[精品]2019高中数学第19课极坐标与参数方程综合训练2学案新人教A版选修4_7
高中数学第20课极坐标与参数方程(综合训练3)学案新人教A版选修4-4(2021学年)
广东省肇庆市高中数学第20课极坐标与参数方程(综合训练3)学案新人教A版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省肇庆市高中数学第20课极坐标与参数方程(综合训练3)学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省肇庆市高中数学第20课极坐标与参数方程(综合训练3)学案新人教A版选修4-4的全部内容。
第20课极坐标与参数方程(综合训练3)一、学习要求1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2。
能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3。
掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题.二、问题探究■合作探究例1.在极坐标系中,圆与圆:关于直线()对称.(1)求圆的极坐标方程;(2)为圆上任意一点,求(其中为极点)的取值范围.解:(1)圆:的直角坐标方程为:.直线()的直角坐标方程为:,圆心关于直线的对称点坐标为,∴圆的圆心坐标为,∴圆的直角坐标方程:.把方程化为极坐标议程是,∴所求的圆的极坐标方程为:.(2)圆的参数方程为:(为参数),设圆上任意一点,则,,∴,∵,∴,∴的取值范围是.三、问题过关1.在直角坐标系中,曲线:(为参数).(1)写出曲线的直角坐标方程,并说明它表示什么曲线;(2)若是曲线上任意一点,求的取值范围。
解:(1)由,得,即,∴∴曲线的直角坐标方程是。
它表示中心在原点,焦点在轴上的椭圆。
(2)∵点是曲线上任意一点,故设。
2019-2020学年高中数学 第18课 极坐标与参数方程(综合训练1)学案 新人教A版选修4-4.doc
2019-2020学年高中数学第18课极坐标与参数方程(综合训练1)学案新人教A版选修4-4一、学习要求1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究■合作探究例1.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的的极坐标方程为.(1)求和在直角坐标系下的普通方程;(2)已知直线:和曲线交于,两点,求弦中点的极坐标。
解:(1)由,得,∴,∴的普通方程为:;∵,∴的普通方程为:.(2)【解法一】设,,由,得,则,∴,∴弦中点的直角坐标为,化为极坐标为,∴弦中点的极坐标为。
【解法二】设,,由,解,,∴弦中点的直角坐标为,化为极坐标为,∴弦中点的极坐标为。
三、问题过关1.在极坐标系中,求曲线:上的动点与定点的距离的最小值。
解:曲线:的直角坐标方程是,它表示圆心,半径的圆。
点的直角坐标为;∴,又点在圆外,∴点与定点的距离的最小值为:。
2.在极坐标系中,设圆:上的点到直线:的距离为.(1)求圆和直线的直角坐标方程;(2)求的最大值。
解:(1)由,得,∴圆的直角坐标方程为:;由,得,∴直线的直角坐标方程为:。
(2)∵圆心到直线的距离,圆的半径,∴的最大值为。
广东省肇庆市实验中学高中数学选修4-4学案:第19课极坐标与参数方程(综合训练2)
【选修4—4】第19课极坐标与参数方程(综合训练2)一、学习要求1。
掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2。
能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题.二、问题探究■合作探究例1.在椭圆x29+y24=1 上求一点 M ,使点 M 到直线 x+2y−10=0 的距离最小,并求出最小距离.解:椭圆的参数方程为{x=3cosφy=2sinφ(φ 为参数);设点 M(3cosφ,2sinφ) (φ∈[02π)),则点 M 到直线的距离为:d=√5=|5(35cosφ+45sinφ)−10|√5=√5|cos(φ−φ0)−2|,其中 cosφ0=35,sinφ0=45.当 cos(φ−φ0)=1 即 φ−φ0=0 时,d 取最小值√5 。
此时,3cosφ=3 cosφ0=95,2sinφ=2sinφ0=85,∴当点 M 位于(95,85)时,点 M 到直线 x+2y−10=0 的距离最小,最小距离为√5 。
三、问题过关1。
在平面直角坐标系 xOy 中,点 P(x,y) 是椭圆x23+y2=1 上的一个动点,求 S=x+y 的最大值。
解:∵椭圆x23+y2=1 的参数方程为{x=√3cosφy=sinφ(φ 为参数);∴设 P(√3cosφ,sinφ) (φ∈[02π)),则S=x+y=√3cosφ+sinφ=2sin(φ+π3) ,当 sin(φ+π3)=1 ,即 φ=π6时,S 取得最大值2。
2. 在椭圆x216+y212=1 上找一点,使这一点到直线 x−2y−12=0 的距离最小,并求出最小距离。
解:椭圆的参数方程为{x=4cosφy=2√3sinφ(φ 为参数);设椭圆上动点 M(4cosφ,2√3sinφ) (φ∈[02π)),则点 M 到直线的距离为:d=√3√5=4√55|cosφ−√3sinφ−3|=4√55|2cos(φ+π3)−3|当 cos(φ+π3)=1 ,即 φ=−π3时,d 取最小值4√55。
(统编版)2020高中数学第18课极坐标与参数方程综合训练1学案新人教A版选修4_8
第18课极坐标与参数方程(综合训练1)一、学习要求1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究■合作探究例1.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的的极坐标方程为.(1)求和在直角坐标系下的普通方程;(2)已知直线:和曲线交于,两点,求弦中点的极坐标。
解:(1)由,得,∴,∴的普通方程为:;∵,∴的普通方程为:.(2)【解法一】设,,由,得,则,∴,∴弦中点的直角坐标为,化为极坐标为,∴弦中点的极坐标为。
【解法二】设,,由,解,,∴弦中点的直角坐标为,化为极坐标为,∴弦中点的极坐标为。
三、问题过关1.在极坐标系中,求曲线:上的动点与定点的距离的最小值。
解:曲线:的直角坐标方程是,它表示圆心,半径的圆。
点的直角坐标为;∴,又点在圆外,∴点与定点的距离的最小值为:。
2.在极坐标系中,设圆:上的点到直线:的距离为.(1)求圆和直线的直角坐标方程;(2)求的最大值。
解:(1)由,得,∴圆的直角坐标方程为:;由,得,∴直线的直角坐标方程为:。
(2)∵圆心到直线的距离,圆的半径,∴的最大值为。
2019-2020学年高中数学第19课极坐标与参数方程综合训练2学案新人教A版选修.doc
2019-2020学年高中数学第19课极坐标与参数方程综合训练2学案新
人教A版选修
一、学习要求
1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;
2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;
4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究
■合作探究
例1.在椭圆上求一点,使点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设点(),则点到直线的距离为:
,其中,。
当即时,取最小值。
此时,
,,
∴当点位于时,点到直线的距离最小,最小距离为。
三、问题过关
1.在平面直角坐标系中,点是椭圆上的一个动点,求
的最大值。
解:∵椭圆的参数方程为(为参数);
∴设(),则
,
当,即时,取得最大值2.
