2018年高考数学专题突破练5立体几何的综合问题试题理 Word版 含答案

合集下载

高考立体几何大题及答案(理)

高考立体几何大题及答案(理)

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高考立体几何大题及答案(理)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。

(I)证明:是侧棱的中点;求二面角的大小。

2.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BACBA1B1C1DED-C为60°,求B1C与平面BCD所成的角的大小3.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.4.如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.5.如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.(1)求证:平面⊥平面;(2)求直线与平面所成的角;(3)求点到平面的距离.6.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证:∥(III)求二面角的大小。

7.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD =AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE:(Ⅱ)若二面角C-AE-D的大小为600C,求的值。

8.如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E 在AC上,且DEE.(Ⅰ)证明:平面平面; (Ⅱ)求直线AD 和平面所成角的正弦值。

9.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证:∥(III)求二面角的大小。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

2018届高三数学立体几何测试题(有答案)
5 c 2018届高三数学末综合测试题(14)立体几何
一、选择题本大题共12小题,每小题5分,共60分.
1 .建立坐标系用斜二测画法画正△ABc的直观图,其中直观图不是全等三角形的一组是( )
解析由直观图的画法知选项c中两三角形的直观图其长度已不相等
答案c
2.已知几何体的三视图(如下图),若图中圆的半径为1,等腰三角形的腰为3,则该几何体的表面积为( )
A.4π B. 3π c.5π D.6π
解析由三视图知,该几何体为一个圆锥与一个半球的组合体,而圆锥的侧面积为π×1×3=3π,半球的表面积为2π×12=2π,∴该几何体的表面积为3π+2π=5π
答案c
3.已知a,b,c,d是空间中的四条直线,若a⊥c,b⊥c,a⊥d,b⊥d,那么( )
A.a∥b,且c∥d
B.a,b,c,d中任意两条都有可能平行
c.a∥b或c∥d
D.a,b,c,d中至多有两条平行
解析如图,作一长方体,从长方体中观察知c选项正确
答案c
4.设α、β、γ为平面,、n、l为直线,则⊥β的一个充分条是( )
A.α⊥β,α∩β=l,⊥l B.α∩γ=,α⊥γ,β⊥γ
c.α⊥γ,β⊥γ,⊥α D.n⊥α,n⊥β,⊥α。

专题1-4 立体几何篇-2018版题型突破唯我独尊之高考数

专题1-4 立体几何篇-2018版题型突破唯我独尊之高考数

【简介】1.立体几何是高考的重要内容,为解答题的必考题型.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).【2015新课标1】如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值【答案】在直角梯形BDFE 中,由BD =2,BE DF =2可得EF =2,∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角.【2015新课标2】如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F==.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.【2016新课标1】如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析;(II )【解析】试题分析:(I )证明ΑF ⊥平面ΕFDC ,结合F A ⊂平面ΑΒΕF ,可得平面ΑΒΕF ⊥平面ΕFDC .(II )建立空间坐标系,利用向量求解.试题解析:(I )由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC . 又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF ⊥平面ΕFDC .(II )过D 作DG ΕF ⊥,垂足为G ,由(I )知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF为单位长,建立如图所示的空间直角坐标系G xyz -.由(I )知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =,3DG =,可()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//AB EF ,所以//AB 平面EFDC .又平面ABCD 平面EFDC DC =,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,60C ΕF ∠= .从而可得(C -.所以(ΕC = ,()0,4,0ΕΒ= ,(3,ΑC =-- ,()4,0,0ΑΒ=-.设(),,x y z =n 是平面ΒC Ε的法向量,则【考点】垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量法解决. 【2016新课标2】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF交BD 于点H . 将△DEF 沿EF 折到△D EF '的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;.故D H OH '⊥.又D H EF '⊥,而OH EF H = , 所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC = ,()3,1,3AD '=【考点】线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 【2016新课标3】如图,四棱锥P−ABC 中,P A ⊥底面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(I )详见解析;(II . 【解析】试题分析:(I )取BP 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT ,由此结合线面平行的判定定理可证;(II )以A 为坐标原点,AE的方向为x 轴正方向,建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 的法向量的夹角的余弦值来求解AN 与平面PMN 所成角的正弦值.试题解析:(I )由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ……3分 又BC AD //,故=TN AM ∥,四边形AMNT 为平行四边形,于是MN AT . 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB . ……6分设(,,)x y z =n 为平面PMN 的一个法向量,则0,0,PM PN ⎧⋅=⎪⎨⋅=⎪⎩n n即240,20,y z x y z -=⎧+-= ……10分 可取(0,2,1)=n .于是|||cos ,|||||AN AN AN ⋅==n n n ……12分【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.【2017新课标1】如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值.由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB为单位长,建立如图所示的空间直角坐标系F xyz -.【2017新课标2】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.【答案】(1)证明略;(2【考点】判定线面平行、面面角的向量求法【名师点睛】(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等,故有|cos θ|=|cos<m,n>|=m nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【2017新课标3】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.【答案】(1)证明略;(2)7【考点】二面角的平面角;二面角的向量求法【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,||θ=⋅=m m n nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【3年高考试题比较】全国高考命题的一个显著变化是,由知识立意转为能力立意,往往遵循大纲又不拘泥于大纲.高考在考查空间想象能力的同时又考查空间想象能力、逻缉思维能力、推理论证能力、运算能力和分析问题以及解决问题的能力.通过比较近三年的高考试题,可发现,立体几何一般有两问,第一问均为考查线面的位置关系,平行和垂直均有涉及;第二问主要考查角的运算,异面所成角,线面角,二面角都有考查,利用空间直角坐标系计算的需要先证明再建系,对于空间位置关系要求较高.【必备基础知识融合】1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.3.(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.4.空间点、直线、平面之间的位置关系5.平行公理(平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 6.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). (2)范围:⎝⎛⎦⎤0,π2.7.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理8.(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理9.(1)a ⊥α,b ⊥α⇒a ∥b . (2)a ⊥α,a ⊥β⇒α∥β.10.直线与平面垂直 (1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理11.(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理12.(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 13.空间位置关系的向量表示14.设a ,b 分别是两异面直线l 1,l 2的方向向量,则15.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. 16.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).【解题方法规律技巧】典例1:在如图所示的几何体中,四边形ABCD 为正方形, ABE ∆为直角三角形, 90BAE ∠= ,且AD AE ⊥.(1)证明:平面AEC ⊥平面BED ;(2)若AB=2AE ,求异面直线BE 与AC 所成角的余弦值.【答案】(1)详见解析;(2.所以DB ⊥平面AEC ,BD a 面BED 故有平面AEC ⊥平面BED.【规律方法】(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. (2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.典例2:如图,在长方体1111ABCD A BC D -中, 1,2,,AB AD E F ==分别为1,AD AA 的中点, Q 是BC 上一个动点,且(0)BQ QC λλ=>.(1)当1λ=时,求证:平面//BEF 平面1A DQ ;(2)是否存在λ,使得BD FQ ⊥?若存在,请求出λ的值;若不存在,请说明理由. 【答案】(1)详见解析(2)13λ=(2)连接,AQ BD 与FQ ,因为1A A ⊥平面,ABCD BD ⊂平面ABCD ,所以1A A BD ⊥.若1,,BD FQ A A FQ ⊥⊂平面1A AQ ,所以BD ⊥平面1A AQ . 因为AQ ⊂平面1A AQ ,所以AQ BD ⊥.在矩形ABCD 中,由AQ BD ⊥,得~AQB DBA ∆∆,所以, 2AB AD BQ =⋅.【规律方法】(1)判断或证明线面平行的常用方法有: ①利用反证法(线面平行的定义);②利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); ③利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); ④利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线. (3)判定面面平行的主要方法 ①利用面面平行的判定定理.②线面垂直的性质(垂直于同一直线的两平面平行). (2)面面平行的性质定理①两平面平行,则一个平面内的直线平行于另一平面. ②若一平面与两平行平面相交,则交线平行. (4)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).典例3:如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB=BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.典例4:如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .【规律方法】 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.典例5:如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2.求: (1)△PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.解 (1)因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以PA ⊥CD .