解析几何第四版吕林根许子道编第一章向量与坐标18两向量的向量积

合集下载

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何第四版吕林根期末复习课后习题(重点)详解

解析几何第四版吕林根期末复习课后习题(重点)详解

第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线.三点共线.证明证明∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.证明:证明: )(21AC AB AL +=Θ)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明是任意一点,证明OB OA ++OC =OL +OM +ON .[证明] LA OL OA +=Θ MB OM OB +=NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。

构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明是任意一点,证明OA +OB +OC +OD =4OM .[证明证明]]:因为OM =21(OA +OC ), OM =21(OB +OD ), 所以所以2OM =21(OA +OB +OC +OD ) 所以所以OA +OB +OC +OD =4OM . 1010、、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明证明证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴,∴ →→→+=BC AD MN ,即,即§1.4 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =λPB (λ≠-1),O 是空间任意一点,求证:是空间任意一点,求证:OP =λλ++1OB OA[证明]:如图1-7,因为,因为AP =OP -OA ,PB =OB -OP ,所以所以OP -OA =λ (OB -OP ), (1+λ)OP =OA +λOB ,从而从而 OP =λλ++1OB OA .4.、在ABC ∆中,设,1e AB =2e AC =.(1) 设E D 、是边BC 三等分点,将矢量AE AD ,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合的线性组合解:(1)()12123131,e e BC BD e e AB AC BC -==-=-=Θ,2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为)因为 ||||TC BT =||||11e e ,且 BT 与TC 方向相同,方向相同,所以所以BT =||||21e e TC . 由上题结论有由上题结论有AT =||||1||||212211e e e e e e ++=||||||||212112e e e e e e ++. 5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量OG 对于矢量对于矢量OC OB OA ,,,的分解式。

解析几何课件(吕林根许子道第四版)

解析几何课件(吕林根许子道第四版)

下一页
返回
定理1.4.2 如果向量e1, e2不共线,那么向量 r与
e1 , e2共面的充要条件是 r可以用向量 e1 , e2线性表示,
或者说向量 r可以分解成e1 , e2的线性组合,即
r xe1 ye2
(1.4-2)
并且系数x, y被e1 , e2 , r唯一确定. 这时e1 , e2叫做平面上向量的基底 . 定理1.4.3 如果向量e1 , e2 , e3不共面,那么空间
OC OA OB
下一页
返回
B
C
O
A
这种求两个向量和的方法叫做平行四边形法则
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
a

b

b

a.
(2)结合律:
a

b

c

(a

b)

c
a

(b

c).
(3)
a

(a)

0.
上一页 下一页
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
F
P1
e2
C
AB e1 , AC e2 , AD e3 ,
在不全为零的 n个数1 , 2 ,, n使得
1 a1 2 a2 n an=0,
(1.4 4)

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根 许子道_第四版_课后习题解答第一章 矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点2. 设点O 是正六边形ABCDEF 的中心,在矢量OA 、OB 、 OC 、OD 、OE 、 OF 、AB 、BC 、CD 、 DE 、EF 和FA 中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF 中,相等的矢量对是: 图1-1 .DE OF CD OE AB OC FA OB EF OA 和;和;和;和;和3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC , 则在∆BAC 中,21AC. KL 与AC 方向相同;在∆DAC 中,21AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB 、CD ; (2) AE 、CG ; (3) AC 、EG ;(4) AD 、GF ; (5) BE、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件?E(1=+ (2+=+ (3-=+ (4+=- (5=[解]:(1)b a ,-=+(2)b a ,+=+(3≥且b a ,-=+ (4)b a ,+=(5)b a ,≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.[证明]: )(21AC AB AL +=)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)
上一页 下一页
返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2

