2015年各区二模29题汇总

合集下载

2015-5北京市各区县二模试题分类汇编(文理)

2015-5北京市各区县二模试题分类汇编(文理)

<一>集合与简易逻辑1.集合【2015-5海理】(1)已知全集U Z =,集合{1,2}A =,{1,2,3,4}A B =U ,那么()U C A B I =( )C (A )∅(B ){3}x x Z ∈≥(C ){3,4}(D ){1,2}【2015-5西文理】1.设集合{|10}A x x =->,集合3{|}B x x =≤,则A B = ( )B (A )(1,3)- (B )(1,3] (C )[1,3) (D )[1,3]- 【2015-5东文】(1)已知全集U =R ,集合{}012A =,,,{}234B =,,,如图阴影部分所表示的集合为B(A ){}2 (B ){}01, (C ){}34, (D ){}0,1,2,3,4 【2015-5朝文】1.设集合A {}(1)(2)0x x x =--?,集合{}1B x x =<,则A B =U DA .ÆB .{}1x x =C .{}12x x# D .{}12x x -<?【2015-5朝理】1.已知集合{}21A x x =>,集合{}(2)0B x x x =-<, 则A B = AA .{}12x x << B. {}2x x > C . {}02x x << D . {1x x ≤,或}2x ≥【2015-5丰理】1.已知{1}A x x =>,2{20}B x x x =-<,则A B = D(A){0x x <或1}x ≥(B) {12}x x <<(C){0x x <或1}x > (D) {0}x x >【2015-5朝理】14.设集合{}{}123(,,)2,0,2,1,2,3i A m m m m i =?=,集合A 中所有元素的个数为 ;集合A 中满足条件“12325m m m ?+?”的元素个数为 .27;18【2015-5丰文】8.对于集合A ,B ,定义{,}A B x y x A y B +=+∈∈,下列命题:B ①A B B A +=+;②()()A B C A B C ++=++;③若A A B B +=+,则A B =;④若A C B C +=+,则A B =.其中正确的命题是 (A) ① (B) ①② (C) ②③ (D) ①④【2015-5丰理】14. 已知非空集合A ,B 满足以下四个条件:①{1,2,3,4,5,6,7}A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么A =______; (ⅱ)有序集合对(A ,B )的个数是______. {6};32【2015-5朝文】8.已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料. 若下面4个说法都是正确的:①甲不在查资料,也不在写教案; ②乙不在打印材料,也不在查资料; ③丙不在批改作业,也不在打印材料;④丁不在写教案,也不在查资料.此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断 A A .甲在打印材料 B .乙在批改作业 C .丙在写教案 D .丁在打印材料 【2015-5海文】(14)某网络机构公布某单位关于上网者使用网络浏览器,A B 的信息: ①316人使用A ; ②478人使用B ;③104人同时使用A 和B ;④567人只使用,A B 中的一种网络浏览器. 则这条信息为 (填“真”或“假”),理由是 .假,由①②③可知只使用一种网络浏览器的人数是212+374=586,这与④矛盾 【2015-5东理】(8)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012a a a ,其中{0,1}i a ∈(0,1,2i =),传输信息为00121h a a a h ,001h a a =⊕,102h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如原信息为111,则传输信息为01111.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是C(A )11010 (B )01100 (C )10111 (D )00011【2015-5昌文】1. 已知全集{}1,2,3,4,5,6U =,集合{}2,3,5M =,{}4,5N =,则集合()U C M N 中元素的个数是C A .0个B .1个C .2个D .3个【2015-5昌理】1. 已知集合{}2340A x x x =--=,{}0,1,4,5B =,则A B 中元素的个数为BA .0 个 B. 1 个 C. 2 个 D. 3个2.逻辑【2015-5海文】(2)已知命题1:0,2p x x x∀>+≥,则p ⌝为( )D (A )10,2x x x ∀>+<(B )10,2x x x ∀≤+<(C )10,2x x x ∃≤+<(D )10,2x x x∃>+<【2015-5海理】((4)已知命题p ,q ,那么“p q ∧为真命题”是“p q ∨为真命题”的( )A(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件【2015-5西文理】3. 设命题p :函数1()e x f x -=在R 上为增函数;命题q :函数()cos 2f x x =为奇函数. 则下列命题中真命题是( )D(A )p q ∧ (B )()p q ⌝∨ (C )()()p q ⌝∧⌝ (D )()p q ∧⌝【2015-5丰文】2. 已知0a >且1a ≠,命题“∃x >1,log 0a x >”的否定是D(A) ∃x ≤1,log 0a x > (B) ∃x >1,log 0a x ≤ (C) ∀x ≤1,log 0a x >(D) ∀x >1,log 0a x ≤【2015-5东理】(5)已知p ,q 是简单命题,那么“p q ∧是真命题”是“p ⌝是真命题”的D(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件<不等式>【2015-5海文】(7)设320.30.2,log 0.3,log 2a b c ===,则( )B (A )b a c <<(B )b c a <<(C )c b a <<(D )a b c << 【2015-5海理】((2)设30.320.2,log 0.3,2a b c ===,则( )D(A )b c a <<(B )c b a <<(C )a b c <<(D )b a c <<【2015-5西理】7.若“1x >”是“不等式2x a x >-成立”的必要而不充分条件,则实数a 的取值范围是( )A(A )3a > (B )3a < (C )4a > (D )4a < 【2015-5东文】(5)设0.8log 0.9a =, 1.1log 0.9b =,0.91.1c =,则a ,b ,c 的大小关系是C (A )a b c << (B )a c b << (C )b a c << (D )c a b <<【2015-5东理】(2)设4log a =π,14log b =π,4c =π,则a ,b ,c 的大小关系是D(A ) b c a >> (B )a c b >>(C ) a b c >> (D )b a c >>【2015-5东文】(11)函数22(0)y x x x=+<的最大值为 . 4- 【2015-5东理】(10)已知正数,x y 满足x y xy +=,那么x y +的最小值为 .4【2015-5丰文理】9.已知正实数x ,y 满足xy =3,则2x +y 的最小值是. 【2015-5昌文】3.设1222114,log ,()43a b c ===,则,,a b c 的大小关系是A A. a c b >> B. a b c >> C. b a c >> D. c a b >><线性规划>【2015-5海文】(8)已知不等式组4,2,2x y x y x +≥⎧⎪-≥-⎨⎪≤⎩表示的平面区域为D ,点(0,0),(1,0)O A .若点M是D 上的动点,则OA OMOM⋅uu r uuu r uuu r 的最小值是( ) C(A)2(BCD【2015-5西文】13. 若,x y 满足,2,1,y x y x x y +⎧⎪⎨⎪⎩≥≤≤若z x my =+的最大值为53,则实数m =____.2 【2015-5海理】((14)设关于,x y 的不等式组340,(1)(36)0x y x y -≥⎧⎨-+-≤⎩表示的平面区域为D ,已知点(0,0),(1,0)O A ,点M 是D 上的动点. OA OM OM ⋅=λ,则λ的取值范围是 .【2015-5朝文】3.实数x ,y 满足不等式组0,0,2,x y x y y -≥⎧⎪+≤⎨⎪≥-⎩,则目标函数3z x y =+的最小值是BA . 12-B . 8-C . 4-D .0【2015-5东理文】(6)若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是D(A )[1,3]- (B )[1,11] (C )]3,1[ (D )]11,1[-【2015-5丰理】7.某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A ,B ,C 三种产品共15吨(同一时间段内只能生产一种产品),已知生产这些产品每(A) 30 (B) 40 (C) 47.5 (D) 52.5【2015-5丰文】7.某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用A 原料3吨,B 原料2吨;生产每吨乙种产品要用A 原料1吨,B 原料3吨.该工厂每天生产甲、乙两种产品的总量不少于2吨,且每天消耗的A 原料不能超过10吨,B 原料不能超过9吨.如果设每天甲种产品的产量为x 吨,乙种产品的产量为y 吨,则在坐标系xOy 中,满足上述条件的x ,y 的可行域用阴影部分表示正确的是A(A)(B) (C) (D)<复数>【2015-5海文】(1)在复平面内,复数2i (1i)-对应的点位于( )B (A )第一象限(B )第二象限(C )第三象限(D )第四象限 【2015-5西文理】9. 复数10i3i=+____.13i + 【2015-5东文】(2)若复数2()i m m m -+为纯虚数,则实数m 的值为C (A )1- (B )0 (C )1 (D )2【2015-5朝文】9.设i 为虚数单位,则i(1i)-= .1+i【2015-5朝理】3. 设i 为虚数单位,m R ∈,“复数(1)+i m m -是纯虚数”是“1m =”的 B A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 【2015-5丰文】1. 复数i(1i)-对应的点在 A(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限【2015-5丰理】2.“a =0”是“复数i z a b =+(a ,b ∈R)为纯虚数”的B(A) 充分不必要条件 (B) 必要不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件【2015-5昌文】2. 4||1i-等于D A.1B.C. 2D.<平面向量>【2015-5海文】(5)已知点(,)(0)A a a a ≠,(1,0)B ,O 为坐标原点.若点C 在直线OA 上,且BC 与OA 垂直,则点C 的坐标是( )D (A )11(,)22-(B )(,)22a a -(C )(,)22a a (D )11(,)22【2015-5东文】(12)若非零向量a ,b 满足+a b =-a b =2a ,则向量b 与+a b 的夹角为 .6π【2015-5东理】(13)已知非零向量,a b 满足||1=b ,a 与-b a 的夹角为120,则||a 的取值范围【2015-5西文理】2.已知平面向量,,a b c 满足(1,1)=-a ,(2,3)=b ,(2,)k =-c ,若()//+a b c ,则实数k =( )D (A )4 (B )4- (C )8 (D )8-是 .【2015-5朝文】4. 已知非零平面向量a ,b ,则“a 与b 共线”是“a +b 与-a b 共线”的C A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【2015-5朝理】4.已知平面上三点,,A B C 满足=6AB uu u r ,=8AC uu u r,=10BC uu u r ,则++AB BC BC CA CA AB 鬃?uu u r uu u r uu u r uu r uu r uu u r = DA. 48B. 48-C.100D. 100-【2015-5丰文】14.已知梯形ABCD 中,12AD DC CB AB ===,P 是BC 边上一点,且AP xAB yAD =+.当P 是BC 中点时,x y += ;当P 在BC 边上运动时,x y +的最大值是______.54;32【2015-5丰理】6.