又AD ⊥CD ,PA ∩AD =A , 所以CD ⊥平面PAD ,又PD ⊂平面PAD ,从而CD ⊥PD .因为PD =22+(22)2=23,CD =2, 所以△PCD 的面积为12×2×23=2 3.图1图2法二 如图2,建立空间直角坐标系,则B (2,0,0),C (2,22,0), E (1,2,1),AE →=(1, 2,1),BC →=(0,22,0). 设AE →与BC →的夹角为θ,则cos θ=AE →·BC →|AE →||BC →|=42×22=22,所以θ=π4.由此可知,异面直线BC 与AE 所成的角的大小是π4.【规律方法】(1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解. (2)两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.典例6:如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°. (1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.∴AB⊥平面AB1C.又B1C⊂平面AB1C,∴AB⊥B1C.【规律方法】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.典例7:如图,在三棱柱ABC -A 1B 1C 1中,B 1B =B 1A =AB =BC ,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D . (1)求证:平面ABB 1A 1⊥平面ABC ;(2)求直线B 1D 与平面ACC 1A 1所成角的正弦值; (3)求二面角B -B 1D -C 的余弦值.(2)解 由(1)知,OB ,OD ,OB 1两两垂直.②以O 为坐标原点,OB →的方向为x 轴的方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O -xyz . 由题设知B 1(0,0,3),D (0,1,0), A (-1,0,0),C (1,2,0),C 1(0,2,3).则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的一个法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·AC →=0,m ·CC 1→=0,得⎩⎨⎧x +y =0,-x +3z =0,取m =(3,-3,1).∴cos 〈B 1D →,m 〉=B 1D →·m |B 1D →||m |=0×3+1×(-3)+(-3)×102+12+(-3)2×(3)2+(-3)2+12=-217, ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217.③ (3)解 由题设知B (1,0,0),则BD →=(-1,1,0),B 1D →=(0,1,-3),DC →=(1,1,0). 设平面BB 1D 的一个法向量为n 1=(x 1,y 1,z 1),则由 ⎩⎪⎨⎪⎧BD →·n 1=0,B 1D →·n 1=0,得⎩⎨⎧-x 1+y 1=0,y 1-3z 1=0,可取n 1=(3,3,1). 同理可得平面B 1DC 的一个法向量为n 2=(-3,3,1), ∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=3×(-3)+3×3+1×1(3)2+(3)2+12×(-3)2+(3)2+12=17. ∴二面角B -B 1D -C 的余弦值为17.④【规律方法】(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(3)利用向量计算二面角大小的常用方法:①找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.②找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.易错警示 对于①:用线面垂直的判定定理易忽视面内两直线相交; 对于②:建立空间直角坐标系,若垂直关系不明确时,应先给出证明;对于③:线面角θ的正弦sin θ=|cos 〈B 1D →,m 〉|,易误认为cos θ=|cos 〈B 1D →,m 〉|;对于④:求出法向量夹角的余弦值后,不清楚二面角的余弦值取正值还是负值,确定二面角余弦值正负有两种方法:1°通过观察二面角是锐角还是钝角来确定其余弦值的正负;2°当不易观察二面角是锐角还是钝角时可判断两半平面的法向量与二面角的位置关系来确定.典例8:如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由.(3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14. 【规律方法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.典例9:如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,A D =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0, 得BC →=⎝⎛⎭⎫-22,22,0,A 1C →=⎝⎛⎭⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);【规律方法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【归纳常用万能模板】 如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.满分解答 (1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB.2分又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O ,∴CO ⊥平面PAB ,即CO ⊥平面PDB.4分又CO ⊂平面COD ,∴平面PDB ⊥平面COD.6分(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).8分设平面BDC 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3).10分设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.❷得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO ⊥平面PDB ”.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(2)问中求法向量n ,计算线面角正弦值sin θ.利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【易错易混温馨提醒】一、利用空间向量求解线面角时,得到是线面角的正弦值,注意不是余弦值.易错1:如图,三棱柱111ABC A B C -中, 01111160,4B A A C A A AA AC ∠=∠===,2AB =, ,P Q 分别为棱1,AA AC 的中点.(1)在平面ABC 内过点A 作//AM 平面1PQB 交BC 于点M ,并写出作图步骤,但不要求证明.(2)若侧面11ACC A ⊥侧面11ABB A ,求直线11AC与平面1PQB 所成角的正弦值.【答案】(1)见解析(2).试题解析:(1)如图,在平面11ABB A 内,过点A 作1//ANB P 交1BB 于点N ,连结BQ ,在1BBQ ∆中,作1//NH B Q 交BQ 于点H ,连结AH 并延长交BC 于点M ,则AM 为所求作直线.∵Q 为AC 的中点,∴点Q 的坐标为(0,-,∴((110,,0,AC PQ =-=- .∵011112,60A B AB B A A ==∠=,∴)1B ,∴)1PB = , 设平面1PQB 的法向量为(),,m x y z =,二、不能直接建立空间直角坐标系时,要利用条件先证再建系.易错2:如图,在三棱柱111ABC A B C -中, D 为BC 的中点, 00190,60BAC A AC ∠=∠=,12AB AC AA ===.(1)求证: 1//A B 平面1ADC ;(2)当14BC =时,求直线1B C 与平面1ADC 所成角的正弦值.【答案】(1)见解析;(2. 【解析】【试题分析】(1)依据题设条件运用直线与平面平行的判定定理进行分析推证;(2)依据题设条件建立空间直角坐标系,借助向量的有关知识与数量积公式分析求解:(1)证明:连结1AC 与1AC 相交于点E ,连结ED . ∵,D E 为中点,∴1//A B ED , 又∵1A B ⊄平面1,ADC ED ⊂平面1ADC , ∴1//A B 平面1ADC .三、在空间中点的坐标不好确定时,可以先设出来,再根据条件列方程求解确定即可.易错3:如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , 2AB BC ==, 30ACB ∠= , 1120C CB ∠= , 11BC AC ⊥,E 为AC 的中点.(1)求证: 1AC ⊥平面1C EB ; (2)求二面角1A AB C --的余弦值.【答案】(1)见解析;(2)13.则由余弦定理得2221122412AC x x x x =+-⋅=-+.22213223C E x x x x ⎛=+-⋅=++ ⎝⎭,设1AC 与1C E 交于点H ,则 1123A H AC =, 1123C H C E =,而1AC ⊥ 1C E ,则2221111A H C H AC +=.于是()()(222444122399x x x x -++++=,即260x x --=,∴3x =或2-(舍)容易求得: 1A E =22211AE AE AA +=. 故1A E AC ⊥,由面11A ACC ⊥面ABC ,则1A E ⊥面ABC ,过E 作EF AB ⊥于F ,连1A F ,则1AF E ∠为二面角1A AB C --的平面角,由平面几何知识易得2EF =, 1A F =∴111cos 3AE A FE A F ∠===.方法二:以A 点为原点, AC 为y 轴,过点A 与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系,设1A A x =, 1A AC θ∠=,则()13,0B ,()C ,()E ,()10,cos ,sin C x x θθ.∴()1,CB = , ()10,cos ,sin CC x x θθ= .由1111c o s ,2C B C C C BC C C B C C ⋅==- ,12=-,∴cos 3θ=,则1A x x ⎛⎫ ⎪ ⎪⎝⎭,10,C x x ⎛⎫ ⎪ ⎪⎝⎭,于是10,,A C x ⎛⎫= ⎪ ⎪⎝⎭ ,1,33BC x ⎛=- ⎝⎭ ,∵11AC BC ⊥ ,不妨设平面ABC 的法向量()20,0,1n =,则1212121cos ,3n n n n n n ⋅===- ,故二面角1A AB C --的余弦值为13.四、建立空间直角坐标系的原则是:让尽量多的点落在坐标轴或轴面上.易错4:如图,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将 AED DCF △,△分别沿DE ,DF 折起,使 A C ,两点重合于P .(Ⅰ)求证:平面PBD BFDE ⊥平面;(Ⅱ)求二面角P DE F --的余弦值.【答案】(Ⅰ)详见解析(Ⅱ)23所以 BE BF DE DF ==,,所以DEB DFB △≌△,所以在等腰DEF △中,O 是EF 的中点,且EF OD ⊥,因此在等腰PEF △中,EF OP ⊥,从而EF OPD ⊥平面,又EF BFDE ⊂平面,所以平面BFDE OPD ⊥平面,即平面PBD BFDE ⊥平面.…………………6分所以AF DE ⊥,于是,在翻折后的几何体中,PGF ∠为二面角P DE F --的平面角,在正方形ABCD 中,解得AG =,GF =,所以,在PGF △中,PG AG ==,GF =,1PF =, 由余弦定理得2222cos 23PG GF PF PGF PG GF +-∠==⋅, 所以,二面角P DE F --的余弦值为23.………………………………12分五、求二面角余弦值时,要正确判断二面角为钝角还是锐角.易错5:四棱锥P ABCD -中,底面ABCD 为矩形, 2AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(1)证明: PC BD ⊥;(2)设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值.【答案】(1)见解析(2)【试题解析】解:(1)证法一:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD以O 为原点, OP 为z 轴, OB 为y 轴,如图建立空间直角坐标系,并设PO h =,则()()))0,0,,0,1,0,,1,0P h B C D-所以)),2,0PC h BD =-=- 0PC BD ⋅= ,所以PC BD ⊥.证法二:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD ,从而BD PO ⊥ ①在矩形ABCD 中,连接CO ,设CO 与BD 交于M ,则由::CD CB BC BO =知BCD OBC ∆~∆,所以BCO CDB ∠=∠所以90BCM CBM CDB CBM ∠+∠=∠+∠=︒,故BD CO ⊥ ②由①②知BD ⊥平面PCO所以PC BD ⊥.六、多解问题的取舍.易错6:如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.(2)设平面EFPQ 的一个法向量为(),,n x y z = ,则 由0{0FE n FP n ⋅=⋅= ,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=- . 设平面MNPQ 的一个法向量为()',','m x y z = ,由0{0N M m N P m ⋅=⋅= ,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=-- .若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-= ,即()()2210λλλλ---+=,解得12λ=±,显然满足02λ<<.故存在12λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.【新题好题提升能力】1.如图,四棱锥P ABCD -的底面ABCD 是直角梯形, //AD BC , 36AD BC ==, PB =M 在线段AD 上,且4MD =, AD AB ⊥, PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P ABCD -的体积最大时,求平面PCM 与平面PCD 所成二面角的余弦值.【答案】(1)见解析;(2.。

