清华大学工程材料CH11-SME-EngMater

合集下载

清华大学工程材料第五版第四章

清华大学工程材料第五版第四章

二、按使用范围分类
1. 通用塑料 应用范围广、生产量大的塑料品种。 聚氯乙烯、聚苯乙烯、聚烯烃、酚醛塑料 2. 工程塑料 和氨基塑料等,产量约占塑料总产量的四分之 综合工程性能(机械性能、耐热耐寒性能、 三以上。 耐蚀性和绝缘性能等)良好的各种塑料。
如聚甲醛、聚酰胺、聚碳酸酯和 ABS等。 3. 耐热塑料 能在较高温度(100 ℃~200 ℃)工作。 聚四氟乙烯、聚三氟氯乙烯、有机硅树 脂、环氧树脂等。
七、氨纶 化学名称为聚氨酯纤维,商品名称为氨纶。 由聚酯、芳香族二异氰酸酯聚合,用脂肪族二 胺交联而成。 1、特点 ●高弹性。伸长600%~750%时,回弹率达 95%以上。 2、应用 用作运动衣、游泳衣。与涤纶混纺后,制 作夏季衣服。
4.3
合成橡胶
橡胶 具有极高弹性的高分子材料。
●性能特点 弹性变形量可达100%~1000%,而且回 弹性好,回弹速度快。 橡胶还有一定的耐磨性,很好的绝缘性和 不透气、不透水性。
聚酰胺的应用: 制造耐磨耐蚀零件,如轴承、齿轮、
尼龙轴套
尼龙拉杆
7. 聚碳酸酯(PC) 聚碳酸酯誉称"透明金属", ●具有优良的综合性能。冲击韧性和延 性突出,在热塑性塑料中是最好的;弹性模 量较高,不受温度的影响; ●抗蠕变性能好,尺寸稳定性高; ●透明度高,可染成各种颜色; ●吸水性小; ●绝缘性能优良,在10 ℃~130 ℃间介 电常数和介质损耗近于不变。
有机玻璃顶棚
二、热固性塑料 1. 酚醛塑料(PE) 由酚类和醛类缩聚合成酚醛树脂,再加入 添加剂而制得。一般为热固性塑料。 ●具有一定的机械强度和硬度, 耐磨性好; ●绝缘性良好, 耐热性较高,耐蚀性优良。 ●缺点是性脆,不耐碱。
酚醛塑料的应用:

清华大学工程材料第五版第二章PPT学习教案

清华大学工程材料第五版第二章PPT学习教案
4. 电磁搅拌 将正在结晶的金属置于一个交变电磁场中 ,由于电磁感应现象,液态金属翻滚,冲断 正在结晶的树枝状晶体的晶枝,增加结晶核 心,细化晶粒。
第20页/共29页
2.1.4 铸锭的结构
一、铸锭结构
铸锭分为三个各具特征的晶区。
1. 细等轴晶区
锭2. 模柱温状度晶低区,导热快,
外层细3.液晶粗体形等金成轴属,晶过锭区冷模度温大度,升
金属在固态下随温度的改变,由一种晶格转 变为另一种晶格的现象,称为同素异构转变 。
第11页/共29页
纯铁的同素异构转变: ●液态纯铁在1538℃结
晶为体心立方晶格的δ-Fe
。 ●冷却到1394℃时发生 同素异构转变, 成为面心 立方晶格的γ-Fe。
●冷却到912℃时又发 生一次同素异构转变, 成
为体心立方晶格的α-Fe。
曲率线和实随成多长的长际着核,大左大晶工过速速边速粒程冷率 度部 度细中度NG分都小,的快大。增;过增,,大晶冷大结,粒度,晶成粗常成后核。处核晶速于速粒 率增大更快,比值N/G也增大
, 晶粒细化。
成核速率、长大速度 与过冷度的关系
第17页/共29页
增大过冷度的主要方法: 提高液态金属的冷却速度。 采用冷却能力较强的模子。 采用金属型铸模, 比采用砂型铸模获得的铸 件晶粒要细小。 超高速急冷技术可获得超细化晶粒的金属 、亚稳态结构的金属和非晶态结构的金属。 非晶态金属具有特别高的强度和韧性、优 异的软磁性能、高的电阻率、良好的抗蚀性 等。
清华大学工程材料第五版第二章
会计学
1
学习目标:
本章是工程材料课程的重点章。 着重掌握:铁碳相图,铁碳合金的平衡结 晶过程,铁碳合金的成分-组织-性能关系。过 冷奥氏体的转变,钢的淬透性、淬硬性。常用 热处理等热处理工艺。合金元素对钢的热处理 、钢的机械性能的影响。 熟悉纯金属、合金的结晶,金属的塑性加 工、再结晶对金属组织和性能的影响规律。 表面技术部分作一般了解。

清华大学材基习题第二章总结

清华大学材基习题第二章总结

第二章习题及答案2-11.比较石墨和金刚石的晶体结构、结合键和性能。

答:金刚石晶体结构为带四面体间隙的FCC,碳原子位于FCC点阵的结合点和四个不相邻的四面体间隙位置,碳原子之间都由共价键结合,因此金刚石硬度高,结构致密。

石墨晶体结构为简单六方点阵,碳原子位于点阵结点上,同层之间由共价键结合。

邻层之间由范德华力结合,故层与层之间容易滑动,因此石墨组织稀松。

每个碳原子只有3个最近邻,剩下的一个电子就可以在层内自由运动,因而石墨就具有有一定的导电性。

2-12.为什么元素的性质随原子序数周期性的变化?短周期元素和周期元素的变化有何不同?原因何在?答:因为元素的性质主要由外层价电子数目决定,而价电子数目是随原子序数周期性变化的,所以反映出元素性质的周期性变化。