2. 在椭圆上找一点,使这一点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设椭圆上动点(),则点到直线的距离为:
当,即时,取最小值。
此时,
,,
∴椭圆上点到直线的距离最小,最小距离为。
2019-2020学年高中数学第19课极坐标与参数方程综合训练2学案新人教A版选修
2019-2020学年高中数学第19课极坐标与参数方程综合训练2学案新
人教A版选修
一、学习要求
1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;
2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;
4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究
■合作探究
例1.在椭圆上求一点,使点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设点(),则点到直线的距离为:
,其中,。
当即时,取最小值。
此时,
,,
∴当点位于时,点到直线的距离最小,最小距离为。
三、问题过关
1.在平面直角坐标系中,点是椭圆上的一个动点,求
的最大值。
解:∵椭圆的参数方程为(为参数);
∴设(),则
,
当,即时,取得最大值2.
2. 在椭圆上找一点,使这一点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设椭圆上动点(),则点到直线的距离为:
当,即时,取最小值。
此时,
,,
∴椭圆上点到直线的距离最小,最小距离为。
高中数学第19课极坐标与参数方程(综合训练2)学案新人教A版选修4-4(2021学年)
广东省肇庆市高中数学第19课极坐标与参数方程(综合训练2)学案新人教A版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省肇庆市高中数学第19课极坐标与参数方程(综合训练2)学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省肇庆市高中数学第19课极坐标与参数方程(综合训练2)学案新人教A版选修4-4的全部内容。
第19课极坐标与参数方程(综合训练2)一、学习要求1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2。
能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3。
掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;4。
能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究■合作探究例1.在椭圆上求一点,使点到直线的距离最小,并求出最小距离.解:椭圆的参数方程为(为参数);设点(),则点到直线的距离为:,其中,。
当即时,取最小值。
此时,,,∴当点位于时,点到直线的距离最小,最小距离为。
三、问题过关1.在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.解:∵椭圆的参数方程为(为参数);∴设(),则,当,即时,取得最大值2。
2。
在椭圆上找一点,使这一点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);设椭圆上动点(),则点到直线的距离为:当,即时,取最小值.此时,,,∴椭圆上点到直线的距离最小,最小距离为.以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
高中数学《参数方程》学案2 新人教A版选修4-4
新课标选修4_参数方程与极坐标一. 本周学习内容:《平面解析几何》第三章“参数方程与极坐标”全章小结与巩固提高,主要包括:(1)知识要点与方法的回顾;(2)典型例题分析与讲解;(3)单元检测。
二. 重点、难点:1. 参数方程与普通方程的区别与联系:在求曲线的方程时,一般地需要建立曲线上动点P(x,y)的坐标x,y之间满足的等量关系F(x,y)=0,这样得到的方程F(x,y)=0就是曲线的普通方程;而有时要想得到联系x,y的方程F(x,y)=0是比较困难的,于是可以通过引入某个中间变量t,使之与曲线上动点P的坐标x,y间接地联系起来,此时可得到方程组显然,参数方程与普通方程的最明显的区别是其方程形式上的区别,更大的区别是普通方程反映了曲线上任一点坐标x,y的直接关系,而参数方程则反映了x,y的间接关系。
尽管参数方程与普通方程有很大的区别,但他们之间又有着密切的联系,这种联系表现在两方面:(1)这两种方程都是同一曲线的不同的代数表现形式,是同一事物的两个方面;(2)这两种方程之间可以进行互化,通过消参可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程。
需要注意的是,在将两种方程互化的过程中,要注意两种方程(在表示同一曲线的)等价性,即注意参数的取值范围对x,y的取值范围的影响。
实质上,参数的思想方法就是在运动变化的哲学思想指导下的函数的思想方法,因此也可认为引入参数就是引入函数的自变量。
参数法在求曲线的轨迹方程,以及研究某些最值问题时是一种常用的甚至是简捷的解题方法。
2. 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法。
3. 化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)(或y= (t)),再代入普通方程F(x,y)=0,求得另一关系y= (t)(或x=f(t))。
一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)。
精品2019高中数学第课极坐标与参数方程综合训练5学案新人教A版选修4_3
第22课极坐标与参数方程(综合训练5)一、学习要求1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用。
能熟练地把它们的参数方程化为普通方程;4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究■合作探究例1.在直角坐标系中,直线的方程为,曲线的参数方程为(为参数).(1)已知在极坐标系(与直角坐标系取相同的长度单位且以原点为极点,以轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;(2)设点是曲线上的一个动点,求点到直线的距离的最小值。
解:(1)点的极坐标化为直角坐标是;∵点的直角坐标是满足方程,∴点在直线上。
(2)∵点在曲线上,∴设,点到直线的距离为:当时,取最小值,∴点到直线的距离的最小值是。
三、问题过关1.设直线经过点,倾斜角为.(1)求直线的参数方程;(2)求直线和直线:的交点到的距离;(3)求直线和圆的两个交点,到点的距离的和与积;(4)求直线被圆截得的弦长。
解:(1)由直线的参数方程,得直线的参数方程为:(为参数),即(为参数).(2)把直线的参数方程中的,代入直线的方程,得,解得,∴直线和直线:的交点到的距离为:。
(3)把直线的参数方程中的,代入圆方程,得,化简,得,则,,∴两个交点,到点的距离的和为,距离的积为。
(4)由(3)知,,,∴直线被圆截得的弦长为:。
2.已知点是圆上的动点.(1)求的取值范围;(2)若恒成立,求实数的取值范围。
解:(1)把圆方程配方,得,圆心,半径,设圆的参数方程为(为参数).则,∴∵,∴, ∴的取值范围是。
(2)∵,当时,,∵恒成立,即恒成立,∴, ∴实数的取值范围。
1.【10新课标(文23)】(本小题满分10分)已知直线1C :1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),2C :cos sin x y θθ=⎧⎨=⎩(θ为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。
广东省肇庆市高中数学 第19课 极坐标与参数方程(综合
第19课 极坐标与参数方程(综合训练2)
一、学习要求
1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;
2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;
4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究 ■合作探究 例1.在椭圆上求一点
,使点
到直线
的距离最小,并求
出最小距离。
解:椭圆的参数方程为(
为参数); 设点
(
),则点
到直线的距离为:
,
其中
,。
当即时,取最小值。
此时,
,,
∴当点位于
时,点
到直线
的距离最小,最小距离为。
三、问题过关
1. 在平面直角坐标系
中,点是椭圆上的一个动点,求
的最大值。
解:∵椭圆
的参数方程为(为参数);
∴设(),则
,
当,即时,取得最大值2.
