河北省武安市小屯中学第一学期八年级数学学案 14.1.1 同底数幂的乘法(无答案)-word

合集下载

14.1.1 同底数幂的乘法教案

14.1.1 同底数幂的乘法教案

14.1.1同底数幂的乘法一、教学目标1.在推理判断中得出同底数幂乘法的运算法则,并掌握法则的应用,通过用文字概括运算法则.2.经历探索同底数幂乘法的运算性质的过程,感受幂的意义.二、教学重难点重点:同底数幂乘法的运算性质的推导和应用.难点:运用归纳法由特殊推导公式所具有的一般性,在探究规律过程中增进对知识的理解.教学过程一、情境引入同学们都知道电子计算机的运算速度是非常快的,那到底有多快呢?下面我们一起来看一个例子(多媒体演示):【问题1】一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103s可进行多少次运算?你能用学过的知识解决吗?学生通过动笔计算后得出:它工作103s可以进行运算的次数是1015×103,怎样计算1015×103呢?根据乘方的意义可以知道:1015×103=(10×10×…×10)15个10×(10×10×10)3个10=(10×10×…×10)18个10=1018.二、互动新授请同学们继续来思考几个问题:式子103×102的意义是什么?这个积中的两个因式有何特点?学生回答:103×102表示103与102的积,即3个10与2个10的积,积中的两个因式的底数相同.请同学们先根据自己的理解,再交流、讨论、解答下面三个问题:【探究】根据乘方的意义填空,观察计算结果,你能发现什么规律?(1)25×22=______=2( );(2)a3·a2=______=a( );(3)5m×5n=______=5( ).教师分析:计算a3·a2的过程就是(a·a·a)3个a·(a·a)2个a=a·a·a·a·a5个a=a5.也就是a3·a2=a3+2=a5.【引导】那么a m·a n,当m,n都是正整数时,如何计算呢?学生交流、讨论,并试着推导出结论:一般地,对于任意底数a与任意正整数m,n,a m·a n=(a·a·…·a)m个a·(a·a·…·a)n个a=a·a·…·a(m+n)个a=a m+n.因此,我们有a m·a n=a m+n(m,n都是正整数).请同学们试着用文字概括这个性质:同底数幂相乘,底数不变,指数相加.【例1】计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3; (4)x m·x3m+1.【解】 (1)x2·x5=x2+5=x7;(2)a·a6=a1+6=a7;(3)(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256;(4)x m·x3m+1=x m+3m+1=x4m+1.三、课堂小结四、板书设计五、教学反思在小组合作交流中,培养学生的探究、合作精神,增强他们的学习信心.在教学过程中,发现学生对公式的理解还会存在一定的困难,教师要在练习中,反复强调:在应用同底数幂乘法的运算性质时,底数必须相同,指数相加,如果底数不同,能够化为相同底数的可以用该法则,否则不能用.另外,学生对三个或三个以上同底数幂相乘时,是否能用同底数幂乘法的法则还会存在一定的疑惑,教师在教学中可加以说明并拓展:(1)当三个或三个以上同底数幂相乘时,可推广为:a m·a n·a p=a m+n+p(m,n,p都是正整数),a m·a n·…·a p=a m+n +…+p(m,n,…,p都是正整数).(2)a m·a n=a m+n可逆用,即a m+n=a m·a n(m,n都是正整数).导学方案一、学法点津学生在应用同底数幂的乘法法则时,要掌握两点:(1)相乘时底数没有发生变化,即底数必须相同;(2)指数相加的和作为最终结果幂的指数,即同底数幂的乘法的结果仍为幂的形式.二、学点归纳总结(一)知识要点总结同底数幂的乘法法则:a m·a n=a m+n(m,n都是正整数).即同底数幂相乘,底数不变,指数相加.(二)规律方法总结1.在应用同底数幂的乘法的运算性质时,底数必须相同,指数相加,如果底数不同,能够化为相同底数的可以用该法则,否则不能用.2.同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m·a n·a p=a m+n+p(m,n,p为正整数).3.同底数幂的乘法法则的使用条件是:同底数幂相乘,即只要是底数相同的幂相乘就行,不论底数是单项式还是多项式.4.注意同底数幂的乘法法则的逆用,即a m+n=a m·a n(m,n为正整数).即一个幂可以写成两个同底数的幂的积.课时作业设计一、选择题1.计算b5·b的值为( ).A.2b6B.b6C.2b5D.b52.(x-y)2·(y-x)3·(x-y)4的结果是( ).A.(x-y)9 B.-(x-y)9C.(y+x)9 D.-(x+y)9二、填空题3.x m-1·x m+1=__________; (a+b)2·(b+a)3=__________.4.若x a=5,x b=6,则x a+b=__________;若3×27×9=3x,则x=__________.三、解答题5.计算:(1)-a5·(-a)2; (2)(a-b)·(b-a)2·(b-a)3;(3)x·x3+x2·x2; (4)(a+b-c)2·(c-a-b)3.【参考答案】1.B2.B3.x2m(a+b)54.30 65.解:(1)原式=-a5·a2=-a5+2=-a7;(2)原式=-(a-b)·(a-b)2·(a-b)3=-(a-b)1+2+3=-(a-b)6;(3)原式=x1+3+x2+2=x4+x4=2x4;(4)原式=-(a+b-c)2·(a+b-c)3=-(a+b-c)5.。

