。

此外,入院时血液系统、心血管系统、神经和肾功能障碍与高死亡率相关,因此可成为热射病患者强化和特异性治疗的潜在目标。

目前没有前瞻性、可比较的研究证实血管内降温装置、抗凝或血液净化对热射病治疗的效果。

结论:降温装置、药物、治疗措施对热射病的有效性仍然不确定。

需要大规模研究来继续进一步评估这些治疗策略。

背景热射病是一种危及生命的损伤,需要神经重症监护。

在美国,2006年至2010年间至少有3332人因热射病而死亡。

据报道,热射病28天和2年的死亡率分别为58%和71%。

并且由于气候变化,热射病死亡人数有所增加。

目前热射病的年死亡人数约为2000人,到21世纪50年代,与热射病相关的死亡人数预计将增加近2.5倍。

不幸的是,由于几个可能的原因,热射病尚未被全面研究。

首先,尽管脓毒症、急性呼吸窘迫综合征(ARDS)和急性肾损伤(AKI)包括简单且常用的定义,但在临床中尚未普遍接受热射病定义。

其次,由于大量热射病患者在美国或欧洲国家罕见(例如1995年和1999年在芝加哥,2003年在巴黎),这些地区的临床研究还没有持续进行。

在21世纪早期发表了几篇有关热射病重症监护的综述。

此外,还有新的降温装置、肾/肝衰竭的血液净化、持续脑电图(cEEG)监测,以及药物(如抗凝剂)随时可用于热射病的治疗。

这些装置/药物的实质性临床研究已在21世纪10年代年出版。

食管胃交界处腺癌的临床研究进展

食管胃交界处腺癌的临床研究进展

食管胃交界处腺癌的临床研究进展王龙;张雪(综述);刘巍(审校)【摘要】食管胃交界处腺癌(adenocarcinoma of esophagogastric junction,EGJA)有其独特的解剖学位置,同时又位于鳞状上皮与柱状上皮交界之处,其生物学特性不同于食管癌和胃癌,诊断分型一直存在众多的争议,治疗模式在学术界也始终没有公认的“金标准”,特别是局部进展期EGJA的治疗策略更是难以抉择。

随着影像学技术的发展和各项大型临床研究结果的公布,EGJA的治疗日益个体化,同时也凸显了多学科协作的重要性。

本文将针对以上问题对EGJA的最近进展做一综述。

%The adenocarcinoma of the esophagogastric junction (EGJA) is located in a unique anatomical position and at the junction of the squamous epithelium and the columnar epithelium. The biological characteristics of this disease are different from those of esophageal or gastric cancer. The diagnostic classification of EGJA has been subject to controversies, and no gold standard therapeu-tic regimens have been established, especially in the choice of treatment of locally advanced EGJA. Results from large-scale clinical tri-als and imaging technology development showed that the treatment of EGJA has been individualized. Furthermore, this problem high-lights the importance of multidisciplinary collaboration. This article focuses on current progress in studies on EGJA.【期刊名称】《中国肿瘤临床》【年(卷),期】2015(000)002【总页数】5页(P120-124)【关键词】胃食管交界处腺癌;治疗;诊断;进展【作者】王龙;张雪(综述);刘巍(审校)【作者单位】河北医科大学第四医院肿瘤内科石家庄市050011;河北医科大学第四医院肿瘤内科石家庄市050011;河北医科大学第四医院肿瘤内科石家庄市050011【正文语种】中文食管胃恶性肿瘤是一种颇具挑战性的疾病,特别是食管胃交界部腺癌(adenocarcinoma of esophagogastric junction,EGJA)近些年来发病率增长迅速,但是对于其诊断分型和治疗策略选择上的规范化还远远做不到,在具体的临床诊治层面,同一国家、地区,甚至同一家医院内部也有很大不同。

java 近三年外国文献

java 近三年外国文献

java 近三年外国文献近三年,Java语言在国际上得到了广泛应用和发展。

以下是一些近三年的相关外国文献:1. 'The Evolution of Java: Past, Present, and Future'(Java 的演进:过去,现在和未来): 该文研究了Java语言的演变历史、当前情况以及未来发展方向。

文中提到了Java 9、Java 10和Java 11的新功能和特性,如模块化、JShell和垃圾收集器的改进等。

2. 'Java 8 in Action: Lambdas, Streams, andFunctional-style Programming'(Java 8实战:Lambda表达式、流和函数式编程): 该书介绍了Java 8的新特性,如Lambda表达式、流以及函数式编程,以及如何使用它们来编写更简洁、更易于维护的代码。

3. 'Java Performance: The Definitive Guide'(Java性能:权威指南): 该书讨论了Java应用程序的性能问题和优化技术。

