电子行业塑胶产品高级机械结构设计

合集下载

塑胶产品结构设计实例

塑胶产品结构设计实例

【概述】IceFai原创系列教程之一,详细解剖了罗技三键鼠标的各种典型结构特征的方式,演示和讲解了在塑胶产品设计中各种典型的结构特征的表现形式和设计策略结构,首先要明白有何用途,然后才能设计。

本案例通过解剖一个罗技三键鼠标来演示在产品结构设计过程中涉及的各种结构以及它们的用途,希望能给新进用户带来一些帮助,消除一些困惑。

IceFai您无堆同==更多精彩,源自无维网()假止口是一种特殊类型的止口,表现形式就是产品的两半壳在分型面处不是相互贴合的,而是具有一定的间距;假止口的凸止口上沿和凹止口下沿接触。

假止口是一种特殊类型的止口,表现形式就是产品的两半壳在分型面处不是相互贴合的,而是具有一定的间距;倡止口的凸止口上沿和凹止口下沿接触口为何需要假止口?因为塑胶产品的特性,每一个注塑件都会有一定的变形,而且这种变型也有一定的随机性,如果两个面贴合,就有机会在分型面处发生错开现象,错开程度和产品大小有关,这就会影响产品的外观和手感;添加假止口,可以在美化外观的同时也可以在很大程度上消除上述影响。

假止口的间距在不同大小和不同类型的产品上有不同的设定,一般从0.3至IJ1.0不等。

==更多精彩,源自无维网()出模角出模角是为了方便注塑件出模而在出模方向上的侧壁设的斜度,出模角度的大小和注塑条件、材料和蚀纹有关,特别地,蚀纹对出模角的要求更高。

出模而在出模方向上的侧壁设的斜度,出模角度的大小和注塑条件、材料和蚀纹有关,特别地,蚀纹对出模角的要求更高。

出模角广泛存在于各类塑胶件的侧壁上,角度从1度到5度不等,很 多日常看起来完全垂直的产品表面其实都是带有斜度的。

而对于因为蚀纹要求的斜度,提供蚀纹服务的厂商都会提供相关粗糙 度的蚀纹斜度对应表,根据对应表确定合适的出模角就能避免在注塑 件出模期间因为出模角的不足而产生的拖花现象。

而这个罗技鼠标表面有经过细蚀纹处理,尽管它的表面是类似圆弧曲 面形状,但还是要保证在分型面处的出模角有一定的大小,比如2度。

电子产品的机械结构设计

电子产品的机械结构设计

电子产品的机械结构设计一、引言随着科技的进步,电子产品在我们的日常生活中扮演着越来越重要的角色。

而机械结构设计作为其中一部分,对于电子产品的功能和外观起着至关重要的作用。

本文将探讨电子产品的机械结构设计所需考虑的要素以及相关的设计原则。

二、电子产品机械结构设计要素1. 保护性能:电子产品机械结构的首要任务是保护内部电子元件不受损害,防止外力或环境的影响。

因此,设计师需要考虑防尘、防水、抗震、抗压等各种保护性能。

2. 散热性能:电子产品工作时会产生大量的热量,因此机械结构设计需要考虑良好的散热性能,保证电子元件的正常工作。

散热设计可以通过增加散热片、风扇等方式来实现。

3. 强度和稳定性:电子产品常常需要经受各种外力,例如碰撞、摔落等,因此机械结构设计需要保证足够的强度和稳定性,以防止机械结构变形,保护内部电子元件的完整性。

4. 可维修性:电子产品在使用过程中可能会出现故障或需要更换部件,因此机械结构设计需要考虑方便的拆装和维修性能,以减少维修时间和成本。

三、电子产品机械结构设计原则1. 结构简洁:机械结构设计应该尽量简洁,减少不必要的部件和连接件,以提高产品的可靠性和稳定性。

简洁的结构也有利于生产制造和维修。

2. 材料选择:机械结构设计需要选择适当的材料,以满足产品的功能和保护性能。

材料应具有足够的强度、刚性和耐用性,同时要考虑重量和成本等因素。

3. 模块化设计:电子产品通常由多个模块组成,而模块化设计可以使产品更加灵活和可扩展。

同时,模块化设计也有利于生产制造和维修,提高产品的可维护性和可升级性。

4. 人机工程学:机械结构设计需要考虑人机工程学原理,以提高用户的使用体验和舒适度。

设计师应该合理安排按钮、接口的位置和布局,以及利用符合人体工程学的曲线和形状设计外壳。

四、案例分析:智能手机机械结构设计以智能手机为例,其机械结构设计需考虑以下要素和原则:1. 保护性能:智能手机的机械结构设计需要保证其对外界环境的保护,如防尘、防水和抗震等性能。