14.1.1同底数幂的乘法(教案)八年级上册初二数学(人教版)

14.1.1同底数幂的乘法(教案)八年级上册初二数学(人教版)
-在解决实际问题时,如计算一个细胞分裂问题,让学生从第一次分裂后的细胞数(2^1),推导到第二次分裂后的细胞数(2^2),直到第n次分裂后的细胞数(2^n),从而理解同底数幂乘法在描述此类问题时的优势。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“14.1.1同底数幂的乘法”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过相同底数的幂相乘的情况?”(如:计算连续翻倍问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂乘法的奥秘。
-举例说明,如2的3次方表示2连乘3次,2的5次方表示2连乘5次,两者的乘积即为2连乘3+5=8次。
-设计具有实际背景的问题,如计算连续翻倍问题,让学生感受同底数幂乘法在实际问题中的应用。
-提供多样化的练习题,包括不同底数的乘法、含变量的幂的乘法等,帮助学生巩固指数相加的概念。
-难点举例:
-对于指数相加的难点,可以通过具体的例子,如2^10•2^15,引导学生先分别计算2^10和2^15,然后理解它们的乘积是2^(10+15)=2^25。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同底数幂乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课旨在培养学生以下核心素养:
1.理解同底数幂的乘法法则,提升学生的数学运算能力,使其能够熟练运用法则解决相关问题。

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计一. 教材分析《同底数幂的乘法》是人教版八年级数学上册第14章幂的运算中的一节内容。

本节主要让学生掌握同底数幂的乘法法则,理解幂的运算性质,并能够熟练地进行计算。

为后续学习幂的乘方、积的乘方等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘法、幂的定义等知识。

他们对于幂的概念和运算有一定的了解,但还需要进一步引导他们理解同底数幂的乘法法则,并能够运用到实际计算中。

三. 教学目标1.理解同底数幂的乘法法则,掌握幂的运算性质。

2.能够熟练地进行同底数幂的乘法计算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.同底数幂的乘法法则的理解和运用。

2.幂的运算性质的掌握。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例教学,让学生直观地理解同底数幂的乘法;通过小组合作学习,培养学生的团队合作精神和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和习题3.笔记本和计算器七. 教学过程导入(5分钟)通过一个实际问题引入:某商店举行打折活动,原价为2^5元,打8折后的价格是多少?引发学生思考,引出同底数幂的乘法运算。

呈现(10分钟)通过PPT展示同底数幂的乘法法则,用具体的案例进行解释,让学生直观地理解同底数幂的乘法运算。

操练(10分钟)学生独立完成一些同底数幂的乘法运算,教师巡回指导,及时解答学生的疑问。

巩固(10分钟)学生分组合作,解决一些实际问题,运用同底数幂的乘法运算。

教师参与各小组的讨论,给予指导和鼓励。

拓展(10分钟)引导学生思考同底数幂的乘法运算的推广,即幂的乘方和积的乘方。

通过案例和习题进行讲解和练习。

小结(5分钟)教师引导学生总结本节课所学的同底数幂的乘法法则和运算性质,学生分享自己的学习心得和体会。

家庭作业(5分钟)布置一些同底数幂的乘法运算的练习题,要求学生在课后进行巩固和复习。

河北省武安市小屯中学第一学期八年级数学学案 14.1.1 同底数幂的乘法(无答案)

河北省武安市小屯中学第一学期八年级数学学案 14.1.1 同底数幂的乘法(无答案)