文中提到了一些性能测试工具和技巧,以及如何使用Java 9中的新特性来提高应用程序的性能。

4. 'Java Concurrency in Practice'(Java并发实践): 该书介绍了Java中的并发编程,包括多线程、同步、锁和线程安全等方面。

文中提供了一些最佳实践和实用技巧,以帮助开发人员编写更高效和可靠的并发应用程序。

5. 'Effective Java'(Java编程思想): 该书探讨了Java语言的最佳实践,包括类设计、异常处理、泛型、枚举、注解和Lambda表达式等方面。

文中提供了一些代码示例和实用技巧,以帮助开发人员编写更清晰、更健壮和更易于维护的Java代码。

总之,这些外国文献都反映了Java语言的发展趋势和应用方向,有助于开发人员不断提高自己的技能水平,更好地应对日益复杂的软件开发挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INVITED REVIEWJasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development.An update to the 2007reviewin Annals of BotanyC.Wasternack 1,*and B.Hause 21Department of Molecular Signal Processing and 2Department of Cell and Metabolic Biology,Leibniz Institute of PlantBiochemistry,Weinberg,3,D-06120Halle (Saale),Germany*For correspondence.Email cwastern@ipb-halle.deReceived:3December 2012Revision requested:7January 2013Accepted:23January 2013Published electronically:4April 2013†Background Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development.Synthesized from lipid-constituents,the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine.Important new components of jasmonate signalling includ-ing its receptor were identified,providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.†Scope The present review is an update of the review on jasmonates published in this journal in 2007.New data of the last five years are described with emphasis on metabolites of jasmonates,on jasmonate perception and signalling,on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and patho-gens,in symbiotic interactions,in flower development,in root growth and in light perception.†Conclusions The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ)proteins and their interactors such as transcription factors and co-repressors,and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids.Now,the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.Key words:Jasmonic acid,oxylipins,enzymes in biosynthesis and metabolism,perception,JA signalling,JAZ,SCF,COI1,responses to herbivores and pathogens,symbiotic interaction,light regulation,JA in development.1.INTRODUCTIONIn 2007,an ‘Update on jasmonates’was published in Annals of Botany covering aspects of biosynthesis,signal transduction and action in plant stress responses,growth and development (Wasternack,2007).In this previous review,genes and enzymes/proteins involved in biosynthesis,metabolism and sig-nalling were described with respect to the wound response and some developmental processes regulated by jasmonic acid (JA).In 2007,however,there was a breakthrough in analysis of JA signalling with the discovery of the so-called JAZ proteins (JAZMONATE ZIM DOMAIN proteins)as negative regulators in JA-induced gene expression.Three groups identified inde-pendently JAZ proteins as targets of the SCF COI1complex,where COI1is the F-box protein as part of the Skp1/Cullin/F-box protein complex which functions as an E3ubiquitin ligase (Chini et al.,2007;Thines et al.,2007;Yan et al.,2007).COI1(CORONATINE INSENSITIVE1)was identified in Arabidopsis thaliana in 1998,and the corresponding mutant coi1-1is the most prominent JA signalling mutant (Xie et al.,1998).With the JAZ proteins,however,the first mechanistic explanations were possible on JA perception,in-cluding identification of (+)-7-iso -jasmonoyl-L -isoleucine (JA-Ile)as the ligand of a JA receptor (Fonseca et al.,2009).This was complemented by crystallization of the COI1–JAZ co-receptor complex (Sheard et al.,2010),its potentiation by inositol pentakisphosphate (IP 5)and identification of the general co-repressor TOPLESS (TPL)and the adaptor protein Novel Interactor of JAZ (NINJA)(Pauwels et al.,2010).Finally,in 2012,JAR1(JASMONOYL ISOLEUCINE CONJUGATE SYNTHASE1),the essential enzyme in gener-ation of the most bioactive jasmonate compound active as the ligand of the receptor,was crystallized (Westfall et al.,2012).The identification of these key components in JA perception and signalling allowed identification of downstream targets,the transcription factors (TFs),acting specifically in numerous JA-dependent processes.This led to the first mechanistic explanations of how cross-talk among the different hormones and signalling pathways may occur.That a similar modular principle occurs in jasmonate,auxin,gibberellin (GA)and ethylene (ET)perception and signalling represents one of the most fascinating discoveries in the last few years of plant hormone research.Beside these fundamental breakthroughs,there has been re-markable improvement in our knowledge on the metabolic fate of JA/JA-Ile,on short-and long-distance signalling,and on cross-talk to other hormones.The role of JA/JA-Ile in plant immunity,herbivory and mycorrhiza has been intensively studied.Several developmentally regulated processes such as seed germination,seedling development,root growth,flower de-velopment,seed development,tuber