2018年高考数学专题突破练5立体几何的综合问题试题理

2018年高考数学专题突破练5立体几何的综合问题试题理

专题突破练(5) 立体几何的综合问题一、选择题1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 D解析 “a ∥b ”不能得出“α∥β”,反之由“α∥β”也得不出“a ∥b ”.故选D. 2. 如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )A.455B .2 5C .4D .2答案 A解析 在△ABC 中,AC 2=AB 2+BC 2=5,∴AB ⊥BC .作BD ⊥AC 于D ,则BD 为侧视图的宽,且BD =2×15=255,∴侧视图的面积为S =2×255=455. 3.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6答案 C解析 如图,既与AB 共面也与CC 1共面的棱有CD 、BC 、BB 1、AA 1、C 1D 1,共5条. 4.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四面体A ′BCD 的体积为13答案 B解析 ∵AB =AD =1,BD =2,∴AB ⊥AD . ∴A ′B ⊥A ′D .∵平面A ′BD ⊥平面BCD ,CD ⊥BD , ∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,∴A ′B ⊥平面A ′CD , ∴A ′B ⊥A ′C ,即∠BA ′C =90°.5. [2016·云南师大附中月考]《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P -ABC 中,PA ⊥平面ABC ,AB ⊥BC ,且AP =AC =1,过A 点分别作AE ⊥PB 于点E ,AF ⊥PC 于点F ,连接EF .当△AEF 的面积最大时,tan ∠BPC 的值是( )A. 2B.22C. 3D.33答案 B解析 因为PA ⊥平面ABC ,所以PA ⊥BC ,又AB ⊥BC ,AB ∩PA =A ,所以BC ⊥平面PAB ,则BC ⊥AE ,又PB ⊥AE ,则AE ⊥平面PBC ,所以AE ⊥EF ,且AE ⊥PC ,又AF ⊥PC ,所以PC ⊥平面AEF ,所以△AEF ,△PEF 均为直角三角形,因为PA =AC =1,且PA ⊥AC ,所以AF =PF =22,而S △AEF =12AE ·EF ≤14(AE 2+EF 2)=14AF 2=18,当且仅当AE =EF 时等号成立,所以当AE =EF =12时,△AEF 的面积最大,此时tan ∠BPC =EFPF=1222=22,故选B. 6.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .8答案 B解析 如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.7.设A ,B ,C ,D 是半径为2的球面上的四点,且满足AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,则S△ABC+S △ABD +S △ACD 的最大值是( ) A .6 B .7 C .8 D .9 答案 C解析 由题意知42=AB 2+AC 2+AD 2,S △ABC +S △ACD +S △ABD =12(AB ·AC +AC ·AD +AD ·AB )≤12⎣⎢⎡ 12AB 2+AC 2 +12 AC 2+AD 2 +⎦⎥⎤12 AD 2+AB 2=12(AB 2+AC 2+AD 2)=8. 8.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,表面积的最大值是( ) A .22πR 2 B.94πR 2 C.83πR 2 D.52πR 2答案 B解析 如图所示,为组合体的轴截面,记BO 1的长度为x ,由相似三角形的比例关系,得PO 13R =x R,则PO 1=3x ,圆柱的高为3R -3x ,所以圆柱的表面积为S =2πx 2+2πx ·(3R -3x )=-4πx 2+6πRx ,则当x =34R 时,S 取最大值,S max =94πR 2.9.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A .0个B .1个C .2个D .3个 答案 C解析 本题可以转化为在MN 上找点Q 使OQ 綊PD 1,可知只有Q 点与M ,N 重合时满足条件,所以选C.10.[2016·河北唐山模拟]四棱锥M -ABCD 的底面ABCD 是边长为6的正方形,若|MA |+|MB |=10,则三棱锥A -BCM 的体积的最大值是( )A .16B .20C .24D .28 答案 C解析 ∵三棱锥A -BCM 体积=三棱锥M -ABC 的体积,又正方形ABCD 的边长为6,S △ABC=12×6×6=18,又空间一动点M 满足|MA |+|MB |=10,M 点的轨迹是椭球,当|MA |=|MB |时,M 点到AB 距离最大,h =52-32=4,∴三棱锥M -ABC 的体积的最大值为V =13S △ABC h =13×18×4=24,∴三棱锥A -BCM 体积的最大值为24,故答案为C.11.[2016·河北衡水模拟]在一个棱长为4的正方体内,最多能放入的直径为1的球的个数( )A .64B .66C .68D .70 答案 B解析 根据球体的特点,最多应该是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层继续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个),故答案为B.12.[2016·太原模拟]如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线E ,F 的平面分别与棱BB ′、DD ′交于M ,N ,设BM =x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x =12时,四边形MENF 的面积最小;③四边形MENF 周长L =f (x ),x ∈[0,1]是单调函数; ④四棱锥C ′-MENF 的体积V =h (x )为常函数. 以上命题中假命题的序号为( )A .①④ B.② C.③ D.③④ 答案 C解析 ①连接BD ,B ′D ′,则由正方体的性质可知EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连接MN ,因为EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x =12时,此时MN 长度最小,对应四边形MENF 的面积最小,所以②正确.③因为EF ⊥MN ,所以四边形MENF 是菱形.当x ∈⎣⎢⎡⎦⎥⎤0,12时,EM 的长度由大变小,当x ∈⎣⎢⎡⎦⎥⎤12,1时,EM 的长度由小变大,所以函数L =f (x )不单调,所以③错误. ④连接C ′E ,C ′M ,C ′N ,则四棱锥分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是常数.M ,N 到平面C ′EF 的距离是常数,所以四棱锥C ′-MENF 的体积V =h (x )为常函数,所以④正确.所以四个命题中③假命题,选C.二、填空题13. 如图,在正方体ABCD -A 1B 1C 1D 1中,P 为棱DC 的中点,则D 1P 与BC 1所在直线所成角的余弦值等于________.答案105解析 连接AD 1,AP ,则∠AD 1P 就是所求的角.设AB =2,则AP =D 1P =5,AD 1=22,∴cos ∠AD 1P =105. 14. 如图,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.答案6π解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |= 2 2+ 2 2+ 2 2=2R ,所以R =62,故球O 的体积V =4πR33=6π.15. [2016·江西新余模拟]如图,有一圆柱开口容器(下表面封闭),其轴截面是边长为2的正方形,P 是BC 的中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一粒米,则这只蚂蚁取得米粒的所经过的最短路程是________.答案 π2+9解析 由于圆柱的侧面展开图为矩形(如图所示),则这只蚂蚁取得米粒所经过的最短路程应为AQ +PQ ,设点E 与点A 关于直线CD 对称,因为两点之间线段最短,所以Q 为PE 与CD 的交点时有最小值,即最小值为EP =π2+9.16.[2016·山西太原模拟]棱长为a 的正方体ABCD -A 1B 1C 1D 1中,若与D 1B 平行的平面截正方体所得的截面面积为S ,则S 的取值范围是________.答案 ⎝⎛⎭⎪⎫0,6a 22解析 如图,过D 1B 的平面为BMD 1N ,其中M ,N 分别是AA 1,CC 1的中点,由于BD 1=3a ,MN =AC =2a ,AC ⊥BD 1,即MN ⊥D 1B ,所以过D 1B 与M ,N 的截面的面积为S =12AC ·BD =62a 2,因此S 的取值范围是⎝⎛⎭⎪⎫0,6a 22.三、解答题17. [2016·安徽模拟]如图,六面体ABCD -EFGH 中,四边形ABCD 为菱形,AE ,BF ,CG ,DH 都垂直于平面ABCD ,若DA =DH =DB =4,AE =CG =3.(1)求证:EG ⊥DF ;(2)求BE 与平面EFGH 所成角的正弦值.解 (1)证明:连接AC ,由AE 綊CG 可得四边形AEGC 为平行四边形,所以EG ∥AC , 又AC ⊥BD ,AC ⊥BF ,所以EG ⊥BD ,EG ⊥BF , 因为BD ∩BF =B ,所以EG ⊥平面BDHF , 又DF ⊂平面BDHF ,所以EG ⊥DF .(2)设AC ∩BD =O ,EG ∩HF =P ,由已知可得平面ADHE ∥平面BCGF ,所以EH ∥FG ,同理可得EF ∥HG ,所以四边形EFGH 为平行四边形,所以P 为EG 的中点,又O 为AC 的中点,所以OP 綊AE ,从而OP ⊥平面ABCD .又OA ⊥OB ,所以OA ,OB ,OP 两两垂直,且由平面几何知识知BF =2.如图,建立空间直角坐标系,则B (0,2,0),E (23,0,3),F (0,2,2),P (0,0,3),BE →=(23,-2,3),PE →=(23,0,0),PF →=(0,2,-1).设平面EFGH 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧PE →·n =0,PF →·n =0可得⎩⎪⎨⎪⎧x =0,2y -z =0,令y =1,则z =2,得平面EFGH 的一个法向量为n =(0,1,2),设BE 与平面EFGH 所成角为θ,则sin θ=|BE →·n ||BE →|·|n |=4525.18.[2017·河南洛阳月考]如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =4.(1)若点P 为AA 1的中点,求证:平面B 1CP ⊥平面B 1C 1P ;(2)在棱AA 1上是否存在一点P ,使得二面角B 1-CP -C 1的大小为60°?若存在,求出AP 的值;若不存在,说明理由.解 (1)证明:如图,以C 为原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (2,0,0),B 1(0,4,4),C 1(0,0,4),P (2,0,2),B (0,4,0),故C 1B 1→=(0,4,0),PC 1→=(-2,0,2),CP →=(2,0,2), 由C 1B 1→·CP →=(0,4,0)·(2,0,2)=0,得C 1B 1⊥CP , 由PC 1→·CP →=(-2,0,2)·(2,0,2)=0,得C 1P ⊥CP . 又∵C 1P ∩C 1B 1=C 1,∴CP ⊥平面B 1C 1P , 又∵CP ⊂平面B 1CP , ∴平面B 1CP ⊥平面B 1C 1P .(2)设AP =a ,则P 点坐标为P (2,0,a ),CP →=(2,0,a ),CB 1→=(0,4,4),设平面B 1CP 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·CB 1→=0,m ·CP →=0⇒⎩⎪⎨⎪⎧ 4y +4z =0,2x +az =0.令z =-1,∴m =⎝ ⎛⎭⎪⎫a 2,1,-1,而CB →=(0,4,0)为平面C 1CP 的一个法向量, ∴cos60°=|m ·CB →||m |·|CB →|=1⎝ ⎛⎭⎪⎫a 22+2=12, 解得a =2 2.∴在AA 1上存在一点P 满足题意,且AP =2 2.19. [2016·厦门质检]如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,A 1A =AB =AC ,D 是AB 的中点.(1)记平面B 1C 1D ∩平面A 1C 1CA =l ,在图中作出l ,并说明画法;(2)求直线l 与平面B 1C 1CB 所成角的正弦值.解 (1)延长B 1D 与A 1A 的延长线交于点F ,连接C 1F 交AC 于点E ,则直线C 1E (或C 1F )即为l .(2)∵D 是AB 的中点,AD ∥A 1B 1,∴A 是A 1F 的中点.又∵AE ∥A 1C 1,∴E 为AC 的中点.以A 为原点,分别以AB ,AA 1,AC 所在直线为x ,y ,z 轴,建立空间直角坐标系,如图. 令A 1A =AB =AC =2,则有B (2,0,0),B 1(2,2,0),C (0,0,2),C 1(0,2,2),E (0,0,1), ∴C 1E →=(0,-2,-1),BB 1→=(0,2,0),BC →=(-2,0,2),设平面B 1C 1CB 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BB 1→=2y =0,n ·BC →=-2x +2z =0,可取n =(1,0,1). 设l 与平面B 1C 1CB 所成角为θ, 则sin θ=|cos 〈C 1E →,n 〉⎪⎪⎪⎪ =|C 1E →·n ||C 1E →||n |=15×2=1010, 即直线l 与平面B 1C 1CB 所成角的正弦值为1010. 20.[2017·山东联考]如图甲,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,点M ,N 分别在AB ,CD 上,且MN ⊥AB ,MC ⊥CB ,BC =2,MB =4.现将梯形ABCD 沿MN折起,使平面AMND 与平面MNCB 垂直(如图乙).(1)求证:AB ∥平面DNC ;(2)当DN 的长为何值时,二面角D -BC -N 的大小为30°?解 (1)证明:∵MB ∥NC ,MB ⊄平面DNC ,NC ⊂平面DNC ,∴MB ∥平面DNC ,同理MA ∥平面DNC .又∵MA ∩MB =M ,且MA ,MB ⊂平面MAB ,∴平面MAB ∥平面DNC ,AB ⊂平面MAB ,∴AB ∥平面DNC .(2)解法一:过N 作NH ⊥BC 交BC 延长线于点H ,连接DH .∵平面AMND ⊥平面MNCB ,DN ⊥MN ,∴DN ⊥平面MNCB ,BC ⊂平面MNCB ,∴DN ⊥BC ,∵DN ∩NH =N ,∴BC ⊥平面DNH ,从而DH ⊥BC ,∴∠DHN 为二面角D -BC -N 的平面角,∴∠DHN =30°.由MB =4,BC =2,∠MCB =90°,知∠MBC =60°,∴CN =4-2cos60°=3,∴NH =3·sin60°=332. 由已知条件知tan ∠NHD =DN NH =33, ∴DN =NH ·33=332×33=32.解法二:如图,以点N 为坐标原点,以NM ,NC ,ND 所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系,易得NC =3,MN = 3.设DN =a ,则D (0,0,a ),C (0,3,0),B (3,4,0),M (3,0,0),A (3,0,a ),设平面DBC 的法向量为n 1=(x ,y ,z ),DC →=(0,3,-a ),CB →=(3,1,0), 则⎩⎪⎨⎪⎧DC →·n 1=3y -az =0,CB →·n 1=3x +y =0. 令x =-1,则y =3,z =33a ,∴n 1=⎝ ⎛⎭⎪⎫-1,3,33a .又∵平面NBC 的法向量为n 2=(0,0,1),∴|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=⎪⎪⎪⎪⎪⎪33a 1+3+27a 2=32,即⎪⎪⎪⎪⎪⎪6a =1+3+27a 2,∴a 2=94.又∵a >0,∴a =32,即DN =32.。

2018届高考数学(理)热点题型:立体几何(含答案解析)

2018届高考数学(理)热点题型:立体几何(含答案解析)

立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z), ∴⎩⎪⎨⎪⎧n·BC →=0,n·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF∥B 1C.(2)求二面角E­A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B 1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为⎝⎛⎭⎪⎫12,12,1.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=⎝⎛⎭⎪⎫12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,n 1⊥A1D→得r1,s1,t1应满足的方程组⎩⎨⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E­A1D­B1的余弦值为|n1·n2||n1|·|n2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB =1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·PD →=0,n·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n·PB →|n||PB→|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM∥平面PCD ,此时AM AP =14. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点. (1)求证:DE∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF⊥DB?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN⊥AB,垂足为点N.∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB∥CD,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF⊥BD, 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n·PC →=0,n·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n·m |n||m|=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 的位置,OD ′=10.(1)证明:D′H⊥平面ABCD ; (2)求二面角B -D′A-C 的正弦值.(1)证明 由已知得AC⊥BD,AD =CD. 又由AE =CF 得AE AD =CFCD,故AC∥EF. 因此EF⊥HD,从而EF⊥D′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D′H 2+OH 2=32+12=10=D′O 2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H , 所以D′H⊥平面ABCD.(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz. 则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD′的一个法向量, 则⎩⎪⎨⎪⎧m·AB →=0,m·AD′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD′的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m·n |m||n|=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D′A-C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE⊥AC.即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE⊥平面A 1OC.又CD∥BE,所以CD⊥平面A 1OC. (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

2018年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

2018年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

专题突破练() 立体几何的综合问题
一、选择题
.已知直线⊂平面α,直线⊂平面β,则“∥”是“α∥β”的( )
.充分不必要条件
.必要不充分条件
.既不充分又不必要条件
.充要条件
答案解析“∥”不能得出“α∥β”,反之由“α∥β”也得不出“∥”.故选.
.如图,三棱柱-中,⊥平面,==,=,=,若规定正视方向垂直平面,则此三棱柱
的侧视图的面积为( )



答案
解析在△中,=+=,∴⊥.
作⊥于,则为侧视图的宽,且==,∴侧视图的面积为=×=.
.平行六面体-中,既与共面也与共面的棱的条数为( )




答案
解析如图,既与共面也与共面的棱有、、、、,共条.
.在四边形中,===,=,⊥.将四边形沿对角线折成四面体′-,使平面′⊥平面,
则下列结论正确的是( )
.′⊥
.∠′=°
.′与平面′所成的角为°
.四面体′的体积为
答案
解析∵==,=,∴⊥.
∴′⊥′.∵平面′⊥平面,⊥,
∴⊥平面′,∴⊥′,∴′⊥平面′,
∴′⊥′,即∠′=°.
. 如图,在三棱锥-中,不能证明⊥的条件是( )
.⊥,⊥
.⊥,⊥
.平面⊥平面,⊥
.⊥平面
答案
解析由⊥,⊥可推出⊥平面,∴⊥,故排除;由平面⊥平面,⊥可推出⊥平面,∴⊥,
故排除;由⊥平面可推出⊥,故排除,选.。

专题05 立体几何(选择题、填空题)——三年(2018-2020)高考真题理科数学分项汇编(含解析)

专题05 立体几何(选择题、填空题)——三年(2018-2020)高考真题理科数学分项汇编(含解析)
15.
点).记直线 PB 与直线 AC 所成的角为α,直线 PB 与平面 ABC 所成的角为β,二面角 P–AC–B 的平面角
为γ,则
A.β<γ,α<γ
B.β<α,β<γ
C.β<α,γ<α
D.α<β,γ<β
16.【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在
9.

