焊接结构与工艺设计
焊接结构设计的一般原则
必须考虑焊接装配焊接次序对可焊到性的影响,图8-9
(4)减少焊接工作量
减少焊缝数量和焊缝填充金属。 选用轧制型钢代替一部分焊件; 角焊缝多且密集的地方可用铸钢代替; 角焊缝保证强度的条件下,尽量减少焊脚尺寸。 对接焊缝,保证熔透的情况下选用填充金属最少的坡口形式。
(5)焊接变形控制
(4)合理布置焊接接头位置 1)避免应力集中 如图根部角接接头应力集中严重,承
载能力低。在封头加工一个槽,效果 近似于对接接头。
另外,最好的方法是将封底改换成球 面封头,以对接接头的依托。
图a,支耳背面无依托,容易在支耳两端的焊缝上产生裂纹。改进成图b结 构,支耳有依托,应力分布均匀。
焊接结构设计的一般原则
焊接设计包括: 焊接结构设计
焊接工装设计
焊接工艺设计 焊接设备设计
焊接材料设计
焊接车间设计。
1.焊接结构设计的一般思路
(1)实用性
必须达到产品所需要的使用功能和预期效果。
(2)可靠性
焊接结构在使用期内必须安全可靠,受力必须合理,能 满足强度、刚度、稳定性、抗震性、耐蚀性等方面的要 求。
3)工字钢垂直连接时,增加加强肋板,应力会均匀分布。
4)焊缝宜对称地布置并尽可能接近中心轴。
表8-2 焊接接头的合理性
2. 从工艺性及经济性分析焊接结构的合理性 (1)焊接结构的备料工作量
V坡口耗材料最大, U型坡口次之, X坡口较小,双U型坡口耗材最少,但 是加工量大,而X坡口易于加工。
其设计结构更符合生产实际。
(3)有限元数值模拟辅助设计法
利用有限元模拟法可以分析已设计的焊接结构静态和动态的物理系统,可 得出焊接结构局部区域的工作应力分布,从而改进焊缝形状及尺寸设计。
焊接结构设计..
不合理 A.手工电弧焊
合理
不合理
B.埋弧焊
合理
>75°
不合理
C.点焊或缝焊
合理
图8-1 焊缝位置与操作空间的关系
(2).焊缝布置应有利于减少焊接应力和变形。
①焊缝焊缝应避开最大应力和应力集中的部位。
对接
搭接
角接
T形接头
★焊接接头形式的选择:
选用何种接头主要依据焊接方法、焊件结构特点和使用 要求等因素。 (1)焊接方法: 1)熔焊适用于各类接头形式; 2)电阻点焊和缝焊须采用搭接接头; 3)对焊和摩擦焊须采用对接接头; 4)钎焊多采用搭接接头。 (2)焊件结构特点和使用要求: 1)承载较大的接头宜采用对接,以减少应力集中; 2)承载较小可采用搭接、角接、T形接。
焊接工艺设计示例 实例 结构名称 :中压容器(见下图) 材料 :16MnR(钢板尺寸1200 5000) 料厚 :筒身12mm,封头14mm, 人孔圈20mm,管接头7mm 。 生产数量 :小批生产。试制定焊接工艺方案。
筒身 封头 管接头
人孔 3000
解: (1)焊缝布置、焊接次序 根据板料尺寸,筒身应分为三节,分别 冷卷成形,为避免焊缝密集,三段筒身上的纵 焊缝可相互错开180°;封头应采用热压成型, 与筒身连接处应有30 ~ 50 mm的直段,使焊 缝躲开转角应力集中处。人孔圈因其板厚较大, 一般加热卷制。
不合理
合理 图8-4 焊缝位置与应力和变形的关系
(3)焊缝应避开加工表面,尤其是已加工表面, 以免影响加工表面的精度。
不合理 合理
不合理
焊接结构工艺性
• 气割 • 切削加工(车或刨) • 碳弧气刨等
坡口基本形式 :I、V、X、U
选择依据:
• 板材厚度 • 坡口加工方法
• 焊接工艺性 • 考虑焊接方法、焊接位置、接头类型、
变形大小、熔透要求、经济性等
焊接材料的选择
优先选择可焊性好的低碳、低合金 钢.