长周期元素性质的变化较为连续、逐渐过渡,而短周期元素性质差别较大,这是因为长周期过渡族元素的亚层电子数对元素性质也有影响造成的。

2-13.讨论各类固体中原子半径的意义及其影响因素。

答:对于金属和共价晶体,原子半径定义为同种元素的晶体中最近邻原子核之间距离之半。

共价晶体中原子间结合键是单键、双键或三键将会影响原子半径,所以一般使用数值最大的单键原子半径;金属晶体中,配位数会影响原子半径,一般采用CN=12的原子半径。

对于非金属的分子晶体,同时存在两个原子半径:一是共价半径,另一是范德华原子半径(相邻分子间距离之半)。

对于离子晶体,用离子半径r+、r-表示正、负离子尺寸。

在假设同一离子在不同离子晶体中有相同半径的情况下,可以大致确定离子半径。

但离子半径只是一个近似的概念。

2-14.解释下列术语合金——由金属和其它一种或多种元素通过化学键结合而成的材料。

组元——组成合金的每种元素(金属、非金属)。

相——合金内部具有相同的(或连续变化的)成分、结构和性能的部分或区域。

组织——一定外界条件下,组成一定成分的合金的若干种不同的相的总体。

固溶体——溶质和溶剂的原子占据了一个共同的布拉维点阵,且此点阵类型与溶剂点阵类型相同;组元的含量可在一定范围内改变而不会导致点阵类型的改变。

清华大学-—工程材料综合题答案

清华大学-—工程材料综合题答案

第一章6、实际金属晶体中存在哪些缺陷它们对性能有什么影响答:点缺陷:空位、间隙原子、异类原子。

点缺陷造成局部晶格畸变,使金属的电阻率、屈服强度增加,密度发生变化。

线缺陷:位错。

位错的存在极大地影响金属的机械性能。

当金属为理想晶体或仅含极少量位错时,金属的屈服强度σs很高,当含有一定量的位错时,强度降低。

当进行形变加工时,为错密度增加,σs将会增高。

面缺陷:晶界、亚晶界。

亚晶界由位错垂直排列成位错墙而构成。

亚晶界是晶粒内的一种面缺陷。

在晶界、亚晶界或金属内部的其他界面上,原子的排列偏离平衡位置,晶格畸变较大,位错密度较大(可达1016m-2以上)。

原子处于较高的能量状态,原子的活性较大,所以对金属中的许多过程的进行,具有极为重要的作用。

晶界和亚晶界均可提高金属的强度。

晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。

8、什么是固溶强化造成固溶强化的原因是什么&答:形成固溶体使金属强度和硬度提高的现象称为固溶强化。

固溶体随着溶质原子的溶入晶格发生畸变。

晶格畸变随溶质原子浓度的提高而增大。

晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。

9、间隔固溶体和间隔相有什么不同答:合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之一相同的固相称为固溶体。