塑胶件结构设计方案

塑胶件结构设计方案

塑胶件结构设计方案引言塑胶件在各个工业领域广泛应用,其结构设计方案对产品质量和成本控制有着重要影响。

本文将针对塑胶件结构设计方案进行详细讨论,探讨结构设计原则、注意事项以及常用的设计方法。

结构设计原则1. 符合产品功能和使用要求在进行塑胶件的结构设计时,首先需要确保塑胶件能够满足产品所需的功能要求。

例如,如果塑胶件用于承载重量,则需要考虑其强度和刚度;如果用于密封材料,则需要考虑其密封性能。

2. 合理利用材料在塑胶件的结构设计过程中,要充分利用材料的性能,尽量减少材料的浪费。

通过合理的形状设计、壁厚控制和孔洞设置等手段,达到最佳的材料利用效果。

3. 提高设计可生产性在塑胶件结构设计中,需要考虑到产品的可生产性。

合理的结构设计能够简化生产工艺、降低制造成本,并且提高产品的生产效率。

4. 考虑装配和维修性在塑胶件的结构设计过程中,需要考虑到产品的装配和维修性。

合理的结构设计可以使得塑胶件易于装配,并且方便进行维修和更换。

结构设计注意事项1. 壁厚控制塑胶件的壁厚对其性能和生产工艺有着重要影响。

过厚的壁厚会增加材料的消耗,并降低塑胶件的强度和刚度;而过薄的壁厚则容易导致塑胶件的变形和破裂。

因此,在结构设计过程中,需要合理控制塑胶件的壁厚,以实现最佳的性能和生产效果。

2. 强度和刚度要求根据不同的使用场景和功能要求,需要合理设计塑胶件的强度和刚度。

通过在关键部位增加加强结构或调整几何形状,可以满足产品的强度和刚度要求。

3. 模具设计在进行塑胶件结构设计时,需要考虑到制造过程中所需的模具设计。

合理的塑胶件结构设计能够简化模具结构,降低模具制造成本,并提高生产效率。

4. 表面处理和装饰塑胶件在设计过程中需要考虑到表面处理和装饰要求。

通过合理的设计,可以方便后续的表面处理(如喷塑、镀银等)和装饰操作,提高产品的美观性和附加值。

塑胶件结构设计方法1. 结构拓扑优化结构拓扑优化是一种常用的塑胶件结构设计方法。

通过应用有限元分析和优化算法,将原始的结构进行优化,以实现最佳的结构形式和性能。

家电产品塑料件结构设计

家电产品塑料件结构设计
塑胶材料性能介绍 及对比
03、壁厚的选择
塑胶零件的壁厚对零件的质量影响很大,壁厚过小时成型的流动阻力大,大 形复杂的零件就很难充满型腔,塑胶壁厚的最小尺寸应满足以下几个方面的要 求:
➢ 足够的强度和刚度。 ➢ 脱模时能经受脱模机构的冲击与震动 ➢ 装配时能承受足够的紧固力 塑胶零件规定有最小壁厚值,它随塑胶品种牌号和零件大小不同有不同,对于外壳零件, 推荐如下壁厚ABS,PC+ABS,PC, 透明PC,透明ABS,壁厚为:2.0-3.5mm。一些小的 外观零件(如按键帽,灯罩,旋钮)可以做到1.2-2.0mm同一个塑胶零件的壁厚尽可能 一致,否则可能会由于壁厚不均而产生壁厚处缩水。
10、塑料件设计要点
➢ 壁厚适当、均匀
10、塑料件设计要点
➢ 壁厚适当、均匀
10、塑料件设计要点
➢ 不同厚度的壁之间应该有过渡部分
10、塑料件设计要点
➢ 不同厚度的壁之间应该有过渡部分
10、塑料件设计要点
➢ 表面凹痕的消除或掩盖
10、塑料件设计要点
➢ 要有足够的脱模斜度
10、塑料件设计要点
家电产品塑料件结构设计
2023/02/10
目录
CONTENTS
01 术语和定语 02 材料的选择 03 壁厚的选择 04 拔模斜度的设计 05 柱位的设计 06 加强筋的设计 07 装饰线、止口、叉骨、扣位的设计 08 圆角的设计 09 常用透明零件的设计
01、术语和定语
1.1 缩水、缩痕 制品表面产生凹陷的现象,由塑胶体积收缩产生,常见于局部内厚区域,如加强肋或柱位与面 交接区域。
06、加强筋位的设计
柱位上的加强筋:胶柱在结构允许情况下必须设计加强筋。柱位上的加强筋由于是跟柱位一起 顶出,可以比普通的加强筋高得多,其高度方向上比柱位端面低1-3mm就可以了。同时,柱位的 加强筋尽量对称加工,以保证柱位变形尽量小。其形状如图1,指示的斜度为D=3-5度。