否则就要采取相应的工艺措施
– 焊接的难易与变形程度:焊接易于实现,变 形能够控制
– 焊接成本:经济性
பைடு நூலகம்– 施工条件:技术人员设备等条件
➢熔 焊 : 对 接 、
搭接、角接、T接、 端接
➢压 焊 : 对 焊 -
对接、点焊和缝 焊-搭接
➢钎焊:搭接
(2)坡口形式设计
Welding Groove Style Design
目的:
• 使接头根部焊透 • 使焊缝成型美观 • 使焊缝金属达到所需的化学成分。
三、焊件结构工艺性设计实例
低压贮气罐,壁厚8mm,压力1.0MPa,温度为常 温,介质为压缩空气,大批量生产。
选择母材材料:短管选用优质碳素结构钢10, 其它选用塑性和焊接性好的普通碳素结构钢 Q235-A。
设计焊缝位置及焊接接头、坡口形式:
–筒节的纵焊缝和筒节与封头相连处的两条环焊缝均 采用对接Ⅰ形坡口双面焊
2-5 焊接结构工艺设计
一、焊接结构生产工艺过程概述
备料→装配→焊接→焊接变形矫正→质量检验 →表面处理
二、焊接结构工艺设计
1. 焊缝布置Weld Arrangement
焊缝应尽量处于平焊位置
焊缝要布置在便 于施焊的位置
焊缝布置要有利于减少焊接应力与变形
– 尽量减少焊缝数量及长度,缩小不必要的焊 缝截面尺寸
机械加工基础:第四章焊接结构设计
搭接接头因两工件不在同一平面,受力时将产生 附加弯矩,而且金属消耗量也大,一般应避免采用。 但搭接接头不需开坡口,装配时尺寸要求不高,对 某些受力不大的平面联接与空间构架,采用搭接接 头可节省工时。
2.坡口形式
焊条电弧焊对板厚为 1~6 mm对接接头施焊时,一 般可不开坡口 (即I形坡口)直接焊成。
(5) 焊缝位置应便于焊接操作布置焊缝时,要 考虑到有足够的操作空间。
埋弧焊结构要考虑接头处在施焊中存放焊剂和熔池 保持问题。
点焊与缝焊应考虑电极伸入方便。
焊缝应尽量放在平焊位置,应尽可能避免 仰焊焊缝,减少横焊焊缝。
良好的焊接结构设计,还应尽量使全部焊 接部件,至少是主要部件能在焊接前一次装配 点固,以简化装配焊接过程,节省场地面积, 减少焊接变形,提高生产效率。
设计焊接结构时,应多采用工字钢、槽钢、角钢 和钢管等型材,以降低结构重量,减少焊缝数量、简 化焊接工艺,增加结构件的强度和刚性。
第二节 焊接接头的工艺设计
一、焊缝的布置
工艺设计原则:
(1) 焊缝布置应尽量分散 两条焊缝的间距大于三倍板厚,且不小于100 mm
(2) 焊缝的位置应尽可能对称布置
二、接头形式的选择与设计
接头形式应根据结构形状、强度要求、工件厚度、 焊后变形大小、焊条消耗量、坡口加工难易程度、 焊接方法等因素综合考虑决定。
1.接头形式
对接接头 T形接头 角接接头 搭接接头
对接接头受力比较均匀,是最常用的接头形式, 重要的受力焊缝应尽量选用。
角接接头与T形接头受力情况都较对接接头复杂,但接头 成直角或一定角度连接时,必须采用这种接头形式。
带钝边U形坡口根部较宽,允许焊条深入,容易焊透。而且 坡口角度小,焊条消耗量较小。但因坡口形状复杂,一般只在 重要的受动载的厚板结构中采用。
乙炔瓶的焊接结构与工艺设计
乙炔瓶的焊接结构与工艺设计第1章乙炔气瓶设计的准备1.1 乙炔气瓶焊接结构设计的简介1.1.1 乙炔容器瓶的结构组成(1)组成:主要有筒体(瓶体)、封头(椭圆形)和接管组成,其中筒体、封头是乙炔压力容器制造的关键部分。
(2)制造关键1)封头2)筒体1.1.2 容器的设计要求1)工作温度:20 °C 对应许用应力:170MPa2)设计压力:10MP1.2 材料的焊接性分析在压力容器用钢的化学成分中,碳、硫和磷等元素对钢的焊接性十分有害,应将其含量控制在最低的限度以下。
锰、硅、镍和钼等合金元素,在一定的范围内对钢材的焊接性起有利的作用。
当其含量超过容许的范围时,则起相反的作用。
有关合金元素含量的适应范围如下:含量(C)0.03%~0.11%;(Si)0.05%~1.2%(Mn)0.2%~1.16%;(Ni)0.05%~1.40%(Mo)<1.2%;(S)0.006%~0.110%(P)0.004%~0.170%1.3 乙炔气瓶材料的选择乙炔压力容器是一种全焊结构,且运行条件苛刻,制造工艺复杂。
乙炔气瓶一旦开裂,后果极其严重,不但造成巨大的经济损失,而且可能遭受人身伤亡灾难。