间隙固溶体中溶质原子进入溶剂晶格的间隙之中。

间隙固溶体的晶体结构与溶剂相同。

第二章1、金属结晶的条件和动力是什么答:液态金属结晶的条件是金属必须过冷,要有一定的过冷度。

液体金属结晶的动力是金属在液态和固态之间存在的自由能差(ΔF)。

、2、金属结晶的基本规律是什么答:液态金属结晶是由生核和长大两个密切联系的基本过程来实现的。

液态金属结晶时,首先在液体中形成一些极微小的晶体(称为晶核),然后再以它们为核心不断地长大。

在这些晶体长大的同时,又出现新的品核并逐渐长大,直至液体金属消失。

3、在实际应用中,细晶粒金属材料往往具有较好的常温力学性能,细化晶粒、提高金属材料使用性能的措施有哪些答:(1)提高液态金属的冷却速度,增大金属的过冷度。

清华大学材料加工课程大纲共15页

清华大学材料加工课程大纲共15页

课程大纲1)工艺部分第1章绪论1.1 材料加工工艺在制造业中的地位1.2 21世纪材料加工工艺的展望第2章液态金属成形2.1 概述2.1.1 铸造生产的特点2.1.2 铸造方法2.2 铸造合金的工艺性能2.2.1 铸造合金的充型能力2.2.2 铸造合金的收缩性及缩孔、缩松的形成2.2.3 铸造应力、变形与裂纹2.2.4 铸造合金中的偏析、气体和夹杂物2.3 砂型铸造2.3.1 粘土砂型2.3.2 粘土砂型的类别2.3.4 粘土型砂的循环使用2.3.5 砂型的紧实2.4 制芯工艺2.4.1 概述2.4.2 油砂和合脂砂2.4.3 热芯盒制芯2.4.4 覆膜砂制芯(型)工艺2.4.5 树脂自硬砂造型2.4.6 气硬冷芯盒法制芯2.5 水玻璃砂型(芯)2.5.1 水玻璃2.5.2 CO硬化水玻璃砂及砂型(芯)的制造工艺22.6 涂料2.6.1 涂料的作用2.6.2 涂料的基本组成2.6.3 涂料的制备与涂敷方法2.7 铸造工艺设计2.7.1 零件结构的工艺性2.7.2 造型及制芯方法的选择2.7.3 浇注位置的确定2.7.4 分型面的选择2.7.5 砂芯设计2.7.6 铸造工艺设计参数2.7.7 浇注系统设计2.7.8 冒口与冷铁2.8 其它铸造方法2.8.1 金属型铸造2.8.7 低压铸造2.8.6 压力铸造2.8.2 熔模铸造工艺2.8.3 消失模铸造工艺2.8.4 陶瓷型成型工艺2.8.5 离心铸造第3章金属塑性成形3.1 塑形成形工艺概述3.1.1 塑性成形工艺的特点及应用3.1.2 锻压工艺的分类3.2 塑性成形的机理及力学分析3.2.1 滑移和孪晶3.2.2 变形量的表达3.3 锻造工艺3.3.1 锻前加热3.3.2 锻造温度范围的确定3.3.3 自由锻造3.3.4 模型锻造3.4 板料冲压工艺3.4.1 冲裁工艺3.4.2 弯曲工艺3.4.3 拉深工艺3.4.4 胀形工艺3.4.5 翻边工艺3.4.6 板料冲压性能参数及试验方法3.4.7 冲压模具3.5 金属塑性成形设备3.5.1 机械压力机3.5.2 液压机第4章金属连接成形4.1 焊接技术的范畴和发展4.1.1 金属焊接过程的本质4.1.2 金属焊接方法的分类4.1.3 金属焊接方法的选用4.1.4 焊接工艺方法的发展4.2 电弧焊接4.2.1 焊接电弧的导电机理4.2.2 弧焊电源基础知识4.2.3 焊接电弧产热机理4.2.4 焊接电弧的作用力4.2.5 熔滴过渡4.2.6 焊缝成形4.2.7 焊条电弧焊4.2.8 埋弧焊4.2.9 CO电弧焊24.2.10 钨极氢电弧焊4.2.11 等离子弧焊4.2.12 电弧焊自动控制基础第5章表面工程5.1 概论5.1.1 前言5.1.2 表面工程技术分类5.1.3 表面工程技术的目的和特征5.2 气相沉积技术5.2.1 物理气相沉积5.2.2 化学气相沉积(CVD)5.2.3 等离子体增强化学气相沉积(PCVD) 5.3 热喷涂技术5.3.1 概述5.3.2 热喷涂工艺5.4 激光表面处理技术5.4.1 概述5.4.2 激光淬火5.4.3 激光合金化5.4.4 激光表面熔覆5.4.5 其它激光表面处理技术5.5 其它表面处理技术5.5.1 电镀5.5.2 化学镀第6章粉末冶金6.1 概论6.1.1 粉末冶金的工艺过程6.1.2 粉末冶金的工艺特点6.1.3 粉末冶金的应用6.1.4 粉末冶金的发展6.2 粉末的制备方法及性能6.2.1 粉末的制备方法.6.2.2 粉末特性6.2.3 粉末密度6.3 粉末成形6.3.1 成形前物料准备6.3.2 模压成形6.3.3 其它成形方法6.4 烧结6.4.1 烧结原理及过程6.4.2 单相烧结6.4.3 液相烧结6.4.4 烧结后的处理6.5 粉末冶金制品6.5.1 粉末冶金铁基结构件6.5.2 粉末冶金多孔材料6.5.3 粉末冶金摩擦材料第7章塑料成型工艺7.1 塑料及其工艺特性7.1.1 塑料的发展及用途7.1.2 塑料的分类及其工艺特性7.2 塑料的主要成型方法7.2.1 注射成型7.2.2 压缩成型7.2.3 压注成型7.2.4 挤出成型7.2.5 吹塑成型7.3 塑料注射成型模具(注射模)7.3.1 注射模的基本结构7.3.2 注射模结构的设计7.3.3 注射模浇注系统7.3.4 注射模成型部分7.3.5 注射模导向、推出及侧抽机构7.3.6 注射模温度调节系统第8章快速成形8.1 快速原型制造(RPM)技术的基本原理8.2 典型的快速成形工艺8.2.1立体光刻(SL)8.2.2 分层实体制造(LOM)8.2.3 激光选区烧结(SLS)8.2.4 熔融沉积制造(FDM)8.2.5 三维打印(3DP)8.2.6 增材成形8.2.7 形状沉积制造(SDM)8.2.8 