塑胶件结构设计之按键及旋钮设计

塑胶件结构设计之按键及旋钮设计

塑胶件结构设计之按键及旋钮设计常见的带有按键的塑胶产品有手机、MP3、相机等;旋钮之类等,在设计这些按键和旋钮之类的产品模型,可以使用以下资料做参考。

1、按键的设计1.1 按键(Button)大小及相对距离要求从实际操作情况分析,结合人体工程学知识,在操作按键中心时,不能引起相邻按键的联动,那么相邻按键中心的距离需作如下考虑:1)竖排分离按键中,两相邻按键中心的距离a≥9.0mm2)横排成行按键中,两相邻按键中心的距离b≥13.0mm3)为方便操作,常用的功能按键的最小尺寸为:3.0×3.0mm图11.2 按键(Button)与基体的设计间隙图2按键与面板基体的配合设计间隙如图2所示:1)按钮裙边尺寸C≥0.75mm,按钮与轻触开关间隙为B=0.20mm;2)水晶按钮与基体的配合间隙单边为A=0.10-0.15mm;3)喷油按钮与基体的配合间隙单边为A=0.20-0.25mm4)千秋钮(跷跷板按钮)的摆动方向间隙为0.25-0.30mm,需根据按钮的大小进行实际模拟;非摆动方向的设计配合间隙为A=0.2-0.25mm;5)橡胶油比普通油厚0.15 mm,需在喷普通油的设计间隙上单边加0.15 mm,如喷橡胶油按键与基体的间隙为0.3-0.4mm;6)表面电镀按钮与基体的配合间隙单边为A=0.15-0.20mm;7)按钮凸出面板的高度如图3所示:普通按钮凸出面板的高度D=1.20-1.40mm,一般取1.40mm;表面弧度比较大的按钮,按钮最低点与面板的高度D一般为0.80-1.20mm图32、旋钮的设计2.1 旋钮(Knob)大小尺寸要求旋钮(Knob)大小尺寸要求见如下所示图42.2 两旋钮(Knob)之间的距离两旋钮(Knob)之间的距离大小:C≥8.0mm。

图52.3 旋钮(Knob)与对应装配件的设计间隙1)旋钮与对应装配件的设计配合单边间隙为A≥0.50mm,如图6所示;2)电镀旋钮与对应装配件的设计配合单边间隙为A≥0.50mm;3)橡胶油比普通油厚0.15 mm,需在喷普通油的设计间隙上单边增加0.15 mm。

塑胶产品结构设计规范

塑胶产品结构设计规范

塑胶产品结构设计规范8.⽂件类型(4)1.品质体系类⽂件2.环境和职业安全体系类⽂件3.社会责任体系类⽂件⽂件编号版本编号 1⽣效⽇期2010-11-04 (盖受控印章处)产品⼆部塑胶产品结构设计规范制订申请部门会签批准产品中⼼运管计划处品质管理部销售中⼼⼯程部制造中⼼资材中⼼产品⼆部和灼热燃烧时间,t2+t3是否允许样品燃尽否否否是否允许燃烧颗粒或滴落物引燃脱脂棉否否是表6.1.1-2 球压温度评定PC 包胶PIN脚的包胶部分塑胶材料PC+ABS、PPO恒温箱测试温度95°125°125°表6.1.1-3 灼热丝燃烧评定要求3PCS,样条750±10℃(外壳厚度>0.2mm,650±10℃)判定标准30S内⽆可见⽕焰,实验样品落下的燃烧或灼热颗粒,应做到绢纸不得起⽕,松⽊板不得烧焦表6.1.1-4 胶壳跌落评定要求3PCS,2⾯/次,1M,⽔泥地⾯判定标准跌落后,外壳⽆破裂,⾼压测试能通过,电性正常6.1.2 壁厚选择塑件的壁厚要根据产品的具体要求、所选材料的性能、塑件外形的复杂程度及⼤⼩等因素确定,应尽量做到各部分壁厚均匀。