formation and senescence were shown to be regulated by JA/JA-Ile.Finally,the first#The Author 2013.Published by Oxford University Press on behalf of the Annals of Botany Company.All rights reserved.For Permissions,please email:journals.permissions@Annals of Botany 111:1021–1058,2013doi:10.1093/aob/mct067,available online athints were found for the regulation of JA/JA-Ile signalling by light.Several of these numerous aspects on JA/JA-Ile have been repeatedly discussed in excellent reviews(Katsir et al., 2008a;Kazan and Manners,2008,2011,2012;Browse, 2009a,c;Grant and Jones,2009;Koo and Howe,2009; Kuppusamy et al.,2009;Wasternack and Kombrink,2010; Ballare´,2011;Pauwels and Goossens,2011;Robert-Seilaniantz et al.,2011;Dave and Graham,2012;Kombrink, 2012;Pieterse et al.,2012).In view of these recent developments,there is an emerging need to complement the earlier update on jasmonates (Wasternack,2007).Taking new information and fundamental breakthroughs into consideration,we will discuss here in par-allel the multifarious roles of jasmonates in plant stress responses and development.However,the amount of pub-lished data on various aspects of jasmonates is too exhaustive to cite here due to space limitations.Furthermore,some subjects such as‘JA in response to pathogens’,‘JA in herbivory and plant–insect interactions’and‘JA in light signalling’are not covered in detail because some excellent reviews have been published recently(see above).2.JA BIOSYNTHESISThe biosynthesis of JA has been repeatedly and extensively reviewed in recent years(Wasternack,2007;Browse,2009a,c; Schaller and Stintzi,2009;Acosta and Farmer,2010; Wasternack and Kombrink,2010;Kombrink,2012).These reviews present excellent information on reactions,genes, enzymes(including,in several cases,the crystal structures and mechanistic explanations on substrate specificity)andfinally regulation of JA biosynthesis.In Fig.1we introduce reaction steps,names of enzymes and substrates and refer the reader to the above mentioned reviews for details.Here,we cover only some aspects,where interesting developments have been reported over the last couple of years.2.1.Release of linolenic acid from galactolipids involvedin JA biosynthesisThe fatty acid substrate of JA biosynthesis is a-linolenic acid(18:3)(a-LeA)released from galactolipids of chloroplast membranes.It is generally accepted that a phospholipase1 (PLA1)releasing a-LeA from the sn1position of galactolipids is responsible for generation of the JA substrate,whereas the large family of PLA2s are not involved in JA biosynthesis (for nomenclature of phopsholipase A enzymes see Scherer et al.,2010).It was,however,a matter of debate as to which of the PLA1s are involved in JA biosynthesis.Initially, DEFECTIVE IN ANTHER DEHISCENSE1(DAD1)was shown to be responsible for JA formation as the mutant dad1showed reduced JA levels exclusively inflowers and was therefore male-sterile like the coi1mutant(Ishiguro et al.,2001).This DAD1function was strongly substantiated by identification of DAD1as a target of the homeotic protein AGAMOUS(Ito et al.,2007).AGAMOUS binds to the DAD1genomic region only during late stamen development. In this way,AGAMOUS orchestrates elongation offilaments, maturation of pollen and dehiscence of anthers,the three critical events in late stamen development(Ito et al.,2007). However,thisflower-specific action of DAD1raised doubts regarding the active roles of PLA1s in wound-induced JA for-mation in leaves.DONGLE(DGL),a PLA1from A.thaliana, was thought to be involved in wound-induced and basal JA biosynthesis(Yang et al.,2007;Hyun et al.,2008,respective-ly).But there were still doubts due to highly ambiguous leaf-specific data on DAD1and DGL lines generated in different laboratories.More recently,DAD1and DGL RNA i lines were generated,and these lines were similar to the wild-type in the early wound response.The DGL protein was detected in lipid bodies but not in plastids as required for JA biosyn-thesis(Ellinger et al.,2010),suggesting that both enzymes are not involved in JA biosynthesis.Of an additional16 lipase mutants screened,only PLA1y1(At1g06800)had a reduced level of JA in wounded leaves.However,there might still be unidentified lipases involved in wound-and pathogen-induced JA formation(Ellinger et al.,2010).These Arabidopsis data were complemented by data from RNA i lines suppressing the expression of the GALACTOLIPASE A1 (GLA1)of Nicotiana attenuata,which indicated its involve-ment in JA formation in leaves and roots,but not during Phytophthora parasitica infection(Bonaventure et al., 2011a).It is thus obvious that there are pathway-and stimuli-specific lipases acting in oxylipin formation.2.2.The LIPOXYGENASE(LOX)gene family membersare involved in JA-dependent responsesOxygenation of a-LeA is the initial step in JA biosynthesis. The oxygen has to be