河北省武安市小屯中学第一学期八年级数学学八学科数学组长签字第周第课时案14运用人主备教员课题14.1.1 同底数幂的乘法课型新授课共课时第课时教学目标知识与技艺1.了解同底数幂的乘法法那么2.能灵敏运用法那么停止计算进程与方法探求同底数幂的乘法法那么情感、态度、价值观体验数学活动中的探求与创新,感受数学的严谨性教学重点会停止同底数幂的乘法运算教学难点同底数幂的乘法法那么及运用教法及学法指点自主探求、协作交流教学工具多媒体教学过程复备一、温习引入:na表示的意义是什么?其中a、n、n a区分叫做什么?二、自主学习:1.25表示什么?2.10×10×10×10×10 可以写成什么方式?3.仿照例题填空例:103 ×102= (10×10×10) ×(10×10) = 10〔 5 〕;23 ×22 = = 2〔 〕= = .= = .同底数幂相乘,底数〔 〕,指数〔 〕。

跟踪练习=⨯5111010)1( =⨯⨯42101010)6( =⋅32)31()31)(2(=+⋅+43)())(7(y x y x =-⋅-)())(3(10x x =⋅43)-2(2-)8(432(4)y y y y ⋅⋅⋅==-⋅-42)())(5(x x三、互助探求填空:xxx x 7)(2)1(=⋅⋅?3(2)(?)mmx x⋅=(3)84,2xx ⨯==则 (?)四、拓展提高〔1〕a n -3·a 2n +1=a 10,求n 的值;公式运用:a m ·a n =a m+n解:n -3+2n +1=10, n =4;〔2〕x a =2,x b =3,求x a+b 的值.公式逆用:a m+n =a m ·a n解:x a+b =x a ·x b =2×3=6.假定 , 那么 的值是〔 〕五 检测提升1.下面的计算对不对?假设不对,应当怎样矫正.333(1)2b b b ⋅= 336(2)+b b b =538(3)a a a a ⋅⋅= 4416(4)--)()x x x ⋅=-()((5)23n n n x x x += 43)6(c c c =⋅2.计算以下各题:239⨯(1)(-9) 42(2)()a a -⋅-12(3)n nx x +⋅ 11(4)1010m n ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭23(5)a a a ⋅+留意:5,4m n x x ==m n x+。

河北省武安市小屯中学第一学期八年级数学学案 14.1 幂的乘方(无答案)

河北省武安市小屯中学第一学期八年级数学学案 14.1 幂的乘方(无答案)

河北省武安市小屯中学
第一学期八年级数学学八学科数学
组长
签字
第周第课时

14
运用人主备教员
课题幂的乘方课型新授课
共1课时
第1课时




知识与技艺了解幂的乘方的运算法那么
进程与方法
灵敏运用幂的乘方运算法那么计算
情感、态度、
价值观
提高计算才干,和处置实践效果的才干,学会逆向思想
教学重点
会停止幂的乘方的运算
教学难点
幂的乘方法那么的总结及运用
教法及学法指点361师友互助教学工具多媒体
教学过程复备
一、热情导入
回忆同底数幂的乘法,引入新课。

a m·a n=a m+n〔m、n都是正整数〕
二、自主学习
仔细阅读课本96-97页,完成以下效果:
1、解答P96〝探求〞中的效果,了解并熟记幂的乘方法那么及
其推倒进程。

2、留意例2的解题格式和步骤,思索第一步中运用幂的乘方法
那么时底数变不变,指数如何变?
5分钟后,比谁能熟背幂的乘方法那么并能运用法那么处置。

人教初中数学八年级上册 14.1.1 同底数幂的乘法教案

人教初中数学八年级上册  14.1.1 同底数幂的乘法教案

同底数幂的乘法教学目标:理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.教学重点与难点:正确理解同底数幂的乘法法则以及适用范围.教学过程:一、回顾幂的相关知识a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.二、创设情境,感觉新知问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?学生分析,总结结果1012×103= ()×(10×10×10) == 1015.通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.学生动手:计算下列各式:(1)25×22 (2)a3·a2(3) 5m·5n(m、n都是正整数)教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.得到结论:(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.(2)一般性结论:a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n= ()·() = () = a m+na m·a n=a m+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加三、小结:同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n = a m+n(m、n是正整数).。