另外,需注意最⼩壁厚设计必须满⾜安规要求,具体可参考材料UL黄卡。

壁厚的选择应遵循以下原则:1、平⾯准则在⼤部份热融过程操作,包括挤压和固化成型,均⼀的壁厚是⾮常的重要的。

厚胶的地⽅⽐旁边薄胶的地⽅冷却得⽐较慢,并且在相接的地⽅表⾯在浇⼝凝固后出现收缩痕。

更甚者引致产⽣缩⽔印、热内应⼒、挠曲部份歪曲、颜⾊不同或不同透明度。

若厚胶的地⽅渐变成薄胶的是⽆可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的⽐例下。

下图可供叁考:2、转⾓准则壁厚均⼀的要诀在转⾓的地⽅也同样需要,以免冷却时间不⼀致。

冷却时间长的地⽅就会有收缩现象,因⽽发⽣部件变形和挠曲。

此外,尖锐的圆⾓位通常会导致部件有缺陷及应⼒集中,集中应⼒的地⽅会在受负载或撞击的时候破裂。

塑料制品的常见结构设计

塑料制品的常见结构设计

塑料制品的常见结构设计随着现代产业的不断发展,塑料制品已经成为人们生活和工作中必不可少的一种材料。

它具有质轻、强度高、耐热、耐腐蚀等特点,广泛应用于机车、汽车、飞机以及家居用品、电子产品等领域。

而对于塑料制品的结构设计,其主要的目的在于提高产品的性能、延长使用寿命和增加产品的美观度。

本文将介绍一些常见的塑料制品结构设计方法及其应用。

一、拉伸设计拉伸设计一般用于塑料制品的生产过程中,通过设计塑料的拉伸流程,来改变塑料的分子结构,从而改变其性能和品质。

在拉伸设计中,良好的拉伸流程设计能够使塑料分子链得到整齐有序地排列,提高产品的强度和韧性。

例如,汽车和航空工业中用的塑料材料,通常都经过拉伸设计,以满足其强度、刚度、韧性的要求。

二、杆塞设计在塑料制品的生产过程中,杆塞设计通常用于改善产品的表面和内部质量。

对于塑料制品来说,其内部因为生产过程中加热和冷却的不均匀,可能会出现焊接痕迹、气泡、瑕疵等质量问题,杆塞设计则可通过加入杆塞,改善产品质量。

其设计原理为,通过计算产品内部的气流、温度等信息,确定塑料材料流动的方向、速度及压力等参数,以实现塑料内部的均匀化,达到优化产品内部结构的效果。

三、针轮设计针轮设计是一种常用于塑料制品挤压成型中的提高产品质量的方法。

它通过改善挤压过程中塑料流动的方向和速度,使得塑料分子链得到更加有序地排布,从而提高产品的强度和韧性。

其中,针轮是双螺杆挤出机的关键部件,在挤出过程中不断旋转,挤出材料。

针轮设计的核心在于,通过调节针轮的几何参数,使得塑料在针轮的作用下能够得到更充分的塑性变形和拉伸效应,达到优化材料微观结构的效果。

四、辊子设计辊子设计通常应用于塑料薄膜的生产过程中。

塑料薄膜是一种高强度、美观、防水、防镜面反射等重要用途的塑料制品,其质量关键在于生产过程中的辊子设计。

在辊子设计中,优秀的辊子设计能够使塑料薄膜表面均匀、色彩鲜艳、质地光滑。

其设计原理为,在制膜过程中,通过调整压力、速度和温度等参数,使辊子能够完全与塑料材料接触,并实现微观结构的改变,从而优化防水、防结霜以及降低声学反射等性能。

塑胶件结构设计

塑胶件结构设计

塑胶零件设计常识,一般塑胶件设计过程中都会有以下几项:1,塑胶件壁厚的厚度设计!(说出你的理由)2,塑胶件加强筋的设计3,塑胶螺丝柱(自攻)的设计4,塑胶件止口,美观线的设计!5,塑胶件材料选择的原则1.壁厚太厚容易浪费材料,增加成本,更重要的是延长冷却和固化时间,容易产生凹陷,缩孔,夹心等质量上的缺陷。

,所以应该均匀,壁与壁连接处的薄厚不应该相差太大,并且应尽量用圆弧连接,否则容易开列。

一般是1~5MM,小件为1.5~2.5,大件为3~10`MM 。

2.加强筋高度通常塑件为壁厚的3倍左右,并有2~5度的脱模斜度,与塑件壁的连接出及端部,应用圆弧连接。

防止应力集中。

,加强筋的厚度应为塑件壁厚的1/2,如果太大,容易产生瘪凹。

如果要设置多个加强筋,则分布应错开,防止破裂。

我先来一个失败的实例,如图,这是一个控制器的面板,最终的成品是8个叠成在一个机箱中(图中的结构部分从略)。

因为这是我的第一个产品设计,啥经验也没有,反复校核后开模,首样出来也没有发现问题,但是整机一装配,麻烦就来了--控制器与控制器之间居然有3mm左右的间隙存在!难看得要命,简直就是废品。

你们可以想象我当时寒风瑟瑟的样子了。

原因其实在简单不过,我的拔模斜度设大了,为2度,这样底部和上部因斜度相差就是0.7mm,双边1.4mm,而模具厂缩水考虑不足,尺寸比图面尺寸又单边少0.2mm,双边是0.4mm,这样塑胶件本身就造成了1.8mm的间隙,加上机箱本身设计间距1mm,2.8mm 的大空隙就这么出来了!教训:设定拔模斜度之前不仅仅要考虑注塑工艺要求,也一定要考虑到由此而产生的其它不良“后遗症”。

选择材料的考虑因素任何一件工业产品在设计的早期过程中,一定牵涉考虑选择成形物料。

因为在产品生产时、装配时、和完成的时间,物料有着相互影响的关系。

除此之外,品质检定水平、市场销售情况和价格的厘定等也是需要考虑之列。

所以这是无法使用概括全面的考虑因素而定出一种系统性处理方法来决定所选择的材料和生产过程是为最理想。

电子类产品结构设计标准-

电子类产品结构设计标准-

电子类产品结构设计标准目录电子产品结构概述 (5)第一章塑胶零件结构设计 (6)1-1、材料及厚度 (6)1.1、材料的选取 (6)1.2壳体的厚度 (6)1.3、厚度设计实例 (7)1-2 脱模斜度 (8)2.1 脱模斜度的要点 (8)2.2 常规斜度举例 (9)1-3、加强筋 (10)3.1、加强筋厚度与塑件壁厚的关系 (10)3.2、加强筋设计实例 (11)1-4、柱和孔的问题 (11)4.1、柱子的问题 (11)4.2、孔的问题 (12)4.3、“减胶”的问题 (12)1-5螺丝及螺丝柱的设计 (12)5.1公司常用塑胶螺丝规格及相应螺丝柱设计 (12)5.2用于自攻螺丝的螺丝柱的设计原则 (13)5.3 不同材料、不同螺丝的螺丝柱孔设计值 (18)5.4 常用自攻螺丝装配及测试 (19)) (19)5.5 螺丝分类(CLASSIFICATIONS OF SCREW) (20)5.6(1)螺丝材料(SCREW MATERIAL5.6(2)常见表面处理代号(SURFACE FINISHINGS) (20)) (21)5.7 螺丝头型(SCREW TYPES OF HEAD5.8 螺丝槽型(SCREW TYPES OF DRIVE INSERT) (21)) (22)5.9 螺丝牙型种类(SCREW TOOTH TYPES1-6、止口的设计 (22)6.1、止口的作用 (22)6.2、壳体止口的设计需要注意的事项 (23)6.3、面壳与底壳断差的要求 (24)1-7常见卡钩设计 (25)7.1 通常上盖设置跑滑块的卡钩,下盖设置跑斜顶卡钩 (25)7.2 上下盖装饰线的选择 (26)7.3 卡钩离机台的角不可太远,否则角会翘缝 (26)7.4卡钩间不可间隔太远,否则易开缝。