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
10.
【2020 年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的
影子来测定时间.把地球看成一个球(球心记为 O),地球上一点 A 的纬度是指 OA 与地球赤道所在平面
所成角,点 A 处的水平面是指过点 A 且与 OA 垂直的平面.在点 A 处放置一个日晷,若晷面与赤道所在平
专题 05
立体几何(选择题、填空题)
1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高
与底面正方形的边长的比值为
A.
5 1
4
B.
5 1
2
C.
5 1
4
D.
5 1
19.【2018 年高考浙江卷】某几何体的三视图如图所示(单位:cm)
A.2
B.4
C.6
D.8
20.【2018 年高考全国Ⅲ卷理数】设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三

2018届高三数学(理)三轮复习高考大题专攻练 立体几何 含解析

2018届高三数学(理)三轮复习高考大题专攻练 立体几何 含解析

高考大题专攻练立体几何(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC.(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D -AE-C的余弦值.【解题导引】(1)若证明平面ACD⊥平面ABC可根据面面垂直的判定在平面ACD内找一条线垂直平面ABC,从而转化为线面垂直,再利用线线垂直确定线面垂直.(2)利用(1)中的垂直关系建立空间直角坐标系,求平面ADE和平面ACE的法向量,求法向量的余弦值得二面角的余弦值.【解析】(1)如图,取AC中点O,连接OD,OB.由∠ABD=∠CBD,AB=BC=BD知△ABD≌△CBD,所以CD=AD.由已知可得△ADC为等腰直角三角形,D为直角顶点,则OD⊥AC,设正△ABC边长为a,则OD=AC=a,OB=a,BD=a,所以OD2+OB2=BD2,即OD⊥OB.又OB∩AC=O,所以OD⊥平面ABC,又OD⊂平面ACD,所以平面ACD⊥平面ABC.(2)如图,以OA,OB,OD所在直线分别为x轴,y轴,z轴建立空间直角坐标系,当E为BD中点时,平面AEC把四面体ABCD分成体积相等的两部分,故可得A,D,C,E,则=,=.设平面ADE的一个法向量为n1=,则即令z1=1,则x1=1,y1=,所以n1=.同理可得平面AEC的一个法向量n2=,所以cos<n1,n2>===.因为二面角D -AE-C的平面角为锐角,所以二面角D -AE-C的余弦值为.2.如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB∥CD,AD⊥CD,AB=AD=CD.(1)求证:BF∥平面CDE.(2)求平面BDF与平面CDE所成锐二面角的余弦值.【解析】(1)因为AF∥DE,AF⊄平面CDE,DE⊂平面CDE,所以AF∥平面CDE,同理,AB∥平面CDE,又AF∩AB=A,所以平面ABF∥平面CDE,又BF⊂平面ABF,所以BF∥平面CDE.(2)因为正方形ADEF与梯形ABCD所在平面互相垂直,正方形ADEF 与梯形ABCD交于AD,CD⊥AD,所以CD⊥平面ADEF,因为DE⊂平面ADEF,所以CD⊥ED,因为ADEF为正方形,所以AD⊥DE,因为AD⊥CD,所以以D为原点,DA,DC,DE所在直线分别为x,y,z轴,建立空间直角坐标系,则设AD=1,则D(0,0,0),B(1,1,0),F(1,0,1),A(1,0,0),=(1,1,0),=(1,0,1),取平面CDE的一个法向量=(1,0,0),设平面BDF的一个法向量为n=(x,y,z),则即取n=(1,-1,-1),cos<,n>=,所以平面BDF与平面CDE所成锐二面角的余弦值为.高考大题专攻练立体几何(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面PAB.(2)求直线CE与平面PBC所成角的正弦值.【解题导引】(1)取PA的中点F,连接EF,BF,证明四边形BCEF为平行四边形,证明CE∥BF,从而证明CE∥平面PAB.(2)取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ,证明MQ∥CE,MQ与平面PBC所成的角,就等于CE与平面PBC所成的角.过Q作QH⊥PB,连接MH,证明MH就是MQ在平面PBC 内的射影,这样只要证明平面PBN⊥平面PBC即可.【解析】(1)如图,设PA中点为F,连接EF,FB.因为E,F分别为PD,PA中点,所以EF∥AD且EF=AD,又因为BC∥AD,BC=AD,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ. 因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以直线CE与平面PBC所成角的正弦值是.2.如图几何体是圆柱体的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G为的中点.(1)设P是上一点,AP⊥BE,求∠CBP的大小.(2)当AD=2,AB=3,求二面角E-AG-C的大小.【解题导引】(1)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH,可得四边形BEHC 为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM ⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E-AG-C的大小.方法二:以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z 轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E-AG-C的大小.【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==,取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.方法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.则∠EBP=90°,由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面AC G的一个法向量n=(3,-,-2).。

2018届高考数学(文)二轮专题复习习题:第1部分 专题五 立体几何 1-5-2 Word版含答案

2018届高考数学(文)二轮专题复习习题:第1部分 专题五 立体几何 1-5-2 Word版含答案

限时规范训练十三空间中的平行与垂直限时40分钟,实际用时________分值80分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为直线a和直线b相交,所以直线a与直线b有一个公共点,而直线a,b分别在平面α、β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a与直线b可能相交、平行、异面.故选A.2.(2017·高考全国卷Ⅲ)在正方体ABCD­A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C.根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A项,若A1E⊥DC1,那么D1E⊥DC1,很显然不成立;B项,若A1E⊥BD,那么BD⊥AE,显然不成立;C项,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C时,也能推出BC1⊥A1E,所以C 成立,D项,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A.选项A中,由平面与平面垂直的判定定理可知A正确;选项B中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;选项C中,l∥β时,α,β可以相交;选项D中,α∥β时,l,m也可以异面.4.已知α,β为两个平面,l为直线,若α⊥β,α∩β=l,则( )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直解析:选D.由α⊥β,α∩β=l,知:垂直于平面β的平面与平面α平行或相交,故A不正确;垂直于直线l的直线若在平面β内,则一定垂直于平面α,否则不一定,故B不正确;垂直于平面β的平面与l的关系有l⊂β,l∥β,l与β相交,故C不正确;由平面垂直的判定定理知:垂直于直线l的平面一定与平面α,β都垂直,故D正确.5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是( ) A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β解析:选C.利用排除法求解.A的逆命题为:c⊥α,若α∥β,则c⊥β,成立;B的逆命题为:b⊂α,c⊄α,若b∥c,则c∥α,成立;C的逆命题为:b⊂β,若β⊥α,则b⊥α,不成立;D的逆命题为:a,b⊂α,a∩b=P,c⊥a,c⊥b,若c⊂β,则α⊥β,成立,故选C.6.(2017·江西六校联考)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确命题的序号是( )A.①④B.②④C.①D.④解析:选A.借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,故①正确;对于②,平面α,β可能垂直,如图(1)所示,故②不正确;对于③,平面α,β可能垂直,如图(2)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(3)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.综上,选A.二、填空题(本题共3小题,每小题5分,共15分)7.如图,四棱锥P­ABCD的底面是直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E 为PC的中点,则BE与平面PAD的位置关系为________.解析:取PD的中点F,连接EF,AF,在△PCD 中,EF 綊12CD .又因为AB ∥CD 且CD =2AB ,所以EF 綊AB ,所以四边形ABEF 是平行四边形, 所以EB ∥AF .又因为EB ⊄平面PAD ,AF ⊂平面PAD , 所以BE ∥平面PAD . 答案:平行8.(2017·山师大附中模拟)若α,β是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线m ⊥α,则在平面β内,一定不存在与直线m 平行的直线; ②若直线m ⊥α,则在平面β内,一定存在无数条直线与直线m 垂直; ③若直线m ⊂α,则在平面β内,不一定存在与直线m 垂直的直线; ④若直线m ⊂α,则在平面β内,一定存在与直线m 垂直的直线.解析:对于①,若直线m ⊥α如果α,β互相垂直,则在平面β内,存在与直线m 平行的直线,故①错误;对于②,若直线m ⊥α,则直线m 垂直于平面α内的所有直线,在平面β内存在无数条与交线平行的直线,这无数条直线均与直线m 垂直,故②正确;对于③,④,若直线m ⊂α,则在平面β内,一定存在与直线m 垂直的直线,故③错误,④正确.答案:②④9.(2017·沈阳三模)如图,已知四边形ABCD 为矩形,PA ⊥平面ABCD ,下列结论中正确的是________.(把正确结论的序号都填上)①PD ⊥CD ; ②BD ⊥平面PAO ; ③PB ⊥CB ; ④BC ∥平面PAD .解析:对于①,因为CD ⊥AD ,CD ⊥PA ,AD ∩PA =A ,所以CD ⊥平面PAD ,所以CD ⊥PD ,则①正确;对于②,BD ⊥PA ,当BD ⊥AO 时,BD ⊥平面PAO ,但BD 与AO 不一定垂直,故②不正确;对于③,因为CB ⊥AB ,CB ⊥PA ,AB ∩PA =A ,所以CB ⊥平面PAB ,所以CB ⊥PB ,则③正确; 对于④,因为BC ∥AD ,BC ⊄平面PAD ,AD ⊂平面PAD ,所以BC ∥平面PAD ,则④正确.故填①③④.答案:①③④三、解答题(本题共3小题,每小题12分,共36分)10.(2017·高考全国卷Ⅱ)如图,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ­ABCD 的体积. 解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =32AD =3x ,PC =PD =PM 2+CM 2=2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =PC 2-⎝ ⎛⎭⎪⎫12CD 2=4x 2-14×2x 2=142x .因为△PCD 的面积为27,所以12×2x ×142x =27,解得x =-2(舍去)或x =2. 于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ­ABCD 的体积V =13×+2×23=4 3.11.(2017·山东潍坊模拟)如图,在四棱台ABCD ­A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ; (2)证明:CC 1∥平面A 1BD .证明:(1)因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD , 所以D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°, 在△ABD 中,由余弦定理得BD =AB 2+AD 2-2AB ·AD ·cos 60°=4AD 2+AD 2-2AD 2=3AD , 所以AD 2+BD 2=AB 2,即AD ⊥BD . 又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD . (2)连接AC ,A 1C 1. 设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形, 所以EC =12AC .由棱台定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC , 所以四边形A 1ECC 1为平行四边形, 因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD . 所以CC 1∥平面A 1BD .12.(2017·吉林调研)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图②中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.解:(1)证明:在题图①中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图②中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1),A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1­BCDE 的高. 由题图①知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1­BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.。