inserted in the C-13position by a lipoxy-genase(LOX)(Fig.1).Among the six LOXs of Arabidopsis, four of them are13-LOXs(LOX2,LOX3,LOX4,LOX6) (Bannenberg et al.,2009),although their functions are only partly understood.LOX2was thought to be involved in the wound response for a long time(Bell et al.,1995)and subse-quent studies revealed that LOX2was responsible for the bulk of JA formation in thefirst h upon wounding(Glauser et al., 2009;Schommer et al.,2008).Similarly,an involvement of LOX2in the generation of oxylipins during natural and dark-induced senescence as well as under sorbitol stress was demonstrated by using LOX2-RNA i lines.The LOX2-RNA i lines carry basal levels of cis-12-oxo-phytodienoic acid (OPDA)and JA,but do not show an enhanced accumulation during natural and dark-induced senescence(Seltmann et al., 2010).Therefore,the regulation of LOX2may be under a COl1-dependent transcriptional control,but the gain-of-func-tion mutant fou2indicated also a Ca2+-dependent control of LOX2protein leading to constitutively elevated JA levels (Bonaventure et al.,2007a).The fou2mutant was initially iden-tified in a screen on elevated fatty acid oxidation and thought to be affected in a vacuolar Ca2+channel(Bonaventure et al., 2007a,b).However,later FOU2/TPC1was identified as a Ca2+-and voltage-dependent vacuolar cation channel(Beyhl et al.,2009).Moreover,FOU2/TPC1itself is a target of the large family of TCP(TEOSINTE BRANCHED/TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1)TFs,which are involved in growth-related pro-cesses,such as leaf growth,shoot branching andfloral organ morphogenesis(Danisman et al.,2012).Interestingly,severalWasternack&Hause—Biosynthesis and action of jasmonates 1022TPCs are targets of miR319.Among them TPC4is preferentially involved in the control of JA biosynthesis and leaf senescence (Schommer et al.,2008).This control takes place via LOX2,and clearly indicates a developmental regulation of LOX2ex-pression,which is partially uncoupled from its transcriptional regulation during wounding (Schommer et al.,2008).Meanwhile,LOX2was identified as a target of additional TCPs such as TCP20,thereby regulating leaf development and senescence (Danisman et al.,2012).Another level of LOX2-mediated control may occur in translation.The availabil-ity of eukaryotic initiation factor 4E (elf4E)is modulated by elf4E-binding proteins.AtLOX2was identified as an elf4E-binding protein,suggesting a translational control via LOX2activity (Freire et al.,2000).LOX2is also involved in lipid peroxidation that occurs under abiotic and biotic stresses.Here,a LOX2-mediated double oxygenation of plastid galacto-lipids leading to arabidopsides was recorded upon pathogen in-fection,but was not responsible for the pathogen-induced increase in JA (Zoeller et al.,2012).Interestingly,the formation of lipid peroxides was accompanied by the synthesis of azelaic acid,a new signalling compound that has been shown to prime the immune response (Jung et al.,2009;Dempsey and Klessig,2012;Zoeller et al.,2012)(see section 7.2).In the lox2-1mutant,however,JA and JA-Ile are still synthesized in the first 5min upon wounding (Glauser et al.,2009)indicating the activity of other 13-LOXs.Moreover,a detailed proteome analysis of JA-induced proteins in A.thaliana showed a marked increase in LOX3protein (Gfeller et al.,2011).These data and recent work revealed that all four 13-LOX forms contribute to JA formation at least in the wound response (Caldelari et al.,2011;Chauvin et al.,2013).Among them LOX-6showed a preferential role in the wound response in the early stage of leaf cell ing single and different combinations of double,triple and quadruple mutants of lox2-1,lox3B ,lox4A and lox6A as well as LOX6-promoter GUS lines,the dominant role of LOX6in early wound-induced JA formation was con-firmed.The LOX6promoter was specifically active in and near the xylem cells of young tissues which complement promoter activity of LOX3and LOX4in vascular tissues (Vellosillo et al.,2007),where other JA biosynthesis genes such as AOS and AOC are also expressed (Kubigsteltig et al.,1999;Stenzel et al.,2012).In contrast to the wound response,the role of 13-LOX forms in fertility and flower development is different.Both processes are clearly JA-dependent,but fertility does not require LOX2.F IG .1.Synthesis of jasmonic acid (JA)/JA-Ile from a -linolenic acid generated from galactolipids.Enzymes which have been crystallized are given in yellow boxes.Steps impaired in mutants of Arabidopsis (green)or tomato (red)are indicated.acx1,acyl-CoA-oxidase1;AOC,allene oxide cyclase;AOS,allene oxide synthase;coi1,coronatine insensitive1;dad1,delayed anther dehiscence1;13-HPOT,(13S )-hydroperoxyoctadecatrienoic acid;jai1,jasmonic acid insensitive1;JAR1,JA-amino acid synthetase;a -LeA,a -linolenic acid;13-LOX,13-lipoxygenase;myc2,bHLHzip