多功能快速原型制造系统(M-RPMS)8.2.9 无木模铸型制造(PCM)8.3 快速成形技术的特点8.3.1 高度柔性8.3.2 技术的高度集成8.3.3 快速性8.3.4 自由成形制造8.3.5 材料的广泛性8.4 快速成形技术的应用8.4.1 产品开发与设计8.4.2 快速工模具(RT)8.4.3 非制造业实体的三维复制8.4.4 从快速原型到快速制造8.4.5 在生物医学上的应用一一生物制造工程2)原理部分第一章绪论1.1 什么是材料加工1.2 材料加工的意义和作用1.3 材料加工原理的课程内容第二章液态金属及其加工2.1 液态金属的结构和性质2.1.1金属从固态熔化为液态时的变化2.1.2液态金属的结构2.1.3液态金属的性质2.2 液态金属结晶凝固的热力学和动力学2.2.1金属液一团转变的热力学条件2.2.2均质形核2.2.3异质形核2.2.4晶体长大.2.3 液态金属的冶金处理2.3.1影响形核的冶金处理2.3.2影响晶粒长大的冶金处理第三章材料加工中的流动与传热3.1 液态金属的流动性与充型能力.3.1.1液态金属的流动性与充型能力的基本概念3.1.2液态金属的停止流动机理3.2 液态金属凝固过程中的流动3.2.1凝固过程中液体流动的分类3.2.2凝固过程中液相区的液体流动3.2.3液态金属在枝晶间的流动3.3 材料的流变行为3.3.1材料的简单流变性能3.3.2材料的复杂流变性能3.3.3合金的流变性能3.3.4材料的半固态加工3.4 材料加工中的热量传输3.4.1凝固传热3.4.2焊接过程的传热特点第四章金属的凝固加工4.1 概述4.1.1凝固理论及应用简介4.1.2凝固过程的类型4.2 凝固过程中的传质4.2.1溶质分配方程4.2.2凝固传质过程的有关物理量4.2.3稳定传质过程的一般性质4.3 单相合金的凝固4.3.1平衡凝固4.3.2近平衡凝固4.4 界面稳定性与晶体形态4.4.1合金凝固过程中的成分过冷4.4.2成分过冷对单相合金结晶形态的影响4.5 多相合金的凝固4.5.1共晶合金的凝固4.5.2偏晶合金的凝固4.5.3包晶合金的凝固4.6 凝固组织与控制4.6.1普通铸件的凝固组织与控制4.6.2定向凝固条件下的组织与控制4.6.3焊缝的凝固组织与控制第五章材料加工力学基础5.1 应力状态分析5.1.1基本概念5.1.2直角坐标系中坐标面上的应力5.1.3任意斜面上的应力5.1.4主应力与应力张量不变量5.1.5主剪应力和最大剪应力5.1.6应力球张量和应力偏张量5.1.7八面体应力和等效应力5.1.8应力莫尔(Mohr)圆5.1.9平衡微分方程式5.2 应变状态分析5.2.1应变的概念5.2.2应变与位移的关系5.2.3应变张量分析5.2.4应变协调方程5.3 屈服准则5.3.1 Tresca屈服准则5.3.2 Mises屈服条件5.3.3屈服准则的几何表示5.4 塑性变形时的应力应变关系5.4.1塑性变形时应力应变关系的特点5.4.2弹性应力应变关系5.4.3塑性变形的增量理论5.5 主应力法及其应用5.5.1主应力法的概念5.5.2长矩形板镦粗时的变形力和单位流动压力第六章材料加工过程中的化学冶金6.1 概述6.1.1材料加工过程中的化学冶金问题6.1.2材料加工过程中的化学冶金特点6.2 气体与液态金属反应6.2.1气体的来源6.2.2氮对金属的作用6.2.3氢对金属的作用6.2.4氧对金属的作用6.3 熔渣与液态金属的化学冶金反应6.3.1熔渣6.3.2活性熔渣对金属的氧化6.3.3脱氧处理6.3.4渗合金反应6.3.5金属中硫和磷的作用及其控制6.4 金属固态热加工中的冶金反应6.4.1金属表面氧化6.4.2表面脱碳与增碳6.5 热加工过程中的保护措施6.5.1控制气氛6.5.2真空第七章加工引起的内应力和冶金质量问题7.1 内应力形成的原因及其影响7.1.1内应力形成的原因7.1.2内应力的影响7.1.3内应力的防止和消除7.2 主要冶金缺陷7.2.1偏析7.2.2非金属夹杂物7.2.3缩孔与缩松7.2.4气孔7.2.5氢白点7.2.6热裂纹7.2.7冷裂纹7.2.8应力腐蚀裂纹7.3 加工引起的金属脆化7.3.1过热脆化7.3.2组织脆化7.3.3杂质引起的脆化3)系列实验实验1 铝硅合金的细化和变质处理实验2 铸造残余应力的测定实验3 连铸钢水流动水力学模拟实验实验4 液态金属质量表征与识别方法实验5 消失模铸造实验6 先进压铸技术实验7 金属高温强度和塑性及其测定实验8 金属室温压缩的变形抗力测定及加工硬化分析实验9 金属高温压缩塑性变形及其变形抗力测定实验10 金属压缩过程中的摩擦系数测定及压缩过程数值模拟实验11 金属薄板的成形极限实验12 金属室温压缩的塑性及其流动实验13 金属薄板的弯曲试验实验14 拉深成形的凸耳现象及其模具分析实验15 热循环对材料组织与性能的影响实验16 残余应力盲孔法测定与消除实验17 工业机器人运动编程及自动弧焊实验18 脉冲TIG焊实验19 电阻点焊实验20 焦点位置对CO2激光焊缝成形及熔化效率的影响实验21 激光焊接过程检测与控制——等离子体的光电检测与焦点位置寻优实验22 脉冲Nd:YAG激光加工实验23 激光相变硬化实验24 激光熔覆实验25 等离子喷涂涂层的制备与观测实验26 干摩擦及油润滑条件下的摩擦学实验实验27 功能薄膜的制备方法以及光电学性能测试实验实验28 铁基粉末冶金实验29 金相图像分析实验30 热膨胀法测定钢的连续冷却转变图希望以上资料对你有所帮助,附励志名3条:1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。