2018年高考数学三轮冲刺点对点试卷立体几何综合题理

2018年高考数学三轮冲刺点对点试卷立体几何综合题理

立体几何综合题(理)1.四棱柱1111ABCD A B C D -中,底面ABCD 为正方形, 1AA ⊥平面,ABCD M 为棱1DD 的中点, N 为棱AD 的中点, Q 为棱1BB 的中点.(1)证明:平面//MNQ 平面1C BD ;(2)若12AA AB =,棱11A B 上有一点P ,且()()1110,1A P A B λλ=∈,使得二面角P MN Q --的余弦值为132163,求λ的值.2.如图,在五面体ABCDPN 中,棱PA ⊥底面ABCD , 2AB AP PN ==.底面ABCD 是菱形, 23BAD π∠=.(Ⅰ)求证: PNAB ;(Ⅱ)求二面角B DN C --的余弦值.3.如图四棱锥P ABCD -的底面ABCD 为菱形,且60ABC ∠=︒, 2AB PC ==, 2PA PB ==.(Ⅰ)求证:平面PAB ⊥平面ABCD ; (Ⅱ)二面角P AC B --的余弦值.4.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,侧面PAD 是边长为2的正三角形, AB BD = 7=,3PB =.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)设Q 是棱PC 上的点,当PA 平面BDQ 时,求二面角A BD Q --的余弦值. 5.如图,已知菱形ABCD 与直角梯形ABEF 所在的平面互相垂直,其中BEAF , AB AF ⊥,122AB BE AF ===, 3CBA π∠=, P 为DF 的中点.(Ⅰ)求证: PE ∥平面ABCD ; (Ⅱ)求二面角D EF A --的余弦值;(Ⅲ)设G 为线段AD 上一点, AG AD λ=, 若直线FG 与平面ABEF 39求AG 的长. 6.在四棱锥P ABCD -中,底面ABCD 为平行四边形, 3AB =, 22AD =, 45ABC ∠=︒, P 点在底面ABCD 内的射影E 在线段AB 上,且2PE =, 2BE EA =, F 为AD 的中点, M 在线段CD 上,且CM CD λ=.(Ⅰ)当23λ=时,证明:平面PFM ⊥平面PAB ; (Ⅱ)当平面PAM 与平面ABCD 所成的二面角的正弦值为255时,求四棱锥P ABCM -的体积. 7.如图,四棱锥P ABCD -底面为正方形,已知PD ⊥平面ABCD , PD AD =,点M 为线段PA 上任意一点(不含端点),点N 在线段BD 上,且PM DN =.(1)求证:直线//MN 平面PCD ;(2)若M 为线段PA 中点,求直线PB 与平面AMN 所成的角的余弦值. 8.如图,三棱柱111ABC A B C -中,四边形11AA BB 是菱形,,二面角11C A B B --为6π, 1CB =. (Ⅰ)求证:平面1ACB ⊥平面1CBA ; (Ⅱ)求二面角1A AC B --的余弦值.9.如图,已知多面体EABCDF 的底面ABCD 是边长为2的正方形, EA ⊥底面ABCD , //FD EA ,且112FD EA ==.(Ⅰ)求多面体EABCDF 的体积;(Ⅱ)求直线EB 与平面ECF 所成角的正弦值;(Ⅲ)记线段BC 的中点为K ,在平面ABCD 内过点K 作一条直线与平面ECF 平行,要求保留作图痕迹,但不要求证明.10.如图,四棱锥P ABCD -中,侧面PAD ⊥底面ABCD , //AD BC , AD DC ⊥, 3AD DC ==, 2BC =,26PD PA ==,点F 在棱PG 上,且2FC FP =,点E 在棱AD 上,且//PA 平面BEF .(1)求证: PE ⊥平面ABCD ; (2)求二面角P EB F --的余弦值.11.如图所示的几何体中,ABC ∆内接于圆O ,且AB 是圆O 的直径,四边形DCBE 为矩形,且DC AB ⊥. (Ⅰ)证明:AD BC ⊥;(Ⅱ)若4,2AB BC ==且二面角A BD C --所成角θ5试求该几何体ABCDE 的体积.12. 已知四棱锥P ABCD-的底面是平行四边形,E F,分别是AD PC,的中点,EF BD⊥,22AP AB AD==,0=60BAD∠.(Ⅰ)求证:BD APB⊥面;(Ⅱ)若AB PB=,求二面角C BE F--的余弦值.FEABDCP13. 如图1,在ABC∆中,9036C BC AC∠︒=,=,=,,D E分别是AC AB,上的点,且DE BC∥,2DE=.将ADE∆沿DE折起到1A DE∆的位置,使1AC CD⊥,如图2.(Ⅰ)M是1A D的中点,求CM与平面1A BE所成角的大小;(Ⅱ)求二面角1A BE C--的正切值.14. 如图,矩形CDEF所在平面与直角梯形ABCD所在平面垂直,其中//AB CD,11,22AB BC CD===,BC CD⊥,//MB FC,3MB FC==.P、Q分别为BC、AE的中点.(1)求证://PQ平面MAB;(2)求二面角A EC D--的余弦值.15. 如图所示,棱柱111ABC A B C-为正三棱柱,且1AC C C=,其中点,F D分别为11,AC B B的中点.(1)求证://DF平面ABC;(2)求证:DF⊥平面1ACC;(3)求平面1DC A与平面ABC所成的锐二面角的余弦值CDFB1A1C1B16. 如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(Ⅰ)求证:AF//平面BDH;(Ⅱ)求二面角A﹣FE﹣C的大小.。