平面向量a 与b 的夹角是3π,且1a = ,2b = ,如果AB a b =+ ,3AC a b =- ,D 是BC 的中点,那么AD =A(A)(B) (C) 3 (D) 6【2015-5昌文】4. 已知ABC ∆是等腰直角三角形, D 是斜边BC 的中点,AB = 2 ,则()AB AC AD +⋅等于CA .2 B. C .4 D【2015-5昌理】12.如图,在菱形A B C D 中,1AB =,60DAB ∠= ,E 为CD 的中点,则AB AE ⋅的值是 . 1<函数>【2015-5海文】(11)已知()cos ln f x x x =⋅,0101()()0()f x f x x x ==≠,则01x x -的最小值是 .12π- 【2015-5西文理】6. 某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y (万元)与 x 满足函数关系2464y x =+,若欲使此设备的年平均花费最低,则此设备的使用年限x 为( )B(A )3 (B )4 (C )5 (D )6【2015-5朝理】7.已知函数e e ()2x x f x --=,x ÎR ,若对任意π(0,]2q Î,都有(s i n )(1)f m f m q +->成立,则实数m 的取值范围是 DBCD E AA. ()0,1B. ()0,2C. (),1-?D. (],1-? 【2015-5丰文】3.已知函数()sin f x x =,[2,2]x ππ∈-,则方程1()2f x =的所有根的和等于A(A) 0(B) π(C) -π(D) - 2π【2015-5西文】11.设函数,11,1()2,.x x f x xx -⎧>⎪=⎨⎪-⎩≤ 则[(2)]f f =____;函数()f x 的值域是____.52- [3,)-+∞【2015-5朝文】6.函数11,()lg ,1,x f x xx ìï-?ï=íï³ïî的零点个数是CA. 0B.1C.2D.3【2015-5东理】(7)定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++= A(A )336 (B )355 (C )1676 (D )2015【2015-5朝理】8. 如图,将一张边长为1的正方形纸ABCD 折叠,使得点B 始终落在边AD 上,则折起的部分的面积最小值为 BA.14 B. 38 C. 25D.12【2015-5昌文】6.水厂监控某一地区居民用水情况,该地区A ,B ,C ,D 四个小区在8:00—12:00时用水总量Q 与时间t 的函数关系如图所示,在这四个小区中,单位时间内用水量逐步增加的是B【2015-51,1若(f Q Q 2Q 1O QQ 2Q 1Q Q Q Q Q 1 AC B B 1(B )D C 1(C )【2015-5昌文理】7. 已知函数()y f x =(x ∈R )是奇函数,其部分图象如图所示,则在(2,0)-上与函数()f x 的单调性相同的是DA. 21y x =+B. 2log y x =C. (0)(0)x x e x y e x -⎧≥⎪=⎨<⎪⎩ D. cos y x =【2015-5朝文】14.关于函数1()42x f x =+的性质,有如下四个命题:①函数()f x 的定义域为R ; ②函数()f x 的值域为(0,)+?; ③方程()f x x =有且只有一个实根; ④函数()f x 的图象是中心对称图形.其中正确命题的序号是 .①③④【2015-5东文】(13)设函数()cos f x x =,(0,2)x ∈π的两个的零点为1x ,2x ,且方程mx f =)(有两个不同的实根3x ,4x .若把这四个数按从小到大排列构成等差数列,则实数m = . 23-【2015-5丰理】4.函数1,0,()2cos 1,20x f x x x -≥=--π≤<⎪⎩的所有零点的和等于A(A) 1-2π(B) 312π- (C) 1-π(D) 12π- 【2015-5西文】14. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为([0,π])x x ∈,OP 所经过的在正方形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:○1π()3f =○2 函数()f x 在区间π(,π)2上为减函数;○3 任意π[0,]2x ∈,都有()(π)4f x f x +-=.其中所有正确结论的序号是____.○1 ○3 【2015-5西理】14. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为([0,π])x x ∈,OP 所经过的在正方形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:○1π()3f =○2 任意π[0,]2x ∈,都有ππ()()422f x f x -++=;○3 任意12π,(,π)2x x ∈,且12x x ≠,都有1212()()0f x f x x x -<-. 其中所有正确结论的序号是____.○1○2【2015-5东文】(8)已知正方体1111ABCD A B C D -的棱长为1,E ,F 分别是边1AA ,1CC 的中点,点M 是1BB 上的动点,过点E ,M ,F 的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =,则y 关于x 的函数()y f x =的解析式为A(A )23()222f x x x =-+,[0,1]x ∈ (B )31,[0,),22()11,[,1].22x x f x x x ⎧-∈⎪⎪=⎨⎪+∈⎪⎩(C )22312,[0,],22()312(1),(,1].22x x f x x x ⎧-+∈⎪⎪=⎨⎪--+∈⎪⎩(D )23()222f x x x =-++,[0,1]x ∈<三视图与立几小题>【2015-5海理】((8)若空间中有(5)n n ≥个点,满足任意四个点都不共面,且任意两点的连线都与其它任意三点确定的平面垂直,则这样的n 值( )C (A )不存在(B )有无数个(C )等于5(D )最大值为8【2015-5西文】5. 一个几何体的三视图中,正(主)视图和 侧(左)视图如图所示,则俯视图可以为( )C(A ) (B ) (C )(D )【2015-5东文】(6)若一个底面是正三角形的三棱柱的正(主)视图如图所示,则其侧面积等于 D (A )3 (B )4(C )5 (D )6【2015-5朝文】11.一个四棱锥的三视图如图所示,则这个四棱锥 的体积为 ;表面积为 .233+【2015-5朝理】12.某四棱锥的三视图如图所示,积为______.【2015-5丰文】4. 如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图面积为C(A) 2(B)3(C)23 (D) 23【2015-5丰理】5.某三棱锥的正视图和俯视图如图所示,则其左视图面积为C(A) 6 (B) 29(C) 3(D) 23正视图正视图正视图侧视图正视图侧视图俯视图侧(左)视图正视图【2015-5昌文】5. 若某几何体的三视图如图所示,则此 几何体的直观图是B【2015-5昌理】6 一个几何体的三视图如图所示,则这个几何体的体积为A A.B.C. D.【2015-5昌文】8. . 已知四面体A BCD -满足下列条件:(1)有一个面是边长为1的等边三角形; (2)有两个面是等腰直角三角形.那么符合上述条件的所有四面体的体积的不同值有C【2015-5西文】8. 在长方体1111ABCD A B C D -中,11AB BC AA ===,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则1B P PQ +的最小值为( )C 【2015-5西理】8. 在长方体1111ABCD A B C D -中,11AB BC AA ===,点M 为1AB 的中点,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP PQ +的(A (B (C )32(D )2A B C 侧 视图俯视图最小值为( )C<三角函数>【2015-5东理】(1)23sin()6π-=C (A)2- (B )12- (C )12 (D)2【2015-5海文】(12)满足cos()cos cos αβαβ+=+的,αβ的一组值是 .(写出一组值即可),2.4αβπ⎧=⎪⎪⎨π⎪=-⎪⎩【2015-5海理】((5)已知函数()cos(2)f x x ϕ=+(ϕ为常数)为奇函数,那么cos ϕ=( )B (A)2-B )0(C)2(D )1 【2015-5西理】11.已知角α的终边经过点(3,4)-,则cos α=____;cos 2α=____.35-257-【2015-5朝理】5.已知函数()2sin()25f x x ππ=+.若对任意的实数x ,总有12()()()f x f x f x ≤≤,则12x x -的最小值是 AA. 2B.4C.π D. 2π【2015-5丰理】11.已知函数21()sin 22f x x x =+,则()f x 的最小正周期是 ;如果()f x 的导函数是()f x ',则()6f π'= .π;1-【2015-5海文】(15)(本小题满分13分) 已知函数()4sin cos 2f x x x =-. (Ⅰ)求π()6f ;(Ⅱ)求函数的最小值. (15)(共13分)解:(Ⅰ)πππ113()4sincos 4663222f =-=⨯-=. ………………4分(Ⅱ)因为 ()4sin cos 2f x x x =-24sin (12sin )x x =-- ………………6分()f x (A)2(B)2(C )34(D )122sin 4sin 1x x =+-22(sin 1)3x =+-. ………………8分因为 1sin 1x -≤≤,所以 当sin 1x =-,即2,2x k k π=π-∈Z 时,()f x 取得最小值3-. ………………13分 【2015-5西文】15.(本小题满分13分)已知函数cos 2(sin cos )()cos sin x x x f x x x+=-.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调增区间. 15.(本小题满分13分)(Ⅰ)解:由题意,得cos sin 0x x -≠, ……………… 1分即 tan 1x ≠, ……………… 2分解得 ππ4x k ≠+, ……………… 4分所以函数()f x 的定义域为π{|π,}4x x k k ≠+∈Z . ……………… 5分(Ⅱ)解:cos 2(sin cos )()cos sin x x x f x x x +=- 22(cos sin )(sin cos )cos sin x x x x x x -+=-……………… 7分(cos sin )(sin cos )x x x x =++ sin 21x =+, ……………… 9分由 ππ2π22π22k x k -++≤≤,得 ππππ44k x k -++≤≤, ……………… 11分又因为 ππ4x k ≠+,所以函数()f x 的单增区间是ππ(π,π)44k k -++,k ∈Z . (或写成ππ[π,π)44k k -++)……………… 13分 【2015-5朝文】15.(本小题满分13分)已知函数x x x x x f 2sin )cos sin 32(cos )(-+⋅=.(Ⅰ)求函数)(x f 在区间π[,π]2上的最大值及相应的x 的值;(Ⅱ)若0()2,f x =且0(0,2π)x Î,求0x 的值.15.(本小题满分13分)解:2()cos cos )sin f x x x x x =+-22cos cos sin x x x x =+-2cos2x x =+2sin(2)6x π=+.(Ⅰ)因为[,]2x π∈π,所以7132[,]666x πππ+∈,所以1sin(2)[1,]62x π+∈-, 所以,当且仅当13266x ππ+=,即x =π时,max ()1f x =. ……………… 8分(Ⅱ)依题意,02sin(2)26x π+=,所以0sin(2)16x π+=.又0(0,2)x ∈π,所以0252(,)666x ππ+∈π, 所以0262x ππ+=或05262x ππ+=,所以06x π=或076x π=. ……………………………………………… 13分【2015-5东理】(15)(本小题共13分)已知函数2sin 22sin ()sin x xf x x-=.(Ⅰ)求()f x 的定义域及其最大值;(Ⅱ)求()f x 在(0,π)上的单调递增区间.(15)(共13分) 解:(Ⅰ)由sin 0x ≠,得x k k ≠π(∈)Z .所以()f x 的定义域为{|}x x k k ∈≠π,∈R Z . …………………2分因为2sin 22sin ()sin x xf x x-=,2cos 2sin x x =-)x π=+, …………………6分所以()f x 的最大值为 …………………7分 (Ⅱ)函数cos y x =的单调递增区间为[22k k π+π,π+2π](k ∈Z )由224k x k ππ+π≤+≤π+2π,x k k ≠π(∈)Z ,且(0,x ∈π),所以()f x 在(0,π)上的单调递增区间为3[,4ππ). ……13分【2015-5东文】(16)(本小题共13分)已知函数)π322cos()3π2cos()(+++=x x x f ,()cos 2g x x =. (Ⅰ)若)2π,4π(∈α,且353)(-=αf ,求()g α的值; (Ⅱ)若x ]3π,6π[-∈,求)()(x g x f +的最大值.