transcription factor MYC2;OPR3,OPDA reductase3;OPC-8,3-oxo-2-(2-pentenyl)-cyclopentane-1-octanoic acid;cis -(+)-OPDA;cis-(+)-12-oxophytodienoic acid;PLA 1,phospholipase A 1.Wasternack &Hause —Biosynthesis and action of jasmonates1023In contrast,the double mutant lox3lox4is male sterile,accom-panied by abnormal anther maturation,defective dehiscence and non-viable pollen.Additionally,the mutant has a global proliferative arrest as evident by an abnormal carpelloid flower(Caldelari et al.,2011).The remaining LOXs of A.thaliana,LOX1and LOX5,are9-LOXs and are not involved in JA biosynthesis.Their products are active in local and systemic defence mechanisms against bacterial pathogens(Vicente et al.,2012).LOXs of fungi are different from plant and mammalian LOXs,and generate9-and 13-hydroperoxides(reviewed by Brodhun and Feussner,2011).2.3.ALLENE OXIDE CYCLASE(AOC)Recently,differential expressions of the four AOC s of A.thaliana were demonstrated by corresponding promoter:: GUS lines(Stenzel et al.,2012).In leaves,AOC1,AOC2and AOC3were expressed in all leaf tissues,whereas the AOC4pro-moter was preferentially active in the main veins of fully devel-oped leaves.In roots,promoters of all AOCs were highly active in the meristematic tissues and the elongation zone,including the lateral root primordia.Results obtained in distinctflower organs indicated redundant and non-redundant expression of AOC s.An additional level of regulation of AOCs was indicated by interaction studies using BiFC,where homo-and hetero-dimerization of all the four AOCs were detected(Stenzel et al.,2012).In soybean,where six genes encode AOCs, initial data showed functional diversity in terms of expression for stress responses(Wu et al.,2011).Recently,the crystal struc-ture of AOC1and AOC2of Physcomitrella patens revealed new mechanistic insights into AOC catalysis,including tight binding of the substrate,accompanied by conformational changes within the binding pocket(Neumann et al.,2012).Both PpAOCs are similar in structure and oligomeric to the AtAOC2crystalized previously as a trimer(Hofmann et al.,2006).AOC and other enzymes in JA biosynthesis such as LOX and ALLENE OXIDE SYNHASE(AOS)are partially asso-ciated with chloroplast membranes(Farmaki et al.,2007). For AOS the level of the protein within the envelope is affected by rhomboids,a family of intra-membrane serine pro-teases of inner envelope membrane(Knopf et al.,2012).The association of LOX,AOS and AOC with chloroplast mem-branes implies that the esterified OPDAs,called arabidopsides, may be formed from fatty acids esterified in galactolipids by membrane-bound enzymes,as indicated by recent labelling experiments(Nilsson et al.,2012).Arabidopsides that occur exclusively in Arabidopsis are a diverse group of compounds of the galactolipids MGDG and DGDG,where OPDA is es-terified in the sn-1and/or sn-2position.The occurrence of the different types of arabidopsides,their formation and puta-tive function has been reviewed(Go¨bel and Feussner,2009; Mosblech et al.,2009).2.4.OPDA REDUCTASE3(OPR3)Among the six OPRs of A.thaliana only OPR3is involved in JA biosynthesis,which was substantiated by mechanistic studies with the crystal structure of OPR3and OPR1 (Breithaupt et al.,2001,2006)(reviewed by Schaller and Stintzi,2009;Wasternack and Kombrink,2010;Kombrink,2012).OPR1might be involved in reduction of phytopros-tanes,a group of non-enzymatically formed compounds with structural similarity to OPDA(Mueller et al.,2008). Initially,opr3,a JA-deficient and OPDA-accumulating mutant carrying a17-kb T-DNA insertion in an OPR3 intron,showed resistance to Alternaria brassicicola,which was discussed as a direct role of OPDA in pathogen defence (Stintzi et al.,2001).In many studies,opr3was permanently used to distinguish between JA-and OPDA-dependent signal-ling.Recently,JA accumulation in opr3upon infection with Botrytis cinerea has also been reported(Chehab et al., 2011).opr3is not a null mutant,and is able to generate mature full-length OPR3transcript upon splicing of the T-DNA containing intron under specific conditions,such as B.cinerea infection leading to JA formation.Therefore,at least under some conditions,opr3is not an ideal platform for dissecting OPDA-specific signalling.The important and versatile role of OPRs was recently illu-strated for maize.The opr7opr8double mutant has dramatical-ly reduced levels of JA in all organs tested,accompanied by strong defects in development,including sex determination leading to feminized tassels and the elongation of ear shanks (Yan et al.,2012)(see section9.12).This double mutant was highly susceptible to root-rotting oomycetes(Pythium spp.)and herbivory.In rice,an OPR involved in JA biosyn-thesis is encoded by OsOPR7,whereas the other12 members of this gene family belong to another subgroup, which is not involved in JA formation(Tani