因此乙炔压力容器的运行必须安全可靠。
毋庸置疑,乙炔压力容器工作的可靠性首先与选用钢材有着密切的关系。
我国和世界各工业国的压力容器设计制造法规,以及相应的材料标准都对压力容器用钢的性能做出了严格而明确的规定。
乙炔压力容器材料作为一种受压部件的结构材料,应具有足够的力学性能,包括抗拉强度、塑性和韧性。
其次,压力容器在制造过程中,必须经过各种成形加工。
因此,所用材料应具有良好的冷成形加工和热成形加工性能。
此外,乙炔压力容器用钢还应具有良好的焊接性、耐蚀性、抗氢能力以及适应各种热处理的特性。
由此可见,为确保乙炔压力容器长期安全可靠地运行,必须从材料着手,选用优质的符合法规和规程要求的钢材制造乙炔压力容器。
1.3.1 乙炔气瓶材料的性能要求(1)对强度性能的要求钢材的强度一般是采用拉伸试验测定的,故又称抗拉强度。
起重机焊接结构件制造工艺设计规范流程
一、材料预处理1、原材料装卸货和转移时必须采用专用吊具:配备吊梁的专用吊卡、夹鉗、板钩或者磁铁。
在任何情况下都禁止钢丝绳直接接触钢板进行吊运。
原材料水平或者垂直码(堆)放时必须垫实靠牢,使其处于不受力的自然状态。
暂缓不用的原材料须采取有效的防护措施,远离热源和潮湿处搁置,并用明显记号标明材质和规格型号。
2、所有钢板、重要部位的型材以及氧化锈蚀较重的型材须进行双面抛丸、喷沙或者喷丸处理,使其金属表面呈均匀的近白色。
表面处理完毕后即将喷刷薄层(干燥时间不得超过4min ) 的硅酸锌防锈底漆。
禁止使用在气割和焊接过程中会释放出对人体有害气体的防锈油漆。
3、小吨位起重机主梁用钢板优先选用卷板,卷板在开卷矫平机上矫平。
4、钢板厚度6≤14mm、1m 波浪度>3mm 和厚度6>14mm、1m 波浪度> 2mm 的板材必须进行矫正整形处理。
整形方法为:机床整形或者人工冷作整形。
人工整形时禁止直接锤击原材料,必须在其上垫6>8mm 的击打垫板。
不允许火焰整形。
5、型材的初始弯曲程度为: 1m 直线度> 1mm 的必须进行矫直处理。
矫直方法为:型钢矫直机滚压或者油压机顶压。
较大规格型材在征得质量负责人允许后允许火焰矫直。
6、润滑和液压油路的钢管进行酸洗处理。
处理后即将在管外壁喷刷防锈底漆,漆后油封二口以防止内壁再次氧化。
有色金属管和橡胶管须经压风吹净其内壁,然后封堵二口待用。
二、原材料下料1、创造负责人须对采购部门提出钢板供应尺寸(主要针对主梁腹板)的要求,以达到科学合理的拼料。
在选择原材料下料时,起重机桥架用材处于最优先地位,以做到主梁、端梁上的钢板拼接焊缝离主梁中心越远越好、焊缝数量越少越好。
2、原材料下料必须有整体下料的概念,主梁、端梁、走台、小车架要统筹考虑,画好经讨论的排料图再行下料。
下料规则为:先下大料再下小料,先大再小先长后短相互套料,使整台行车的材料利用率达到 95%以上。
3、厚度6≤12mm 的钢板用剪床进行直线形下料。
焊接件结构工艺性
材料力学性能
考虑材料的强度、韧性、耐腐蚀 性等性能,以满足焊接件的使用
要求。
材料可加工性
考虑材料的可焊性、切割性、弯 曲和矫直等加工性能,以确保焊
接件制造的可行性。
焊接件结构设计优化
减少焊接变形
通过合理的焊缝布置和焊接顺序,降低焊接变形量,提高焊接件 的几何精度。
优化接头形式
根据材料特性和使用要求,选择合适的接头形式,如对接、角接、 搭接等,以提高焊接质量和效率。
THANKS FOR WATCHING
感谢您的观看
船舶焊接件的结构应便于焊接 操作,减少焊接难度和焊接变 形。
船舶焊接件的结构应有利于提 高焊接质量和效率,减少焊缝 数量和长度。
案例三:压力容器焊接件结构工艺性分析
压力容器焊接件的结构应满足压 力容器的强度、刚度和稳定性要 求,保证压力容器的安全性和可
靠性。
压力容器焊接件的结构应便于焊 接操作,减少焊接难度和焊接变
提高焊接人员技能水平
培训教育
定期开展焊接技能培训 和教育活动,提高焊接 人员的技能水平。
技能认证
实行焊接人员技能认证 制度,确保焊接人员具 备相应的技能水平。
激励机制
建立有效的激励机制, 鼓励焊接人员不断提高 技能水平和工作效率。
05 焊接件结构工艺性案例分 析
案例一:汽车底盘焊接件结构工艺性分析
04 焊接件结构工艺性改进措 施
优化焊接工艺流程
减少焊接工序