2. 在椭圆上找一点,使这一点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设椭圆上动点(),则点到直线的距离为:
当,即时,取最小值。
此时,
,,
∴椭圆上点到直线的距离最小,最小距离为。
2019-2020年高中数学第二讲参数方程学案新人教A版选修
2019-2020年高中数学第二讲参数方程学案新人教A 版选修[学习目标]1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程解决最值问题. [知识链接]曲线的参数方程中,参数是否一定具有某种实际意义?在圆的参数方程中,参数θ有什么实际意义?提示 联系x ,y 的参数t (θ,φ,…)可以是一个有物理意义或几何意义的变数,也可以是无实际意义的任意实数.圆的参数方程中,其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度. [预习导引] 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于 t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系变数x ,y 之间关系的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出的点的坐标间的关系的方程叫做普通方程.2.圆的参数方程(1)如图所示,设圆O 的半径为r ,点M 从初始位置M 0开始出发,按逆时针方向在圆O 上作均速圆周运动,设M (x ,y ),点M 转过的角度是θ,则⎩⎪⎨⎪⎧x =r ·cos θ,y =r ·sin θ(θ为参数),这就是圆心在原点,半径为r 的圆的参数方程. (2)圆心为C (a ,b ),半径为r 的圆的普通方程与参数方程普通方程参数方程(x -a )2+(y -b )2=r 2⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ(θ为参数)要点一 参数方程的概念例1 已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =at 2(t 为参数,a ∈R ),点M (-3,4)在曲线C 上. (1)求常数a 的值;(2)判断点P (1,0)、Q (3,-1)是否在曲线C 上?解 (1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2t ,y =at 2,得⎩⎪⎨⎪⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由(1)可得,曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =t 2,把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎪⎨⎪⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 规律方法 点与曲线的位置关系满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上、点不在曲线上.(1)对于曲线C 的普通方程f (x ,y )=0,若点M (x 1,y 1)在曲线上,则点M (x 1,y 1)的坐标是方程f (x ,y )=0的解,即有f (x 1,y 1)=0,若点N (x 2,y 2)不在曲线上,则点N (x 2,y 2)的坐标不是方程f (x ,y )=0的解,即有f (x 2,y 2)≠0.(2)对于曲线C 的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )(t 为参数),若点M (x 1,y 1)在曲线上,则⎩⎪⎨⎪⎧x 1=f (t ),y 1=g (t )对应的参数t 有解,否则参数t 不存在.跟踪演练1 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数,0≤θ<2π).判断点A (2,0),B ⎝⎛⎭⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.解 把点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得cos θ=1,且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0,同理,把B ⎝⎛⎭⎫-3,32代入参数方程,得 ⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ.∴⎩⎨⎧cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B ⎝⎛⎭⎫-3,32在曲线C 上,对应θ=56π. 要点二 圆的参数方程及其应用例2 设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A.1B.2C.3D.4解析 由⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ.得(x -2)2+(y +1)2=9.曲线C 表示以(2,-1)为圆心,以3为半径的圆, 则圆心C (2,-1)到直线l 的距离d =710=71010<3,所以直线与圆相交.所以过圆心(2,-1)与l 平行的直线与圆的2个交点满足题意,又3-d <71010,故满足题意的点有2个. 答案 B规律方法 1.本题利用三角函数的平方关系,消去参数;数形结合,判定直线与圆的位置关系.2.参数方程表示怎样的曲线,一般是通过消参,得到普通方程来判断,特别要注意变量的取值范围.跟踪演练2 已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝⎛⎭⎫θ+π4.∵-1≤sin ⎝⎛⎭⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2.∴x 2+y 2的最大值为11+62,最小值为11-6 2. 要点三 参数方程的实际应用例3 某飞机进行投弹演习,已知飞机离地面高度为H =2 000 m ,水平飞行速度为v 1=100 m/s ,如图所示.(1)求飞机投弹t s 后炸弹的水平位移和离地面的高度;(2)如果飞机追击一辆速度为v 2=20 m/s 同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g =10 m/s 2)解 (1)如图所示,建立平面直角坐标系,设炸弹投出机舱的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于炸弹作平抛运动,依题意,得⎩⎪⎨⎪⎧x =100t ,y =2 000-12gt 2,即⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2, 令y =2 000-5t 2=0,得t =20(s ),所以飞机投弹t s 炸弹的水平位移为100t m ,离地面的高度为(2 000-5t 2)m ,其中,0≤t ≤20. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车参考系.水平方向S 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1-v 2)t =(100-20)×20=1 600(m).规律方法 本题通过点的坐标的参数方程利用运动学知识使问题得解.由于水平抛出的炸弹做平抛运动,可以分解为在水平方向上的匀速直线运动和竖直方向上的自由落体运动,炸弹飞行的时间也就是它作自由落体运动所用的时间. 跟踪演练3 如果本例条件不变,求:(1)炸弹投出机舱10 s 后这一时刻的水平位移和高度各是多少m?(2)如果飞机迎击一辆速度为v 2=20 m/s 相向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?解 (1)将t =10代入⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2,得⎩⎪⎨⎪⎧x =1 000,y =1 500, 所以炸弹投出机舱10 s 后这一时刻的水平位移和高度分别是1 000 m 和1 500 m. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车为参考系.水平方向s 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1+v 2)t =(100+20)×20=2 400(m).1.曲线的普通方程直接地反映了一条曲线上点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来,对于曲线上的任一点也必然对应着参数相应的允许取值.2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.1.下列方程:(1)⎩⎪⎨⎪⎧x =m ,y =m (m 为参数);(2)⎩⎪⎨⎪⎧x =m ,y =n (m ,n 为参数);(3)⎩⎪⎨⎪⎧x =1,y =2;(4)x +y =0中,参数方程的个数为( ) A.1 B.2 C.3D.4解析 由参数方程的概念知⎩⎪⎨⎪⎧x =my =m 是参数方程,故选A.