八年级数学上册-人教版八年级上册数学 14.1.1 同底数幂的乘法《同底数幂的乘法》参考学案

八年级数学上册-人教版八年级上册数学   14.1.1 同底数幂的乘法《同底数幂的乘法》参考学案

同底数幂的乘法学习目标:1、理解同底数幂的乘法法则;2、运用同底数幂的乘法法则解决一些实际问题;3、在进一步体会幂的意义时,发展推理能力和有条理的表达能力;4、通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊到一般,一般到特殊的认知规律。

结论。

学习重点:同底数幂的乘法法则及其简单应用,同底数幂的乘法运算性质学习难点:理解同底数幂的乘法法则的推导过程。

课前知识回顾:n a 表示 ,这种运算叫做 ,这种运算的结果叫 ,其中a 叫做 ,n 是 。

(观察右图,体会概念)问题:一种电子计算机每秒可进行1210次运算,它工作310秒可进行多少次运算?应用乘方的意义可以得到:1012×103=121010)⨯⨯个(10×(10×10×10)=15101010)⨯⨯⨯个(10=1015.通过观察可以发现1012、103这两个因数是底数相同的幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.......。

学习过程:课前预习(预习教材P141—142,找出疑惑之处)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看发现了什么。

检测一1计算(1)25×22 (2)a 3·a 2 (3)5m ·5n (m 、n 都是正整数)(1)5222(22222)(22)⨯=⨯⨯⨯⨯⨯⨯=(2)32a a ⨯= =(3) = =把指数用字母m 、n (m 、n 为正整数)表示,你能写出a m • a n 的结果吗? a m • a n = 个)) ( a a a a a a (⋅⋅⋅⋅⋅⋅⋅⋅⋅ 个)) (a a a a a (a ⋅⋅⋅⋅⋅⋅⋅⋅⋅= )个( a a a ⋅⋅⋅⋅⋅⋅⋅=a ( ) 有 a m • a n =a ( )(m 、n 为正整数)这就是说,同底数幂相乘,______不变,______相加。

14.1.1同底数幂的乘法教案人教版八年级数学上册

14.1.1同底数幂的乘法教案人教版八年级数学上册
3、通过探究、观察发现、猜想、证明、归纳得到同底数幂的乘法法则,让学生经历知识的发生与发展过程,从中感受转化、化归等数学思想方法。
4、通过新知运用,让学生能正确运用法则进行同底数幂乘法计算,并从中感受归纳、整体等思想方法。
5、总结归纳,明确方法。
配套练习
1、下列各项中,两个幂是同底数幂的是()
A、 B、 C、 D、-
=10 ×10×10×10×10×10×10×10=108
激发:有没有更简便的计算方法呢?
3、探究:
计算 =
=
观察发现: 刚才的计算都是同底数幂相乘; 计算结果的底数与式子中的底数相同; 结果中的指数是式子中的各因式的指数相加。
猜想: ×
证明: ×
归纳:同底数幂乘法法则:同底数幂相乘,底数不变,指数相加。 × (m,n是正整数)
4、运用新知
例1: 计算下列各式,结果用幂的形式表示:
归纳:同底数幂乘法法则对于三个及三个以上同底数幂相乘同样适用。
• =
5、小结:
(1)、由乘方的意义探究、归纳、转化得到同底数幂的乘法法则。
(2)、在学习过程中运用到了转化、化归、整体等思想方法。
1、复习旧知,引入新知。
2、通过实际问题激发学生去探讨更简单的解决方法。
2、计算: 正确的是()
A B、 C、 D、
3、下列运算正确的是()
A、 B、 C、 D、
4、下列各式中,计算结果为- 的是()
A、 B、
C、 D、
5、计算:
(1) (2) •
(3) (4)
(5) (6)
14.1.1同底数幂的乘法教案
人教版八年级数学上册
教师姓名
学校名称
学科
数学

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版 教案

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版 教案

一、教材分析《同底数幂的乘法》是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的幂的一个基本性质,它是幂的三个性质中最基本的一个性质,学好这个性质,对其它两个性质以及整式的乘法和除法的学习能起到积极作用。

因此,《同底数幂的乘法》是学习整式的乘法和除法的基础,在本章中具有举足轻重的地位和作用。

另外,同底数幂的乘法与现实世界中的数量关系联系也很密切,通过学习可以把所学知识与实际联系起来,更好的为实现科技兴国服务。

二、学情分析七年级学习的有理数的乘方,为学生学习这章节的知识打下了基础,学生已经能够掌握幂的运算,也会能用计算器进行幂的运算,在这基础上再学习同底数幂的乘法,学生比较容易接受,也比较感兴趣。