【清华课件】工程材料(A)CH15-SME-EngMater-英文版

【清华课件】工程材料(A)CH15-SME-EngMater-英文版
Chapter 8 – Magnetic Properties: Magnetic Materials
Many of our modern technological devices rely on magnetism and magnetic materials.
✓Electrical motors, generators, and transformers; ✓Data storage: computer hard disks, video and audio cassettes; ✓Radios, televisions, telephones, CD players, loudspeakers; ✓Magnetic separation techniques in bioengineering and DNA
strong, m as high as 106
• Antiferromagnetism: Mn, Cr, MnO, NiO; very weak.
Induced dipoles
Permanent dipoles
• Ferrimagnetism: ceramics (ferrites): MFe2O4, or M2+O2--(Fe3+)2(O2-)3.
✓Favorably oriented domains grow at the expense of unfavorable ones, and finally rotate to become a single domain that is nearly aligned with the field.
✓ Exist below Tc (Curie temperature: 768C, 1120C, 335C, and 585C for Fe, Co, Ni, and Fe3O4, respectively);

材料力学(清华大学)-学习笔记

材料力学(清华大学)-学习笔记

第一章1.工程上将承受拉伸的杆件统称为拉杆,简称杆rods;受压杆件称为压杆或柱column;承受扭转或主要承受扭转的杆件统称为轴shaft;承受弯曲的杆件统称为梁beam。

2.材料力学中对材料的基本假定:a)各向同性假定isotropy assumptionb)各向同性材料的均匀连续性假定homogenization and continuity assumption3.弹性体受力与变形特征:a)弹性体由变形引起的内力不能是任意的b)弹性体受力后发生的变形也不是任意的,而必须满足协调compatibility一致的要求c)弹性体受力后发生的变形与物性有关,这表明受力与变形之间存在确定的关系,称为物性关系4.刚体和弹性体都是工程构件在确定条件下的简化力学模型第二章1.绘制轴力图diagram of normal forces的方法与步骤如下:a)确定作用在杆件上的外载荷和约束力b)根据杆件上作用的载荷以及约束力,确定轴力图的分段点:在有集中力作用处即为轴力图的分段点;c)应用截面法,用假象截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负:产生拉伸变形的轴力为正,产生压缩变形的轴力为负;d)建立F N-x坐标系,将所求得的轴力值标在坐标系中,画出轴力图。

2.强度设计strength design 是指将杆件中的最大应力限制在允许的范围内,以保证杆件正常工作,不仅不发生强度失效,而且还要具有一定的安全裕度。

对于拉伸与压缩杆件,也就是杆件中的最大正应力满足:,这一表达式称为轴向载荷作用下杆件的强度设计准则criterion for strength design,又称强度条件。

其中称为许用应力allowable stress,与杆件的材料力学性能以及工程对杆件安全裕度的要求有关,由下式确定:,式中为材料的极限应力或危险应力critical stress,n为安全因数,对于不同的机器或结构,在相应的设计规范中都有不同的规定。

清华大学 材料科学基础——作业习题第六章

清华大学 材料科学基础——作业习题第六章

第六章目录6.1 要点扫描 (1)6.1.1 金属的弹性变形 (1)6.1.2 单晶体的塑性变形 (2)6.1.3 多晶体的塑性变形与细晶强化 (8)6.1.4 纯金属的塑性变形与形变强化 (10)6.1.5 合金的塑性变形与固溶强化和第二相强化 (14)6.1.6 冷变形金属的纤维强化和变形织构 (16)6.1.7 冷变形金属的回复与再结晶 (17)6.1.8 热变形、蠕变和超塑性 (20)6.1.9 断裂 (22)6.2 难点释疑 (25)6.2.1 从原子间结合力的角度了解弹性变形。

(25)6.2.2 从分子链结构的角度分析粘弹性。

(25)6.2.3 FCC、BCC和HCP晶体中滑移线的区别。

(25)6.2.4 Schmid定律与取向规则的应用。

(26)6.2.5 孪生时原子的运动特点。

(27)6.2.6 Zn单晶任意的晶向[uvtw]方向在孪生后长度的变化情况 (29)6.3 解题示范 (30)3.4 习题训练 (33)参考答案 (38)第六章 金属与合金的形变6.1 要点扫描6.1.1 金属的弹性变形1. 弹性和粘弹性所谓弹性变形就是指外力去除后能够完全恢复的那部分变形。

从对材料的力学分析中可以知道,材料受力后要发生变形,外力较小时发生弹性变形,外力较大时产生塑性变形,外力过大就会使材料发生断裂。

对于非晶体,甚至某些多晶体,在较小的应力时,可能会出现粘弹性现象。

粘弹性变形即与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形两方面的特性。

2. 应力状态金属的弹性变形服从虎克定律,应力与应变呈线性关系:γτεσG E == 其中: yx G E εενν-==+,)1(2 E 、G 分别为杨氏模量和剪切模量,v 为泊松比。