答案 A2.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( ) A.(2,3) B.(1,5) C.⎝⎛⎭⎫0,π2D.(2,0)解析 当2cos θ=2,即cos θ=1,3sin θ=0.∴过点(2,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =t +1t ,y =2(t 为参数)表示的曲线是( )A.两条直线B.一条射线C.两条射线D.双曲线解析 当t >0时⎩⎪⎨⎪⎧x ≥2,y =2,是一条射线;当t <0时,⎩⎪⎨⎪⎧x ≤-2,y =2,也是一条射线,故选C. 答案 C4.已知⎩⎪⎨⎪⎧x =t +1y =t 2(t 为参数),若y =1,则x =________.解析 当y =1时,t 2=1,∴t =±1,当t =1时,x =2;当t =-1时,x =0.∴x 的值为2或0. 答案 2或05.已知直线y =x 与曲线⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,(α为参数)相交于两点A 和B ,求弦长|AB |.解 由⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,得⎩⎪⎨⎪⎧x -1=2cos α,y -2=2sin α.∴(x -1)2+(y -2)2=4,其圆心为(1,2),半径r =2,则圆心(1,2)到直线y =x 的距离d =|1-2|12+(-1)2=22. ∴|AB |=2r 2-d 2=222-⎝⎛⎭⎫222=14.一、基础达标1.已知O 为原点,参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的任意一点为A ,则|OA |=( )A.1B.2C.3D.4解析 |OA |=x 2+y 2=cos 2θ+sin 2θ=1,故选A. 答案 A2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),曲线C 不经过第二象限,则实数a的取值范围是( ) A.a ≥2 B.a >3 C.a ≥1D.a <0解析 ∵曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),∴化为普通方程为(x -a )2+y 2=4,表示圆心为(a ,0),半径等于2的圆.∵曲线C 不经过第二象限,则实数a 满足a ≥2,故选A. 答案 A3.圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 解析 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ,(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).答案 D4.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( )A.y =x -2B.y =x +2C.y =x -2(2≤x ≤3)D.y =x +2(0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3]. 答案 C5.若点(-3,-33)在参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)的曲线上,则θ=________.解析 将点(-3,-33)的坐标代入参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)得⎩⎨⎧cos θ=-12,sin θ=-32,解得θ=4π3+2k π,k ∈Z .答案4π3+2k π,k ∈Z 6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________.解析 由圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α.可求得其在直角坐标系下的方程为x 2+(y -1)2=1,由直线l 的极坐标方程ρsin θ=1可求得其在直角坐标系下的方程为y =1,由⎩⎪⎨⎪⎧y =1,x 2+(y -1)2=1可解得⎩⎪⎨⎪⎧x =±1,y =1.所以直线l 与圆C 的交点的直角坐标为(-1,1),(1,1). 答案 (-1,1),(1,1)7.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数),如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围.解 ∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.∵圆与直线有公共点,则d =|0-1+a |2≤1,解得1-2≤a ≤1+ 2. 二、能力提升8.若P (2,-1)为圆O ′:⎩⎪⎨⎪⎧x =1+5cos θ,y =5sin θ(0≤θ<2π)的弦的中点,则该弦所在直线l 的方程是( ) A.x -y -3=0 B.x +2y =0 C.x +y -1=0D.2x -y -5=0解析 ∵圆心O ′(1,0),∴k PO ′=-1.∴k l =1. ∴直线l 方程为x -y -3=0. 答案 A9.如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析 将x 2+y 2-x =0配方,得⎝⎛⎭⎫x -122+y 2=14,∵圆的直径为1.设P (x ,y ),则x =|OP |cos θ=1×cos θ×cos θ=cos 2θ,y =|OP |sin θ=1×cos θ×sin θ=sin θcos θ, ∴圆x 2+y 2-x =0的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)10.曲线⎩⎪⎨⎪⎧x =1,y =sin t +1(t 为参数)与圆x 2+y 2=4的交点坐标为________.解析 ∵sin t ∈[-1,1],∴y ∈[0,2].∵方程⎩⎪⎨⎪⎧x =1,y =sin t +1表示的曲线是线段x =1(0≤y ≤2).令x =1,由x 2+y 2=4,得y 2=3, ∵0≤y ≤2,∴y = 3. 答案 (1,3)11.设点M (x ,y )在圆x 2+y 2=1上移动,求点P (x +y ,xy )的轨迹. 解 设点M (cos θ,sin θ)(0≤θ<2π),点P (x ′,y ′).则⎩⎪⎨⎪⎧x ′=cos θ+sin θ, ①y ′=cos θsin θ, ② ①2-2×②,得x ′2-2y ′=1.即x ′2=2⎝⎛⎭⎫y ′+12. ∴所求点P 的轨迹为抛物线x 2=2⎝⎛⎭⎫y +12的一部分⎝⎛⎭⎫|x |≤2,|y |≤12. 12.已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.解 由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上,∴x =-1+cos θ,且y =sin θ(θ为参数),因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由 tan φ=43确定)∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞). 三、探究与创新13.已知圆系方程为x 2+y 2-2ax cos φ-2ay sin φ=0(a >0,且为已知常数,φ为参数) (1)求圆心的轨迹方程;(2)证明圆心轨迹与动圆相交所得的公共弦长为定值. (1)解 由已知圆的标准方程为: (x -a cos φ)2+(y -a sin φ2)=a 2(a >0).设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =a cos φ,y =a sin φ(φ为参数),消参数得圆心的轨迹方程为x 2+y 2=a 2.(2)证明 由方程⎩⎪⎨⎪⎧x 2+y 2-2ax cos φ-2ay sin φ=0x 2+y 2=a 2得公共弦的方程:2ax cos φ+2ay sin φ=a 2,即x cos φ+y sin φ-a2=0,圆x 2+y 2=a 2的圆心到公共弦的距离d =a2为定值.∴弦长l =2a 2-⎝⎛⎭⎫a 22=3a (定值).3 参数方程和普通方程的互化[学习目标]1.了解参数方程化为普通方程的意义.2.掌握参数方程化为普通方程的基本方法.3.能够利用参数方程化为普通方程解决有关问题. [知识链接]普通方程化为参数方程,参数方程的形式是否唯一?提示 不一定唯一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参数不同,那么所得的参数方程的形式也不同. [预习导引]参数方程与普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t ),就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.