但有些学生可能会由于基础不够扎实,从而对学习数学缺乏信心,畏难,习惯性懒惰,上课时缺乏耐性,不够专心,因此在这节课程安排上,我侧重于从简单题目入手,通过恰当的练习,充分调动学生的学习兴趣和学习信心,以期得到更好的学习效果。

三、教学目标【知识与能力】让学生探究和理解同底数幂的乘法法则,能熟练地运用同底数幂的乘法法则进行运算,并能解决一些简单的实际问题。

【过程与方法】让学生经历同底数幂的运算法则的推导及幂的意义的理解过程,发展和提高学生的推理能力和有条理的表达能力;通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊----一般------特殊的认知规律。

【情感态度与价值观】让学生在运用数学知识解决实际问题的过程中,体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神。

【教学重点】正确理解同底数幂的乘法法则。

【教学难点】正确理解和运用同底数幂的乘法法则。

五、教学反思(一)同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质(法则)。

因此,同底数幂的乘法法则既是有理数幂的乘法的推广又是整式乘法的重要基础,在本章的学习中具有举足轻重的地位和作用。

新人教版八年级上册数学14.1.1 同底数幂的乘法学案

新人教版八年级上册数学14.1.1 同底数幂的乘法学案

14.1 整式的乘法14.1.1 同底数幂的乘法学习目标:1.熟记同底数幂的乘法的运算性质,了解法则的推导过程.2.能熟练地进行同底数幂的乘法运算. 会逆用公式a m a n =a m+n .3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想. 学习重点:掌握并能熟练地运用同底数幂的乘法法则进行乘法运算.学习难点:对法则推导过程的理解及逆用法则.学习过程:一、知识回顾,引入新课问题一:(用1分钟时间快速解答下面问题)二、观察猜想,归纳总结问题二:(用5分钟时间解答问题四9个问题,看谁做的快,思维敏捷!)1.根据乘方的意义填空:(1)23×24 =(2×2×2)×(2×2×2×2)=(2)53×54 =( )×( )=(3)a 3×a 4 = ( )×( )=数)2.猜想:a m ·a n = (,m n 都是正整数)3.验证:a m ·a n =( )×( )=( )=()a共( )个4.归纳:同底数幂的乘法法则:a m×a n=(m、n都是正整数)文字语言:5.法则理解:①同底数幂是指底数相同的幂.如(-3)2与(-3)5,(ab3)2与(ab3)5,(x-y)2与(x-y)3 等.②同底数幂的乘法法则的表达式中,左边:两个幂的底数相同,且是相乘的关系;右边:得到一个幂,且底数不变,指数相加.6.法则的推广: a m·a n·a p= (m,n,p都是正整数).思考:三个以上同底数幂相乘,上述性质还成立吗?同底数幂的乘法法则可推扩到三个或三个以上的同底数幂的相乘.a m·a n·a p=a m+n+p,a m·a n·…·a p=a m+n+…+p(m、n…p都是正整数)7.法则逆用可以写成同底数幂的乘法法则也可逆用,可以把一个幂分解成两个同底数幂的积,其中它们的底数与原来幂的底数相同,它的指数之和等于原来幂的指数.如:25=23·22=2·24等.8.应用法则注意的事项:①底数不同的幂相乘,不能应用法则.如:32·23≠32+3;②不要忽视指数为1的因数,如:a·a5≠a0+5.③底数是和差或其它形式的幂相乘,应把它们看作一个整体.三、理解运用,巩固提高(用3分钟自主解答例1-例2,看谁做的又快又正确!)例1.计算:(1)103×104;(2)a • a3 (3)a • a3•a5(4) x m×x3m+1例2.计算:(1)(-5) (-5)2 (-5)3 (2)(a+b)3 (a+b)5 (3)-a·(-a)3(4)-a3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5四、深入探究、活学活用例3. (1)已知a m=3,a m=8,求a m+n 的值.(2)若3n+3=a,请用含a的式子表示3n的值.(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.五、实践运用,巩固提高(用5分钟时间解决下面5个问题,看谁做的快,方法灵活!)1.下列计算中①b5+b5=2b5,②b5·b5=b10,③y3·y4=y12 ,④m·m3=m4 ,⑤m3·m4=2m7 ,其中正确的个数有()A.1个B.2个C.3个D.4个2.x3m+2不等于()A.x3m·x2 B.x m·x2m+2 C.x3m+2 D.x m+2·x2m3.计算5a• 5b的结果是()A.25ab B.5ab C.5a+b D.25a+b4.