(16)(共13分)解:(Ⅰ)由)π322cos()3π2cos()(+++=x x x f 得()f x x x x x 2sin 232cos 212sin 232cos 21---=x 2sin 3-=. …………………………4分因为353)(-=αf ,即3532sin 3-=-α,所以532sin =α. 又因为)2π,4π(∈α,所以)π,2π(2∈α.故542cos -=α,即54)(-=αg . …………………………7分(Ⅱ))()(x g x f +x x 2cos 2sin 3+-=)3π2cos(2+=x .因为x ]3π,6π[-∈,所以]π,0[3π2∈+x .所以当03π2=+x ,即6π-=x 时,)()(x g x f +有最大值,最大值为2. ……13分【2015-5丰文】15.(本小题共13分)已知函数2()2cos ()12f x x ωπ=+(其中0>ω,∈x R )的最小正周期为2π. (Ⅰ)求ω的值;(Ⅱ)如果[0,]2απ∈,且58)(=αf ,求αcos 的值. 15.(本小题共13分)解:(Ⅰ)因为 )12(cos 2)(2πω+=x x f 1)62cos(++=πωx .所以πωπ222==T , 因为0>ω,所以21=ω. ……………………5分(Ⅱ)由(1)可知581)6cos()(=++=πααf ,所以53)6cos(=+πα,因为[0,]2πα∈, 所以2[,]663πππα+∈, 所以54)6sin(=+πα. 因为cos()cos sin()sin 6666ππππαα=+++ c o sc o s [()]66ππαα=+-341552=+⨯=……………………13分所以cos α=【2015-5昌理】15. (本小题满分13分)已知函数()si n()(2f x A x A x ωϕωϕπ=+>><∈R 的部分图象如图所示.(I )求函数()f x 的解析式;(II )求函数()()()123g x f x f x ππ=+-+ 的单调递增区间.15. (本小题满分13分)解:(I )由题意可知,2A =,39412T π=,得T =π,2T ωπ==π,解得2=ω.()2sin(2)233f ϕππ=⨯+=, 即2232k k ϕππ+=+π,∈Z ,||2ϕπ<, 所以 6ϕπ=-,故()2sin(2)6f x x π=-. ……………7分(II)ππππ()2sin(2(+)-)-2sin(2(+)-)12636g x x x =π2sin2-2sin(2+)2=2sin22cos2)4x x x -x =x =π-由 222,242k x kk πππ-+π≤-≤+π∈Z, ,88k x k k π3π-+π≤≤+π∈Z. 故()g x 的单调递增区间是[,],88k k k π3π-+π+π∈Z..……………13分<解三角形>【2015-5海文】(6)在ABC ∆中,若3,3a c A π==∠=,则b =( )C (A )4(B )6(C)D【2015-5西文】12.在ABC ∆中, 角A ,B ,C 所对的边分别为,,a b c ,若a =3b =,2c =, 则A =____;ABC ∆的面积为____.π3【2015-5东文】(10)在△ABC 中,已知2,3a b ==, 那么sin sin()A A C =+ . 32【2015-5丰文】11.在锐角△ABC 中,AB=AC =2,△ABC 的面积是4,则sin A = ,BC =.5;4 【2015-5朝文】12. 已知在ABC D 中,4C p =,3cos 5B =,5AB =,则s i n A = ;ABCD 的面积为.14【2015-5昌理】11. 在ABC ∆中,若a =b =,5π6B ∠=,则边c =__________.1 【2015-5海理】((15)(本小题满分13分)在ABC ∆中,5c =,b =a A =. (Ⅰ)求a 的值;(Ⅱ)求证:2B A ∠=∠. (15)(共13分) 解:(Ⅰ)因为a A =, 所以2222b c a a +-=. ………………3分 因为 5c =,b =,所以 23404930a a+-⨯=.解得:3a =,或493a =-(舍). ………………6分(Ⅱ)由(Ⅰ)可得:cos 3A ==. 所以 21cos 22cos 13A A =-=. ………………9分因为 3a =,5c =,b =所以 2221cos 23a cb B ac +-==. ………………11分 所以cos 2cos A B =. ………………12分 因为 c b a >>,所以 (0,)3A π∈.因为 (0,)B ∈π,所以 2B A ∠=∠. ………………13分另解:因为 (0,)A ∈π,所以 sin 3A ==.=所以 sin 3B =.所以 sin 22sin 333A B =⨯==. ………………12分因为 c b a >>,所以(0,)3A π∈,(0,)2B π∈.所以 2B A ∠=∠. ………………13分【2015-5西理】15.(本小题满分13分)在锐角ABC ∆中, 角A ,B ,C 所对的边分别为a ,b ,c , 已知a =,3b =,sin B A += (Ⅰ)求角A 的大小;(Ⅱ)求ABC ∆的面积. 15.(本小题满分13分)(Ⅰ)解:在ABC ∆中,由正弦定理sin sin a bA B=, ……………… 2分得3sin sin AB =3sin B A =, ……………… 3分sin B A +=解得 sin 2A =……………… 5分因为ABC ∆为锐角三角形,所以π3A =. ……………… 6分 (Ⅱ)解:在ABC ∆中,由余弦定理222cos 2b c a A bc+-=, ……………… 8分得219726c c+-=,即2320c c -+=,解得 1c = 或 2c =. ……………… 10分当1c =时,因为222cos 20c b B aca +-==<, 所以角B 为钝角,不符合题意,舍去. ……………… 11分当2c =时,因为222cos 20c b B aca +-==>,且b c >,b a >, 所以ABC ∆为锐角三角形,符合题意.所以ABC ∆的面积11sin 32S bc A ==⨯⨯. ……………… 13分【2015-5朝理】15.(本小题满分13分) 在梯形A B C D 中,AB P CD ,2CD =,120ADC?o,cos CAD?. (Ⅰ)求AC 的长; (Ⅱ)求梯形ABCD 的高. (15)(本小题满分13分)解:(Ⅰ)在ACD D 中,因为cos CAD?,所以sin 14CAD?, 由正弦定理得,sin sin AC CDADC=行,即2sin sin CD ADC AC CAD ´仔==Ð ……………………………………6分 (Ⅱ)在ACD D 中, 由余弦定理得,22422cos120AC AD AD =+-⨯⨯ , 整理得22240AD AD +-=,解得4AD =(舍负). 过点D 作DE AB ⊥于E ,则DE 为梯形ABCD 的高.因为AB P CD ,120ADC ?o ,所以60BAD?o.在直角ADE D 中,sin 60DE AD==o即梯形ABCD 的高为 ……………………………………………………13分【2015-5丰理】15.(本小题共13分)在△ABC 中,30A ︒=,52=BC ,点D 在AB 边上,且BCD ∠为锐角,2CD =,△BCD 的面积为4.(Ⅰ)求cos BCD ∠的值; (Ⅱ)求边AC 的长. 15.(本小题共13分)解:(Ⅰ)因为1sin 42BCD S BC CD BCD ∆=⋅⋅∠=,所以552sin =∠BCD . 因为BCD ∠为锐角,所以cos BCD ∠==. ……………………6分 (Ⅱ)在BCD ∆中,因为BCD BC CD BC CD DB ∠⋅⋅-+=cos 2222,所以4=DB .因为222BC CD DB =+,所以︒=∠90CDB .所以ACD ∆为直角三角形.因为30A ︒=,所以24AC CD ==,即4AC =. ……………………13分【2015-5昌文】15.(本小题满分13分)在ABC ∆中,角C B A ,,所对的三边分别为c b a ,,, 3B π=,且 2.b a == (Ⅰ)求sin 2A ; (Ⅱ)求ABC ∆的面积. 15.(本小题满分13分)解:(I ) 由,sin sin B b A a =得31sin sin =⋅=b B a A .因为a b <,所以A B <,则cos A =sin 22sin cos A A A ==……………7分 (II)由B ac c a b cos 2222-+=,c c 24272-+=,解得,621+=c 舍)(621-=c ,1sin 2ABC S a c B ∆=⋅⋅⋅=故. ……………13分法二:因为a b <,所以A B <,则cos A =,sin 32cos cos 32sin )32sin()sin(sin A A A B A C ππππ-=-=--= 6162312132223sin +=⋅+⋅=C , ,sin sin Aa C c =由得,621+=c1sin 2ABC S a c B ∆=⋅⋅⋅=故.……………13分<直线与圆>(p ,q )【2015-5海文】(3)圆22:4230C x y x y ++-+=的圆心坐标及半径分别是()A (A)(-B )C )(2,1),2-(D )(2,1),2-【2015-5西文】10. 抛物线24C y x =:的准线l 的方程是____;以C 的焦点为圆心,且与直线l 相切的圆的方程是____. 1x =- 22(1)4x y -+=【2015-5东文】(3)已知圆的方程为222610x y x y +--+=,那么圆心坐标为C(A )(1,3)-- (B )(1,3)- (C )(1,3) (D )(1,3)-【2015-5东文】(4)设点),(y x P ,则“1x =且2y =-”是“点P 在直线30l x y --=:上”的A(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【2015-5朝文】13.在圆C :()222(2)8x y -+-=内,过点(1,0)P 的最长的弦为AB ,最短的弦为DE ,则四边形ADBE 的面积为. 【2015-5朝理】10.已知圆C 的圆心在直线0x y -=上,且和两条直线0x y +=和120x y +-=都相切,则圆C 的标准方程是 .()223(3)18x y -+-=【2015-5丰文】13.已知两点(,0)A m -,(,0)B m (0m >),如果在直线34250x y ++=上存在点P ,使得90APB ︒∠=,则m 的取值范围是_____. [5,)+∞【2015-5昌理】4. “||2b <是“直线y b =+与圆2240x y y +-=相交”的AA .充分不必要条件 B. 必要不充分条件 C .充要条件 D. 既不充分也不必要条件【2015-5东理】(14)如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.给出下列四个命题:(0,0)的点有且仅有1个.① 若0p q ==,则“距离坐标”为② 若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个.③ 若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.④ 若p q =,则点M 的轨迹是一条过O 点的直线. 其中所有正确命题的序号为 .(1)(2)(3)<圆锥曲线>【2015-5海文】(9)以坐标原点为顶点,(1,0)-为焦点的抛物线的方程为 . 24y x =- 【2015-5海理】((12)若双曲线M 上存在四个点,,,A B C D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是.)+∞【2015-5西文】7. “3m >”是“曲线22(2)1mx m y --=为双曲线”的( )A (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【2015-5西理】10.双曲线C :22184x y -=的离心率为____;渐近线的方程为____. y = 【2015-5朝文】7.已知点A 为抛物线:C 24x y =上的动点(不含原点),过点A 的切线交x 轴于点B ,设抛物线C 的焦点为F ,则ABF Ð AA .一定是直角B .一定是锐角C .一定是钝角D .上述三种情况都可能 【2015-5朝文】10.若中心在原点的双曲线C 的一个焦点是1(0,2)F -,一条渐近线的方程是0x y -=,则双曲线C 的方程为 .222y x -=【2015-5东文】(9)已知抛物线22y x =上一点P (,2)m ,则m = ,点P 到抛物线的焦点F 的距离为 . 2 522015-5东理】(12)若双曲线22221(0,0)x y a b a b -=>>截抛物线24y x =的准线所得线段长为b ,则a = .5【2015-5朝理】6.