要点一 把参数方程化为普通方程例1 在方程⎩⎪⎨⎪⎧x =a +t cos θy =b +t sin θ,(a ,b 为正常数)中,(1)当t 为参数,θ为常数时,方程表示何种曲线? (2)当t 为常数,θ为参数时,方程表示何种曲线?解 方程⎩⎪⎨⎪⎧x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数),(1)①×sin θ-②×cos θ得x sin θ-y cos θ-a sin θ+b cos θ=0. ∵cos θ、sin θ不同时为零,∴方程表示一条直线.(2)(i)当t 为非零常数时,原方程组为⎩⎨⎧x -at=cos θ, ③y -bt =sin θ. ④③2+④2得(x -a )2t 2+(y -b )2t 2=1, 即(x -a )2+(y -b )2=t 2,它表示一个圆. (ii)当t =0时,表示点(a ,b ).规律方法 1.消去参数的常用方法:将参数方程化为普通方程,关键是消去参数,如果参数方程是整式方程,常用的消元法有代入消元法、加减消元法.如果参数方程是分式方程,在运用代入消元或加减消元之前要做必要的变形.另外,熟悉一些常见的恒等式至关重要,如sin 2α+cos 2α=1,(e x +e -x )2-(e x -e -x )2=4,⎝ ⎛⎭⎪⎫1-k 21+k 22+⎝⎛⎭⎫2k 1+k 22=1等.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同,可表示不同的曲线.跟踪演练1 参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 ∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,cos 2α+sin 2α=1,∴x 2+(y -1)2=1. 答案 x 2+(y -1)2=1要点二 把普通方程化成参数方程 例2 求方程4x 2+y 2=16的参数方程: (1)设y =4sin θ,θ为参数;(2)若令y =t (t 为参数),如何求曲线的参数方程?若令x =2t (t 为参数),如何求曲线的参数方程?解 (1)把y =4sin θ代入方程,得到4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ,∴x =±2cos θ.∴4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ和⎩⎪⎨⎪⎧x =-2cos θ,y =4sin θ(θ为参数)(2)将y =t 代入椭圆方程4x 2+y 2=16,得4x 2+t 2=16, 则x 2=16-t 24.∴x =±16-t 22.因此,椭圆4x 2+y 2=16的参数方程是 ⎩⎪⎨⎪⎧x =16-t 22y =t ,和⎩⎪⎨⎪⎧x =-16-t 22,y =t (t 为参数). 同理将x =2t 代入椭圆4x 2+y 2=16,得椭圆的参数方程为⎩⎨⎧x =2t ,y =41-t 2和⎩⎨⎧x =2t ,y =-41-t 2(t 为参数).规律方法 1.将圆的普通方程化为参数方程 (1)圆x 2+y 2=r 2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数);(2)圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数).2.普通方程化为参数方程关键是引入参数(例如x =f (t ),再计算y =g (t )),并且要保证等价性.若不可避免地破坏了同解变形,则一定要通过x =f (t ),y =g (t ),调整t 的取值范围,使得在普通方程转化为参数方程的过程中,x ,y 的取值范围保持一致.跟踪演练2 设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________. 解析 把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t 21+t 2,∴参数方程为⎩⎨⎧x =4t 1+t 2,y =4t 21+t 2.(t 为参数).答案 ⎩⎨⎧x =4t 1+t 2,y =4t 21+t 2.(t 为参数) 要点三 参数方程的应用例3 已知x 、y 满足x 2+(y -1)2=1,求: (1)3x +4y 的最大值和最小值; (2)(x -3)2+(y +3)2的最大值和最小值. 解 由圆的普通方程x 2+(y -1)2=1得圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.(θ∈[0,2π)).(1)3x +4y =3cos θ+4sin θ+4=4+5sin(θ+φ), 其中tan φ=34,且φ的终边过点(4,3).∵-5≤5sin(θ+φ)≤5,∴-1≤4+5sin(θ+φ)≤9, ∴3x +4y 的最大值为9,最小值为-1. (2)(x -3)2+(y +3)2=(cos θ-3)2+(sin θ+4)2 =26+8sin θ-6cos θ=26+10sin(θ+φ). 其中tan φ=-34.且φ的终边过点(4,-3).∵-10≤10sin(θ+φ)≤10,∴16≤26+10sin(θ+φ)≤36, 所以(x -3)2+(y +3)2的最大值为36,最小值为16.规律方法 1.运用参数思想解题的关键在于参数的选择.选择参数时,应注意所选择的参数易于与两个坐标产生联系.由于三角函数的巨大作用,常选择角为参数,若轨迹与运动有关,常选择时间为参数.2.解决与圆有关的最大值和最小值问题,常常设圆的参数方程,然后转化为求三角函数的最大值和最小值问题.3.注意运用三角恒等式求最值: a sin θ+b cos θ=a 2+b 2sin(θ+φ). 其中tan φ=ba(a ≠0),且φ的终边过点(a ,b ).跟踪演练3 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,利用参数方程求线段P A 的中点M 的轨迹.解 因为圆x 2+y 2=16的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),所以可设点P (4cos θ,4sin θ),设点M (x ,y ),由线段中点坐标公式得⎩⎨⎧x =4cos θ+122,y =4sin θ2(θ为参数),即点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ+6,y =2sin θ(θ为参数),所以点M 的轨迹是以点(6,0)为圆心、2为半径的圆.1.参数方程和普通方程的互化参数方程化为普通方程,可通过代入消元法和三角恒等式消参法消去参数方程中的参数,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.2.同一道题参数的选择往往不是唯一的,适当地选择参数,可以简化解题的过程,降低计算量,提高准确率.求轨迹方程与求轨迹有所不同,求轨迹方程只需求出方程即可,而求轨迹往往是先求出轨迹方程,然后根据轨迹方程指明轨迹是什么图形.3.参数方程与普通方程的等价性把参数方程化为普通方程后,很容易改变了变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.1.与普通方程x 2+y -1=0等价的参数方程为(t 为参数)( )A.⎩⎪⎨⎪⎧x =sin t y =cos 2t B.⎩⎪⎨⎪⎧x =cos ty =sin 2t C.⎩⎨⎧x =1-ty =tD.⎩⎪⎨⎪⎧x =tan t y =1-tan 2t 解析 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1].D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈R . 答案 D2.将参数方程⎩⎨⎧x =t +1t ,y =t 2+1t2(t 为参数)化为普通方程为________.解析 由x =t +1t 得x 2=t 2+1t 2+2,又y =t 2+1t 2,∴x 2=y +2.∵t 2+1t 2≥2,∴y ≥2.答案 x 2-y =2(y ≥2)3.参数方程⎩⎪⎨⎪⎧x =sin 2θ,y =sin θ+cos θ(θ为参数)表示的曲线的普通方程是________.解析 y 2=(sin θ+cos θ)2=sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=1+x ,又x =sin 2θ∈[-1,1],∴曲线的普通方程是y 2=x +1(-1≤x ≤1). 答案 y 2=x +1(-1≤x ≤1)4.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.解 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.一、基础达标1.曲线⎩⎪⎨⎪⎧x =|sin θ|,y =cos θ(θ为参数)的方程等价于( )A.x =1-y 2B.y =1-x 2C.y =±1-x 2D.x 2+y 2=1解析 由x =|sin θ|得0≤x ≤1;由y =cos θ得-1≤y ≤1.故选A. 答案 A2.