et al.,2008). OsOPR7is expressed upon wounding or drought stress,and can complement the opr3phenotype in A.thaliana(Tani et al.,2008).The OsOPR7protein can convert both enantio-meric forms of cis-OPDA,(+)-cis-OPDA and(–)-cis-OPDA.2.5.Regulation of JA biosynthesisAs described previously(Wasternack,2007;Browse,2009a,c), the regulation of JA biosynthesis is determined by a positive feedback loop,substrate availability and tissue specificity. Additional regulation is provided by the concurrent action of the branches in the LOX pathway.Among the seven different branches known for the LOX pathway(Feussner and Wasternack,2002)the AOS and HYDROPEROXIDE LYASE(HPL)reactions are concurrent on the same substrate, the product of a13-LOX.The HPL branch leads to volatile and non-volatile oxylipins,e.g.the leaf aldehydes and leaf alcohols (Andreou et al.,2009).Many of them are defence compounds and are formed upon herbivore attack(Matsui et al.,2006; Schuman et al.,2012).The HPL branch involved in the forma-tion of green leafy volatiles(GLVs)is selectively suppressed by chewing herbivores,which might be an evolutionary advan-tage(Savchenko et al.,2013).One of the three HPLs of rice positively regulates the formation of GLVs but negatively reg-ulates JA biosynthesis by substrate competition(Tong et al., 2012).Consequently,the direct and indirect defence is modu-lated.Non-volatile oxylipins,such as various traumatic acids and azelaic acid,are formed upon stress in pea seedlings (Mukhtarova et al.,2011),suggesting,for thefirst time,a central role of azelaic acid as a defence signal(Jung et al., 2009;Dempsey and Klessig,2012;Zoeller et al.,2012)(see section7.2.).Wasternack&Hause—Biosynthesis and action of jasmonates 1024Additional components of regulation were obtained from characterization of JAZ proteins,Ca2+-related signalling, JA-related transcription factors and mitogen-activated protein kinases(MAPKs).The positive feedback loop in JA biosyn-thesis can be explained now by the SCF COI1–JAZ regulatory module that is known to be active in the expression of LOX, AOS,AOC,OPR3and ACX.The formation of JA/JA-Ile will subject the negative regulator JAZ to proteasomal degradation, which allows MYC2to activate the JA-responsive promoters of JA biosynthesis genes.JAZ and MYC genes are, however,JA/JA-Ile responsive,allowing a permanent replen-ishment of the negative(JAZs)and positive(MYC2)regula-tors that result in an adjustment of the expression of JA biosynthesis genes(Chung et al.,2008).The Arabidopsis microarray datasets from various developmental stages and stress conditions reveal transcriptional regulation of all JA bio-synthesis genes(Pauwels et al.,2009;van Verk et al.,2011). There are,however,indications for post-translational regula-tion of enzyme activities.The OPR3activity seems to result from a monomer/dimer equilibrium including a self-inhibition by dimerization(Breithaupt et al.,2006;Schaller and Stintzi, 2009).The above interaction studies with all four AOCs of A.thaliana revealed interaction among them all.The observed homo-and hetero-dimerization led at least partially to altered enzyme activity(Stenzel et al.,2012).Ca2+and MAPK cascades are also involved in the regula-tion of JA biosynthesis.In A.thaliana,MKK3and MPK6 are activated by JA leading to negative regulation of MYC2ex-pression and repression of JA biosynthesis genes(Takahashi et al.,2007).In a parallel pathway,however,there is an MKK3/MPK6-independent activation of MYC2by JA,and the MKK3/MPK6cascade is epistatic to MYC2(Takahashi et al.,2007).There exists a link between JA biosynthesis and MAPK pathways,as revealed by co-expression analyses of microarray datasets in A.thaliana(van Verk et al.,2011). Here,it became obvious that OPR3and to a minor extent AOS are co-expressed with MYC2,MEK1,MEKK1,MKK4 and MPK3.For wound-and herbivore-induced JA accumulation in Nicotiana attenuata,the Ca2+-dependent protein kinases CDPK4and CDPK5are negative regulators(Yang D-H et al., 2012),whereas a wound-induced protein kinase(WIPK)is rapidly activated near the wound region thereby activating JA biosynthesis(Wu et al.,2007).In tomato,a MPK1,MPK2 and MPK3are involved in expression of JA biosynthesis genes(Kandoth et al.,2007).Here,the activation of MPKs is systemin-dependent(see section6).Further control of JA bio-synthesis is mediated by the COP9(CONSTITUTIVE PHOTOMORPHOGENESIS9)signalosome(CSN),a multi-protein complex involved in the regulation of CULLIN-RING E3ubiquitin ligases.CSN not only is required for optimum plant development,but is also involved in plant defence against herbivores and pathogens by its modulation of JA levels(Hind et al.,2011).Ca2+is an early acting second messenger in response to many biotic and abiotic stimuli(Kudla et al.,2010). Although several of these stimuli are associated with increased JA biosynthesis,the involvement of Ca2+upstream of JA bio-synthesis is poorly understood.Besides Ca2+-mediated control of LOX2(Bonaventure et al.,2007a)as discussed earlier(see section2.2),three additional examples will be given here to elucidate,how Ca2+is involved in the regulation of JA biosyn-thesis and signalling:(1)In the family of Ca2+/CaM-binding TFs,AtSR1isrequired for down-regulation of salicylic acid(SA)levels in plant immune responses(Du et al.,2009).Upon wound-ing,however,the negative impact of SA in both basal and induced JA biosynthesis is abolished by AtSR1(Qiu et al., 2012).