第18章[1].勾股定理知识点与常见题型总结

合集下载

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

勾股定理复习

一.知识归纳 1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH

S S S ∆+=正方形正方形ABCD ,221

4()2

ab b a c ⨯+-=,化简可证.

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为

221

422

S ab c ab c =⨯+=+

大正方形面积为2

2

2

()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,2112S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

3.勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形, 4.勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在ABC ∆中,90C ∠=︒

,则c

,b =

,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理

如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法, ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形; ③ 若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; 6.勾股数

第十八章勾股定理知识点分析

第十八章勾股定理知识点分析

第十八章:勾股定理(勾股定理 勾股定理逆定理) 一、勾股定理

▼为何称为“勾股定理”?古代数学家将较短直角边称为“勾”,较长直角边称为“股”,斜边称为“弦”。因而

将直角三角形的这个性质称为“勾股定理”。有“勾三股四弦五”之说,即32+42=52

★勾股定理只适用于直角三角形,主要应用于①已知直角三角形的两边求第三边;②在直角三角形中已知其中一边求另两边的关系; 例:在△

ABC

中,∠C=90°

(1) 若a=3,b=4,则c=_________;(2) 若

a=6,c=10,则

b=_________; (3)若

c=34,a:b=8:15,则

a=________,b=________.

★易错点:(1)求直角三角形的边长时考虑不全面

如:已知直角三角形两条边长分别为6,8,则其周长为_______________ ★(2)乱用勾股定理,对于非直角三角形也运用勾股定理

如:已知△ABC 各边长均为整数,且AC=4,BC=3,AB 是唯一的最长边,则AB 的长可能是_________[5或6] 知识点2:勾股定理的证明

(1)如图所示是用4个全等的直角三角形拼成的正方形,其中较长直角边为b ,较短直角边为a ,斜边为c 。试证

明a 2+b 2=c 2

知识引申:我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如上图1所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a 、b ,那么(a+b )2的值是_________(25) (2)如图2所示,每个小方格的面积均为1,正方形A ,B ,C 的边长分别

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222

a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:

4EFGH

S S S ∆+=正方形正方形ABCD

,2214()2ab b a c ⨯+-=,化简可证.

c

b

a H

G F E

D

C

B

A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为22

1

422S ab c ab c =⨯+=+

大正方形面积为222

()2S a b a ab b =+=++ 所以222

a b c +=

方法三:1()()2S a b a b =+⋅+梯形,

2

112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

第18章.勾股定理知识点与常见题型总结

第18章.勾股定理知识点与常见题型总结

勾股定理

一.知识归纳 1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2

2

14()2

ab b a c

+-=,化简可证.

c

b

a

H

G F E

D

C

B

A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2

2

1422

S ab c ab c

=⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()

2

S a b a b =

+⋅+梯形,2

112S 22

2

ADE ABE S S ab c

∆∆=+=⋅+

梯形,化简得证

a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

勾股定理复

勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。

勾股定理的证明常用拼图的方法。通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常见的证明方法有以下三种:

1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。

2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。

3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。

勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

勾股定理的逆定理是:如果三角形三边长a、b、c满足

a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。

a^2+b^2=c^2$是勾股定理的基本公式。如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。

勾股定理的实际应用有很多。例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。现将梯子的底端A向外移动到A′,使梯

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

八年级下册 .勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221

4()2

ab b a c ⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为221

422S ab c ab c =⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,211

2S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221

4()2

ab b a c ⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为221

422S ab c ab c =⨯+=+

大正方形面积为222()2S a b a ab b =+=++

所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,211

2S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

八年级下册 .勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221

4()2

ab b a c ⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为221

422S ab c ab c =⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,211

2S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

勾股定理复习

一.知识归纳

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2

ab b a c ⨯+-=,化简可证. c b

a H

G F

E

D

C

B A

方法二:

b a

c b a c

c

a b c a b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422

S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++

所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,2112S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

a b c

c

b a E D

C

B A

3.勾股定理的适用范围

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

大正方形面积为所以方法三:,,化简得证3、勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4、勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、勾股定理的逆定理如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;②定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数②记住

常见的勾股数可以提高解题速度,如;;;等③用含字母的代数式表示组勾股数:(为正整数);

(为正整数)(,为正整数)7、勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题、在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解、8、、勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论、9、勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体、通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决、常见图形:题型一:直接考查勾股定理例1、在中,、⑴已知,、求的长⑵已知,,求的长分析:直接应用勾股定理解:⑴⑵题型二:应用勾股定理建立方程例2、⑴在中,,,,于,=

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

, 4 ⨯ ab + (b - a )2 = c 2 ,化简可证.