(26)7.5“OPEN”标识偏中心的部品卡钩设计,如打印头盖 (27)7.6 常见卡钩设计的尺寸关系 (29)7.7. 其它常用扣位设计 (30)1-8、装饰件的设计 (32)8.1、装饰件的设计注意事项 (32)8.2、电镀件装饰斜边角度的选取 (32)8.3、电镀塑胶件的设计 (32)1-9、按键的设计 (33)9.1 按键(Button)大小及相对距离要求 (33)9.2 按键(Button)与基体的设计间隙 (33)9.3.1键帽行程 (34)9.3.2、键帽和硅胶/TPU的配合 (34)9.3.3、支架和硅胶KEY台的配合 (35)9.4 圆形和近似圆形防转 (35)1-10. RUBBER KEY的结构设计 (36)10.1 RUBBER KEY与CASE HOLE的关系 (36)10.2. CONTACT RUBBER 设计要求 (36)10.3 RUBBER KEY的拉出强度测试 (42)10.4 RUBBER KEY 固定方式 (43)10.5 RUBBER KEY 联动问题 (43)10.6长形按键(ENTER KEY)顶面硬度问题 (44)1-11. METAL DOME和MYLAR DOME 的设计 (44)1-12超薄P+R按键 (45)1-13 镜片(LENS)的通用材料 (46)1-14 触摸屏与塑胶面壳配合位置的设计 (54)1-15 LCD的结构设计 (56)15.1 LCD、DG视觉问题 (56)15.2 DISPLAY PANEL DG(FILTER)设计 (59)1-16 超声波结构设计 (62)1-17 电池箱的相关结构设计 (63)17.1 干电池箱设计基本守则 (64)17.2 各类干电池的规格如图示 (65)17.3 电池门设计基本守则 (68)17.4 纽扣电池结构设计 (71)17.5 诺基亚电池型号 (81)1-18 滑钮设计 (82)1-19 下盖脚垫的设计 (95)第二章钣金件的结构设计 (96)2-1 钣金材质概述 (96)2-2钣金件结构设计请参照钣金件设计规范 (98)第三章 PCB的相关设计 (98)3-1.PCB简介 (98)3-2.PCB上的结构孔 (98)3-3.PCB 的工艺孔,块设计 (99)3-4. PCB的经济尺寸设计 (100)第四章电声部品选型及音腔结构设计 (102)4-1. 声音的主观评价 (102)4-2. 手机铃声的影响因素 (103)4-3. Speaker的选型原则 (103)4-4. 手机Speaker音腔性能设计 (104)4-5. 手机Speaker音腔结构设计需注意的重要事项 (111)4-6. 手机用Receiver简介﹑选择原则及其结构设计 (111)4-7. Speaker/Receiver二合一一体声腔及其结构设计 (112)4-8. 手机用MIC结构设计 (113)4-9. 迷你型音箱的结构设计(喇叭直径:25-45mm) (113)第五章散热件的结构设计 (114)5-1、热设计概述 (114)5-2、电子产品的热设计 (114)5-3、散热器及其安装 (115)第六章防水结构设计 (117)6-1 防水等级 (117)6-2 IPXX等级中关于防水实验的规定 (118)6-3 防水产品的一般思路 (121)6-4 电池门防水 (123)6-5 按键位防水 (124)6-6 引出线部分防水 (125)6-7.超声波(有双超声线的) (127)6-8 O-Ring 或I-Ring防水 (128)6-9 螺丝防水 (128)第七章整机的防腐蚀设计 (129)7-1、防潮设计的原则 (129)7-2、防霉设计的原则: (130)7-3、防盐雾设计的原则: (130)第八章电磁兼容类产品结构设计(EMC) (130)8-1电磁兼容性概述 (130)8-2电子设备结构设计中常见的电磁干扰方式 (131)8-3 电磁兼容设计的主要方法有屏蔽、滤波、接地 (132)8-4搭接技术 (133)8-5防干扰设计的实施细则 (134)第九章防震产品结构设计 (137)9-1防震范围 (137)9-2 IK代码的特征数字及其定义 (138)9-3 一般试验要求 (138)9.4对机械碰撞防护试验的验证 (139)9-5防震内容 (139)9-5防震结构 (140)第十章电子产品检测设计标准 (140)10-1表面工艺测试 (140)1.1.附着力测试 (140)1.2.耐磨性测试 (140)1.3.耐醇性测试 (141)1.4.硬度测试 (141)1.5.耐化妆品测试 (141)1.6.耐手汗测试 (141)1.7.高低温存储试验 (142)1.8.恒温恒湿试验 (142)1.9.温度冲击试验 (142)1.10.膜厚测试 (142)10-2跌落试验 (143)10-3振动试验 (144)10-4 高低温测试 (144)第十一章电子产品电气连接方式 (144)第十一章电子产品包装设计标准 (151)电子产品结构概述信息科技、电子技术的迅猛的发展,电子市场的竞争越来越激烈。