通过优化工艺流程,减少不必要的焊接工序,降低生产成本和提高 生产效率。
标准化焊接工艺
制定标准化的焊接工艺流程,确保焊接质量稳定,提高焊接件的可 靠性。
引入先进的焊接工艺
不断探索和采用先进的焊接工艺,如激光焊接、电子束焊接等,提高 焊接质量和效率。
工字梁焊接结构的焊接工艺设计与制造
学生学号实验课成绩学生实验报告书实验课程名称综合实验(二)典型焊接结构的焊接工艺设计与制造开课学院材料科学与工程指导教师姓名学生姓名学生专业班级2011-- 2012学年第 1 学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
附表:实验考核参考内容及标准观测点考核目标成绩组成实验预习1.预习报告2.提问3.对于设计型实验,着重考查设计方案的科学性、可行性和创新性对实验目的和基本原理的认识程度,对实验方案的设计能力20%实验过程1.是否按时参加实验2.对实验过程的熟悉程度3.对基本操作的规范程度4.对突发事件的应急处理能力5.实验原始记录的完整程度6.同学之间的团结协作精神着重考查学生的实验态度、基本操作技能;严谨的治学态度、团结协作精神30%结果分析1.所分析结果是否用原始记录数据2.计算结果是否正确3.实验结果分析是否合理4.对于综合实验,各项内容之间是否有分析、比较与判断等考查学生对实验数据处理和现象分析的能力;对专业知识的综合应用能力;事实求实的精神50%实验课程名称:综合实验(二)实验项目名称典型焊接结构的焊接工艺设计与制造实验成绩实验者专业班级组别第三组同组者实验日期2011年12月22日一、实验目的熟悉低碳钢焊接工艺文件内容,学习和掌握焊接工艺文件的制定;熟悉低碳钢焊接焊前准备和工艺过程,加深理解电弧焊方法的特点、焊接工艺参数对焊缝成形及焊接质量的影响,了解焊接质量的评定方法和过程。
焊接接头、结构的设计和制造工艺2
例题2
如图所示吊耳,若在30°斜上方有10KN的载荷,试校验焊缝是否安全? (K=10mm,[σ’]=160Mpa,[τ’]=0.6[σ’])
P1
P
30° P2
100
(3)T型接头静载强度计算公式---续
2) 极限状态设计法焊缝连接的计算
根据GB 50017-2003《钢结构设 计规范》,对于对接焊缝、直角 角焊缝、斜角角焊缝(图5-13)和对 接与角接的组合焊缝(图5-12)等形 式。焊缝应根据结构的重要性、 载荷特性、焊缝形式、工作环境 以及应力状态等情况选用是否熔 透和不同质量等级。 如承受疲劳构件的对接焊缝均 应焊透且焊缝质量为I、Ⅱ级;虽 不计疲劳,但要求与母材等强, 也要求焊透,并应不低于Ⅱ级的 焊缝质量; 重级工作制的吊车梁、起重量 >50t的中级工作制的吊车梁,腹 板与盖板间的角焊缝,要求开坡 口焊透等。 焊缝强度计算公式(表5-9)。
图5-14点焊、缝焊焊缝的基本符号及示意图 a) 点焊符号 b) 缝焊符号
图5-16 补充符号应用示意图 a ) 带垫板的V形焊缝 b) 工件三面带焊缝 c) 现场施焊周围焊缝
标准规定基本符号相对基准线的位置,以确切表示焊缝的位置:
• 焊缝在接头的箭头侧,图a,则将基本符号标在基准线的实线侧,图b; • 焊缝在接头非箭头侧,图c,则将基本符号标在基准线的虚线侧,图d; • 标注对称焊缝或双面焊缝,则可不加虚线,图e。
5.2 焊接生产工艺过程的设计
5.2.1 焊接生产及其工艺过程设计的内容、步骤与方法 1.焊接生产及其组成部分
焊接生产过程由材料入库开始,在此阶段要先进行材料的复验,包括 力学性能复验和化学成分分析,有些产品还要求对钢板进行探伤检查。接 着进行装焊前的零件加工,包括矫正、划线、号料、下料(机械加工和热 切割)、成形(冲压成形和卷板弯曲成形)等。该工序完成后,则可将加工 好的零件存入中间仓库。然后进行零件或部件的装配和焊接。最后制成的 焊接结构经过修整后,进行涂饰(包括清除焊渣及氯化皮的喷丸处理、钝 化处理和喷漆等)。 焊接生产过程可以归结为由制造焊接结构的材料(包括基本金属材料 和各种辅助、填充材料,外购毛坯和零件等),经设备(材料准备设备、装 配焊接设备等)加工制成产品的过程。
压力容器焊接结构及工艺设计