已知双曲线22221(0,0)x y a b a b-=>>与抛物线24y x =有一个公共的焦点F ,且两曲线的一个交点为P .若52PF =,则双曲线的渐近线方程为 CA. 12y x =±B. 2y x =±C. y =D.3y x =± 【2015-5丰文】6.设O 是坐标原点,F 是抛物线2y x =的焦点,A 是抛物线上的一点,FA 与x轴正向的夹角为6π,则||AF = C(A)12 (B)34(C) 1(D) 2【2015-5丰理】8.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果||||AF BF =,那么AKF △的面积是C(A) 4(B)(C) (D) 8【2015-5昌文】13. 已知圆()()22115x y ++-=经过椭圆:C 22221x y a b+=(0a b >>)的右焦点F和上顶点B ,则椭圆C 的离心率为【2015-5昌文】14. 点P 到曲线C 上每一个点的距离的最小值称为点P 到曲线C 的距离. 已知点(2,0)P ,若点P 到曲线C 在下列曲线中:① 2230x y -=, ② 22(1)(3x y ++=, ③ 225945x y +=, ④ 22y x =.7 835 5 7 2 3 8 9 4 5 56 1 2 978 乙甲符合题意的正确序号是 .(写出所有正确的序号) ① ② ④【2015-5昌理】14. 如图,已知抛物线y x 82=被直线4y =分成两个区域21,W W (包括边界), 圆222:()(0).C x y m r m +-=>(1)若3m =,则圆心C 到抛物线上任意一点距离的最小值是__________;(2)若圆C 位于2W 内(包括边界)且与三侧边界均有公共点,则圆C 的半径是__________.3 , 4+<概率统计>【2015-5丰文】12.如图所示,分别以A ,B ,C 为圆心,在△ABC 内作半径为2的扇形(图中的阴影部分),在△ABC 内任取一点P ,如果点P 落在阴影内的概率为13,那么△ABC 的面积是 . 6π【2015-5朝文】2.在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是C A .π4 B .π8 C .π16 D .π32【2015-5东理】(4)甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有B(A )12x x >,12s s < (B )12x x =,12s s <(C )12x x =,12s s =(D )12x x <,12s s >【2015-5昌文】11. 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98), [98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中[98,104)的产品的个数是_____________. 90【2015-5海文】(16)(本小题满分13分) 某中学为了解初三年级学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:已知该项目评分标准为:..(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率;(Ⅲ)根据以上样本数据和你所学的统计知识,试估计该年级学生实心球项目的整体情况.(写出两个结论即可)(16)(共13分)解.(Ⅰ) 20名女生掷实心球得分如下:5,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,9,10,10.所以中位数为8,众数为9. ………………4分(Ⅱ) 由题意可知,掷距离低于7.0米的男生的得分如下:4,4,4,6,6,6.这6名男生分别记为123123,,,,,A A A B B B .从这6名男生中随机抽取2名男生,所有可能的结果有15种,它们是:121311121323212223(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A A AB A B A B A A A B A B A B ,313233121323(,),(,),(,),(,),(,),(,)A B A B A B B B B B B B . ………………6分用C 表示“抽取的2名男生得分均为4分”这一事件,则C 中的结果有3个,它们是:121323(,),(,),(,)A A A A A A . ………………8分所以,所求得概率31()155P C ==. ………………9分 (Ⅲ)略. ………………13分评分建议:从平均数、方差、极差、中位数、众数等角度对整个年级学生掷实心球项目的情况进行合理的说明即可;也可以对整个年级男、女生该项目情况进行对比;或根据目前情况对学生今后在该项目的训练提出合理建议. 【2015-5西文】18.(本小题满分13分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(Ⅱ)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a >b 的概率;(Ⅲ)若a =1,记乙型号电视机销售量的方差为s 2,根据茎叶图推断b 为何值时,s 2达到最小值.(只需写出结论)(注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为1x ,2x ,…,n x 的平均数) 18.(本小题满分13分) (Ⅰ)解:根据茎叶图,得甲组数据的平均数为101014182225273041432410+++++++++=, ………2分由茎叶图,知甲型号电视机的“星级卖场”的个数为5. ………………4分 (Ⅱ)解:记事件A 为“a >b ”, ………………5分因为乙组数据的平均数为26.7,所以 10182022233132(30)(30)4326.710a b +++++++++++=,解得 8a b +=. ………………7分所以 a 和b 取值共有9种情况,它们是:(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0), ………………8分 其中a >b 有4种情况,它们是:(5,3),(6,2),(7,1),(8,0), ………………9分所以a >b 的概率4()9P A =. ………………10分(Ⅲ)解:当b =0时,2s 达到最小值. ………………13分【2015-5东文】(15)(本小题共13分)甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下: 甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15 ,边界忽略不计)即为中奖.乙商场:从装有3个白球和3个红球的盒子中一次性摸出2球(这些球除颜色外完全相同),如果摸到的是2个红球,即为中奖.试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由. (15)(共13分)解:设顾客去甲商场,转动圆盘,指针指向阴影部分为事件A ,试验的全部结果构成的区域为圆盘,面积为2r π(r 为圆盘的半径),阴影区域的面积为22142126S r r ππ=⨯⨯=. 所以,2216()6rP A r π==π. …………………………5分设顾客去乙商场一次摸出两个红球为事件B ,记盒子中3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(,)x y 为一次摸球的结果,则一切可能的结果有:12(,)a a ,13(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,23(,)a a ,21(,)a b ,22(,)a b ,23(,)a b ,31(,)a b ,32(,)a b ,33(,)a b ,12(,)b b ,13(,)b b ,23(,)b b ,共15种.摸到的2个球都是红球有12(,)b b ,13(,)b b ,23(,)b b ,共3种.所以,()P B =31155=. …………………………11分 因为()()P A P B <,所以,顾客在乙商场中奖的可能性大. …………………………13分 【2015-5丰文】17.(本小题共13分)长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(Ⅱ)从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.17.(本小题共13分)解:(Ⅰ)A 班样本数据的平均值为1(911142031)175++++=,B 班样本数据的平均值为1(1112212526)195++++=,据此估计B 班学生平均每周上网时间较长. …………5分(Ⅱ)依题意,从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b 的取法共有12种,分别为: (9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),(20,11),(20,12),(20,21). 其中满足条件“a >b ”的共有4种,分别为:(14,11),(14,12),(20,11),(20,12).A 班B 班 0 12 3 9 10 1 4 11 2 56设“a >b ”为事件D , 则31124)(==D P . ……………………13分 答:a >b 的概率为31.【2015-5昌文】16.(本小题满分13分)某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为2.(I ) 求,m n 的值;(II )现从男同学中随机选取2名同学,进行社会公益活动(每位同学被选到的可能性相同),求选出的这2名男同学中至少..有一位同学是“数学专业”的概率. 解:(I )设事件A :从10位学生中随机抽取一位,抽到该名同学为“数学专业”.由题意可知,“数学专业”的学生共有(1)m +人.则12()105m P A +==.解得 3m =. 所以1n =. ……………6分(II )由题意可知,男生共有6人,分别记为123456,,,,,a a a a a a .其中数学专业的男生为456,,a a a .从中任意抽取2位,可表示为1213141516,,,,a a a a a a a a a a ,23242526,,,a a a a a a a a , 343536,,a a a a a a ,4546,a a a a ,56a a ,共15种可能.设事件B :选出的这2名男同学中至少有一位同学是“数学专业”.事件B 包括:141516,,a a a a a a ,242526,,a a a a a a ,343536,,a a a a a a ,4546,a a a a ,56a a ,共12种可能.所以至少有一位同学是“数学专业”的概率是124()155P B ==. ……………13分 【2015-5朝文】17.(本小题满分13分)某学科测试,要求考生从,,A B C 三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择,,A B C 题作答的人数如下表:(Ⅰ)份试卷中抽出若干试卷,其中从选择A 题作答的试卷中抽出了3份,则应从选择,B C 题作答的试卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择,,A B C 题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择,,A B C 题作答的试卷中各随机选1份,求这3份试卷都得优的概率. 17.(本小题满分13分) 解:(Ⅰ)由题意可得,试卷的抽出比例为31=18060,所以应从选择B 题作答试卷中抽出2份,从选择C 题作答试卷中抽出2份.……4分(Ⅱ)记在(Ⅰ)中抽出的选择A 题作答的试卷分别为123,,a a a ,其中12,a a 得优;选择B 题作答的试卷分别为12,b b ,其中12,b b 得优;选择C 题作答的试卷分别为12,c c ,其中1c 得优.从123,,a a a ,12,b b 和12,c c 中分别抽出一份试卷的所有结果如下:111{,,}a b c 112{,,}a b c 121{,,}a b c 122{,,}a b c 211{,,}a b c 212{,,}a b c 221{,,}a b c 222{,,}a b c 311{,,}a b c 312{,,}a b c 321{,,}a b c 322{,,}a b c所有结果共有12种可能,其中3份都得优的有111{,,}a b c 121{,,}a b c 211{,,}a b c 221{,,}a b c ,共4种. 设“从被抽出的选择,,A B C 题作答的的试卷中各随机选1份,这3份试卷都得优”为事件M ,故所求概率41123P ==. …………………………… 13分。