(2)The calmodulin-like protein CLM42negatively regulatesthe defence response during herbivory by decreasing the COI1-mediated JA sensitivity(Vadassery et al.,2012).The cytosolic and nuclear located protein CLM42is active downstream of herbivore-induced Ca2+elevation but is upstream of COI1-mediated JA-Ile perception. (3)In A.thaliana,the overexpression of a plasma membrane-located glutamate receptor results in increased glutamate-mediated Ca2+influx and resistance to necrotrophic pathogens(Kang et al.,2006).A putative link to JA biosyn-thesis is lacking,but is suggested by the up-regulation of VSP1,LOX2and other JA-responsive genes.Ca2+is clearly a key player in plant responses to environmen-tal stimuli,leading to context-dependent Ca2+fluctuations up-stream and downstream of JA biosynthesis or in parallel to JA generation,and is a part of the regulatory network of evolu-tionary divergent metabolic pathways(Pauwels et al.,2009).2.6.JAR1catalysing thefinal step in the generation of ligand The cloning of JAR1as a member of the GH3gene family, which belongs to the large group of enzymes forming acyl-adenylate/thioester intermediates,was a breakthrough in the JAfield.This enzyme catalyses thefinal step in the formation of the bioactive JA compound(Staswick and Tiryaki,2004). The identification of(+)-7-iso-JA-Ile as the ligand of the COI1–JAZ co-receptor complex(Fonseca et al.,2009)and the crystallization of the receptor complex(Sheard et al., 2010)provided mechanistic explanations for JA/JA-Ile percep-tion(see section4).Meanwhile,the JA-specific JAR1/ AtGH3.11and the benzoate-specific PBS3/AtGH3.12have been crystallized(Westfall et al.,2012).For crystallization of JAR1,a racemic mixture of JA was used,but only(–)-JA-Ile was found in the structure.The authors assumed that(–)-JA is accepted as substrate by JAR1and is converted to(+)-JA-Ile (Westfall et al.,2012).However,the initial in vivo product in JA biosynthesis is(+)-7-iso-JA,and its conjugate with L-Ile is the ligand of the receptor(Fonseca et al.,2009;Sheard et al., 2010).Although the JA epimer used by JAR1still continues to be ambiguous,the water-mediated hydrogen bond to the cyclopentanone ring of JA and the hydrophobic binding pocket for the pentenyl side observed in the crystal structure of JAR1(Westfall et al.,2012)explain now mechanistically the re-peatedly recorded structure/activity relationships for numerous JA compounds(for a review see Wasternack,2007).The crystal structures of PBS3and JAR1define the role of conform-ational changes in the carboxy-terminal domain for conjugation of amino acids to various acyl acid substrates and illustrates how a promiscuous enzyme might evolve by a highly adaptableWasternack&Hause—Biosynthesis and action of jasmonates1025structure(Westfall et al.,2012).For a long time,equilibration between the enantiomers of JA and of JA-Ile was assumed (Wasternack,2007),and epimerization was suggested as a mechanism to sustain the most bioactive JA compound, (+)-7-iso-JA-Ile(Fonseca et al.,2009).Meanwhile,an assay has been developed for quantification of(+)-7-iso-JA-Ile from tomato extracts,indicating that the compound is less un-stable than assumed earlier(Suza et al.,2010).These data indi-cate that(+)-7-iso-JA-lle is exclusively formed upon wounding and by a recombinant JAR1,with a strong preference for Ile compared with other amino acids.In SlJAR1-RNA i lines, wound-induced formation of(+)-7-iso-JA-Ile was down-regulated by50–75%suggesting the existence of other JA-conjugating enzymes than JAR1(Suza et al.,2010).Note that this must be taken into consideration while evaluating the jar1mutant data.The homeostasis of JA-Ile is highly dependent on its hydrolysis in vitro.In JA-Ile-hydrolase1-silenced plants of N.attenuata,the herbivore-induced burst in JA-Ile and its fol-lowing reactions in direct and indirect defence responses are strongly attenuated(Woldemariam et al.,2012).3.THE METABOLIC FATE OF JAIn an earlier update,only four enzymes involved in JA metab-olism were described in terms of enzymatic properties and cloning of their cDNAs(Wasternack,2007).Meanwhile, new JA metabolites have been identified,with additional enzymes having been cloned and characterized.Due to the central role of JA-Ile in JA signalling and the parallel occurrence of JA and JA-lle as sustained by JAR1, we will combine them in the subsequent sections as‘JA/ JA-Ile’,this being active as a signalling module.However, there are three important caveats:(1)Are active JA metabolites involved in specific responses that are not directly caused by JA/JA-lle?