工程上,弹性模量是材料刚度的度量。

在外力相同的情况下,E 越大,材料的刚度越大,发生弹性形变的形变量就越小。

3. 弹性滞后由于应变落后于应力,使得εσ-曲线上的加载线和卸载线不重合而形成一个闭合回路,这种现象称为弹性滞后。

工程材料全面答案清华大学出版

工程材料全面答案清华大学出版

工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。

答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。

线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。

如位错。

面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。

如晶界和亚晶界。

亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。

亚晶界:两相邻亚晶粒间的边界称为亚晶界。

刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。

滑移部分与未滑移部分的交界线即为位错线。

如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

多晶体:由多种晶粒组成的晶体结构称为“多晶体”。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

变质剂:在浇注前所加入的难熔杂质称为变质剂。

2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。

清华大学工程材料第五版第五章

清华大学工程材料第五版第五章

5.1 普通陶瓷
5.1.1 普通日用陶瓷
一、普通日用陶瓷的用途和特点
用粘土、石灰石、长石、石英等天然硅 酸盐类矿物制成。制造日用器皿和瓷器。
一般具有良好的光泽度、透明度,热稳 定性和机械强度较高。
日用器皿
艺术陶瓷
二、常用普通日用陶瓷
(1)长石质瓷 国内外常用的日用瓷,作 一般工业瓷制品。
(2)绢云母质瓷 我国的传统日用瓷。 (3)骨质瓷 主要作高级日用瓷制品。 (4)滑石质瓷 综合性能好的新型高质瓷。 (5)高石英质日用瓷 我国研制成功,石 英含量 ≥40%,瓷质细腻、色调柔和、透光 度好、机械强度和热稳定性好。
氧化铝陶瓷应用实例:
氧化铝陶瓷密封环
氧化铝陶瓷喷咀
二、氧化铍陶瓷
●导热性极好,很高的热稳定性,抗热冲 击性较高;
●消散高能辐射的能力强、热中子阻尼系 数大。
●强度低。
应用 氧化铍陶瓷制造坩埚,作真空陶瓷和 原子反应堆陶瓷,气体激光管、晶体管散热 片和集成电路的基片和外壳等。
三、氧化锆陶瓷
●熔点在2700 ℃以上,耐2300 ℃高温, 推荐使用温度2000 ℃~2200 ℃;
绝缘瓷瓶
改善工业陶瓷性能的方法: 加入MgO、ZnO、BaO、Cr2O3等或增加莫 来石晶体相,提高机械强度和耐碱抗力;
加入Al2O3、ZrO2等提高强度和热稳定性; 加入滑石或镁砂降低热膨胀系数;
加入SiC提高导热性和强度。
5.2 特种陶瓷
☆ 老师提示:重点内容
特种陶瓷也叫现代陶瓷、精细陶瓷。 特种陶瓷包括特种结构陶瓷和功能陶瓷两 大类,如压电陶瓷、磁性陶瓷、电容器陶瓷、 高温陶瓷等。 按陶瓷的主要组成分: 氧化物陶瓷、硼化物陶瓷、 氮化物陶瓷、碳化物陶瓷。

清华大学工程材料CH2-SME-EngMater

清华大学工程材料CH2-SME-EngMater

Larger electronegativity: Readily acquire valence electrons to become – ions (anions).
2.2 Interatomic Bonding Forces and Energies Atoms in the bonded state are in a more stable energy condition than when they are unbonded.
Part I The Fundamentals
Atomic level structure – Chapters 2-5 Microscopic level structure – Chapter 6 Mechanical properties – Chapter 7
Chapter 2 – Atomic Structure and Interatomic Bonding
3s1
3p5
Na
Na+
Coulombic attraction
Cl
Cl -
Regular stacking of Na+ and Cl- ions in solid NaCl
2.3 Primary Interatomic Bonds – Covalent Bonding
• Similar electronegativity • Share valence electrons • Highly directional • Strong (as with diamond) or weak (variable) • Electrically and thermally insulative
Equilibrium Spacing: r0 Bonding Energy: E0

国立清华大学材料科学工程学系

国立清华大学材料科学工程学系

Flash memory
Application : mobile phone, digital camera, MP3, PDA, …etc.
Conventional memory
Floating Gate Memory
Emerging Memory
Shortcoming : (1) high programming voltage (2) lower writing speed (3) poor retention and endurance
(1) Hot-electron injection
(2) F -N tunneling
8-15 nm
10-20 nm 5-7 nm
Drain
For the case of floating gate devices, a single defect can discharge the stored memory charge of the devices due to the conductive properties of the floating polysilicon gate
improved retention and endurance
Electroceramic thin films Lab. 427R NTHU. MSE
1. Introduction - Nanocrystal Memory
10-16 nm
Source
Gate
Gate oxide
3-4 nm Nanocrystal s
Electroceramic thin films Lab. 427R NTHU. MSE
1. Introduction

清华大学材料加工原理第4-1讲

清华大学材料加工原理第4-1讲

凝固类型
外生凝固:
1. 光滑壁面凝固 2. 粗糙壁面凝固 3. 海面状凝固
内生凝固:
1. 逐层凝固 2. 粥状凝固
凝固过程的传质——成分再分配
Fick 扩散第一定律:
dC J x = −D dx
Fick 扩散第二定律
⎡⎛ dC ⎞ dm1 − dm2 ⎛ dC ⎞ ⎤ − = D ⎢⎜ J1 − J 2 = ⎜ ⎟ ⎥ ⎟ Adt ⎣⎝ dx ⎠ x+dx ⎝ dx ⎠ x ⎦
1. 金属的结晶 2. 体积收缩 3. 成分重新分配
凝固类型
1. 内生凝固 2. 外生凝固
内生凝固
Snow Pattern
Snow Pattern
外生凝固
外 生 凝 固
等轴、定向和单晶叶片
Polycrystalline, Columnar and Single Crystal Blades
溶质平衡分配系数k
温度T时S / L界面处固相中溶质的浓度 C *S k= = * 同一温度下S / L界面处液相中溶质的浓度 C L
溶质平衡有效分配系数kE
* 所形成的固体的瞬时成 分 C S 有效分配系数 k E = = 当时液体的平均成分 CL
液相线斜率mL
dT TL − Tm = mL = dC CL
固相无扩散、液相只扩散无对流
稳态时:固相成分为C0,界面处液体成分 为C0/k,凝固在固相线温度下TS进行。 稳定态时的溶质分布如下图所示。
固相无扩散、液相只扩散无对流
——稳态下液相溶质分布特征方程
∂C L ∂ 2C L + DL =0 稳态下溶质分配特征方程:R 2 ∂x′ ∂x′ ⎛ R ⎞ 通解为:C L = A + B exp⎜ ⎜ − D x′ ⎟ ⎟ L ⎝ ⎠ ⎧当x' → ∞时,C L = C0 边界条件为: ⎨ ⎩当x′ = 0时,C L = C0 k ⎡ 1− k ⎛ R ⎞⎤ ′ ⎟ x − 于是,特解为:C L = C0 ⎢1 + exp⎜ ⎥ ⎜ ⎟ k ⎝ DL ⎠ ⎦ ⎣