《解析几何》(第四版)吕林根许子道编第一章向量与坐标1.8两向量的向量积

《解析几何》(第四版)吕林根许子道编第一章向量与坐标1.8两向量的向量积

j
i
a
bYX(1XX1X12i(2(jiY1kiji))ZY1X1kY1)2Y(2j((iXk2ji)j) YY21XZj
(a
b)
c
a
c
b
c.
(1.8-5)


a,
b,
c中至少有一个是零矢
,
或a,
b,
c为一组
共线矢, (1.8 5)成立.
现假设不是上述情况.
设c 为c的单(a位矢b ),先c 证
a
c
b
c
.
证明向量积的分配律: (a+b)c=(a c)+(b c)
引理 a c a2
证明 两矢方向: 一致;引入
成立;

a
//
b ,则
a
b
a
b
b
sin (a, b )
a
ba
b a sin (a, b ),

a
b 与b
a模相等.
又由向量积定义,a
b 与b
a同时垂直于
a与b,
所其以次, a因 从 b与abba的共终线点. 来看
a,
b 决定的平面
,
顺序
b,
a,
b
a构成右手标架
o; b, a,b a
,
所以a
b与
b
a的方向相反 ,
从而得
a b b a.
定理1.8.4 向量积满足数因子的结 合律,即
为数,(a,ab)为 b任 意a向(量b.)
(a
b ).
(1.8-3)
推论 , 为任意实数,则
(a) (b ) ( )(a b ).

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根 许子道_第四版_课后习题解答第一章 矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点2. 设点O 是正六边形ABCDEF 的中心,在矢量OA 、OB 、 OC 、OD 、OE 、 OF 、AB 、BC 、CD 、 DE 、EF 和FA 中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF 中,相等的矢量对是: 图1-1 .DE OF CD OE AB OC FA OB EF OA 和;和;和;和;和3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC , 则在∆BAC 中,21AC. KL 与AC 方向相同;在∆DAC 中,21AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB 、CD ; (2) AE 、CG ; (3) AC 、EG ;(4) AD 、GF ; (5) BE、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件?E(1=+ (2+=+ (3-=+ (4+=- (5=[解]:(1)b a ,-=+(2)b a ,+=+(3≥且b a ,-=+ (4)b a ,+=(5)b a ,≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.[证明]: )(21AC AB AL +=)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

解析几何全册课件

解析几何全册课件

两式相减,得
()a 0 , 即 a 0,
a 0,故0,即.
上一页
下一页
返回
( a b )a b
1) 当 0 或 a b 中有一个为零向量时,
显然成立,
除这些情况外,现分别按下面两种情况证明.
a 2)
b 和
平行.可以找到数
C
上一页 下一页
返回
连接AF,因为AP 是△AEF 的中线,所以有
1
1 又因为AF 是△ACD 的A中P 线1 ,所2以(A又有EAF),
1
A F1 2(A C A)D 1 2(e2e3),

11 A E 2A B 2e1,
从A 而 1 P 1 2 1 2 得 e 1 1 2 (e 2 e 3 ) 1 4 (e 1 e 2 e 3 ),
自任意 O开 点始,依O次 A 1 引 a1,A1A2 a2,,
An1An an,由此得一O折 A 1A2线 An,于是矢 O量 A n
a就是 n个矢a量 1,a2,,an的和,即
OAOA 1A1A2An1An .
A 1
A 4
A
A
3
2
A
n-1
O
A
n
这种求和的方法叫做多边形法则
§3.2 平面与点的相关位置 §3.4 空间直线的方程 §3.7 空间两直线的相关位置
第四章 柱面锥面旋转曲面 与二次曲面
§4.1 柱面 §4.4 椭球面
§4.2 锥面 §4.5 双曲面
§4.3 旋转曲面 §4.6 抛物面
第五章 二次曲线的一般理论
§5.1 二次曲线与直线的相关位置 §5.2 二次曲线的渐近方向、中心、渐近线 §5.3 二次曲线的切线 §5.4 二次曲线的直径 §5.5 二次曲线的主直径和主方向 §5.6 二次曲线方程的化简与分类