(2)Is JA/JA-Ile signalling switched off by meta-bolic conversion?(3)Do JA metabolites function as a storage form of JA?3.1.Profiles of JA/JA-Ile metabolitesIn the early days of JA research,numerous JA compounds were identified as constituents of distinct plant tissues or as vola-tiles emitted fromflowers(reviewed by Wasternack et al.,2013). The profiles of JA-related compounds are presented in Fig.2. Many of them were already known in2007.Meanwhile,gluco-sylated forms of JA,JA-Ile,12-OH-JA and12-OH-JA-Ile have been described(Chung et al.,2008;Glauser et al.,2008,2009). Most of them accumulate very rapidly(within minutes) in wounded Arabidopsis or tomato leaves.Corresponding wound-induced formation of11-OH-JA,12-OH-JA, 12-OH-JA-Ile,12-COOH-JA-Ile and12-HSO4-JA were also recorded(Gidda et al.,2003;Guranowski et al.,2007;Glauser et al.,2008,2009;Miersch et al.,2008).A large-scale screening for different JA/JA-Ile metabolites in different organs of various plant species showed their relative abundance up to three orders of magnitude higher than that of JA or OPDA(Miersch et al., 2008).Immature seeds and leaves of Glycine max contain high levels of12-OH-JA,12-HSO4-JA and12-O-Glc-JA.In most cases,however,it is not known whether these abundantly occur-ring JA/JA-Ile metabolites are biologically active or function as storage forms of JA/JA-Ile(Miersch et al.,2008).It has been suggested that higher levels of12-OH-JA,12-HSO4-JA and 12-O-Glc-JA in the tassels of Zea mays may be associated with sex determination during development of this male repro-ductive structure in monoecious species(Acosta et al.,2009; Browse,2009b).Support for the involvement of a JA compound in sex determination also came from the maize double mutant opr7opr8(Yan et al.,2012)(see section9.12).3.2.cis-Jasmone(CJ)CJ is a volatile compound and represents the main constituent of thefloral bouquet of different plants thereby attracting insect pollinators.It is emitted in response to herbivory,application of insect oral secretions or JA treatment.However,the biosynthetic route leading to the formation of CJ is still unclear.Initially,CJ was regarded as a decarboxylated product of JA,being respon-sible for the disposal of JA due to its high volatility(Koch et al.,1997).Isomerization of cis-(+)-OPDA into iso-OPDA, however,allows a direct route to CJ via b-oxidation to 3,7-didehydro-JA and decarboxylation(Dabrowska and Boland,2007;Schulze et al.,2007;Dabrowska et al.,2009). CJ is clearly biologically active,preferentially in plant–insect interactions as summarized by Matthes et al.(2010).Most evi-dence derives from the microarray-based transcriptome analysis of CJ-treated Arabidopsis plants(Matthes et al.,2010).The set of CJ-induced genes was different from those induced by JA,and CJ-induced gene expression was independent of that induced by COI1and JAR1.Furthermore,key components that are not involved in JA signalling are assumed to have distinct roles in CJ signalling;for example,TFs TGA2,5and6,and SCARECROW-like14have been shown to play a key role for CJ in indirect defence(Matthes et al.,2010).3.3.CYP94enzymes generate hydroxylated and carboxylated JA-IleMost recently,three groups independently identified the cyto-chrome P450enzyme CYP94B3that hydroxylates JA-Ile at the terminal carbon atom of the pentenyl side chain(Kitaoka et al., 2011;Koo et al.,2011;Heitz et al.,2012).Additionally,Heitz et al.(2012)characterized the enzyme CYP94C1,which is active in the subsequent oxidation step to the oxidized 12-OH-JA-Ile(Fig.2).Heterologous expression in yeast showed substrate preference of CYP94B3for JA-Ile(Kitaoka et al.,2011;Koo et al.,2011;Heitz et al.,2012).Typical JA-lle-deficient phenotypes as observed in the CYP94B3over-expressors that show higher susceptibility to insect attack pro-vided further evidence for the involvement of both enzymes (Koo et al.,2011).Accordingly,the wounded cyp94b3mutant exhibited increased accumulation of JA-Ile(Koo et al.,2011; Koo and Howe,2012).These data together with the fact that hydroxylated JA-Ile was less effective in the COI1–JAZ inter-action assay(Koo et al.,2011)support the assumption that hy-droxylation and carboxylation of JA-Ile may switch off JA/ JA-Ile signalling.Such a role of hydroxylation is also known for other hormones,and was initially shown for hydroxylation of JA to12-OH-JA(Gidda et al.,2003;Miersch et al.,2008). Here,typical JA responses,such as expression of JA-inducible genes,root growth inhibition or seed germinationWasternack&Hause—Biosynthesis and action of jasmonates 1026。

相关文档
最新文档