--工程材料

--工程材料

清华大学《工程材料》48学时讲稿4/24微观组织和宏观性能:设备决定工艺,工艺决定组织,组织决定性能材料宏观性能的描述(非金属材料:教材P41-P66)非金属材料的结构和性能:高分子材料、无机非金属材料一、聚合物分子聚合物的性质主要取决于高分子的组成、构型、构象和高分子的聚集态。

直接影响固态聚合物性能的基本单元不是孤立的原子和单个的链节,而是整个大分子。

大多数聚合物的分子是通过范德瓦尔斯键或氢键连接在一起的。

聚合物分子与普通有机物小分子的唯一区别在于它们的尺寸。

聚合物分子的大小没有特定的界限,一个相对小的分子,例如由三个结构单元构成的分子也可以叫做聚合物。

然而,聚合物通常是指由大分子构成的高分子化合物。

由小分子构成的聚合物通常称为低聚物。

1.聚合物的分类聚合物是一个种类繁多的大家族,常用的聚合物材料有以下类型:2.高分子材料的命名通常高分子材料采用习惯命名法,在原料的单体名称前加“聚”字,如聚乙烯、聚氯乙烯等。

也有一些是在原料名称后加“树脂”二字,如酚醛树脂、脲醛树脂等。

只用一种单体成分合成的聚合物称为均聚物,使用两种或多种不同单体成分合成的聚合物称为共聚物。

有些高分子材料以专用名称命名,例如纤维素、蛋白、淀粉等。

还有一些高分子材料采用商品名称,它没有统一的命名原则,对同一材料可能各国的命名都不同。

如聚己内酰胺被称为尼龙、锦纶、卡普隆;聚乙烯醇缩甲醛称为维尼纶;聚丙烯腈(人造羊毛)称为腈纶、奥纶;聚对苯二甲酸乙二酯称为涤纶、的确良;聚甲基丙烯酸甲酯称为有机玻璃;丁二烯和苯乙烯共聚物称为丁苯橡胶等。

有时为了简化,往往用英文名称的缩写表示,如聚乙烯称为PF,聚氯乙烯称为PVC等。

3.聚合物的分子量聚合物是由许多重复链段被称为链节或单体的单元所组成的分子所构成。

从有机化学可知,烃系CmH2m+2中分子的熔点与分子的大小有关(图2-19)。

一般说来,包含大分子的那些聚合物比由小分子组成的聚合物更牢固,并且抵抗热应力和机械应力的能力更强。

清华大学911材料科学基础考研参考书目、考研真题、复试分数线

清华大学911材料科学基础考研参考书目、考研真题、复试分数线
王向荣
[英]杰弗瑞·杰里柯//苏 珊杰·里柯 译者:刘滨 谊
周维权
刘敦祯 潘谷西 陈志华 罗小未 张筑生 周民强,方企勤
张三慧
宋天佑,程鹏,王杏乔
邢其毅主编
薛华等 刘密新等
潘祖仁主编
何曼君等
吴庆余
607 西方哲学史 《西方哲学简史》 北京大学出版社 2002
赵敦华
《科学技术概论 》(第
608 科学技术概论
《光学工程基础》 清华大学
毛文炜
822 控制工程基础 《控制工程基础》 清华大学
董景新
《工程热力学》
清华大学出版社
朱明善等
823 热流基础
《工程热力学》
高等教育出版社
沈维道
《流体力学》
清华大学出版社
张兆顺,崔桂香
《理论力学》
清华大学出版社
李俊峰
824 工程力学(理论 《材料力学》 力学及材料力学) 《材料力学》
中国建筑工业出版社
西安冶金建筑学院等
803 建筑环境与设 《传热学》第三版
备工程基础(供热、《工程热力学》
供然气、通风及空调
工程基础)
《建筑环境学》
高等教育出版社 1998 年 12 月
杨世铭,陶文铨编著
清华大学出版社 1995 年 7 月第 1 版 朱明善等编
中国建筑工业出版社 2001 年 12 月第 金招芬,朱颖心主编
学、热学、电磁学)三册
《电磁场理论》 《电动力学》
清华大学出版社 2001 年 2003 年重 王蔷 李国定 龚克

高教出版社 1997 年 第二版
郭硕鸿
《Introduction to Semiconductor Devices》

清华大学-工程材料课件(1).136页PPT

清华大学-工程材料课件(1).136页PPT
清华大学-工程材料课件(1).
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

cailaio

cailaio

技术的进步让铝走出了首饰 店……
1886 年, 22 岁的美国人 Hall 发明了熔盐电解 法制取金属铝,此法投产后,金属铝的产量迅 速增长,价格则大幅度下降 ,从而把铝的大规 模生产变成了现实。这个年轻人组成了一个大 公司,这就是今天美国美铝公司 (Alcoa) 的前身。
将氧化铝 (A12O3) 溶解在熔融的冰晶石 (Na3AlF6) 中进行电 解(电解液温度接近 1000℃) 在 上可以找到很多关于铝以及铝合金的信 息
敏感材料、能源材料、生物医学材料等
结构材料与功能材料的划分并不严格
生物医学材料?
按材料内部原子排列情况分类
晶态材料
非晶态材料 液态材料 气态材料
材料是可以用来制造有用的构件、器件或物品的物质
从材料尺度角度分类
三维材料
块体材料
二维材料
薄膜、涂层等 (金刚石薄膜、高温超导薄膜、半
材料化学
Chemistry of Materials
龚江宏 清华大学材料科学与工程系
历史学家把某一类材料的特征及其广泛应 用作为人类文明史各个阶段的一种标志
旧石器时代 新石器时代 陶器时代 青铜器时代 铁器时代
我们现在所处的时代应该称为什么时代?