吕林根解析几何(第四版)(完整课件)1.7

吕林根解析几何(第四版)(完整课件)1.7

cC
AB PC
所以三高交于一点.
直角坐标系下数量积的坐标运算
定理1.7.3 设 a X1i Y1 j Z1k,b X 2i Y2 j Z2 k, 则 a b X1X 2 Y1Y2 Z1Z2.
证明: a b ( X1i Y1 j Z1k )( X 2i Y2 j Z2 k )
若 a,b 中没有 0 ,则(1)和(4)显然成立.
(2) 若 0 ,则等式成立.若 0,则
(a) b | b |射影 (a) | b | ( 射影 a )
b
b
( | b | 射影 b a) (a b) .
又 a (b) (b) a (b a) (a b), 所以
(a) b a (b) (a b).
2
X1X 2 i X1Y2i j X1Z1i k
2
Y1X 2 j i Y1Y2 j Y1Z2 j k
2
Z1X 2 k i Z1Y2 k j Z1Z2 k .
而 i, j,k是两两垂直的单位向量,则有
i j j i 0, j k k j 0, i k k i 0,
于各边平方和.
B
C
证明: 如图, OACB 中,
设 OA a,OB b,OC m, O
A
BA n ,则有 m a b,n a b ,所以
2
2
2
2
2
2
m a 2a b b , n a 2a b b .
所以
2
m
2
n
2
2a
2b2 ,即|
m
|2
|
n
|2
2
|
a
|2
2
|
b
|2
例2 证明: 如果一条直线与一个平面内的

解析几何课件(第四版)

解析几何课件(第四版)

交线为椭圆.
上一页
下一页
返回
z a2 x2 y2 2 表示怎样的曲线? 例2 方程组 a 2 a 2 ( x ) y 2 4

z a x y
2 2
2
上半球面,
a 2 a 2 圆柱面, ( x ) y2 2 4
交线如图.
上一页
返回
§2.2
曲面的方程
下一页
返回
以下给出几例常见的曲面.
例 1 建立球心在点 M 0 ( x0 , y0 , z 0 ) 、半径为 R 的球面方程.

设 M ( x , y , z ) 是球面上任一点,
根据题意有
| MM 0 | R
x x0 2 y y0 2 z z0 2 R
所求方程为 x x0 y y0 z z0 R 2
.
旋转一周得旋转曲面 S
M(x,y,z) S
f (y1, z1)=0
z1 z
| y 1 | MP
S
x y2 2zFra bibliotekz1C
o
y1
y
.
x
上一页 下一页
返回
f ( y, z ) 0 曲线 C x 0
旋转一周得旋转曲面 S
绕 z轴
P M
z
N (0, y1 , z1 )
.
z
x2 2 y
y
o
平面
y
o
x
抛物柱面 抛物柱面方程:
x
y x
平面方程:
x 2y
2
下一页
y x
返回
只含 x, y 而缺 z 的方程 F ( x , y ) 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy 面上曲线 C :F ( x , y ) 0 .

解析几何大学数学

解析几何大学数学

§1.5 标架与坐标 §1.7 向量的数量积 §1.9 三向量的混合积
§1.1 向量的概念
• 量的分类 :标量、向量(矢量)、张量等
定义 集合 相互关系
§1.1 向量的概念
定义1.1.1 既有大小又有方向的量叫做向量, 或称矢量.
向量的几何表示: 有向线段
M2 a
有向线段的长度表示向量的大小,
a2 A2
a1 O
A1 a3 c
A4
an1
An-1
An
这种求和的方法叫做多边形法则.
a4 A3
Back
三、向量的减法
定义1.2.2 当向量 b 与向量 c 的和等于向量 a ,即 b c a 时,我们把向量 c 叫做向量 a 与 b 的差, 并记做 c a b.
向量减法的定义:a b a (b).
相反.我们把这种运算叫做数量与向量的乘法,简称为数乘.
设 是一个数,向量a与 的乘积a规定为
(1) 0, (2) 0,
aa与a0同向,|
a
|
|
a
|
(3) 0, a与a 反向,| a || | | a |
a
2a
1
a
2
下一页
返回
定理1.3.1 数与向量的乘积符合下列运算规律:
(1)
B
a
C a (a) 0.
A
a
b
b
c
a
A
O
O a bc a b c C
二、向量加法的运算规律
有限个向量 a1, a2, an 相加可由向量的三角形求和法则推广: 自任意点 O 开始,依次引OA1 a1, A1A2 a2, , An1An an , 由此得一折线 OA1A2 An,于是向量 OAn a 就是 n 个向量 a1, a2 , , an 的和,即OA OA1 A1A2 An1An .