浙江专用2018版高考数学大一轮复习高考专题突破五高考中的立体几何问题

浙江专用2018版高考数学大一轮复习高考专题突破五高考中的立体几何问题

(浙江专用)2018版高考数学大一轮复习 高考专题突破五 高考中的立体几何问题教师用书1.多面体的三视图如图所示,则该多面体的体积为( )A.43 B .2 C.83 D.103 答案 D解析 由三视图可知该几何体为一个三棱柱削去一个三棱锥得到的几何体,该三棱柱的体积为12×2×2×2=4,三棱锥的体积为13×12×2×2×1=23,所以该几何体的体积为4-23=103,故选D.2.正三棱柱ABC -A 1B 1C 1中,D 为BC 中点,E 为A 1C 1中点,则DE 与平面A 1B 1BA 的位置关系为( ) A .相交 B .平行 C .垂直相交 D .不确定答案 B解析 如图取B 1C 1中点为F ,连接EF ,DF ,DE ,则EF ∥A 1B 1,DF ∥B 1B , ∴平面EFD ∥平面A 1B 1BA , ∴DE ∥平面A 1B 1BA .3.(2016·沈阳模拟)设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________.(把所有正确的序号填上) 答案 ①或③解析 由线面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.4.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________. 答案 23解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,则⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.题型一 求空间几何体的表面积与体积例1 (2016·全国甲卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2,则正棱锥侧面的斜高为12+22= 3.∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2=92+6 3.(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P -ABC =V O -PAB +V O -PBC +V O -PAC +V O -ABC =13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P -ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=232-2318-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π.V 内切球=43π(6-2)3=83(96-22)π.题型二 空间点、线、面的位置关系例2 (2016·济南模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,BC ∩BB 1=B , 所以AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连接C 1H ,FH .因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形,所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33. 思维升华 (1)①证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.②证明C 1F ∥平面ABE :(ⅰ)利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .(ⅱ)利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行与面面平行的转化.(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进行体积的转化.(2016·南京模拟)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .证明 (1)由AS =AB ,AF ⊥SB 知F 为SB 中点, 则EF ∥AB ,FG ∥BC ,又EF ∩FG =F ,AB ∩BC =B , 因此平面EFG ∥平面ABC .(2)由平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AF ⊂平面SAB ,AF ⊥SB , 所以AF ⊥平面SBC ,则AF ⊥BC .又BC ⊥AB ,AF ∩AB =A ,则BC ⊥平面SAB , 又SA ⊂平面SAB ,因此BC ⊥SA . 题型三 空间角的计算例3 (2016·金华十校调研)如图,在矩形ABCD 中,已知AB =2,AD =4,点E ,F 分别在AD ,BC 上,且AE =1,BF =3,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ; (2)求线段BH 的长度;(3)求直线AF 与平面EFCD 所成角的正弦值. (1)证明 ∵BH ⊥平面CDEF ,∴BH ⊥CD , 又CD ⊥DE ,BH ∩DE =H , ∴CD ⊥平面DBE ,∴CD ⊥BE .(2)解 方法一 设BH =h ,EH =k ,过F 作FG 垂直ED 于点G , ∵线段BE ,BF 在翻折过程中长度不变,根据勾股定理得⎩⎪⎨⎪⎧BE 2=BH 2+EH 2,BF 2=BH 2+FH 2=BH 2+FG 2+GH 2⇒⎩⎪⎨⎪⎧5=h 2+k 2,9=22+h 2+-k2,解得⎩⎪⎨⎪⎧h =2,k =1,∴线段BH 的长度为2.方法二 如图,过点E 作ER ∥DC ,过点E 作ES ⊥平面EFCD , 分别以直线ER ,ED ,ES 为x ,y ,z 轴建立空间直角坐标系,设点B (0,y ,z )(y >0,z >0), 由于F (2,2,0),BE =5,BF =3,∴⎩⎪⎨⎪⎧y 2+z 2=5,4+y -2+z 2=9,解得⎩⎪⎨⎪⎧y =1,z =2,于是B (0,1,2),∴线段BH 的长度为2.(3)解 方法一 延长BA 交EF 于点M , ∵AE ∶BF =MA ∶MB =1∶3,∴点A 到平面EFCD 的距离为点B 到平面EFCD 距离的13,∴点A 到平面EFCD 的距离为23,而AF =13,故直线AF 与平面EFCD 所成角的正弦值为21339.方法二 由(2)方法二知FB →=(-2,-1,2), 故EA →=13FB →=(-23,-13,23),FA →=FE →+EA →=(-83,-73,23),设平面EFCD 的一个法向量为n =(0,0,1), 直线AF 与平面EFCD 所成角的大小为θ, 则sin θ=|FA →·n ||FA →||n |=21339.(2016·杭州学军中学高三5月模拟)如图,在四棱锥P -ABCD 中,AB ⊥PA ,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠PAD =120°.(1)求证:平面PAD ⊥平面PCD ;(2)求直线PD 与平面PBC 所成角的正弦值. (1)证明 ∵BC =BD ,取CD 的中点E ,连接BE ,∴BE ⊥CD ,∵AB ∥CD ,且CD =2AB , ∴AB ∥DE ,且AB =DE , ∴四边形ABED 是矩形, ∴BE ∥AD ,且BE =AD ,AB ⊥AD ,又∵AB ⊥PA ,PA ∩AD =A ,PA ⊂平面PAD ,AD ⊂平面PAD , ∴AB ⊥平面PAD ,∴CD ⊥平面PAD , 又∵CD ⊂平面PCD ,∴平面PAD ⊥平面PCD .(2)解 以A 为原点,AB 为x 轴,AD 为y 轴,建立空间直角坐标系,如图所示.∵PB =BC =BD =6,CD =2AB =22,∠PAD =120°, ∴PA =PB 2-AB 2=6-2=2,AD =BE =BD 2-AB 2=6-2=2, BC =BE 2+CE 2=4+2=6,则P (0,-1,3),D (0,2,0),B (2,0,0),C (22,2,0), PD →=(0,3,-3),BP →=(-2,-1,3), BC →=(2,2,0).设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=2x +2y =0,n ·BP →=-2x -y +3z =0,取x =2,得n =(2,-1,33), 设直线PD 与平面PBC 所成的角为θ,则sin θ=|cos 〈PD →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪⎪⎪-3-112·103=105,∴直线CD 与平面PBC 所成角的正弦值为105.1.(2016·山东牟平一中期末)如图,在四棱柱ABCD -A 1B 1C 1D 1中,AC ⊥B 1D ,BB 1⊥底面ABCD ,E ,F ,H 分别为AD ,CD ,DD 1的中点,EF 与BD 交于点G .(1)证明:平面ACD1⊥平面BB1D;(2)证明:GH∥平面ACD1.证明(1)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1.又AC⊥B1D,BB1∩B1D=B1,∴AC⊥平面BB1D.∵AC⊂平面ACD1,∴平面ACD1⊥平面BB1D.(2)设AC∩BD=O,连接OD1.∵E,F分别为AD,CD的中点,EF∩OD=G,∴G为OD的中点.∵H为DD1的中点,∴HG∥OD1.∵GH⊄平面ACD1,OD1⊂平面ACD1,∴GH∥平面ACD1.2.(2016·咸阳模拟)如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.(1)证明:AC∥平面BEF;(2)求三棱锥D-BEF的体积.(1)证明 如图,取BF 的中点M ,设AC 与BD 交点为O ,连接MO ,ME .由题设知,CE 綊12DF ,MO 綊12DF , ∴CE 綊MO ,故四边形OCEM 为平行四边形,∴EM ∥CO ,即EM ∥AC .又AC ⊄平面BEF ,EM ⊂平面BEF ,∴AC ∥平面BEF .(2)解 ∵平面CDFE ⊥平面ABCD ,平面CDFE ∩平面ABCD =DC ,BC ⊥DC ,∴BC ⊥平面DEF .∴三棱锥D -BEF 的体积为V D -BEF =V B -DEF =13S △DEF ·BC =13×12×2×2×2=43. 3.(2016·宁波高三上学期期末)如图,在多面体EF -ABCD 中,四边形ABCD ,ABEF 均为直角梯形,∠ABE =∠ABC =90°,四边形DCEF 为平行四边形,平面DCEF ⊥平面ABCD .(1)求证:DF ⊥平面ABCD ;(2)若BC =CD =CE =12AB ,求直线BF 与平面ADF 所成角的正弦值. (1)证明 由四边形DCEF 为平行四边形,知EF ∥CD ,所以EF ∥平面ABCD .又平面ABEF ∩平面ABCD =AB ,从而有AB ∥CD ∥EF .因为∠ABE =∠ABC =90°,所以AB ⊥BE ,AB ⊥BC ,又因为BE ∩BC =B ,所以AB ⊥平面BCE ,因为CE ⊂平面BCE ,所以AB ⊥CE .又四边形DCEF 为平行四边形,有DF ∥CE ,所以DC ⊥DF ,又因为平面DCEF ⊥平面ABCD ,平面DCEF ∩平面ABCD =DC ,所以DF ⊥平面ABCD .(2)解 不妨设BC =1,则BC =CD =CE =1,AB =2,四边形ABCD 为直角梯形,连接BD ,则有BD =AD =2,则BD ⊥AD ,由DF ⊥平面ABCD ,知DF ⊥BD ,因为DF ∩AD =D ,所以BD ⊥平面FAD ,则∠BFD 即为直线BF 与平面ADF 所成角,在△BFD 中,DF ⊥BD ,BD =2,DF =1,则BF =3,所以sin∠BFD =BD DF =23=63, 所以直线BF 与平面ADF 所成角的正弦值为63. 4.(2016·全国乙卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D-AF-E 与二面角C-BE-F 都是60°.(1)证明:平面ABEF ⊥EFDC ;(2)求二面角E-BC-A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩FE =F ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D-AF-E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,AB ⊄平面EFDC ,EF ⊂平面EFDC ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角CBEF 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧ n ·EC →=0,n ·EB →=0,即⎩⎨⎧ x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧ m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E-BC-A 的余弦值为-21919. 5.(2016·绍兴期末)如图所示的几何体中,四边形ABCD 为梯形,AD ∥BC ,AB ⊥平面BEC ,EC ⊥CB ,已知BC =2AD =2AB =2.(1)证明:BD ⊥平面DEC ;(2)若二面角A -ED -B 的大小为30°,求EC 的长度.(1)证明 因为AB ⊥平面BEC ,所以AB ⊥EC .又因为EC ⊥BC ,AB ∩BC =B ,所以EC ⊥平面ABCD .因为BD ⊂平面ABCD ,所以EC ⊥BD .由题意可知,在梯形ABCD 中,有BD =DC =2,所以BD 2+DC 2=BC 2,所以BD ⊥DC .又EC ∩CD =C ,所以BD ⊥平面DEC .(2)解 如图,以点B 为坐标原点,以BA 所在直线为z 轴,BC 所在直线为y 轴,以过点B 且平行于CE 的直线为x 轴,建立空间直角坐标系.设|EC →|=a >0,则B (0,0,0),E (a,2,0),A (0,0,1),C (0,2,0),D (0,1,1).设平面AED 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AD →=0,m ·ED →=0,即⎩⎪⎨⎪⎧ y =0,-ax -y +z =0,令x =1,得平面AED 的一个法向量为m =(1,0,a ),设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧ y +z =0,ax +2y =0,令x =2,得平面BED 的一个法向量为n =(2,-a ,a ).又二面角A -ED -B 的大小为30°,所以cos 30°=|m ·n|m ||n ||=2+a 2a 2+1·2a 2+4=32,得a =1,所以EC =1.。

2018届高考数学(理)热点题型:立体几何(word版,(有答案))AlAwPw

2018届高考数学(理)热点题型:立体几何(word版,(有答案))AlAwPw

立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何答案1.(本小题14分)如图,在三棱柱ABC −中,平面ABC ,D ,E ,F ,G 分别为111A B C 1CC ⊥,AC ,,的中点,AB=BC,AC ==2.1AA 11A C 1BB 1AA(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥,AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥.又1CC ⊥平面ABC ,EF ∴⊥平面ABC .BE ⊂Q 平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G ,()=2,01CD ∴u u u r ,,()=1,2,0CB u u r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩u u u r u u r n n ,2020a c a b +=⎧∴⎨+=⎩,令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB u u r ,cos =EB EB EB⋅∴<⋅>=-u u r u u r u u r n n n .由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-u u u r ,,2GF ∴⋅=-u u u r n ,∴n 与GF u u u r 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交2.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =,Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形,EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .3.(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF ,BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD .(2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥,设4AB =,则4EF =,2PF =,∴PE =,过P 作PH EF ⊥交EF 于H 点,由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴PH ==,而4PD =,∴sin PH PDH PD ∠==,∴DP 与平面ABFD .4.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.C【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =,连结OB.因为AB BC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C,(P,(AP =u u u r ,取平面PAC 的法向量()2,0,0OB =u u u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-u u u r ,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=u u u r n ,0AM ⋅=u u u r n ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,cos ,OB ∴<>=u u u rn ,由已知得cos ,OB <>=u u u r n,,解得4a =-(舍去),43a =,43⎛⎫∴=- ⎪⎪⎝⎭n ,又(0,2,PC =-u uu r Q ,所以cos ,PC <>=u u u r n .所以PC 与平面PAM .5.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧A CD所在平面垂直,M 是A CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.解答:(1)∵正方形半圆面,ABCD⊥CMD∴半圆面,∴平面.AD⊥CMD AD⊥MCD∵在平面内,∴,又∵是半圆弧上异于的点,∴CM MCD AD CM⊥M CD,C D .又∵,∴平面,∵在平面内,∴平面CM MD⊥AD DM D=I CM⊥ADM CM BCM平面.BCM⊥ADM(2)如图建立坐标系:∵面积恒定,ABCS∆∴,最大.MO CD⊥M ABCV-,,,,,(0,0,1)M(2,1,0)A-(2,1,0)B(0,1,0)C(0,1,0)D-设面的法向量为,设面的法向量为,MAB111(,,)m x y z=u rMCD222(,,)n x y z=r,,(2,1,1)MA=--(2,1,1)MB=-,,(0,1,1)MC=-(0,1,1)MD=--,11111120(1,0,2)20x y zmx y z--=⎧⇒=⎨+-=⎩同理,,(1,0,0)n=∴,∴.cosθ==sinθ=6.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13分)如图,且AD =2BC ,,且EG =AD ,且AD BC ∥AD CD ⊥EG AD ∥CD FG ∥CD =2FG ,,DA =DC =DG =2.DG ABCD ⊥平面(I )若M 为CF 的中点,N 为EG 的中点,求证:;MN CDE ∥平面(II )求二面角的正弦值;E BCF --(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC = ,()2,0,2DE = .设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅= n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC = ,()1,2,2BE =- ,()0,1,2CF =- .设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=.所以,二面角––E BC F.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =-- .易知,()0,2,0DC = 为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>== ,sin 60=︒=,解得[]0,2h =.所以线段DP.8.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.解答:(1)∵,且平面,12AB B B ==1B B ⊥ABC∴,∴.1B B AB ⊥1AB =同理,1AC ===过点作的垂线段交于点,则且,∴.1C 1B B 1B B G 12C G BC ==11B G =11B C =在中,,11AB C ∆2221111AB B C AC +=∴,①111AB B C ⊥过点作的垂线段交于点.1B 1A A 1A A H则,,∴.12B H AB ==12A H =11A B =在中,,11A B A ∆2221111AA AB A B =+∴,②111AB A B ⊥综合①②,∵,平面,平面,11111A B B C B ⋂=11A B ⊂111A B C 11B C ⊂111A B C ∴平面.1AB ⊥111A B C (2)过点作的垂线段交于点,以为原点,以所在直线为轴,B AB AC I B AB x 以所在直线为轴,以所在直线为轴,建立空间直角坐标系.BI y 1B B z B xyz -则,,,,(0,0,0)B (2,0,0)A -1(0,0,2)B 1C 设平面的一个法向量,1ABB (,,)n a b c = 则,令,则,1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ 1b =(0,1,0)n = 又∵,.1AC =1cos ,n AC <>== 由图形可知,直线与平面所成角为锐角,设与平面夹角为.1AC 1ABB 1AC 1ABB α∴.sin α=9.(本小题满分14分)在平行六面体中,.1111ABCD A B C D -1111,AA AB AB B C =⊥求证:(1);11AB A B C 平面∥(2).111ABB A A BC ⊥平面平面【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形.又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B = ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .。