综合性实验报告压力容器焊接结构及工艺设计实验者:指导老师溜达班级:o8hanie学号:10目录摘要 (2)关键字 (2)前言1概述 (3)1.1压力容的分类 (3)1.2 压力容器的结构特点 (4)2实验方案及方法 (4)2.1 材料的选则 (4)2.2 焊接性能分析 (6)2.2.1裂纹问题 (6)2.2.2脆化问题 (7)2.3 焊接方法及参数的确定 (7)2.3.1 焊接接头形式 (8)2.3.2 焊缝坡口的选择 (8)2.3.4 焊接方法的选择 (10)2.3.4 焊接材料的选择 (12)3实验过程 (12)3.1 焊前准备 (13)3.2 焊接操作 (13)3.3 焊后热处理 (13)3.3 焊缝机械性能检验 (13)4实验结果与分析 (14)4.1 焊接接头硬度分析 (15)4.2 焊接接头机械性能分析 (15)4.3 焊接接头金相图 (16)5结论 (18)6总结 (18)7 致谢 (18)8 参考文献 (19)摘要目前中国生产的电站锅炉、工业锅炉和各种石油化工容器均为焊接结构,其焊接工作量之大,对焊接质量要求之高居整个焊接结构制造业之首位。
目前中国的压力容器制造行业已经能够制造大型、超重型、高压和超高压容器。
本文主要介绍压力容器的结构、使用性能、材料的选择、焊接结构与工艺的设计、憨厚的热处理、失效形式等。
通过多步骤的实验得出了硬度数据、拉伸图、金相图片等资料,并就实验中出现的问题做了整理和分析,以供参考。
根据工件的工作环境、使用性能可知道工件的力学性能有高强度、好的塑性、韧性和焊接性。
根据其工作要求、性能要求、服役条件和经济状况决定零件素需要的材料为16MnR钢。
并根据工件的结构、性能要求以及材料确定工件的热处理工艺。
关键词:压力容器、手工电弧焊、坡口、金相图前言压力容器一般是指用于一定压力流体的贮存、运输或者是传质、传热、反应的密闭容器。
广泛应用于采矿、炼油、冶金、化工、医药等行业以及人民生活的很多方面。
焊接结构生产的一般工艺流程
焊接结构生产的一般工艺流程
焊接结构生产的一般工艺流程包括以下几个步骤:
1. 设计和准备:根据结构要求和设计图纸,确定焊接结构的尺寸、材料和焊接方法。
然后准备所需的焊接材料、设备和工具。
2. 材料准备:对焊接材料进行准备,包括清洁和处理,以确保焊接接头的质量。
这可能包括去除氧化物、油脂、涂层等。
3. 定位和夹紧:根据结构要求和焊接图纸,将工件定位在焊接位置上,并使用夹具或夹具将其夹紧。
4. 预热和焊接接头的组装:根据焊接方法和材料要求,进行必要的预热操作,以减少变形和提高焊接质量。
然后将焊接接头的零件组装到预定位置。
5. 焊接:根据焊接方法的要求,进行焊接操作。
这可能包括手工电弧焊、气焊、碳弧气焊、埋弧焊、TIG焊等。
焊接操作需
要按照正确的焊接顺序和工艺参数进行,确保焊接质量。
6. 修整和清洁:完成焊接后,对焊缝进行修整,去除焊渣和不良焊接。
然后对焊接结构进行清洁,以便进行下一步的处理或涂装。
7. 进一步处理(可选):根据需要,可以对焊接结构进行进一步的处理,如热处理、机械加工、防腐处理等。
8. 检测和质量控制:对焊缝进行检测,如可视检查、尺寸检查、无损检测等,以确保焊接质量符合要求。
同时进行必要的记录和文档,实施质量控制。
9. 涂装和包装:根据需要对焊接结构进行涂装,以提高防锈和美观效果。
然后进行包装和标识,以便运输和存储。
10. 最终验收和交付:对焊接结构进行最终验收,确保符合设
计要求和客户需求。
然后进行交付或安装。
焊接件的结构设计
焊接件的结构设计焊接件是指由焊接工艺连接的构件或零件。
在整个焊接工艺中,焊接件的结构设计起到了至关重要的作用。
良好的结构设计可以保证焊接件的质量和性能,并确保焊接工艺顺利进行。
下面将从焊接件的结构设计中的要点、步骤、注意事项等方面进行详细介绍。
一、结构设计要点1.材料选择:焊接件的材料选择应根据使用环境和工作条件进行合理选择。
常见的焊接材料有低碳钢、不锈钢、铝合金等。
选择合适的材料可以提高焊接件的强度和耐腐蚀性。
2.结构形式选择:结构形式是指焊接件在装配时的形状和结构布局。
应根据焊接件的功能和使用要求进行选择。
常见的结构形式有角焊缝、对接焊缝、搭接焊缝等。
3.强度设计:焊接件的强度设计应满足预期的载荷和使用要求。
根据焊接件的受力分析,确定焊缝的尺寸和焊接参数,以保证焊接件具有足够的强度。