2015年海淀区高考英语二模试卷(附答案)

2015年海淀区高考英语二模试卷(附答案)

2015年海淀区高考英语二模试卷(附答案)2015年海淀区高考英语二模试卷(附答案)2015.5第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话或独白。

每段对话或独白后有一道小题,从每题所给的A. B. C三个选项中选出最佳选项。

听完每段对话或独白后,你将有10秒钟的时间来回答有关小题和阅读下一小题.每段对话或独白你将听一遍。

1. What will the man probably use?A. A paper fanB. An electric fanC. An air-conditioner2. Who is ill?A. NancyB. JoanC. Fred3. When will the man leave for Tianjin?A. 5:30B. 6:00C. 2:004. What does the woman probably think of the film?A. EnjoyableB. AttractiveC. Disappointing5. What taste does the woman want to try?A. SweetB. SourC. Hot第二节(共10小题,每小题1.5分,共15分)听下面4段对话或独白,每段对话或独白后有几道小题,从每题所给的A. B, C三个选项中选出最佳选项。

听每段对话或独白前,你将有5秒钟的时间阅读每小题。

听完后,每小题将给出5秒钟的作答时间。

每段对话或独白你将听两遍。

听第6段材料,回答第6至7题。

6. What sports did the man do last week?A. BadmintonB. SwimmingC. Table tennis7. When will they go to the new sports center together?A. On WednesdayB. On ThursdayC. On Friday听第7段材料,回答第8至9题。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

上海市各区2015年物理二模计算大题含答案

上海市各区2015年物理二模计算大题含答案

长宁区21.如图12所示,轻质薄壁圆柱形容器A 、B 分别置于同一水平面上。

A 中盛有密度为ρ的液体甲,B 中盛有密度为1.2ρ的液体乙,且液体甲和液体乙的深度相同。

①若甲液体的密度为1×103千克/米3、体积为5×10-3米3,求:液体甲的质量m 甲。

②若乙液体的深度为0.1米,求:液体乙对容器底的压强P B 。

③若容器足够高,在容器A 和B 中再分别倒入相同体积的甲、乙液体,使两液体对容器底部的压强相等,求:容器A 和B 底面积之比(S A :S B )值的所在围。

22.在图13(a )所示的电路中,电源电压为18伏且保持不变,电阻R 1的阻值为20欧。

闭合电键S 后,电流表的示数为0.3安,电流表、电压表表盘如图13(b )所示,电压表0~3V 量程损坏。

①求电阻R 2的阻值。

②现用电阻R 0替换R 1,用规格为“25Ω 2Α”和“50Ω 1Α”的滑动变阻器中一个来替换电阻R 2。

要求:在移动变阻器滑片P 的过程中(a )电路元件都能正常工作。

(b )电压表和电流表的指针偏转角度相同。

(c )且电压表示数的变化量ΔU 最大。

问:电阻R 0的阻值为欧,电阻R 2替换为的滑动变阻器(选填“25Ω 2Α”或“50Ω 1Α”),请计算此时电压表示数的最大变化量。

(a )图13 (b )R 2R 1AS VA+ 1 2 30.00.6 0.40.321+ V5 113 甲乙图12闸北区浦区27.在如图16所示电路中,电源电压可在4~8伏围调节,变阻器R 2上标有“20Ω 2Α”字样。

当通过R 1的电流为0.4安时,R 1两端的电压为2伏。

现有电压表、电流表各一个,表盘如图17(a )、(b )所示的电流表、电压表各一个(电表大量程均损坏)。

①求电阻R 1的阻值。

②求10秒电流通过R 1所做的功W 1。

③请选择一个电表,将电源和选择的电表接入AB 、CD 间,要求移动变阻器的滑片P 时通过变阻器的电流变化量∆I 最大。

2015年区二模数学答案

2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

江苏省南京市鼓楼区2015年中考数学二模试题(含解析).doc

江苏省南京市鼓楼区2015年中考数学二模试题(含解析).doc

江苏省南京市鼓楼区2015 年中考数学二模试题一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列算式结果为﹣ 3 的是()A.﹣ | ﹣ 3| B.(﹣ 3)0 C.﹣(﹣ 3)D.(﹣ 3)﹣13.使分式有意义的x 的取值范围是()A. x> 2 B. x< 2 C . x≠ 2 D . x≥ 24.下列从左边到右边的变形,是因式分解的是()A.( a﹣ 1)( a﹣ 2) =a2﹣ 3a+2B. a2﹣ 3a+2=( a﹣1)( a﹣ 2)C.( a﹣ 1)2+( a﹣ 1)=a2﹣ a D. a2﹣ 3a+2=( a﹣1)2﹣( a﹣1)5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形6.对函数y=x 3的描述:① y 随 x 的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是 x≠ 0.正确的是()b5E2RGbCAPA.①② B .①③ C.②③ D.①②③二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题纸相应位置上) p1EanqFDPw7. 9 的平方根是.8.一个多边形的每个外角都等于72°,则这个多边形的边数为.9.已知方程组的解为,则一次函数y= ﹣x+1 和 y=2x﹣ 2 的图象的交点坐标为.10.计算(﹣)×的结果是.11.已知 x1、x2是一元二次方程x2+x=1 的两个根,则x1x2=.12.如果代数式2x+y 的值是 3,那么代数式7﹣6x ﹣ 3y 的值是.13.已知点A(2, y1)、B( m,y2)是反比例函数y=的图象上的两点,且y1< y2.写出满足条件的 m的一个值, m可以是.DXDiTa9E3d14.如图,∠ 1=70°,直线 a 平移后得到直线b,则∠ 2﹣∠ 3=°.15 .已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为cm.RTCrpUDGiT16.如图,方格纸中有三个格点A、 B、 C,则 sin ∠ ABC=.三、解答题(本大题共 11 小题,共 88 分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 5PCzVD7HxA17.( 1)解方程组(2)解不等式2x﹣1≥,并把它的解集在数轴上表示出来.18.某校八年级学生开展踢毽子比赛活动,每班派 5 名学生参加,按团体总数排列名次,在规定时间内每人踢100 个以上(含100 个)为优秀,下表是成绩最好的甲、乙两班各 5 名学生的比赛数据.(单位:个)jLBHrnAILg1 号2 号3 号4 号5 号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?xHAQX74J0X19.如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)请用合适的方式表示加油过程中变量之间的关系.20.在一个不透明的袋子中,放入除颜色外其余都相同的 1 个白球、 2 个黑球、 3 个红球.搅匀后,从中随机摸出 2 个球.LDAYtRyKfE(1)请列出所有可能的结果:(2)求每一种不同结果的概率.21.某纪念币从2013 年 11 月 11 日起开始上市,通过市场调查得知该纪念币每 1 枚的市场价 y(单位:元)与上市时间x(单位:天)的数据如下:Zzz6ZB2Ltk上市时间 x 天 4 10 36市场价 y 元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价 y 与上市时间 x 的变化关系:dvzfvkwMI1①y=ax+b (a≠ 0);② y=a(x﹣h)2+k(a≠ 0);③ y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?22.三角形中有 3 个角、 3 条边共 6 个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ ABC中, AB=,∠ B=45°,BC=1+,解△ ABC.23.如图,线段AB绕点 O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接 OA、 OA1、 OB、 OB1,根据旋转的性质用符号语言写出 2 条不同类型的正确结论;(3)针对第( 2)问中的图形,添加一定的条件,可以求出线段AB 扫过的面积.(不再添加字母和辅助线,线段的长用a、b、 c表示,角的度数用α 、β 、γ 表示).rqyn14ZNXI你添加的条件是,线段 AB扫过的面积是.24.如图, OA、 OB是⊙ O的半径且O A⊥ OB,作 OA的垂直平分线交⊙O于点 C、 D,连接 CB、AB.求证:∠ ABC=2∠ CBO.25.小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s 、 y m/s .EmxvxOtOco(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.SixE2yXPq5(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.26.( 1 )已知:如图, E、 F、 G、 H 分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.6ewMyirQFL求证:四边形EFGH是矩形.(2)已知:E、F、G、H 分别是菱形 ABCD的边 AB、 BC、 CD、 AD上与顶点均不重合的点,且四边形 EFGH是矩形. AE 与 AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明. kavU42VRUs27.△ ABC中, AB=AC=10, BC=12,矩形 DEFG中, EF=4, FG> 12.(1)如图①,点 A 是 FG的中点, FG∥ BC,将矩形 DEFG向下平移,直到 DE与 BC重合为止.要研究矩形 DEFG与△ ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).y6v3ALoS89(2)如图②,点 B 与 F 重合, E、B、C 在同一直线上,将矩形DEFG向右平移,直到点 E 与C重合为止.设矩形 DEFG与△ ABC重叠部分的面积为 y,平移的距离为 x.M2ub6vSTnP①求 y 与 x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与 x 的大致图象,并在图象上标注出关键点坐标.2015 年江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)0YujCfmUCw1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.考点:轴对称图形.分析:根据对称轴的概念求解.解答:解:A、有3条对称轴;B、有 4 条对称轴;C、有 2 条对称轴;D、有 6 条对称轴.故选 D.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.eUts8ZQVRd2.下列算式结果为﹣ 3 的是()A.﹣ | ﹣ 3| B.(﹣ 3)0 C.﹣(﹣ 3)D.(﹣ 3)﹣1考点:负整数指数幂;相反数;绝对值;零指数幂.分析:首先根据绝对值的含义和求法,一个数的相反数的求法,以及负整数指数幂、零指数幂的运算方法,求出每个选项中的数各是多少;然后判断出算式结果为﹣ 3 的是哪个即可. sQsAEJkW5T解答:解:∵﹣ | ﹣3|= ﹣ 3,(﹣ 3)0=1,﹣(﹣ 3) =3,(﹣ 3)﹣1=﹣,∴算式结果为﹣ 3 的是﹣ | ﹣ 3| .故选: A.点评:( 1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;( 3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.GMsIasNXkA (2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);( 2)00≠ 1.TIrRGchYzg(3)此题还考查了绝对值的含义和求法的应用,以及一个数的相反数的求法,要熟练掌握.3.使分式有意义的x 的取值范围是()A. x> 2 B. x< 2 C . x≠ 2 D . x≥ 2考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0 即可求解.解答:解:根据题意得:x﹣2≠ 0,解得: x≠2.故选: C.点评:本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于 0.4.下列从左边到右边的变形,是因式分解的是()A.( a﹣ 1)( a﹣ 2) =a2﹣ 3a+2B. a2﹣ 3a+2=( a﹣1)( a﹣ 2)C.( a﹣ 1)2+( a﹣ 1)=a2﹣ a D. a2﹣ 3a+2=( a﹣ 1)2﹣( a﹣ 1)考点:因式分解的意义.专题:计算题.分析:利用因式分解的意义判断即可.2解答:解:a﹣3a+2=(a﹣1)(a﹣2)是因式分解.点评:此题考查了因式分解的意义,熟练掌握因式分解的意义是解本题的关键.5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形考点:命题与定理.分析:要找出假命题,可以通过举反例得出;也可运用相关基础知识分析得出真命题,从而得出正确选项.解答:解: A、由平行四边形的判定定理可知是个真命题,错误;B、由平行四边形的判定定理可知是个真命题,错误;C、首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,错误;7EqZcWLZNXD、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确.故选 D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.lzq7IGf02E6.对函数y=x 3的描述:① y 随 x 的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠ 0.正确的是()zvpgeqJ1hkA.①② B .①③ C.②③ D.①②③考点:函数的图象;函数自变量的取值范围;中心对称图形.分析:①根据函数的增减性,可得答案;②根据中心对称图形的定义,可得答案;③根据立方的意义,可得答案.解答:解:① y=x3的增减性是y随 x 的增大而增大,故①正确;。