计算下列各题(1)a12• a (2)y4y3y (3)x4x3x (4)x m-1x m+1(5)(x+y)3(x+y)4(x+y)4(6)(x-y)2(x-y)5(x-y)65. 解答题:⑴x a+b+c=35,x a+b=5,求x c的值.(2)若x x •x m• x n=x14求m+n.(3)若a n+1• a m+n= a6,且m-2n=1,求m n的值.(4)计算:x 3• x 5+x • x 3•x 4.六、总结反思,归纳升华通过本节课的学习,你有哪些感悟和收获,与同学交流一下:①学到了哪些知识?②获得了哪些学习方法和学习经验?③与同学的合作交流中,你对自己满意吗? ④在学习中,你受到的启发是什么?你认为应该注意的问题是什么?知识梳理:________________________________________________________________;方法与规律:______________________________________________________________;情感与体验:______________________________________________________________;反思与困惑:______________________________________________________________.七、达标检测,体验成功(时间6分钟,满分100分)1.判断(每小题3分,共18分)(1) x 5·x 5=2x 5 ( ) (2) m + m 3 = m 4 ( ) (3) m·m 3=m 3 ( )(4)x 3(-x)4=-x 7 ( ) (5)y 5 · y 5 = 2y 10 ( ) (6)c · c 3 = c 3 ( )2.填空题:(每空3分,共36分)(1)54m m = ; (2)n n y y y --••533= ;(3)()()32a a --= (4)()()22x x --=(5) x 5 ·x ·x 3= ; (6)(x+y)3 · (x+y)4=(7)①x 5 ·( )= x 8 ②a ·( )= a 6(8) ①8 = 2x ,则 x = ; ②3×27×9 = 3x ,则 x = .(93. 选择题:(每小题4分,共16分)⑴33+m x 可以写成( )A .13+m xB .33x x m +C .13+⨯m x xD .33x x m ⨯ ⑵3,2==n m a a ,则m n a + =( )A .5B .6C .8D .9 ③下列计算错误的是( )A.(- a)·(-a)2=a 3B.(- a)2·(-a)2=a 4C.(- a)3·(-a)2=-a 5D.(- a)3·(-a)3=a 6 ④如果x m-3·x n = x 2,那么n 等于( )A.m-1B.m+5C.4-mD.5-m4.计算:(每小题5分,共30分)(1)103×104 (2)(-2)2·(-2) 3·(-2)(3)a·a 3·a 5(4) (a+b)(a+b)m (a+b)n (5) (-a )2·a 3(6) (x-2y)2• (2y-x)5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法 法则及运用
教法及学法指导
自主探究、合作交流
教学工具
多媒体
教学过程
复备
一、复习引入:
表示的意义是什么?其中a、n、 分别叫做什么?
二、自主学习:
1.25表示什么?
2.10×10×10×10×10可以写成什么形式?
3.仿照例题填空
例:103×102= (10×10×10)×(10×10) = 10(5);
=2×3=6.
若,则的值是()
五检测提升
1.下面的计算对不对?如果不对,应当怎样改正.
2.计算下列各题:
注意:
公式中的底数和指数可以是一个数、字母或一个式子.
3.计算(1)
(2)
(3)
(4)
(5)若,则
六、总结评价
1.同底数幂的乘法法则:
am·an= am+n(m、n都是正整数)
同底数幂相乘,底数不变,指数相加。
23×22== 2()
==.
==.
同底数幂相乘,底数(),指数()。
跟踪练习
三、互助探究
填空:
四、拓展提高
(1)已知an-3·a2n+1=a10,求n的值;
公式运用:am·an=am+n
解:n-3+2n+1=10,
n=4;
(2)已知xa=2,xb=3,求xa+b的值.
公式逆用:am+n=am·an
解:xa+b=xa·xb
2.法则的拓展与逆用




14.1.1同底数幂的乘法
同底数幂的乘法法则:
am·an= am+n(m、n都是正整数)


第三题




年级

学科
数学
组长签字
第周
第课时
使用人
主备教师
课题
14.1.1同底数幂的乘法
课型
新授课
共课时
第课时




知识与技能
1.理解同底数幂的乘法法则
2.能灵活运用法则进行计算
过程与方法
探索同底数幂的乘法法则
情感、态度、教学重点
会进行同底数幂的乘法 运算
教学难点
相关文档
最新文档