2018版高考数学理北师大版大一轮复习讲义教师版文档

2018版高考数学理北师大版大一轮复习讲义教师版文档

1.(2015·课标全国Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 答案 D解析 如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0), ∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.2.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1 C.x 230+y 210=1 D.x 245+y 225=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示,因为F (-25,0)为C 的左焦点,所以c =2 5. 由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′. 在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=(45)2-42=8. 由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆的方程为x 236+y 216=1.3.(2017·太原质量预测)已知A ,B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点,直线y =kx (k >0)与椭圆交于C ,D 两点,若四边形ACBD 的面积的最大值为2c 2,则椭圆的离心率为( ) A.13 B.12 C.33 D.22 答案 D解析 设C (x 1,y 1)(x 1>0),D (x 2,y 2), 将y =kx 代入椭圆方程可解得x 1=abb 2+a 2k 2,x 2=-abb 2+a 2k 2,则|CD |=1+k 2|x 1-x 2|=2ab 1+k 2b 2+a 2k 2.又点A (a,0)到直线y =kx 的距离d 1=ak 1+k 2,点B (0,b )到直线y =kx 的距离d 2=b1+k 2, 所以S 四边形ACBD =12d 1|CD |+12d 2|CD |=12(d 1+d 2)·|CD |=12·b +ak 1+k 2·2ab 1+k 2b 2+a 2k 2=ab ·b +akb 2+a 2k 2.令t =b +akb 2+a 2k 2,则t 2=b 2+a 2k 2+2abk b 2+a 2k 2=1+2ab ·k b 2+a 2k2=1+2ab ·1b 2k +a 2k ≤1+2ab ·12ab =2,当且仅当b 2k =a 2k ,即k =ba 时,t max =2,所以S 四边形ACBD 的最大值为2ab . 由条件,有2ab =2c 2,即2c 4=a 2b 2=a 2(a 2-c 2)=a 4-a 2c 2, 2c 4+a 2c 2-a 4=0,2e 4+e 2-1=0,解得e 2=12或e 2=-1(舍去),所以e =22,故选D.4.(2016·北京)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________. 答案 2解析 设B 为双曲线的右焦点,如图所示. ∵四边形OABC 为正方形且边长为2, ∴c =|OB |=22, 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________. 答案 x 24-y 23=1解析 由题意,得双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点坐标为(7,0),(-7,0),c =7且双曲线的离心率为2×74=72=ca⇒a =2,b 2=c 2-a 2=3, 双曲线的方程为x 24-y 23=1.题型一 求圆锥曲线的标准方程例1 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 答案 D解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程, 得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18.思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.(2015·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1答案 D解析 双曲线x 2a 2-y 2b 2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2ba 2+b 2=3,② 联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D.题型二 圆锥曲线的几何性质例2 (1)(2015·湖南)若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73 B.54 C.43 D.53(2)(2016·天津)设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝⎛⎭⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________. 答案 (1)D (2) 6解析 (1)由条件知y =-b a x 过点(3,-4),∴3ba =4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.(2)由⎩⎪⎨⎪⎧x =2pt 2,y =2pt(p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝⎛⎭⎫p 2,0, |AB |=|AF |=32p ,可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6.思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.已知椭圆x 2a 2+y 2b2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为____________.答案2-1解析 因为抛物线y 2=2px (p >0)的焦点F 为⎝⎛⎭⎫p 2,0,设椭圆另一焦点为E . 当x =p2时,代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝⎛⎭⎫p 2,p 且PF ⊥OF . 所以|PE |=(p 2+p2)2+p 2=2p , |PF |=p ,|EF |=p .故2a = 2p +p,2c =p ,e =2c2a=2-1.题型三 最值、范围问题例3 若直线l :y =3x 3-233过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,且与双曲线的一条渐近线平行. (1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 在y 轴上的截距的取值范围. 解 (1)由题意,可得c =2,b a =33,所以a 2=3b 2,且a 2+b 2=c 2=4, 解得a =3,b =1.故双曲线的方程为x 23-y 2=1.(2)由(1)知B (0,1),依题意可设过点B 的直线方程为 y =kx +1(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +1,x 23-y 2=1,得(1-3k 2)x 2-6kx -6=0, 所以x 1+x 2=6k1-3k 2, Δ=36k 2+24(1-3k 2)=12(2-3k 2)>0⇒0<k 2<23,且1-3k 2≠0⇒k 2≠13.设MN 的中点为Q (x 0,y 0),则x 0=x 1+x 22=3k 1-3k 2,y 0=kx 0+1=11-3k 2, 故直线m 的方程为y -11-3k2=-1k ⎝⎛⎭⎫x -3k 1-3k 2, 即y =-1k x +41-3k 2.所以直线m 在y 轴上的截距为41-3k 2,由0<k 2<23,且k 2≠13,得1-3k 2∈(-1,0)∪(0,1),所以41-3k 2∈(-∞,-4)∪(4,+∞).故直线m 在y 轴上的截距的取值范围为(-∞,-4)∪(4,+∞).思维升华 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和均值不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与范围.如图,曲线Γ由两个椭圆T 1:x 2a 2+y 2b 2=1(a >b >0)和椭圆T 2:y 2b 2+x 2c2=1(b >c >0)组成,当a ,b ,c 成等比数列时,称曲线Γ为“猫眼”.(1)若“猫眼曲线”Γ过点M (0,-2),且a ,b ,c 的公比为22,求“猫眼曲线”Γ的方程; (2)对于(1)中的“猫眼曲线”Γ,任作斜率为k (k ≠0)且不过原点的直线与该曲线相交,交椭圆T 1所得弦的中点为M ,交椭圆T 2所得弦的中点为N ,求证:k OMk ON为与k 无关的定值;(3)若斜率为2的直线l 为椭圆T 2的切线,且交椭圆T 1于点A ,B ,N 为椭圆T 1上的任意一点(点N 与点A ,B 不重合),求△ABN 面积的最大值. (1)解 由题意知,b =2,b a =c b =22,∴a =2,c =1,∴T 1:x 24+y 22=1,T 2:y 22+x 2=1.(2)证明 设斜率为k 的直线交椭圆T 1于点C (x 1,y 1),D (x 2,y 2) , 线段CD 的中点为M (x 0,y 0), ∴x 0=x 1+x 22,y 0=y 1+y 22,由⎩⎨⎧x 214+y 212=1,x 224+y222=1,得(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)2=0.∵k 存在且k ≠0,∴x 1≠x 2且x 0≠0, 故上式整理得y 1-y 2x 1-x 2·y 0x 0=-12,即k ·k OM =-12.同理,k ·k ON =-2,∴k OM k ON =14.(3)解 设直线l 的方程为y =2x +m ,联立方程得⎩⎪⎨⎪⎧y =2x +m ,y 2b 2+x 2c2=1,整理得(b 2+2c 2)x 2+22mc 2x +m 2c 2-b 2c 2=0, 由Δ=0化简得m 2=b 2+2c 2,取l 1:y =2x +b 2+2c 2.联立方程⎩⎪⎨⎪⎧y =2x +m ,x 2a 2+y 2b2=1,化简得(b 2+2a 2)x 2+22ma 2x +m 2a 2-b 2a 2=0. 由Δ=0得m 2=b 2+2a 2, 取l 2:y =2x -b 2+2a 2, l 1,l 2两平行线间距离 d =b 2+2c 2+b 2+2a 23,又|AB |=23ab 2a 2-2c 2b 2+2a 2,∴△ABN 的面积最大值为S =12|AB |·d=ab 2a 2-2c 2(b 2+2c 2+b 2+2a 2)b 2+2a 2.题型四 定值、定点问题例4 (2016·全国乙卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0. 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 思维升华 求定点及定值问题常见的方法有两种 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.(1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线P A 方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2.直线PB 方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4. 故|AN |·|BM |为定值. 题型五 探索性问题例5 (2015·广东)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1:x 2+y 2-6x +5=0化为(x -3)2+y 2=4,∴圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知MC 1⊥MO , ∴MC 1→·MO →=0.又∵MC 1→=(3-x ,-y ),MO →=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0. 易知直线l 的斜率存在, ∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程, 化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0).又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0, 其中53<x ≤3.(3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C 的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0,其中53<x ≤3,记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2,其中53<x ≤3.若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝⎛⎦⎤53,3,∴k =±34满足条件. 当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝⎛⎦⎤53,3上有且仅有一个根,满足题意;②若x =53是方程的解,则f ⎝⎛⎭⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝⎛⎦⎤53,3上有且仅有一根,满足题意;③若x =3和x =53均不是方程的解,则方程在区间⎝⎛⎭⎫53,3上有且仅有一个根,只需f ⎝⎛⎭⎫53·f (3)<0⇒-257<k <257.故在区间⎝⎛⎦⎤53,3上有且仅有一个根,满足题意. 综上所述,k 的取值范围是-257≤k ≤257或k =±34. 思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形. (1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E , ①证明直线AE 过定点,并求出定点坐标.②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. (1)解 由题意知F (p2,0).设D (t,0)(t >0),则FD 的中点为(p +2t4,0).因为|F A |=|FD |,由抛物线的定义知3+p2=⎪⎪⎪⎪t -p 2, 解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2. 所以抛物线C 的方程为y 2=4x . (2)①证明 由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D,0)(x D >0). 因为|F A |=|FD |,则|x D -1|=x 0+1, 由x D >0,得x D =x 0+2,故D (x 0+2,0), 故直线AB 的斜率k AB =-y 02.因为直线l 1和直线AB 平行, 设直线l 1的方程为y =-y 02x +b ,代入抛物线方程得y 2+8y 0y -8by 0=0,由题意Δ=64y 20+32b y 0=0,得b =-2y 0.设E (x E ,y E ),则y E =-4y 0,x E =4y 20.当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0-y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0). 由y 20=4x 0,整理可得y =4y 0y 20-4(x -1), 直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0), 所以直线AE 过定点F (1,0).②解 由①知直线AE 过焦点F (1,0), 所以|AE |=|AF |+|FE |=(x 0+1)+⎝⎛⎭⎫1x 0+1=x 0+1x 0+2.设直线AE 的方程为x =my +1.因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0.设B (x 1,y 1).直线AB 的方程为y -y 0=-y 02(x -x 0),由于y 0≠0,可得x =-2y 0y +2+x 0,代入抛物线方程得y 2+8y 0y -8-4x 0=0,所以y 0+y 1=-8y 0,可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4.所以点B 到直线AE 的距离为d =⎪⎪⎪⎪4x 0+x 0+4+m ⎝⎛⎭⎫y 0+8y 0-11+m 2=4(x 0+1)x 0=4⎝⎛⎭⎫x 0+1x 0.则△ABE 的面积S =12×4⎝⎛⎭⎫x 0+1x 0⎝⎛⎭⎫x 0+1x 0+2≥16, 当且仅当1x 0=x 0,即x 0=1时等号成立.所以△ABE 的面积的最小值为16.1.(2016·河北质量监测)已知椭圆E :x 2a 2+y 2b 2=1的右焦点为F (c,0)且a >b >c >0,设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4. (1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4P A →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由. 解 (1)由椭圆的对称性知|GF →|+|CF →|=2a =4, ∴a =2.又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc =3, 又a 2=b 2+c 2=4,a >b >c >0,∴b =3,c =1. 故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1, 代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0, ∴x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0,∴k >-12.∵OP →2=4P A →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5, ∴4[16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4](1+k 2) =4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去.∴存在满足条件的直线l ,其方程为y =12x .2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为32,其中一条渐近线的方程为x -2y =0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A ,B 两点.(1)求椭圆E 的方程;(2)若点P 为椭圆E 的左顶点,PG →=2GO →,求|GA →|2+|GB →|2的取值范围.解 (1)由双曲线x 2a 2-y 2b 2=1的焦距为32,得c =322,∴a 2+b 2=92.①由题意知b a =22,②由①②解得a 2=3,b 2=32,∴椭圆E 的方程为x 23+23y 2=1.(2)由(1)知P (-3,0). 设G (x 0,y 0),由PG →=2GO →, 得(x 0+3,y 0)=2(-x 0,-y 0).即⎩⎨⎧x 0+3=-2x 0,y 0=-2y 0,解得⎩⎪⎨⎪⎧x 0=-33,y 0=0,∴G (-33,0).设A (x 1,y 1),则B (-x 1,-y 1),|GA →|2+|GB →|2=(x 1+33)2+y 21+(x 1-33)2+y 21 =2x 21+2y 21+23=2x 21+3-x 21+23 =x 21+113.又∵x 1∈[-3,3],∴x 21∈[0,3],∴113≤x 21+113≤203, ∴|GA →|2+|GB →|2的取值范围是[113,203].3.(2016·江西质检)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,过点B 且互相垂直的动直线l 1,l 2与椭圆的另一个交点分别为P ,Q ,若当l 1的斜率为2时,点P 的坐标是(-53,-43).(1)求椭圆C 的方程;(2)若直线PQ 与y 轴相交于点M ,设PM →=λMQ →,求实数λ的取值范围. 解 (1)当l 1的斜率为2时,直线l 1的方程为y =2x +b , l 1过点P (-53,-43),得-43=-103+b ⇒b =2,所以椭圆方程可化为x 2a 2+y 24=1,点P (-53,-43)在椭圆上,得259a 2+49=1,从而a 2=5,所以椭圆C 的方程是x 25+y 24=1.(2)由题意,直线l 1,l 2的斜率存在且不为0, 设直线l 1,l 2的方程分别为y =kx +2,y =-1k x +2,由⎩⎪⎨⎪⎧x 25+y 24=1,y =kx +2, 得(4+5k 2)x 2+20kx =0, 得x p =-20k 5k 2+4,同理,可得x Q =20k5k 2+4=20k 5+4k 2, 由PM →=λMQ →,得20k 5k 2+4=λ20k 5+4k 2,所以λ=4k 2+55k 2+4=45+955k 2+4,因为5k 2+4>4,所以0<955k 2+4<920,所以实数λ的取值范围是(45,54).4.(2016·北京顺义尖子生素质展示)已知椭圆x 24+y 23=1的左顶点为A ,右焦点为F ,过点F 的直线交椭圆于B ,C 两点. (1)求该椭圆的离心率;(2)设直线AB 和AC 分别与直线x =4交于点M ,N ,问:x 轴上是否存在定点P 使得MP ⊥NP ?若存在,求出点P 的坐标;若不存在,说明理由. 解 (1)由椭圆方程可得a =2,b =3, 从而椭圆的半焦距c =a 2-b 2=1. 所以椭圆的离心率为e =c a =12.(2)依题意,直线BC 的斜率不为0, 设其方程为x =ty +1.将其代入x 24+y 23=1,整理得(4+3t 2)y 2+6ty -9=0.设B (x 1,y 1),C (x 2,y 2), 所以y 1+y 2=-6t 4+3t 2,y 1y 2=-94+3t 2. 易知直线AB 的方程是y =y 1x 1+2(x +2),从而可得M (4,6y 1x 1+2),同理可得N (4,6y 2x 2+2).假设x 轴上存在定点P (p,0)使得MP ⊥NP , 则有PM →·PN →=0.所以(p -4)2+36y 1y 2(x 1+2)(x 2+2)=0.将x 1=ty 1+1,x 2=ty 2+1代入上式,整理得 (p -4)2+36y 1y 2t 2y 1y 2+3t (y 1+y 2)+9=0,所以(p -4)2+36×(-9)t 2(-9)+3t (-6t )+9(4+3t 2)=0,即(p -4)2-9=0,解得p =1或p =7. 所以x 轴上存在定点P (1,0)或P (7,0), 使得MP ⊥NP .5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P (1,32),过它的左,右焦点F 1,F 2分别作直线l 1与l 2,l 1交椭圆于A ,B 两点,l 2交椭圆于C ,D 两点,且l 1⊥l 2,如图所示.(1)求椭圆的标准方程;(2)求四边形ACBD 的面积S 的取值范围. 解 (1)由c a =12⇒a =2c ,∴a 2=4c 2,b 2=3c 2,将点P 的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)若l 1与l 2中有一条直线的斜率不存在,则另一条直线的斜率为0,此时四边形的面积S =6. 若l 1与l 2的斜率都存在,设l 1的斜率为k , 则l 2的斜率为-1k,则直线l 1的方程为y =k (x +1). 设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,消去y 并整理得(4k 2+3)x 2+8k 2x +4k 2-12=0.① ∴x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴|x 1-x 2|=12k 2+14k 2+3,∴|AB |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3,②注意到方程①的结构特征和图形的对称性, 可以用-1k 代替②中的k ,得|CD |=12(k 2+1)3k 2+4,∴S =12|AB |·|CD |=72(1+k 2)2(4k 2+3)·(3k 2+4),令k 2=t ∈(0,+∞),∴S =72(1+t )2(4t +3)·(3t +4)=6(12t 2+25t +12)-6t 12t 2+25t +12=6-612t +12t+25≥6-649=28849,当且仅当t =1时等号成立,∴S ∈[28849,6),综上可知,四边形ABCD 的面积S ∈[28849,6].。