4.焊接缺陷控制:焊接件的结构设计应注意控制焊接缺陷,常见的焊接缺陷有气孔、夹渣、裂纹等。
通过合理设计焊缝形状、采用适当的焊接工艺参数和设备,可以有效地减少焊接缺陷的产生。
5.板材厚度选择:焊接件的板材厚度选择应根据受力情况和结构要求进行合理选择。
过薄的板材容易导致焊接变形和断裂,而过厚的板材则会增加焊接工艺的难度。
二、结构设计步骤1.确定焊接件的功能和使用要求:根据焊接件的使用要求,确定焊接结构的形式和尺寸。
2.进行焊接件的受力分析:通过力学分析,确定焊接件在使用过程中的受力情况和受力方向。
3.设计焊缝形状和尺寸:根据受力分析结果,确定焊缝的形状和尺寸,以保证焊接件具有足够的强度。
4.选择合适的焊接材料:根据焊接件的使用环境和工作条件,选择合适的焊接材料,以确保焊接件的耐腐蚀性和强度。
5.设计焊接工艺参数:根据焊接材料和焊接件的要求,确定合适的焊接工艺参数,包括焊接电流、焊接时间、预热温度等。
三、结构设计注意事项1.焊接件的结构设计应考虑焊后的应力和变形问题,采取合适的预应力设计和变形控制措施。
2.在进行焊接件的结构设计时,应充分考虑焊接设备和工艺的条件,确保焊接过程的可实施性。
焊接结构设计
小值,单位为MPa值的1/10; 第三位数字表示焊条焊接位置,“0”及
“1”表示用于全位置焊接(平、立、 仰、横),“2”表示适用于平焊及平 角焊,“4”适用于向下立焊; 第三位和第四位数字组合时表示焊接电 流种类及药皮类型。
常用焊条
(a)
(b)
图14-10 嵌入式接管与封头的焊接结构
(5)凸缘与壳体的焊接结构
1)角焊连接:连接不承受脉动载荷的容器凸缘与壳体,如 图14-11 所示。
2)对接连接:连接压力较高或要求全熔透的容器凸缘与壳 体,如图14-12。
(a)
环与壳体应紧贴
(b)
内径侧应允许进行内部填角焊
(c)
图14-11 凸缘与壳体的角接焊接结构
(a)
(b)
K nt / 3,且不小于6mm, h nt
(c)
图14-9 安放式接管与壳体的焊接结构
(4)嵌入式接管的焊接结构
属于整体补强结构中的一种,适用于承受交变载荷、低温和 大温度梯度等较苛刻的工况。 (a)图:适用于球形封头或椭圆形封头中心部位的接管与
封头的连接,且封头厚度δn ≤50mm。
K≥6mm (a)
K≥6mm (b)
(c)
(d)
图14-12 凸缘与壳体的对接焊接结构
焊接材料
一、手工电弧焊用焊接材料 电焊条:内部钢芯和外侧药皮 1、钢芯 主要作用导电,并在焊条端部形成具
有一定成分的熔敷金属。 要求焊芯尽量减少有害元素的含量,
限制S、P,有些焊条要求焊芯控制 As 、Sb、Sn等元素。
应用: 某些特殊部位:接管、法兰、夹套、管板和凸缘的焊 接等。
3.搭接接头 结构: 两个相互连接零件在接头处有部分重合在一起,中面
焊接工艺设计说明书
目录第一章管材对接焊缝试件焊接结构设计概述 (2)1.1管材对接焊缝试件焊接结构设计简介 (3)1.2管材对接焊缝试件材料的选择 (3)第二章管材对接焊缝试件工艺设计 (4)2.1确定焊缝的位置 (5)2.2焊接接头形式的设计 (5)2.3焊接方法的选择 (8)2.4焊接材料的选择 (9)2.5焊接工艺参数的选择 (9)2.6焊接工艺卡片的制定 (11)第三章结构设计的工艺过程 (12)3.1焊接原材料的准备 (12)3.2焊前准备 (13)3.3焊接过程 (13)3.4焊后处理及检验 (13)第四章课程设计总结 (14)第五章参考文献 (14)附表一: (15)附表二: (16)第一章管板角接焊缝试件焊接结构设计概述1.1管板角接焊缝试件焊接结构设计简介1.1.1管板角接焊缝试件的结构组成及制造关键点(1)组成;主要有板材、半管(2)制造关键点焊接时,被焊工件的装夹精度以及管板角接焊接1.1.2管板角接焊缝试件的简介及设计要求(1)简介:管材对接焊缝试件是以Φ50mm壁厚为5mm半管与板厚为10的板材焊接的构件,属于非承插焊接。
(2)设计要求:壁厚:管材5mm、板材10mm生产类型:单件生产1.2管板角接焊缝试件材料的选择20MnV(碳素钢(碳含量小于等于0.3%)、普通合金结构钢)的化学成分如下:碳C:0.17~0.24硅Si:0.17~0.37锰Mn:1.30~1.60硫S:允许残余含量≤0.35磷P:允许残余含量≤0.35铬Cr:允许残余含量≤0.30镍Ni:允许残余含量≤0.30铜Cu:允许残余含量≤0.30钒V:0.07~0.1220MnV的性能:20MnV强度、塑性、韧性及淬透性均比20Mn2好。