经典文档山东二模汇总_文数6份2015届山东省各地市高三二模数学(文)试题及答案(Word版)

经典文档山东二模汇总_文数6份2015届山东省各地市高三二模数学(文)试题及答案(Word版)

①对 m Z ,有 f (2m ) 0 ;
②函数 f ( x) 的值域为 [ 0, ) ;
③存在 n Z ,使得 f (2n 1) 9 ;
④函数 f ( x) 在区间 (a,b) 单调递减的充分条件是“存在 k Z ,使得 (a,b) (2k ,2k 1 ) ,
其中所有正确结论的序号是: A. ①②④ B. ①② C.
16. (本小题满分 12 分)
已知向量 m ( 3 sin x, cos2 x), n (cos x,1)(
0) ,把函数 f (x)
mn
1
化简为
2
f ( x) A sin( tx ) B 的形式后, 利用“五点法” 画 y f ( x) 在某一个周期内的图像时,
列表并填入的部分数据如下表所示:
x 12
为了了解学生的校园安全意识, 某学校在全校抽取部分学生进行了消防知识问卷调查,

卷由三道选择题组成, 每道题答对得 5 分,答错得 0 分,现将学生答卷得分的情况统计如下:
0分
5分
10 分
15 分
性别
人数
分数
女生
20
x
30
60
男生
10
25
35
y
已知被调查的所有女生的平均得分为 8.25 分,现从所有答卷中抽取一份,抽到男生的答
第Ⅰ卷 选择题(共 50 分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.
2.选择题每小题选出答案后, 用铅笔把答题卡上对应题目的答案标号涂黑, 用橡皮擦干净后,再选涂其他答案.
如需改动,
3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效.

2015北京各区中考数学二模26、27、28、29题汇编(带答案)

2015北京各区中考数学二模26、27、28、29题汇编(带答案)