上下料机械手结构设计

上下料机械手结构设计

上下料机械手结构设计
上下料机械手是工业自动化领域中常见的设备,用于在生产线
上进行物料的搬运和装配。

其结构设计需要考虑以下几个方面:
1. 机械手类型,根据实际需求,可以选择不同类型的机械手,
比如直线运动机械手、旋转机械手、SCARA机械手等。

每种类型的
机械手都有其适用的场景和特点,需要根据具体的作业需求来选择。

2. 关节结构,机械手通常由多个关节组成,关节的结构设计需
要考虑到负载能力、精度要求、速度要求等因素。

常见的关节结构
包括直线传动、齿轮传动、伺服电机驱动等,需要根据具体情况选
择最合适的结构。

3. 末端执行器,末端执行器是机械手的关键部件,用于实际的
物料抓取、放置和装配。

末端执行器的设计需要考虑到抓取力度、
抓取形状、灵活性等因素,常见的末端执行器包括气动夹爪、机械
夹具、吸盘等。

4. 控制系统,机械手的结构设计需要与控制系统相匹配,确保
机械手能够按照预定的路径和速度进行运动。

控制系统通常包括传
感器、编码器、控制器等部件,需要与机械手的结构设计相协调。

5. 安全性考虑,在机械手的结构设计中,需要考虑到安全性因素,确保机械手在运行过程中不会对操作人员或周围环境造成伤害。

这包括安全防护装置的设置、紧急停止系统的设计等。

综上所述,上下料机械手的结构设计需要综合考虑机械手类型、关节结构、末端执行器、控制系统和安全性等多个方面的因素,以
确保机械手在实际生产中能够高效、安全地完成物料的搬运和装配
任务。

ProeCreo塑胶件结构设计的基本知识都在这,总结的很全面!

ProeCreo塑胶件结构设计的基本知识都在这,总结的很全面!

ProeCreo塑胶件结构设计的基本知识都在这,总结的很全面!—每天给大家带来精品教程—一、塑胶件塑胶件设计时尽可能做到一次成功,对某些难以保证的地方,考虑到修模时给模具加料难、去料易,可预先给塑料件保留一定的间隙。

常用塑料介绍常用的塑料主要有ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其中常用的透明塑料有PC、PMMA、PS、AS。

高档电子产品的外壳通常采用ABS+PC;显示屏采用 PC,如采用 PMMA 则需进行表面硬化处理。

日常生活中使用的中底挡电子产品大多使用HIPS 和 ABS 做外壳,HIPS 因其有较好的抗老化性能,逐步有取代 ABS 的趋势。

常见表面处理介绍表面处理有电镀、喷涂、丝印、移印。

ABS、HIPS、PC 料都有较好的表面处理效果。

而 PP 料的表面处理性能较差,通常要做预处理工艺。

近几年发展起来的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。

IMD 与 IML 的区别及优势:1. IMD 膜片的基材多数为剥离性强的PET,而IML 的膜片多数为PC。

2. IMD 注塑时只是膜片上的油墨跟树脂接合,而IML 是整个膜片履在树脂上。

3. IMD 是通过送膜机器自动输送定位,IML是通过人工操作手工挂。

1.1 外形设计对于塑胶件,如外形设计错误,很可能造成模具报废,所以要特别小心。

外形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。

现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响,造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。

可接受面刮<0.15mm,可接受底刮<0.1mm。

所以在无法保证零段差时,尽量使产品:面壳>底壳。

一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大,一般选 0.5%。

电子元件自动上下料机器人结构设计

电子元件自动上下料机器人结构设计

电子元件自动上下料机器人结构设计1. 引言电子生产制造过程中,上下料是一个重要的环节。

为了提高生产效率和降低劳动力成本,设计一台电子元件自动上下料机器人是十分必要的。

本文将介绍该机器人的结构设计。

2. 机器人的基本需求根据电子生产制造过程中的实际情况,我们对机器人的基本需求进行如下整理:•自动上下料:机器人能够自动将电子元件从输入口上料到生产线,以及将生产完毕的电子元件从生产线下料到输出口。