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是( ) A.π4,(1,0) B.π4,(-1,0)C.3π4,(1,0) D.3π4,(-1,0) 解析 直线消去参数得直线方程为y =-x ,所以斜率k =-1即倾斜角为3π4.圆的标准方程为(x -1)2+y 2=4,圆心坐标为(1,0). 答案 C3.参数方程⎩⎪⎨⎪⎧x =1-t 21+t 2,y =2t1+t2(t 为参数)化为普通方程为( )A.x 2+y 2=1B.x 2+y 2=1去掉(0,1)点C.x 2+y 2=1去掉(1,0)点D.x 2+y 2=1去掉(-1,0)点解析x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝⎛⎭⎫2t 1+t 22=1,又∵x =-1时,1-t 2=-(1+t 2)不成立,故去掉点(-1,0). 答案 D4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( ) A.1 B.2 C.3 D.4解析 由于圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数),则x +3y =3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,故x +3y 的最大值为2.故选B.答案 B5.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析 由ρcos θ=4,知x =4.又⎩⎪⎨⎪⎧x =t 2,y =t 3,∴x 3=y 2(x ≥0).由⎩⎪⎨⎪⎧x =4,x 3=y 2,得⎩⎪⎨⎪⎧x =4,y =8或⎩⎪⎨⎪⎧x =4,y =-8. ∴|AB |=(4-4)2+(8+8)2=16. 答案 166.在极坐标系中,圆C 1的方程为ρ=42cos ⎝⎛⎭⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面坐标系,圆C 2的参数方程⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ为参数),若圆C 1与C 2相切,则实数a =________.解析 圆C 1的直角坐标方程为x 2+y 2=4x +4y ,其标准方程为(x -2)2+(y -2)2=8,圆心为(2,2),半径长为22,圆C 2的圆心坐标为(-1,-1),半径长为|a |,由于圆C 1与圆C 2外切,则|C 1C 2|=22+|a |=32或|C 1C 2|=|a |-22=32⇒a =±2或a =±5 2. 答案 ±2或±527.已知曲线C 的参数方程为⎩⎨⎧x =t -1t,y =3⎝⎛⎭⎫t +1t ,(t 为参数,t >0).求曲线C 的普通方程.解 由x =t -1t 两边平方得x 2=t +1t -2,又y =3⎝⎛⎭⎫t +1t ,则t +1t =y3(y ≥6). 代入x 2=t +1t -2,得x 2=y3-2.∴3x 2-y +6=0(y ≥6).故曲线C 的普通方程为3x 2-y +6=0(y ≥6). 二、能力提升8.已知在平面直角坐标系xOy 中圆C 的参数方程为:⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝⎛⎭⎫θ+π6=0,则圆C 截直线所得弦长为( )A. 2B.2 2C.3 2D.42解析 圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ的圆心为(3,1),半径为3,直线普通方程为ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=32x -12y =0,即3x -y =0,圆心C (3,1)到直线3x -y =0的距离为d =|(3)2-1|3+1=1,所以圆C 截直线所得弦长|AB |=2r 2-d 2=232-12=4 2.答案 D9.过原点作倾斜角为θ的直线与圆⎩⎪⎨⎪⎧x =4+2cos α,y =2sin α相切,则θ=________.解析 直线为y =x tan θ,圆为(x -4)2+y 2=4,直线与圆相切时,易知tan θ=±33,∴θ=π6或5π6. 答案π6或5π610.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.解析 曲线C 1的普通方程为2x +y =3,曲线C 2的普通方程为x 2a 2+y 29=1,直线2x +y =3与x轴的交点坐标为⎝⎛⎭⎫32,0,故曲线x 2a 2+y 29=1也经过这个点,代入解得a =32(舍去-32). 答案 3211.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系.已知直线l上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解 (1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为x +3y -2=0. 又圆C 的圆心坐标为(2,-3),半径为r =2,圆心到直线l 的距离d =|2-3-2|2=32<r ,故直线l 与圆C 相交.12.已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),曲线C 2:⎩⎨⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C ′1,C ′2.写出C ′1,C ′2的参数方程.C ′1与C ′2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解 (1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1, 圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0.因为圆心C 1到直线x -y +2=0的距离为1, 所以C 2与C 1只有一个公共点.(2)压缩后的参数方程分别为C ′1:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C ′2:⎩⎨⎧x =22t -2,y =24t (t 为参数),化为普通方程为C ′1:x 2+4y 2=1,C ′2:y =12x +22,联立消元得2x 2+22x +1=0, 其判别式Δ=(22)2-4×2×1=0,所以压缩后的直线C ′2与椭圆C ′1仍然只有一个公共点,和C 1与C 2公共点的个数相同. 三、探究与创新13.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 2+y 2-8x -10y +16=0得,ρ2-8ρcosθ-10ρsin θ+16=0,∴C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0; (2)C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.∴C 1与C 2的交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.二 圆锥曲线的参数方程[学习目标]1.掌握椭圆的参数方程及应用.2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接]1.椭圆的参数方程中,参数φ是OM 的旋转角吗?提示 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π.3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?提示 ⎩⎪⎨⎪⎧x =2pt ,y =2pt 2(p >0,t 为参数,t ∈R .)[预习导引] 1.椭圆的参数方程普通方程参数方程2.双曲线的参数方程3.抛物线的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.要点一 椭圆参数方程的应用例1 已知A 、B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程.解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得⎩⎨⎧x =6+0+6cos θ3,y =0+3+3sin θ3(θ为参数),即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ. 故重心G 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数).规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.跟踪演练1 已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.解 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1, C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ. 