x 的)请回答:(1) 当k =1时,使得原等式成立的x 的个数为_______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为_______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长. 小明在解题过程中发现,图1中,△CDE 与△相似,CD 的长度等于,线段CD 与线段的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD =;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴< 且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP 长的最小值是 .图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值.26.问题背景:在△ABC 中,AB ,BC ,AC,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.图4CBA图1 图2(1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥于点D ,求AD 的长.图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD的长.(如图2)请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP 和BP 的交点,求点P 的坐标.26.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O ,E 图1 图2AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为(用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BCAC=13.易得∠BOC =2α.设BC =x ,则AC =3x ,则ABx .作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β=12,求sin2β的值.图1图2图1图2图326. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C(3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E . (1)若a =2,b =-3,k =2,则点D 的坐标为,点'D 的坐标为; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G .如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是,CG 和EH 之间的数量关系是,CDCG的值为. (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2AB CD =,23BC BE =,求AF EF 的值.H G F ECD AF ECB AD图1 图226.在平面内,将一个图形G 以任意点O 为旋转中心,逆时针...旋转一个角度θ,得到图形'G ,再以O 为中心将图形'G 放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,k叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△ABC 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点. (2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .图2图3O26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作EH AB ∥交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则DG =.如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含,a b图1图2图326.如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B 作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.(2)如图③,在△ABC中,∠A<∠B<∠C.①利用尺规作出△ABC的自相似点P(不写出作法,保留作图痕迹);②如果△ABC的内心P是该三角形的自相似点,请直接写出该三角形三个内角的度数.B BC①②C BC③答案26. (本小题满分5分) 解:(1)当k =1时,使1 ;…………………………………….(2)当0<k <1时,2 ;…………………………………………(3)当k >1时,使1 .…..解决问题:将不等式240 (x a a x +-<研究函数2(0)y x a a =+>与函数4y x=∵函数4y x=的图象经过点A (1,4),B 函数2y x =的图象经过点C (1,1),D 若函数2(0)y x a a =+>3a =, 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ……………………5分26.解:(1)CAD,,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点.……………………………………………… 5分方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,ABPE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵AO = m ,∠AOB =30°, ∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分 26.解:10103xCD =. ………………………………………………………………………1分Sin2α=CD OC =53. ………………………………………………………………………2分 如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β.…………………………………………3分 ∵ tan β=21, ∴ 设MN =k ,则MQ =2k ,∴NQ =k MQ MN 522=+.∴OM=21NQ=k 25. ∵MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52.∴MH=k 552. …………………………………………………………………………………4分在MHORt ∆中,sin2β=sin ∠MON=5425552==kkOM MH . ……………………………………5分26. 解: (1)D (3,2),'D (8,-6),..................................................................................2分 (2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分)∵点E (2,1), ∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)AB =3EH ,CG =2EH ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2ABCD=,∴ AB =2CD =43EH .∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k ︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………HF E CB AD2如图(画图正确,正确标出点E、F) (3)过E作EG∥AD,延长CA交于点G∴△CAD∽△CGE.∴AD CD GE CE=.∵CD bCE=,∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB 、PC .∵P 为△ABC 的内心,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠. ∵P 为△ABC 的自相似点, ∴△BCP ∽△ABC .∴∠PBC =∠A ,∠BCP =∠ABC =2∠PBC =2∠A , ∠ACB =2∠BCP =4∠A . ∵∠A +∠ABC +∠ACB =180°. ∴∠A +2∠A +4∠A =180°.∴1807A ∠=.∴该三角形三个内角的度数分别为1807 、3607 、7207.…………….(6分)二、2015北京各区中考数学二模27题汇编及答案27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.()27已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a 的取值范围.27.在平面直角坐标系中,抛物线2+3y ax bx =+()0≠a 与x 轴交于点A (-3,0)、B (1,0)两点, D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称,点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由.27.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移t (0t >)个单位后与直线AB 只有一个公共点,求t 的取值范围.27.已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为.27.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.xyO图227.已知关于x 的方程()2230x m x m +-+-=.(1)求证:方程()2230x m x m +-+-=总有两个实数根; (2)求证:抛物线()223y x m x m =+-+-总过x 轴上的一个定点;(3)在平面直角坐标系xOy 中,若(2)中的“定点”记作A抛物线()223y x m x m =+-+-与x 轴的另一个交点为B 与y 轴交于点C ,且△OBC 的面积小于或等于8,求m 的 取值范围.27.在平面直角坐标系xOy 中,抛物线214y x bx c =-++经过点A (4,0)和B (0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C ,点B 关于抛物线对称轴对称的点为D ,求直线CD 的表达式;(3)在(2)的条件下,记该抛物线在点A ,B 之间的部分(含点A ,B )为图象G ,如果图象G 向上平移m (m >0)个单位后与直线CD 只有一个公共点,请结合函数的图象,直接写出m 的取值范围.27.已知关于x 的一元二次方程()23130kx k x +++= (k ≠0).(1)求证:无论k 取何值,方程总有两个实数根;(2)点()()120,0A x B x ,、在抛物线()2313y kx k x =+++上,其中12x x <0<,且12x x 、和k 均为整数,求A ,B 两点的坐标及k 的值;(3)设(2)中所求抛物线与y 轴交于点C ,问该抛物线上是否存在点E ,使得ABE ABC S S = ,若存在,求出E 点坐标,若不存在,说明理由.27.如图,在平面直角坐标系中,点 A (5,0),B (3,2),点C 在线段OA 上,BC =BA ,点Q 是线段BC 上一个动点,点P 的坐标是(0,3),直线PQ 的解析式为y=kx+b (k ≠0),且与x 轴交于点D .(1)求点C 的坐标及b 的值; (2)求k 的取值范围;yx11O(3)当k为取值范围内的最大整数时,过点B作BE∥x﹣5ax(a≠0)的顶点在四边形ABED的内部,求a27.已知关于x的方程mx2-(3m-1)x+2m-2=0(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求二次函数的表达式.答案27. (本小题满分7分)解:(1)∵抛物线224-++=与y轴交于点A(0,3),xy mx m m∴43m+=.∴1m =-. ∴抛物线的表达式为232y x x =-++.…………………………………………………………………1分∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧, ∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D , ∴点D 的坐标为(1,0).…………………………………………………………………………...………4分∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………………………………………5分(3)1t <或3t >……………………………………………………………………………………………7分27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴1211-=x y .………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分27.解:(1)据题意得9-3b+3=01,a+b+3=0. 2.a ab =-⎧⎧⎨⎨=-⎩⎩,解得 ∴解析式为y = -x 2-2x +3 ……3分 (2)当12bx a=-=-时,y =4 ∴顶点D (-1,4)∴F (-1,-4)… 4分 若以点O 、F 、P 、Q 为顶点的平行四边形存在,则点Q (x ,y )满足4y EF == ①当y = - 4时,-x 2-2x +3= -4解得,1x =-±∴12(14),(14)Q Q ----+-∴12(P P -……6分 ②当y = 4时,-x 2-2x +3= 4 解得,x = - 1 ∴Q 3(-1,4) ∴P 3(-2,0)……7分综上所述,符合条件的点有三个即:123((2,0)P P P --27 . 解:(1)∵抛物线21y ax bx =++过(13)A ,,(21)B ,两点.∴134211a b a b ++=⎧⎨++=⎩.…….1分解得,24a b =-⎧⎨=⎩.∴抛物线的表达式是224+1y x x =-+.…….2分 设直线AB 的表达式是y mx n =+ , ∴321m n m n +=⎧⎨+=⎩ ,解得,25m n =-⎧⎨=⎩.…….3分∴直线AB 的表达式是25y x =-+.…….4分 (2)∵点C 在抛物线上,且点C 的横坐标为3.∴C (3,-5).…….5分点C 平移后的对应点为点'(3,5)C t -代入直线表达式25y x =-+,解得4t =.…….6分结合图象可知,符合题意的t 的取值范围是04t <≤.…….7分27.解:(1)当0m =时,2x =当0m ≠时,()()231422m m m ∆=---2296188m m m m =-+-+()22211m m m =++=+∵()210m +≥,∴0∆≥综上所述:无论m 取任何实数时,方程恒有实数根;………………………3分 (2)∵二次函数2(31)22y mx m x m =--+-∴220m -=∴1m =………………………4分抛物线1C 的解析式为:22y x x =- 抛物线2C 的解析式为:222y x x =-- 设直线l 所在函数解析式为:y kx b =+将A 和点()2,0B 代入y kx b =+∴直线l 所在函数解析式为:2y x =-………5分(3)据题意:过点C 作CE x ⊥轴交AB 于E ,可证45DEC OAB ∠=∠=︒ ,则2CD =设()2,22C t t t --,(),2E t t -,()03t <<∴E C EC y y =-23t t =-+23924t ⎛⎫=--+ ⎪⎝⎭………………………6分∵3032⎛⎫<< ⎪⎝⎭∴当32t =时,max 94EC = ∵CD 随EC 增大而增大, ∴max CD =.………………………7分27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ···················· 1分=4. 即0∆>.∴方程有两个不相等的实数根. ·················· 2分 (2)解:由求根公式,得2(1)22a x a-±=. ∴1x =或21x a=-. ······················· 3分 0a > ,1x >2x ,11x ∴=,221x a=-. ······················· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分27.解:(1)∵ 抛物线经过()0,0,()4,0-,()6,3-三点,∴ 01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩……………………………………………………………………1分解得 1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. (2)分∴ 抛物线的解析式为214y x x =+. ∵()()22211144421444y x x x x x =+=++-=+- ∴抛物线的顶点坐标为()2,1--……………………………………………………3分 (2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m +=+, ……………………………………………………4分化简整理,得2440x x m --=, 由16160m ∆=+=,解得1m =-, …………………………………………………5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, ……………………………………………………………6分.………………………………………………………………7分27. 解:(1)24b ac -=()()2243m m ---........................................................1分 =244412m m m -+-+ =2816m m -+ =()24m - ∵()240m -≥,∴方程()2230x m x m +-+-=总有两个实数根...............................................2分 (2)1,2x =()242m m -±-................................................3分 ∴11x =-,23x m =-+,∴抛物线()223y x m x m =+-+-总过x 轴上的一个定点(-1,0). (4)分 (3)∵抛物线()223y x m x m =+-+-与x 轴的另一个交点为B ,与y 轴交于点C , ∴B (3-m ,0),C (0,m -3),...................................................................................5分 ∴△OBC 为等腰直角三角形, ∵△OBC 的面积小于或等于8, ∴OB ,OC 小于或等于4, ∴3-m ≤4或m -3≤4,.......................................................................................6分 ∴m ≥-1或m ≤7. ∴-1≤m ≤7且3m ≠.............................................................................................7分 27.(本小题满分7分)解:(1)∵ 抛物线214y x bx c =-++经过点A (4,0)和B (0,2).∴ 21440,42.b c c ⎧-⨯++=⎪⎨⎪=⎩………………………………………………1分解得 1,22.b c ⎧=⎪⎨⎪=⎩ ∴ 此抛物线的表达式为211242y x x =-++.………………………2分 (2)∵()221119214244y x x x =-++=--+, ∴ C (1,94).…………………………………………………………3分 ∵ 该抛物线的对称轴为直线x =1,B (0,2),∴ D (2,2).……………………………………………………………4分 设直线CD 的表达式为y =kx +b .由题意得 9,42 2.k b k b ⎧+=⎪⎨⎪+=⎩解得 1,45.2k b ⎧=-⎪⎪⎨⎪=⎪⎩∴ 直线CD 的表达式为1542y x =-+.………………………………5分 (3)0.5<m ≤1.5.……………………………………………………………7分27. (1)∵()()222Δ=3112961310k k k k k +-=-+=-≥∴方程总有两个实数根.