•高精度定位:机器人需要能够准确地将电子元件放置到指定位置,并能够在不同尺寸的电子元件之间进行快速切换。

•稳定性和可靠性:机器人需要具有良好的稳定性和可靠性,能够长时间稳定运行,并且在故障发生时能够及时报警并停机。

3. 机器人的结构设计根据对基本需求的分析,我们设计了如下的机器人结构:3.1 机械结构机械结构是机器人的骨架,承担着支撑和传递力量的作用。

基于自动上下料的需求,我们设计了以下几个重要的部分:•底座:底座是机器人的基础,承载整个机器人的重量。

底座采用坚固耐用的金属材料制作,以确保机器人的稳定性。

•伺服电机:机器人需要通过伺服电机驱动执行动作,如抓取和放置电子元件。

我们选择高精度的伺服电机,并通过编码器实时反馈位置信息,以确保准确的定位。

•传动装置:传动装置用于传递伺服电机的运动到机械臂,以实现各种自动上下料动作。

我们选择了精密的蜗杆传动装置,以确保运动的平稳和精准。

•机械臂:机械臂是机器人的核心部件,负责完成抓取和放置电子元件的任务。

我们采用多关节可伸缩的机械臂设计,以适应不同尺寸的电子元件,并提供足够的灵活性和精度。

3.2 控制系统控制系统是机器人的大脑,负责对机械结构进行精确控制。

我们设计了以下几个重要的部分:•控制器:控制器是机器人的核心控制单元,负责接收指令和传感器信号,并控制机械结构的运动。

我们选择了先进的控制器,具有高性能的处理器和丰富的接口。

•编码器:编码器用于实时测量机械臂的角度,以实现精确的定位和运动控制。

塑胶产品结构设计案例PPT46页

塑胶产品结构设计案例PPT46页
PCB定位
每一块PCB都需要在成品的壳身上加上两支定位而且必须在上下壳身加上一些定位筋夹着,以防止PCB受力而变形。
PCB与壳身之间至少必须要有1.0mm的空间,定位Pin的距离则越远越好,因为这样才可以保持PCB的位置而不会移位。
当完成PCB的大细及位置的设定后,便需要在PCB的底部及面部加上一些余量,用作表示电子零件的避空位置。而且在PCB上,加上Solid以表示可摆放电子零件的空间。
感谢您的下载观看
止口
真止口用途: 生产装配时作较对之用,而且可作涂胶水之用。
假止口用途: 在外形上可作遮丑之用。
半假止口用途: 如平均料厚有2.0mm或以上时,因为凹槽太深的关系,所以需要在止口的位置加多一层料,保持成品外形的美观。
双止口用途:多用于一些需要有防水功能的成品上。而且,会以超音波焊接法作装配,加强较对效用。
一般PCB的常用厚度: 0.8mm, 1.0mm, 1.5mm,视乎产品的大小和PCB的尺寸而定。
在图纸上标出PCB形状的大小,坑位的尺寸,可摆放电子零件的位置和尺寸,方便电子设计。
电池仓
电池与电池之间一定要有胶料分隔。
加防水槽
电池门
加上加强筋作强化作用。
如电池门的位置是在成品的中央,而且在电池门的四周没有凹坑的时候。必须加上一凹形的手指位,作方便开启电池门之用。
POM 聚甲醛用途:机械零件、齿轮、家电外壳特性:耐磨、坚硬但脆弱,损坏时容易有利边出现。应用:多数用于胶齿轮、滑轮、一些需要传动,承受大扭力或应力的地方。
Nylon(尼龙,PA)用途:齿轮、滑轮、纺织品特性:坚韧、吸水、耐磨、吸震、耐热,但当水份完全挥发后会变得脆弱。应用:因为精准度比较难控制,所以大多用于一些模数较大的齿轮

塑胶产品结构设计

塑胶产品结构设计

塑胶产品结构设计要点1.胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在0.80-3.00左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点,小的产品取薄一点,一般产品取1.0-2.0为多。

而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点,但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于0.3时就很难走胶,但软胶类和橡胶在0.2-0.3的胶厚时也能走满胶。

2.加强筋(骨位):塑胶产品大部分都有加强筋,因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度,对大型和受力的产品尤其有用,同时还能防止产品变形。

加强筋的厚度通常取整体胶厚的0.5-0.7倍,如大于0.7倍则容易缩水。

加强筋的高度较大时则要做0.5-1的斜度(因其出模阻力大),高度较矮时可不做斜度。

3.脱模斜度:塑料产品都要做脱模斜度,但高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。

出模斜度通常为1-5度,常取2度左右,具体要根据产品大小、高度、形状而定,以能顺利脱模和不影响使用功能为原则。

产品的前模斜度通常要比后模的斜度大0.5度为宜,以便产品开模事时能留在后模。

通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于0.1以上。

4.圆角(R角):塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。

最小R通常大于0.3,因太小的R模具上很难做到。

5.孔:从利于模具加工方面的角度考虑,孔最好做成形状规则简单的圆孔,尽可能不要做成复杂的异型孔,孔径不宜太小,孔深与孔径比不宜太大,因细而长的模具型心容易断、变形。

孔与产品外边缘的距离最好要大于1.5倍孔径,孔与孔之间的距离最好要大于2倍的孔径,以便产品有必要的强度。

与模具开模方向平行的孔在模具上通常上是用型心(可镶、可延伸留)或碰穿、插穿成型,与模具开模方向不平行的孔通常要做行位或斜顶,在不影响产品使用和装配的前提下,产品侧壁的孔在可能的情况下也应尽量做成能用碰穿、插穿成型的孔。