【高三数学试题精选】2018高考理科数学立体几何总复习题(附答案)

【高三数学试题精选】2018高考理科数学立体几何总复习题(附答案)

2018高考理科数学立体几何总复习题(附答案)
5 c [A组基础演练能力提升]
一、选择题
1.(2018年临沂模拟 )如图是一个物体的三视图,则此三视图所描述物体的直观图是( )
解析由题意知应为D
答案D
2如图△A′B′c′是△ABc的直观图,那么△ABc是( )
A.等腰三角形
B.直角三角形
c.等腰直角三角形
D.钝角三角形
解析根据斜二测画法知△ABc为直角三角形,B正确.
答案 B
3.(2018年高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )
A32 B.1 c2+12 D2
解析由题意可知该正方体的放置如图所示,侧视图的方向垂直于面BDD1B1,正视图的方向垂直于面A1c1cA,且正视图是长为2,宽为1的矩形,故正视图的面积为2,因此选D
答案D
4(2018年江西九校联考)如图,三棱锥V-ABc的底面为正三角形,侧面VAc与底面垂直且VA=Vc,已知其正视图的面积为23,则其俯视图的面积为( )
A32 B33
c34 D36。

专题05 立体几何理-2018年高考题和高考模拟题数学(理)分项版汇编 Word版含解析

专题05 立体几何理-2018年高考题和高考模拟题数学(理)分项版汇编 Word版含解析

5.立体几何1.【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ12.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 83.【2018年理新课标I卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.4.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 25.【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.6.【2018年理数全国卷II】在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.7.【2018年理数天津卷】已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为__________.8.【2018年江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.9.【2018年理数全国卷II】已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.10.【2018年浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.11.【2018年理数天津卷】如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.12.【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.13.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.14.【2018年江苏卷】在平行六面体中,.求证:(1);(2).15.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.16.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.17.【2018年理数全国卷II】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.优质模拟试题18.【安徽省宿州市2018届三模】如图所示,垂直于所在的平面,是的直径,,是上的一点,,分别是点在,上的投影,当三棱锥的体积最大时,与底面所成角的余弦值是()A. B. C. D.19.【辽宁省葫芦岛市2018届二模】在长方体中,底面是边长为的正方形,侧棱为矩形内部(含边界)一点,为中点,为空间任一点且,三棱锥的体积的最大值记为,则关于函数,下列结论确的是()A. 为奇函数B. 在上不单调;C. D.20.【河南省洛阳市2018届三模】在三棱锥中,平面,,,,是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B. C. D.21.【四川省2018届冲刺演练(一)】某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为()A. B. C. D.22.【安徽省示范高中(皖江八校)2018届第八联考】某棱锥的三视图如下图所示,则该棱锥的外接球的表面积为()A. B. C. D.23.【山东省济南2018届二模】已知点均在表面积为的球面上,其中平面,,,则三棱锥的体积的最大值为()A. B. C. D.24.【福建省厦门市2018届二模】已知某正三棱锥的侧棱长大于底边长,其外接球体积为,三视图如图所示,则其侧视图的面积为()A. B. 2 C. 4 D. 625.【山东省威海市2018届二模】.已知正三棱柱,侧面的面积为,则该正三棱柱外接球表面积的最小值为______.26.【山东省烟台市2018届适应性练习(二)】如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为,为圆上的点,分别是以为底边的等腰三角形,沿虚线剪开后,分别以为折痕折起,使重合得到一个四棱锥,则该四棱锥的体积的最大值为_______.27.【湖南省益阳市5月统考】如图,在三棱锥中,,,两两垂直,,平面平面,且与棱,,分别交于,,三点.(1)过作直线,使得,,请写出作法并加以证明;(2)若将三棱锥分成体积之比为8:19的两部分,求直线与平面所成角的正弦值.28.【江西省南昌市2018届三模】如图,多面体中,为正方形,,二面角的余弦值为,且.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.29.【河南省郑州市2018届三模】如图,在四棱锥中,底面,,,,点为棱的中点.(Ⅰ)证明:;(Ⅱ)若点为棱上一点,且,求二面角的余弦值.30.【河北省唐山市2018届三模】如图,四棱锥的底面是平行四边形,.(1)求证:平面平面;(2)若,为的中点,为棱上的点,平面,求二面角的余弦值.5.立体几何答案1.【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年理新课标I卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.+4.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.5.【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破练(5) 立体几何的综合问题
一、选择题
1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件
答案 D
解析 “a ∥b ”不能得出“α∥β”,反之由“α∥β”也得不出“a ∥b ”.故选D. 2. 如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )
A.45
5
B .2 5
C .4
D .2
答案 A
解析 在△ABC 中,AC 2
=AB 2
+BC 2
=5,∴AB ⊥BC .
作BD ⊥AC 于D ,则BD 为侧视图的宽,且BD =2×15=255,∴侧视图的面积为S =2×
25
5=45
5
. 3.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6
答案 C
解析 如图,既与AB 共面也与CC 1共面的棱有CD 、BC 、BB 1、AA 1、C 1D 1,共5条. 4.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )
A .A ′C ⊥BD
B .∠BA ′
C =90°
C .CA ′与平面A ′B
D 所成的角为30° D .四面体A ′BCD 的体积为1
3
答案 B
解析 ∵AB =AD =1,BD =2,∴AB ⊥AD . ∴A ′B ⊥A ′D .∵平面A ′BD ⊥平面BCD ,CD ⊥BD , ∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,∴A ′B ⊥平面A ′CD , ∴A ′B ⊥A ′C ,即∠BA ′C =90°.
5. [2016·云南师大附中月考]《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P -ABC 中,PA ⊥平面ABC ,AB ⊥BC ,且AP =AC =1,过A 点分别作AE ⊥PB 于点E ,AF ⊥PC 于点F ,连接EF .当△AEF 的面积最大时,tan ∠BPC 的值是( )
A. 2
B.22
C. 3
D.3
3
答案 B
解析 因为PA ⊥平面ABC ,所以PA ⊥BC ,又AB ⊥BC ,AB ∩PA =A ,所以BC ⊥平面PAB ,则BC ⊥AE ,又PB ⊥AE ,则AE ⊥平面PBC ,所以AE ⊥EF ,且AE ⊥PC ,又AF ⊥PC ,所以PC ⊥平
面AEF ,所以△AEF ,△PEF 均为直角三角形,因为PA =AC =1,且PA ⊥AC ,所以AF =PF =
2
2
,而S △AEF =12AE ·EF ≤14(AE 2+EF 2
)=14AF 2=18,当且仅当AE =EF 时等号成立,所以当AE =EF =
12
时,△AEF 的面积最大,此时tan ∠BPC =EF
PF

1222

2
2
,故选B. 6.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2
,AC =EF =1,则该多面体的体积为( )
A .2
B .4
C .6
D .8
答案 B
解析 如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为
V =12
×23
=4.
7.设A ,B ,C ,D 是半径为2的球面上的四点,且满足AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,则S
△ABC
+S △ABD +S △ACD 的最大值是( ) A .6 B .7 C .8 D .9 答案 C
解析 由题意知42=AB 2+AC 2+AD 2
,S △ABC +S △ACD +S △ABD =12(AB ·AC +AC ·AD +AD ·AB )≤
12。

相关文档
最新文档