塑料 合成材料 半导体 精密陶瓷
铝曾经比金银还要珍贵……
100多年前,为了表彰门捷列夫对化学的杰出 贡献,英国皇家学会不惜重金制作了一个比 黄金还要贵重的奖杯──铝杯,赠送给门捷列 夫。 法国皇帝拿破仑三世为了显示自己的尊贵, 用铝作了一顶头盔,成为轰动一时的新闻。 每逢盛大国宴,别人都用银制餐具,而他独 自使用一套铝制餐具。
导体薄膜、耐磨涂层)

清华大学工程材料第五版第一章

清华大学工程材料第五版第一章
立方晶胞中的主要晶向
晶向指数一般标记为[uvw],
表示一组原子排列相同的平行晶向。
清华大学工程材料第五版第一章
若两个晶向的全部指数数值相同而符号 相反, 则它们相互平行或为同一原子列, 但 方向相反。
如[110]与 。 若只研究原子排列情况, 则晶向[110]与 可用同一个指数[110]表示。
清华大学工程材料第五版第一章
清华大学工程材料第五版第一章
面心立方晶胞的特征:
(1)晶格常数
a=b=c, α=β=γ=90°
(2)晶胞原子数 (个) 4
(3)原子半径
(4)致密度 0.74 (74%)
清华大学工程材料第五版第一章
(5)空隙半径
●四面体空隙半径: r四=0.225r原子 ●八面体空隙半径: r八=0.414r原子
(6)配位数 12
清华大学工程材料第五版第一章
老师提示 由于原子排列紧密程度不一样, 当金属从面心立方晶格向体心立方晶格 转变时, 体积会发生变化。
钢在淬火时因晶格转变发生体积变化。 不同晶体结构中原子排列的方式不同, 使它们的形变能力不同。
清华大学工程材料第五版第一章
二、晶体中的晶面和晶向 通过晶体中原子中心的平面叫做晶面; 通过原子中心的直线为原子列,代表的方 向叫做晶向。 晶面用晶面指数表达。 晶向用晶向指数表达。
晶向族 原子排列情况相同而在空间位向不同 的晶向组成晶向族。
晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
清华大学工程材料第五版第一章
在立方晶系中, 一个晶面指数与一 个晶向指数数值和符号相同时, 则该晶 面与该晶向互相垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l lc (normally l >15lc): continuous fibers, better fiber efficiency; l <15lc: discontinuous or short fibers, poor fiber efficiency.
11.1 Fiber-Reinforced Composites: Fibers – Fiber Types and Properties
The fibers should be:
✓strong, stiff, lightweight, and sometimes high Tm; ✓long enough; ✓properly oriented; ✓appropriately bonded with the matrix.
• Fiber types and properties:
✓Whiskers: very thin single crystals; nearly perfect crystalline;
virtually flaw free; exceptionally high strength; expensive; mainly ceramic.
7
11.1 Fiber-Reinforced Composites: Fibers – Fiber Types and Properties
• Main fibers for reinforcing plastics:
✓Glass fibers: lower strength and E, higher elongation and density;
Chapter 11 - Composites
A composite:
✓Multiphase: matrix + reinforcement; ✓Better combination of properties (teamwork); ✓Artificially made (excluding wood, bone, multiphase alloys and ceramics)
SiC whiskers: 1-3 m in diameter, 50-200 m long.
11.1 Fiber-Reinforced Composites: Fibers – Fiber Types and Properties
11.1 Fiber-Reinforced Composites: Fibers – Fiber Types and Properties
where f* is the tensile strength of the fiber, d is the fiber diameter, and c is the fiber-matrix bond strength or the shear yield strength of the matrix.
11.1 Fiber-Reinforced Composites: Fibers – Critical Fiber Length • Large aspect ratio l/d is preferred (less ends and fewer surface flaws). • Critical fiber length lc for effective strengthening and stiffening:
✓Aramid fibers: aromatic polyamide (Kevlar);
Kevlar 29:- Low density, high strength, and used for ropes and cables. Kevlar 49:- Low density, high strength and modulus and used for aerospace and auto applications.
produced from PAN (polyacrylonitrile) precursor fibers by three steps: stabilization (200-220C), carbonization (1000-1500C, yielding high-strength carbon fiber), graphitization (1800C, yielding high-modulus carbon fiber) .
lower cost; most commonly used; produced by drawing monofilaments from a furnace and gathering them to form a strand. E (electrical) glass: 52-56% SiO2 + 12-16% Al2O3+ 16-25% CaO
✓Fibers: small diameters; either polycrystalline or amorphous;
either polymers or ceramics.
✓Wires: relatively large diameters; mainly refractory metals.
A tow of about 600 carbon fibers
• SiC •Al2O3
Table 16.3 Approximate costs of fibers
Fiber
Cost (US $/kg)
Boron700源自SiC220Al2O3
66
Carbon
66
Aramid (Kevlar)
47
E-glass
+ 8-13% B2O3 S (high-strength) glass: used for military and aerospace application.
65% SiO2 + 25% Al2O3 + 10% MgO
✓Carbon fibers: best combination of properties; high cost;
相关文档
最新文档