20MnV相当于20CrNi 钢,可用于制造锅炉、高压容器及管道等。
20MnV钢的强度、塑性、韧性及淬透性均比20Mn2钢为好,钢在油中临界淬透直径达7~14mm,可切削性尚好,渗碳时晶粒长大倾向小,但热处理时有回火脆性。
焊接生产工艺过程的设计
3. 焊接生产过程中的焊接工艺
(1) 制定焊接工艺的内容
1) 合理地选择焊接方法,确定相应的焊接材料。
2) 选定合理的焊接参数,如焊条电弧焊时的焊条直径、焊接电流、电弧电 压、焊接速度、施焊顺序、焊接层数等;埋弧焊还要规定焊剂种类;气体保 护焊要规定气体种类、流量、焊丝伸出长度等。
3) 制定其他措施并规定参数,如预热、缓冷的要求,后热、中间加热等焊 后热处理的要求等。
2.焊接生产装配工艺
(1) 装配工艺方法 1) 按定位方式分为划线装配法和胎卡具装配法。 2) 按装配焊接顺序分为:整体装配-焊接;边装边焊;按 部件装配焊接,最后总装配-焊接三种。 3) 按装配工作地点分为固定地点装配法和流动装配法。 (2) 装配工艺过程的制定 内容包括:零件、组件、部件的装配顺序,各装配顺序、 各工步上采用的装配方法,以及装配时采用的胎卡具、工具和 装备的规格型号。
(5) 编写工艺评定报告(表5-22)
将检验记录、试验结果与任务书、指导书对照,判断确认合格后,编 写焊接工艺评定报告。原始记录、检验、试验报告应保存备查或作为评定 报告的附件。如试验结果不符合工艺评定任务书的规定,应作评定失败, 找出原因,提出改进措施,重新评定直到合格为止。
2 焊接生产的材料加工工艺及装配、焊接工艺
1.材料加工工艺 (1)钢材的预处理 1) 矫正:由于运输、轧制等环节使轧制钢材发生波浪、 整体弯曲等变形,在焊接生产前必须展平矫正,否则将影响 划线、号料、切割等工序的精确度。 2)表面清理和表面防护处理:清除表面的锈、油污和氧 化物等。 (2)放样、划线和号料 将设计结构按1:1比例绘制出来(放大样)即为放样;将 待加工零件或毛坯划在金属材料上, 以便切割或装配,此工 序成为划样;而用样板划线则成为号料。 (3)切割 (4)弯曲及成形
焊接结构设计
焊接结构设计
翼板, (1) 翼板,腹板的拼接焊缝位置
图16-10 焊接梁 16-
翼板, 图16-11 翼板,腹板拼接焊缝的位置 16-
图16-10所示的梁在承受载荷时,上翼板内受压 16-10所示的梁在承受载荷时, 所示的梁在承受载荷时 应力作用,下翼板内受拉应力作用,中部拉应力最大, 应力作用,下翼板内受拉应力作用,中部拉应力最大, 腹板受力较小.对上翼板和腹板,从使用要求看, 腹板受力较小.对上翼板和腹板,从使用要求看,焊 缝的位置可以任意安排. 缝的位置可以任意安排.为充分利用材料原长和减少 焊缝数量,上翼板和腹板都采用两块2500mm 2500mm的钢板拼 焊缝数量,上翼板和腹板都采用两块2500mm的钢板拼 接,即焊缝在梁的中部.对下翼板,为使焊缝避开最 即焊缝在梁的中部.对下翼板,
焊接结构设计
表16-3 焊接梁各焊缝焊接方法及接头形式的选择 16焊缝名称 拼板焊缝 翼板-腹板焊 翼板 腹板焊 缝 筋板焊缝 焊接方法 手弧焊或CO2焊 手弧焊或 1.埋弧自动焊 . 2.手弧焊或 .手弧焊或CO2焊 手弧焊或CO2焊 手弧焊或 接头形式
焊接结构设计
图16-16 瓶体装配焊接简图
焊接结构设计 2,焊接工字梁
结构名称:焊接梁(图16-10); 结构名称:焊接梁( 16-10); 主要组成:上,下翼板,腹板,肋板; 主要组成: 下翼板,腹板,肋板; 材 料:20钢; 20钢 钢板最大长度2500mm 板厚分别选用6 2500mm, 尺 寸:钢板最大长度2500mm,板厚分别选用6,8和 10mm; 10mm; 生产类型:大批生产 生产类型: 设计要点:该结构用低碳钢板(20钢 下料拼焊, 设计要点:该结构用低碳钢板(20钢)下料拼焊,材 料可焊性好. 料可焊性好.焊接工艺设计中需要集中考虑的是梁柱 的受力状况和防止应力与变形,切实保证焊接质量. 的受力状况和防止应力与变形,切实保证焊接质量.