又C 3为直线x -2y -7=0, M 到C 3的距离d =55|4cos θ-3sin θ-13| =55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,⎝⎛⎭⎫其中φ由sin φ=35,cos φ=45确定,cos(θ+φ)=1,d 取得最小值855. 要点二 双曲线参数方程的应用例2 求证:双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.证明 由双曲线x 2a 2-y 2b 2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0,设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b 2a 2+b2(定值).规律方法 在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.跟踪演练2 如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.证明 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=(sec φ+2)2+tan 2φ =2sec 2φ+22sec φ+1, |PF 2|=(sec φ-2)2+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=(2sec 2φ+1)2-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.要点三 抛物线参数方程的应用例3 设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程. 解 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1t x ,QF 的方程为y =-2t ⎝⎛⎭⎫x -p 2, 它们的交点M (x ,y )由方程组⎩⎨⎧y =1txy =-2t ⎝⎛⎭⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝⎛⎭⎫x -p 2, ∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.规律方法 1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.跟踪演练3 已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________. 解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝⎛⎭⎫-p 2,±6p ,F ⎝⎛⎭⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).答案 21.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中的参数θ是半径OM 的旋转角,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ中的参数φ是椭圆上点M 的离心角.2.椭圆(x -m )2a 2+(y -n )2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =m +a cos φ,y =n +b sin φ(φ为参数).3.双曲线的参数方程中,参数φ的三角函数cot φ、sec φ、csc φ的意义分别为cot φ=1tan φ,sec φ=1cos φ,csc φ=1sin φ.4.抛物线y 2=2px 的参数方程⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),由于y x =1t ,因此t 的几何意义是抛物线的点(除顶点外)与抛物线的顶点连线的斜率的倒数.5.利用圆锥曲线的参数方程,可以方便求解一些需要曲线上点的两个坐标独立表示的问题,如求最大值、最小值问题、轨迹问题等.1.参数方程⎩⎪⎨⎪⎧x =e t +e -t ,y =2(e t -e -t )(t 为参数)的普通方程是( ) A.抛物线 B.一条直线 C.椭圆D.双曲线解析 由参数方程⎩⎪⎨⎪⎧2x =2e t +2e -t ,y =2(e t -e -t )平方相减可得4x 2-y 2=16,即x 24-y 216=1,故答案为D. 答案 D2.椭圆⎩⎪⎨⎪⎧x =4+5cos φ,y =3sin φ(φ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)解析 利用平方关系化为普通方程:(x -4)225+y 29=1.∴焦点(0,0),(8,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)表示的普通方程是________.解析 因x 2=1+sin α,y 2=2+sin α,所以y 2-x 2=1,又因x =sinα2+cosα2=2sin ⎝⎛⎭⎫α2+π4,所以答案为y 2-x 2=1(|x |≤2且y ≥1). 答案 y 2-x 2=1(|x |≤2且y ≥1)4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t 2,y =2t (参数t ∈R )上的点的最短距离为( )A.0B.1C. 2D.2解析 d 2=(t 2-1)2+4t 2=(t 2+1)2.∵t ∈R ,∴d 2min =1,∴d min =1. 答案 B5.已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值.解 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π).又直线l :x +2y =0.因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪sin ⎝⎛⎭⎫θ+π45.又θ∈[0,2π),∴d max =225=2105, 即点P 到直线e :x +2y =0的距离的最大值为2105.一、基础达标1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A.x 2+y 24=1B.x 2+y 22=1。
人教A版高中数学选修参数方程教案新(2)
参数方程与极坐标一. 本周教学内容:《平面解析几何》第三章“参数方程与极坐标”全章小结与巩固提高,主要包括:(1)知识要点与方法的回顾;(2)典型例题分析与讲解;(3)单元检测。
二. 重点、难点:1. 参数方程与普通方程的区别与联系:在求曲线的方程时,一般地需要建立曲线上动点P(x,y)的坐标x,y之间满足的等量关系F(x,y)=0,这样得到的方程F(x,y)=0就是曲线的普通方程;而有时要想得到联系x,y的方程F(x,y)=0是比较困难的,于是可以通过引入某个中间变量t,使之与曲线上动点P的坐标x,y间接地联系起来,此时可得到方程组显然,参数方程与普通方程的最明显的区别是其方程形式上的区别,更大的区别是普通方程反映了曲线上任一点坐标x,y的直接关系,而参数方程则反映了x,y的间接关系。
尽管参数方程与普通方程有很大的区别,但他们之间又有着密切的联系,这种联系表现在两方面:(1)这两种方程都是同一曲线的不同的代数表现形式,是同一事物的两个方面;(2)这两种方程之间可以进行互化,通过消参可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程。
需要注意的是,在将两种方程互化的过程中,要注意两种方程(在表示同一曲线的)等价性,即注意参数的取值范围对x,y的取值范围的影响。
实质上,参数的思想方法就是在运动变化的哲学思想指导下的函数的思想方法,因此也可认为引入参数就是引入函数的自变量。
参数法在求曲线的轨迹方程,以及研究某些最值问题时是一种常用的甚至是简捷的解题方法。
2. 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法。
3. 化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)(或y=(t)),再代入普通方程F(x,y)=0,求得另一关系y=(t)(或x=f(t))。
一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)。
高中数学第18课极坐标与参数方程(综合训练1)学案新人教A版选修4-4(2021学年)
广东省肇庆市高中数学第18课极坐标与参数方程(综合训练1)学案新人教A版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省肇庆市高中数学第18课极坐标与参数方程(综合训练1)学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省肇庆市高中数学第18课极坐标与参数方程(综合训练1)学案新人教A版选修4-4的全部内容。
第18课极坐标与参数方程(综合训练1)一、学习要求1。
掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3。
掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程; 4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题.二、问题探究■合作探究例1.在平面直角坐标系中,曲线的参数方程为(为参数)。
以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的的极坐标方程为.(1)求和在直角坐标系下的普通方程;(2)已知直线:和曲线交于,两点,求弦中点的极坐标。
解:(1)由,得,∴,∴的普通方程为:;∵,∴的普通方程为:。
(2)【解法一】设,,由,得,则,∴,∴弦中点的直角坐标为,化为极坐标为,∴弦中点的极坐标为.【解法二】设,,由,解,,∴弦中点的直角坐标为,化为极坐标为,∴弦中点的极坐标为.三、问题过关1.在极坐标系中,求曲线:上的动点与定点的距离的最小值。
解:曲线:的直角坐标方程是,它表示圆心,半径的圆.点的直角坐标为;∴,又点在圆外,∴点与定点的距离的最小值为:。
高中数学《参数方程的概念》教案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,掌握参数方程的基本形式和特点。
2. 培养学生运用参数方程解决实际问题的能力。
3. 提高学生对数学方程美的欣赏能力,激发学生学习数学的兴趣。
二、教学内容:1. 参数方程的定义和基本形式。
2. 参数方程与直角坐标方程的互化。
3. 参数方程在实际问题中的应用。
三、教学重点与难点:1. 重点:参数方程的概念,参数方程的基本形式和特点。
2. 难点:参数方程与直角坐标方程的互化,以及参数方程在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生从实际问题中发现参数方程的必要性。
2. 运用数形结合法,帮助学生直观地理解参数方程的特点。
3. 采用合作学习法,鼓励学生相互讨论,共同探讨参数方程的解题方法。
五、教学过程:1. 导入:通过一个实际问题,引导学生思考如何用数学方法描述物体的运动轨迹。
2. 新课讲解:讲解参数方程的定义、基本形式和特点,举例说明参数方程在实际问题中的应用。
3. 案例分析:分析几个典型的实际问题,让学生学会运用参数方程解决问题。
5. 巩固练习:布置一些练习题,让学生巩固所学知识。
7. 作业布置:布置一些有关参数方程的应用题,让学生课后思考。
六、教学评估:1. 课堂问答:通过提问,了解学生对参数方程概念的理解程度。
2. 练习题:收集学生完成的练习题,评估学生对参数方程的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。
七、教学拓展:1. 介绍其他形式的参数方程,如极坐标方程、参数曲线等。
2. 探讨参数方程在其他学科中的应用,如物理学、工程学等。
八、课后反思:2. 学生反思:让学生写下对本节课学习的收获和困惑,以便教师了解学生的学习情况。
九、教学资源:1. 教材:新人教A版选修《高中数学》。
2. 网络资源:有关参数方程的图片、视频和案例。
3. 教具:黑板、粉笔、投影仪等。
参数方程》教案(新人教选修
参数方程》教案(新人教选修)第一章:参数方程简介1.1 参数方程的概念解释参数方程的定义举例说明参数方程的应用场景1.2 参数方程的表示方法介绍参数方程的表示方法展示不同类型的参数方程示例1.3 参数方程的解法介绍参数方程的解法方法演示解题过程,并提供练习题第二章:简单参数方程的求解2.1 线性参数方程的求解解释线性参数方程的定义展示线性参数方程的求解方法2.2 非线性参数方程的求解解释非线性参数方程的定义展示非线性参数方程的求解方法2.3 参数方程的图像解释参数方程的图像表示绘制不同参数方程的图像,并进行分析第三章:参数方程的应用3.1 参数方程在几何中的应用介绍参数方程在几何中的应用展示参数方程在几何问题求解中的例子3.2 参数方程在物理中的应用介绍参数方程在物理中的应用展示参数方程在物理问题求解中的例子3.3 参数方程在工程中的应用介绍参数方程在工程中的应用展示参数方程在工程问题求解中的例子第四章:参数方程的变换4.1 参数方程的线性变换解释参数方程的线性变换展示参数方程的线性变换方法4.2 参数方程的非线性变换解释参数方程的非线性变换展示参数方程的非线性变换方法4.3 参数方程的合成解释参数方程的合成概念展示参数方程的合成方法第五章:参数方程的综合应用5.1 参数方程在曲线设计中的应用介绍参数方程在曲线设计中的应用展示参数方程在曲线设计中的例子5.2 参数方程在优化问题中的应用介绍参数方程在优化问题中的应用展示参数方程在优化问题求解中的例子5.3 参数方程在其他领域的应用介绍参数方程在其他领域的应用展示参数方程在其他领域问题求解中的例子第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念解释极坐标方程的定义展示极坐标方程的表示方法6.2 参数方程与极坐标方程的转换方法介绍参数方程与极坐标方程的转换方法展示参数方程转换为极坐标方程的示例6.3 极坐标方程的应用介绍极坐标方程在几何中的应用展示极坐标方程在几何问题求解中的例子第七章:参数方程与直角坐标系的转换7.1 直角坐标系的基本概念解释直角坐标系的定义和表示方法展示直角坐标系的特点和应用7.2 参数方程与直角坐标系的转换方法介绍参数方程与直角坐标系的转换方法展示参数方程转换为直角坐标系的示例7.3 直角坐标系中的应用介绍参数方程在直角坐标系中的应用展示参数方程在直角坐标系问题求解中的例子第八章:参数方程与函数的关系8.1 函数的基本概念解释函数的定义和表示方法展示函数的特点和应用8.2 参数方程与函数的关系介绍参数方程与函数的关系展示参数方程表示的函数示例8.3 函数图像是参数方程的应用介绍函数图像是参数方程的应用展示函数图像是参数方程的示例第九章:参数方程在实际问题中的应用9.1 参数方程在物理学中的应用介绍参数方程在物理学中的应用展示参数方程在物理学问题求解中的例子9.2 参数方程在工程学中的应用介绍参数方程在工程学中的应用展示参数方程在工程学问题求解中的例子9.3 参数方程在其他领域的应用介绍参数方程在其他领域的应用展示参数方程在其他领域问题求解中的例子第十章:参数方程的综合案例分析10.1 参数方程的综合案例介绍一个综合性的参数方程案例分析并解决该案例中的问题10.2 参数方程的解题策略介绍解决参数方程问题的策略和方法提供一些建议和技巧以提高解题效率10.3 参数方程的练习题和解答提供一些关于参数方程的综合练习题给出详细的解答和解释重点和难点解析重点一:参数方程的概念与表示方法重点关注参数方程的定义,理解参数方程与普通方程的区别。
【必做练习】高中数学第19课极坐标与参数方程综合训练2学案新人教A版选修4_4
第19课极坐标与参数方程(综合训练2)
一、学习要求
1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;
2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;
4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究
■合作探究
例1.在椭圆上求一点,使点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设点(),则点到直线的距离为:
,其中,。
当即时,取最小值。
此时,
,,
∴当点位于时,点到直线的距离最小,最小距离为。
三、问题过关
1.在平面直角坐标系中,点是椭圆上的一个动点,求
的最大值。
解:∵椭圆的参数方程为(为参数);
∴设(),则
,
当,即时,取得最大值2.
2. 在椭圆上找一点,使这一点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设椭圆上动点(),则点到直线的距离为:
当,即时,取最小值。
此时,
,,
∴椭圆上点到直线的距离最小,最小距离为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19课极坐标与参数方程(综合训练2)
一、学习要求
1.掌握极坐标与直角坐标互化公式,并能熟练地进行坐标互化;
2.能熟练地进行极坐标方程与直角坐标方程的互化;并能把极坐标问题转化为直角坐标问题来解决。
3.掌握直线、圆、椭圆的参数方程及简单应用,并能熟练地把它们的参数方程化为普通方程;
4.能利用直线的参数方程中的参数的意义解决求两点间的距离、弦长等问题。
二、问题探究
■合作探究
例1.在椭圆上求一点,使点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设点(),则点到直线的距离为:
,其中,。
当即时,取最小值。
此时,
,,
∴当点位于时,点到直线的距离最小,最小距离为。
三、问题过关
1.在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。
解:∵椭圆的参数方程为(为参数);
∴设(),则
,
当,即时,取得最大值2.
2. 在椭圆上找一点,使这一点到直线的距离最小,并求出最小距离。
解:椭圆的参数方程为(为参数);
设椭圆上动点(),则点到直线的距离为:
当,即时,取最小值。
此时,
,,
∴椭圆上点到直线的距离最小,最小距离为。