塑胶件结构设计与模具结构分析

塑胶件结构设计与模具结构分析

塑胶件结构设计与模具结构分析塑胶件是一种广泛应用于各种工业领域的制造材料,其在汽车、电子、家电等领域中扮演着重要角色。

塑胶件的结构设计和模具结构分析是确保产品质量和生产效率的关键环节。

本文将从塑胶件结构设计和模具结构分析两方面介绍,共计1200字以上。

1.定义产品功能和使用要求。

根据产品的用途和需求,确定产品应具备的功能和使用要求,如强度、硬度、耐磨性、耐腐蚀性等。

2.材料选择。

选择适合产品要求的塑胶材料,考虑其机械性能、热性能、成本等因素。

3.结构设计。

根据产品的功能和要求,设计合理的结构布局,包括外形尺寸、壁厚、配合尺寸等。

4.加强结构设计。

对于需要在塑胶件内部添加金属件或增强件的,要进行相应的结构设计,确保它们能够有效地提升产品的强度和使用寿命。

5.模具设计。

根据塑胶件的结构设计,进行模具的设计,包括注塑模具、吹塑模具等。

模具结构分析是为了保证模具的设计和制造满足生产的需求和要求。

以下是模具结构分析的一般步骤:1.根据塑胶件结构设计,进行模具结构布置。

确定模具的整体布局、分流系统、冷却系统等,以确保塑胶件的成型质量和生产效率。

2.分析塑胶熔料的流动性。

通过流动分析软件模拟塑胶熔料在模具中的流动情况,以确定注塑过程中可能存在的热挤压、气泡、缩孔等缺陷,并进行相应的优化设计。

3.分析塑胶件的冷却系统。

通过流动分析软件模拟冷却系统的流动情况,以确定冷却效果是否良好,避免出现塑胶件的热变形、收缩等问题。

4.分析模具的力学性能。

通过有限元分析方法,模拟模具在注塑过程中的受力情况,确保模具能够承受注塑时产生的压力和冲击,并保持稳定性。

5.进行模具结构优化。

根据模具结构分析结果,进行相应的结构优化设计,以提升模具的寿命、性能和生产效率。

模具结构分析的目的是确保模具的设计和制造能够满足生产的需要,提高产品质量和生产效率。

综上所述,塑胶件的结构设计和模具结构分析是塑胶件制造过程中的两个重要环节,通过合理的结构设计和模具结构分析,可以确保塑胶件的质量、性能和生产效率。

塑料组合筒体组装机的机械结构设计

塑料组合筒体组装机的机械结构设计

械 结构 设计 , 并采 用气缸驱 动 滑板 式校 正模 具和 带浮动旋 头的 特殊 旋转 组合 机 构 解决 了因手工装 配 带来
的 质 量 差 Βιβλιοθήκη 率 低 的 问题 , 高 了生 产 效 率 和 产 品 质 量 。 效 提
关键 词 : 塑料 组合 筒体 ; 装机 ; 组 机械 运动 方案 ;机械 结构设 计 中图分 类号 : 6 TG 6 9 文 献标志 码 : B
Ab t a t Usn h t o f c e t e me h d a d d sg t o o o y,d sg e l s i t b o i a i n g o p me sr c : i g t e me h d o r a i t o n e i n me h d lg v e i n d p a tc u e c mbn t r u — o c a ia t n p a n n t l d b c a i l t u t r r m h on f u c in a ay i , n l e t p y id rd ii g h n e lmo i l n a d is a l y me h n c r c u e fo t ep i t n t n l ss a d si y ec l e rv n o e as o f o d n wi l a i g mo d a d c r e t n o p c a r t t g h a p n c mb n t n m e h n s t f t l n o r c i f e il o a i e d s i o ia i c a im.Th o u i n f rma u l s e l f h o n o s n o e s l t o n a s mb yo o a p o u l y s l e h r b e o o e f in y a d i r v d t e p o u tvt ,e fc n y a d p o u tq a i . o rq a i o v d t e p o lm flw f ce c n mp o e h r d c iiy fii c n r d c u l y t i e t

浅谈Pro/E塑料产品设计中的合理优化的结构设计

浅谈Pro/E塑料产品设计中的合理优化的结构设计

浅谈Pro/E塑料产品设计中的合理优化的结构设计【摘要】现在的中等职业技术学校机械类专业课程中,一般都开设Pro/E 软件应用课程。

本文概要介绍了Pro/E塑料产品设计中优化结构设计的作用与意义,讨论了基于Pro/E行为建模中合理优化结构设计应考虑的几个方面因素。

【关键词】Pro/E;结构设计;优化设计随着CAD/CAE/CAM一体化软件广泛应用于航空、汽车、机械、电子、模具等行业,现在的中等职业技术学校机械类专业一般都开设了Pro/E软件应用课程。

但基于现有教材及师资条件的限制,课堂教学中一般都只着重于教授Pro/E 软件的操作技巧和建模方法,而较少强调结构设计过程中的合理化问题。

在实际的工业生产中一个好的塑料制品,首先要有一个好的结构设计。

一个合理和优化的结构设计不仅能够简化塑料制品的注塑模具,降低模具成本,而且也使它的成型工艺变得简单,并提高制品的成型合格率。

在制造业已经高度发达的今天,塑料制品依靠它时尚的造型和靓丽的外表以及良好的强度而进入了千家万户,大到神州六号宇宙飞船、各种汽车、船舶、家用电器,小到一个儿童玩具、螺母、电子手表、塑料凳、矿泉水瓶等等,塑料制品给我们的生活带来了诸多的便利和美感。

制作精美、毫无暇疵的塑料制品确实能装点我们的居室,丰富我们的生活。

而带有缺陷的塑料制品不仅影响它的外观,也会影响它的使用功能。

一个精美的塑料制品往往离不开一个优化的注塑模具、一个合理的成型工艺和性能优良的原材料,另外还有一个前提条件,那就是一个不断优化的结构设计。

下面我们来讨论一下在运用Pro/E进行塑料制品产品设计时应考虑的合理化结构设计因素。

1.壁厚的设计壁厚的合理设计对一个塑料制品来说是至关重要的,制品的壁厚一般在1~6mm范围内,而最常用的壁厚数值为2~3mm。

过薄的壁厚不能保证制品的强度,过厚的壁厚要消耗大量材料、增加制品成型后的冷却硬化时间,此外还容易产生气泡、凹陷、夹心和收缩不均匀,从而造成应力集中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档