解析几何课件(吕林根+许子道第四版)

解析几何课件(吕林根+许子道第四版)

从而得
AP1

1 2
1 2
e1

1 2
(e2

e3 )

1 4
(e1

e2

e3 ),
同理可得
APi

1 4
(e1

e2

e3 ),(i

2,3)
所以
AP1=AP2=AP3
上一页
从而知P1, P2 , P3三点重合,命题得证 .
下一页
返回
定义1.4.2 对于n(n 1)个向量a1 , a2 ,, an,如果存
叫 做 矢 量a1, a2 ,, an的 线 性 组 合. 定理1.4.1 如果矢量e 0,那么矢量r与矢量e共
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.
这时e称为用线性组合来表示共线矢量的基底.
向M量1为的起大点小,.M| a2|为或终| 点M的1M有2 |向线段.
下一页
返回
单位向量:模为1的向量.
零向量:模为0的向量.0

e
a

e
M1M2
相同,定那义a么1.叫1.做2 =相如等果向两量个b.向记量为的模a 相b等 且方向
所有的零向量都相等.
定义1.1.3 两个模相等,方向相反的向
返回
§1.3 数乘向量
定义1.3.1 实数与矢量a的乘积是一个矢量,记做 a,它的
模是 a a ;a的方向,当 0时与a相同,当 0时与a
相反.我们把这种运算叫做数量与矢量的乘法,简称为数乘.

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)

空间中点与平面的关系
点在平面内:点 位于平面内满足 平面的定义和性 质
点在平面外:点 不在平面内与平 面平行或与平面 相交
点的轨迹:点按 照某种规律在平 面上移动形成轨 迹
点的射影:点在 平面上的投影与 原点连线与平面 的夹角关系
空间中直线与平面的关系
直线与平面的位置关系:直线要么在平面上要么与平面平行要么与平面相交 直线与平面的交点:直线与平面的交点称为直线在平面上的投影 直线与平面的角度:直线与平面之间的角度称为线面角可以通过几何或向量方法求解 直线与平面的距离:直线到平面的最短距离称为线到面的距离可以通过几何或向量方法求解
05
解析几何中的投影与透视
投影的基本概念
投影的定义:通过光线将物体投射到平面上生成影子。 投影的分类:中心投影、平行投影。 投影的应用:建筑设计、工程制图、动画制作等领域。 投影的性质:与光源、物体和投影面的位置关系有关。
透视的基本概念
透视的定义:通过透明平面观察物体研究物体在平面上的投影从而表现出物体的三维空间 感。
应用:在解析几何中坐标变换被广泛应用于解决各种实际问题如平面几何、 立体几何、曲线和曲面等。 意义:通过坐标变换可以深入理解几何图形的内在性质和规律进一步探索 几何图形的变换和对称等特性。
图形变换
平移变换:将图形在平面内沿某一方向移动一定的距离而不改变其形状和大小。 旋转变换:将图形绕某一点旋转一定的角度而不改变其形状和大小。 伸缩变换:将图形按一定的比例进行放大或缩小而不改变其形状和大小。 对称变换:将图形关于某一直线或点进行翻转或反射而不改变其形状和大小。
第四 版)(精).ppt
单击此处添加副标题
汇报人:
目录
01 课件概览 02 解析几何基础知识 03 解析几何中的曲线与方程 04 解析几何中的平面与空间 05 解析几何中的投影与透视 06 解析几何中的变换与对称