四个直角三角形的面积与小正方形面积的和为 S = 4 ⨯ ab + c 2 = 2ab + c 2

= (a + b ) ⋅ (a + b ) , S = 2 ⋅ ab + c 2 ,化简得证 2 2 2

八年级下册 .勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么 a 2 + b 2 = c 2

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较 短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了 “勾 三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的 平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一: 4S + S ∆

D

H

E

F b

A

c

方法二:

b

正方形

EFGH

= S

C

G

a

B

a

正方形ABCD 1 2

a

c

c

b

b

c

c

a

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

1

2

大正方形面积为 S = (a + b )2 = a 2 + 2ab + b 2

所以 a 2 + b 2 = c 2

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

勾股定理复习

一.知识归纳 1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么2

22

a

b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH

S S

S ∆

+=正方形正方形ABCD

,2

2

14()

2

ab b a c ⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B

A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为

2

2

1

422

S ab c ab c =⨯+=+ 大正方形面积为2

22

()2S a b a ab b =+=++

所以2

22

a

b c +=

方法三:1

()()2

S

a b a b =+⋅+梯形

,2

11

2S 222

ADE ABE S

S ab c ∆∆=+=⋅+梯形

,化简得证

a b

c

c b

a

E

D C

B

A

3.勾股定理的适用范围

人教数学八年级下册专题:第18章.勾股定理知识点与常见题型总结.docx

人教数学八年级下册专题:第18章.勾股定理知识点与常见题型总结.docx

初中数学试卷

桑水出品

专题:第18章.勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221

4()2

ab b a c ⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为221

422

S ab c ab c =⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,211

2S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

a b

c

c b

a

E D C

勾股定理知识点总结

勾股定理知识点总结

第18章勾股定理复习

一。知识归纳

1。勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为,,斜边为,那么

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理。我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

2。勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

常见方法如下:

方法一:,,化简可证。

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为

大正方形面积为

所以

方法三:,,化简得证

3。勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形

4.勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在中,,则,,

②知道直角三角形一边,可得另外两边之间的数量关系

③可运用勾股定理解决一些实际问题

5、利用勾股定理作长为的线段

作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作.

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

八年级下册 .勾股定理知识点与常见题型总结

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221

4()2

ab b a c ⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为221

422S ab c ab c =⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,211

2S 222

ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证

a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章 勾股定理复习

一.知识归纳

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:,

4EFGH S S S ∆+=正方形正方形ABCD

22

1

4()2

ab b a c

⨯+-=,化简可证.

c

b

a

H

G F E

D

C

B A

方法二:

b

a

c

b

a

c c

a

b

c

a

b

四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2

2

1422

S ab c ab c

=⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2

S a b a b =

+⋅+梯形,2

112S 222ADE ABE S S ab c

∆∆=+=⋅

+

梯形,化简得证

a b

c

c b

a

E D C

B

A

3.勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边

在A B C ∆中,90C ∠=︒

,则c =

b =

,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理

如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形

6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)

2

2

2

2

,2,m n mn m n

-+(,m n >m ,n 为正整数)

7.勾股定理的应用

勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求

解.

8..勾股定理逆定理的应用

勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.

9.勾股定理及其逆定理的应用

勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:

A

B

C

30°D C

B A A

D

B C

C

B D

A

题型一:直接考查勾股定理

例1.在A B C ∆中,90C ∠=︒.

⑴已知6AC =,8B C =.求AB 的长 ⑵已知17AB =,15A C =,求BC 的长 分析:直接应用勾股定理222a b c +=

解:⑴10AB =

=

⑵8BC =

题型二:应用勾股定理建立方程

例2.

⑴在A B C ∆中,90AC B ∠=︒,5A B =cm ,3B C =cm ,C D AB ⊥于D ,C D = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为

分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:

⑴4AC =

, 2.4AC BC CD AB

⋅=

=

相关文档
最新文档