焊接结构学
焊接结构学焊接作为一种重要的连接工艺,在制造业和工程领域得到了广泛应用。
焊接结构学的相关知识涵盖了焊接理论基础、焊接冶金与材料、焊接接头设计与优化、焊接制造工艺与设备、焊接结构的力学行为、焊接结构的无损检测与质量保证以及焊接结构的失效分析与预防等方面。
1.焊接理论基础焊接是通过加热或加压的方式将金属或其他材料连接在一起的过程。
焊接理论基础主要研究焊接的物理和化学过程,包括焊缝的形成机理、金属的加热和冷却原理等。
2.焊接冶金与材料焊接冶金涉及到金属熔化、凝固和结晶的过程,而焊接材料则包括母材、焊丝、焊剂等。
选择合适的焊接材料和冶金工艺对于保证焊接质量和可靠性至关重要。
3.焊接接头设计与优化焊接接头是焊接结构中的关键部分,其设计需考虑连接方式、强度和稳定性等因素。
优化焊接接头设计可以提高焊接结构的承载能力,避免应力集中和薄弱环节的产生。
4.焊接制造工艺与设备焊接制造工艺包括焊接电流、电压、速度等参数的设定,以及坡口制备、定位、施焊等步骤的实施。
焊接设备包括手工电弧焊机、气体保护焊机、激光焊机等。
选择适当的焊接工艺和设备对于提高焊接质量和效率至关重要。
5.焊接结构的力学行为焊接结构的力学行为涉及到变形、残余应力、疲劳强度等方面。
力学行为的研究有助于了解焊接结构的性能,并为结构设计和优化提供依据。
6.焊接结构的无损检测与质量保证无损检测方法如射线检测、超声波检测等可用于检测焊接结构中的缺陷和损伤。
质量保证措施包括工艺控制、质量检验等环节,以确保焊接结构的完整性和安全性。
7.焊接结构的失效分析与预防焊接结构在服役过程中可能出现失效情况,如腐蚀、磨损和变形等。
失效分析可以对失效原因进行诊断,提出预防措施,从而延长焊接结构的使用寿命。
总之,焊接结构学涉及多个领域和过程,从理论基础到失效分析,每个环节都关系到焊接结构的性能和可靠性。
不断深入研究和改进焊接技术,有助于提高制造产业的发展水平,为社会和经济发展带来更多机遇和价值。
焊接应用——焊接结构与设计
~
焊透 , 并能单面焊 双面成形 。突破 了管道 全位置焊机 只能焊接薄壁管的局限性 , 进一 步扩大 了管 道全位置
焊机的使用范 围, 高焊接效率 。图 3 1 l 提 表 参 O
2 12 8 核一级设 备稳压器 电加热元件 的焊接/ 0 0 18 王
4 5
为适应 汽车轻量化的发展 趋势 。 对某轿车车身 针
焊
焊 接 结 构 与 设 计
接
应
用
机进行 电阻点焊试验 。通 过对 不同点焊工 艺参 数获 得 的接头力学性能 的对 比, 出了对该种铝合 金板点 得 焊工艺参数的优化结果 , 使点焊接头具 有较好 的综合 力学性能 ; 试验发现 , 当电极 压力增大时 , 当提高焊 适 接 电流 , 延长焊接时 间能显著提高点焊接 头 的疲 劳寿 命 。图 8表 3 7 参
2 12 8 一种点焊 电极悬挂 的磁 吸式结构设计/ 0013 杨
轨发生断裂主要是 因为 其轨 头踏 面表层形成 的马 氏 体组织在铺轨时的弯 曲拉应 力作用下 , 产生裂 纹并快
速扩展 , 导致钢轨 发 生脆 性断 裂 ; 钢轨焊接 时 出现 了
妙…/ 焊 接技术.2 0 ,8 7 :1 2 / 一0 9 3 ( ) 4  ̄4
妍
应 用。在管道上涂 敷 活性 剂后 熔池 的受力状 况发 生
型钢结构焊缝设计焊接工艺要求
型钢结构焊缝设计焊接工艺要求
型钢结构焊缝设计焊接工艺要求如下:
1. 焊接方法:根据焊缝位置和承载情况,选择合适的焊接方法,如手工电弧焊、二氧化碳气体保护焊等,保证焊接质量。
2. 焊缝高度:焊缝高度应不低于母材厚度,以保证结构的承载能力。
3. 焊缝强度:焊缝应达到母材强度,以保证结构的承载能力,同时避免出现裂缝等问题。
4. 焊缝布置:焊缝应按照规定布置,如避免在冲击载荷作用下使用搭接接长进行焊接。
5. 焊缝清理:焊接完成后,应清理焊缝及其附近的保护气体和杂质,以保证焊缝的完整性和耐腐蚀性。
6. 焊接质量:应进行无损检测,确保焊缝质量符合要求。
7. 焊接工艺评定:对新的焊接材料和工艺,应进行焊接工艺评定,以确定焊接工艺的可行性。
8. 焊接过程控制:在焊接过程中,应控制好焊接电流、电压、焊接速度等参数,以保证焊接质量。
总之,型钢结构焊缝设计需要严格遵守相关规范和要求,以确保结构的承载能力和耐久性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-4 焊接结构设计
焊接结构工艺性
焊接结构工艺性——所设计的焊接结构, 在满足其使用要求的前提下,还必须充 分考虑焊接过程的工艺性要求,使焊缝 布置合理、结构强度高、应力变形小, 使之能优质、高产、低成本地将焊接结 构生产出来。
2020/9/9
4-4 焊接结构设计
焊接结构工艺性
焊缝的布置应便于操作和检验; 焊缝应尽量分散布置; 焊缝应尽量对称布置; 焊缝应避开最大应力和应力集中处; 焊缝应尽量避免锐角; 尽量减少焊缝数量; 焊缝应避开加工表面; 不同厚度工件焊接时,接头处应平滑过渡。
2020/9/9
4-4 焊接结构设计
焊接结构工艺性
焊接结构工艺性
焊接结构构工艺性
焊接结构工艺性
Break
焊接结构件材料的选择
设计时,一方面要考虑结构强度,另一方面要考虑 可焊性;
由于低碳钢和强度级别的低合金钢,可焊性好、价 格低廉,应优先考虑;
但是,当对结构体积和重量有一定要求或在重载情 况下,就应该选择强度级别高的低合金钢。这类 钢种虽然可焊性较差,但只要采取相应的措施, 也能获得满意的焊接结构。
2020/9/9