解析几何吕林根第四版

解析几何吕林根第四版

解析几何吕林根第四版简介《解析几何》是解析几何学的经典教材之一,已经出版了多个版本。

其中,《解析几何吕林根第四版》是该教材的最新版本。

本文将对该版本进行详细解析,介绍其内容和特点。

第一章探索解析几何本章从引入几何、解析几何的定义和发展历程开始,引导读者了解解析几何的基本概念和研究方法。

主要内容包括:•几何与解析几何的区别•坐标系的使用和意义•向量的基本性质和运算法则•点、线、面的表示和方程通过本章的学习,读者能够建立起对解析几何的基本认知,并具备了解几何对象解析性质的能力。

第二章坐标系和变换本章介绍了坐标系的不同类型和变换方法,为后续章节的学习打下坚实的基础。

主要内容包括:•直角坐标系、极坐标系、三维坐标系的概念和表示方法•坐标变换的基本原理和应用•坐标系的旋转、平移和缩放等变换方法通过学习本章,读者可以熟练使用不同类型的坐标系,并能够进行各种坐标变换操作。

第三章直线和曲线本章介绍了直线和曲线的解析几何表示以及相关性质。

主要内容包括:•直线的一般方程和参数方程•曲线的参数方程和隐式方程•圆、椭圆、双曲线和抛物线的解析几何表示和性质•椭圆的焦点和准线通过学习本章,读者可以准确地描述直线和曲线,并能够分析其性质和特点。

第四章曲面和空间曲线本章介绍了曲面和空间曲线的解析几何表示和性质。

主要内容包括:•曲面的方程和类型•空间曲线的参数方程和表示方法•平面、二次曲面、旋转曲面的解析几何特征和性质通过学习本章,读者可以了解不同类型的曲面和曲线,并能够进行相关分析和计算。

第五章空间直线和平面本章介绍了空间直线和平面的解析几何表示和性质。

主要内容包括:•空间直线的一般方程和参数方程•平面的一般方程和参数方程•直线和平面的位置关系和交点计算•点到直线和平面的距离计算通过学习本章,读者可以准确地描述空间中的直线和平面,并能够进行相关计算和分析。

第六章空间几何与向量代数本章介绍了空间几何和向量代数的关系和应用。

主要内容包括:•空间向量的模长、方向和运算法则•空间向量的线性相关性和线性独立性•向量的点积和叉积•向量在空间几何中的应用通过学习本章,读者可以将空间几何问题转化为向量代数问题,并能够进行向量相关的计算和分析。

吕林根解析几何(第四版)(完整课件)(1)

吕林根解析几何(第四版)(完整课件)(1)

即( ,但 e 0 ,则 x .即 x ' 0 x xe ' ) 0
xx'.
定理1.4.2 如果向量 e1 , e 2 不共线, 则向量
r 与 e1 , e 2 共面的充分必要条件是 r 可以用向
量 e1 , e 2 线性表示,即
r x e y e 1 2
并且系数 x , y 被 e1,e2, r 唯一确定.
而O M a ,O N b ,
O
M P m M B m ( O B O M ) m ( b a ) ,
N P n N A n ( O A O N ) n () a b ,

p a m () b am ( 1 ) a m b ,
10 ,所以 aa ,2 , , a 因为 1 n线性相关.
定理1.4.5 如果一组向量中的一部分向量
线性相关那么这一组向量就线性相关.
证明: 设有一组向量 a , , a , , a , , a ( s r ) 1 2 s r 其中一部分,如 aa 线性相关 , 即存在不 , , , a 1 2 s 全为0的 ,使得 ( i 1 , 2 , s )
F
C
P1
B
定义1.4.2 对于 n(n 1) 个向量 aa , ,2 , , a 1 n 如果存在不全为零的 n 个数 使得 , , , 1 2 n
a a a 0 .
1 1 2 2 n n
1 2 n
那么 n 个向量 aa 叫做线性相关,不是 ,2 , , a 1 n
充分性 设 a 中有一个向量是其 ( i 1 , 2 , n ) i 余向量的线性组合.设这个向量为 a n ,即 则

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0






PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2






(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2








  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档