……………………………………………………2分 (2)由求根公式得:()()31312k kx k-+?=∴3x =-或1x k=- ∵12x x 、和k 均为整数∴=1k ± 又∵120x x <<∴1k =-…………………………………………………………………………3分 ∴A (-3,0), B (1,0) ……………………………………………………4分 (3)()()()2,3131,,--+---…………………………………………7分27.解:(1)直线y=kx+b (k ≠0)经过P (0,3),∴b =3.……………………………………………………过点B 作BF ⊥AC 于F ,∵A (5,0),B (3,2),BC =BA , ∴点F 的坐标是(3,0). ∴点C 的坐标是(1,0).…………………………………(2)当直线PC 经过点C 时,k =﹣3. 当直线PC 经过点B 时,k =13-.………………………∴133k -≤≤-……………………………………………(3) 133k -≤≤-且k 为最大整数,∴k =﹣1.5则直线PQ 的解析式为y=﹣x+3.∵抛物线y=ax 2﹣5ax (a ≠0)的顶点坐标是52524a ⎛⎫-⎪⎝⎭,,对称轴为52x =.解方程组352y x x =-+⎧⎪⎨=⎪⎩,得5212x y ⎧=⎪⎪⎨⎪=⎪⎩ 即直线PQ 与对称轴为52x =的交点坐标为5122⎛⎫⎪⎝⎭,,…………………………………………6 ∴125224a <-<. 解得822525a -<<-. (7)27.解:(1)△=9m 2-6m +1-8m 2+8m =m 2+2m +1,=(m +1)2;∴△=(m +1)2≥0,………………………………………….(1分) ∴无论m 取任何实数时,方程恒有实数根;(2)设x 1,x 2为抛物线y =mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 令y =0,则mx 2-(3m -1)x +2m -2=0由求根公式得,x 1=2,, …………………………….(2分) ∴抛物线y =mx 2-(3m -1)x +2m -2不论m 为任何不为0的实数时恒过定点(2,0).∴x 2=0或x 2=4,∴m =1或 ) 当m =1时,y =x 2-2x ,,∴抛物线解析式为y =x 2-2x当时,382312-+-=x x y答:抛物线解析式为y =x 2-2x ;或382312-+-=x x y ……….(3分)三、2015北京中考数学二模试题28题汇编及答案28.如图1,在△ABC中,AB=AC,∠ABC =α,D是BC边上一点,以AD为边作△ADE,使AE=AD,DAE∠+BAC∠=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.图1 图2 图328.正方形ABCD 的边长为3,点E ,F 分别在射线DC ,DA 上运动,且DE=DF .连接BF ,作EH ⊥BF 所在直线于点H ,连接CH .(1)如图1,若点E 是DC 的中点,CH 与AB 之间的数量关系是;(2)如图2,当点E 在DC 边上且不是DC 的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E ,F 分别在射线DC ,DA 上运动时,连接DH ,过点D 作直线DH 的垂线,交直线BF 于点K ,连接CK ,请直接写出线段CK 长的最大值.28.如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,连接BE ,AD . (1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2) 若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,如图3,连接BD ,AE ,计算22BD AE +的值.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE =°;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . ①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.A B ECD图1 图228.如图1,点O 为正方形ABCD 的中心.(1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连结EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF ,AB =2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值.28.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么PA 、PB 、PC 之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想:PA 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段特点,可以利用旋转解决问题,旋转△PAB 后得到△P ′CB ,并且可推出△PBP ′ ,△PCP ′ 分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①PA =4,PC=PB=.②用等式表示PA 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.BC BH EFGODA图1图2图1图228.如图,△ABC 中,∠BAC =90°,AB =AC ,边BA 绕点B 顺时针旋转α角得到线段BP ,连结PA ,PC ,过点P 作PD ⊥AC 于点D . (1)如图1,若α=60°,求∠DPC 的度数; (2)如图2,若α=30°,直接写出∠DPC 的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC 的度数.图3PDD图2图1ABPCBCPA28.在△ABC 中,AB =BC=2,∠ABC =90°,BD 为斜边AC 上的中线,将△ABD 绕点D顺时针旋转α(0°<α<180°)得到△EFD ,其中点A 的对应点为点E ,点B 的对应点为点F .BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN =22FC ; (3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系:.图2图1EF OA BCD28.如图,在平行四边形ABCD 中,AB =5,BC =12,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH .(1)补全图形; (2)求证:OG =OH ;(3)若OG ⊥OH ,直接写出∠OAF 的正切值.28.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70°,∠B =80°.则∠C =度,∠D =度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60°,∠ABC =90°,AB =5,AD =4.求对角线AC 的长.图3图1图228.如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,ABPD =1,∠BPD =90°,请直接写出点A到BP 的距离.DAB CPDC AB图1 图228.如图①,∠MON =60°,点A ,B 为射线OM ,ON 上的动点(点A ,B 不与点O 重合),且AB =34,在∠MON 的内部、△AOB 的外部有一点P ,且AP =BP ,∠APB =120°.(1)求AP 的长;(2)求证:点P 在∠MON 的平分线上;(3)如图②,点C ,D ,E ,F 分别是四边形AOBP 的边AO ,OB ,BP ,PA 的中点,连接CD ,DE ,EF ,FC ,OP .当A B ⊥OP 时,请直接..写出四边形CDEF 周长的值.OO图①图②答案28.(本小题满分7分)(1)∠ADE =90α︒-. (1)分(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.Array∴EDC ABCα∠=∠=.…………………………….……2分由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC∠=∠+∠=︒.…………………...……3分∴AD⊥BC.∵AB=AC,∴BD=CD.……………………………………………………………………………………..……………4分②证明:∵AB =AC ,∠ABC =α, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAE α∠=, ∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分28.解:(1)CH=AB .………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°.∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2. (3)分∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分∴ CH=AB .………………………………………………………………… 6分 (3)3.………………………………………………………………………7分28.(1)①解: BE AD =,BE AD ⊥;……2分 ②BE AD =,BE AD ⊥仍然成立;证明:设BE 与AC 的交点为点F ,BE 与AD 的交点为点G ,如图1. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠. 在ACD △和BCE △中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ACD BCE △≌△.∴AD BE =,CAD CBE ∠=∠.……3分∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BE AD ⊥.……4分(2)证明:设BE 与AC 的交点为点F ,BE 的延长线与AD 的交点为点G ,如图2. ∵90ACB ECD ∠=∠=︒,∴ACD BCE ∠=∠.∵8CA =,6CB =,3CE =,4CD =,∴43CA CD CB CE ==. ∴ACD BCE △∽△.……5分∴CAD CBE ∠=∠.∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BG AD ⊥.……6分 ∴90AGE BGD ∠=∠=︒.∴222AE AG EG =+,222BD BG DG =+. ∴222222BD AE AG EG BG DG +=+++. ∵222AG BG AB +=,222EG DG ED +=,∴22222222125BD AE AB ED CA CB CD CE +=+=+++=.……7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠.∴°902EDA ACB α∠=∠=-.∵BA BC =,∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED = . …….4分 ∵E 是AC 中点,∴EA EC =. ∴EA EC ED ==.∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分∵∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN . ∴EM=EN .…….7分28.解:(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分∵O 为正方形ABCD 的中心, ∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF ∴OF OE =∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分 在△EOA 和△FOB 中,OF OE =,OB OA =,∠EOA =∠FOB ,∴△EOA ≌△FOB ∴BF AE =.……5分 ∴∠OEA =∠OFB ∵∠OEA +∠OHA ∴∠OFB +∠FHG =90 ∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+.…………………………………………………………2分证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P (3)分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP ′.…………………………4分 ∴PA =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°. ∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. (5)分∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+ (6)分∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分28.解:(1)∵边BA 绕点B 顺时针旋转α角得到线段BP , ∴BA = BP ,∵α=60°,∴△ABP 是等边三角形,..................................1分 ∴∠BAP =60º,AP = AC , 又∵∠BAC =90°,∴∠PAC =30º,∠ACP =75º, ∵PD ⊥AC 于点D , ∴∠DPC =15º.....................................................................2分(2)结论:∠DPC =75º...................................................3分(3)画图.............................................................................4分过点A 作AE ⊥BP 于E . ∴∠AEB =90º,∵∠ABP =150°,∴∠1=30º,∠BAE =60º,413EDBAC321E AP CBD又∵BA= BP,∴∠2=∠3=15º,∴∠PAE=75º,∵∠BAC=90°,∴∠4=75º,∴∠PAE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD, (5)分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,∴△ ADP≌△CDP, (6)分∴∠DCP=∠4=75º,∴∠º.EBP28.(1)=BE CF . ………………………………………………………………2分 (2)证明:如图2,∵AB =BC ,∠ABC =90°,BD 为斜边中线 ∴BD =AD =CD =12AC ,BD ⊥AC∵△EFD 是由△ABD 旋转得到的,∴DE =DF =DB =DC ,∠EDF =∠ADB =∠BDC =90° ∴∠EDF +∠BDF =∠BDC +∠BDF ,即∠BDE =∠FDC ∴△BDE ≌△FDC ∴BE =FC 且∠1=∠2 又∵∠3=∠4∴FHE FDE ︒==90∠∠ ,即BE CF ⊥…………………………………………3分 连接BF ,取BF 中点G ,连接MG 、NG . ∵M 为EF 中点,G 为BF 中点,N 为BC 中点 ∴MG ∥BE ,MG =12BE ;NG ∥FC ,NG =12FC又∵EB =FC ,BE ⊥FC ∴MG =NG ,∠MGN =90° ∴△MGN 为等腰直角三角形 ∴MN =22FC …………………………………………………………………5分 (3)222BF CE AC +=……………………………………………………………7分28.解:(1)B…………………………………………1分 (2)图2证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴AD //BC ,AB //CD . ∴∠DAE =∠ AEB ,∠ BAE =∠DPA . ………………………………………2分∵AE 平分∠ BAD , ∴∠ DAE =∠ BAE ,∴∠ BAE =∠AEB ,∠ DAE =∠DPA . ∴BA =BE ,DA =DP , ………………………………………………………3分又∵BG ⊥ AE ,DH ⊥ AE , ∴G 为AE 中点,H 为AP 中点. ……………………………………………4分又 ∵O 为AC 中点,AD =BC , ∴()()111222OG CE BC BE AD AB ==-=-, ()()111222OH CP DP CD AD AB ==-=- .……………………………5分∴ OG =OH . (6)分(3)717.………………………………………………………………………………7分28.解:(1)∠D =80°, (1)∠C =130°; (2)(2)①如图2,连接BD , ∵AB =AD ,∴∠ABD =∠ADB .………………………………………………3 ∵∠ABC =∠ADC ,∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB . ∴∠CBD =∠CDB .∴CB =CD .………………………………………………………4 (3)(Ⅰ)如图,当∠ADC =∠ABC =90°时,延长AD ,BC 相交于点E , ∵∠ABC =90°,∠DAB =60°,AB =5, ∴AE =10.∴DE =AE ﹣AD =10﹣4═6.……………………………………5 ∵∠EDC =90°,∠E =30°, ∴CD∴AC6(Ⅱ)如图,当∠BCD =∠DAB =60°时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N , ∵DM ⊥AB ,∠DAB =60°,AD =4,∴AM =2,DM∴BM =AB ﹣AM =5﹣2=3.………………………………………7 ∵四边形BNDM 是矩形, ∴DN =BM =3,BN =DM∵∠BCD =60°, ∴CN∴BC =CN +BN∴AC8 即AC28.(本小题满分7分)解:(1)① 依题意补全图形(如图);…………………………………………1分 ② ∠ADC +∠CDE =180°.……………………………………………2分 (2)线段CM ,AE 和BE 之间的数量关系是AE =BE +2CM ,理由如下: ∵ 线段CD 绕点C 逆时针旋转90°得到线段CE , ∴ CD =CE ,∠DCE =90°. ∴ ∠CDE =∠CED =45°.又∵ ∠ADC =135°, ∴ ∠ADC +∠CDE =180°, ∴ A 、D 、E 三点在同一条直线上.∴ AE =AD +DE . …………………………………………………………3分 又∵ ∠ACB =90°,∴ ∠ACB -∠DCB =∠DCE -∠DCB ,AAMDABCE。

2015西城初三数学二模试题和答案

2015西城初三数学二模试题和答案

北京市西城区2015年初三二模试卷数 学 2015.6一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为A.90.1210⨯B.71.210⨯C. 81.210⨯D. 71210⨯ 2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于A. 75°B. 80°C. 100°D. 120° 3.64的立方根是 A.8± B.4± C. 8D. 44.函数y x 的取值范围是 A.2x ≠ B. x ≥2 C.x >2 D.x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为 A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是A. 35B. 26C. 25D. 20 7. 若一个正六边形的半径为2,则它的边心距等于 A. 2B. 1C. D.8.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于 A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为,则点C 的坐标为A .B .(-C .(D .(1)-10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1C. 0≤m ≤1 D.0<m <1二、填空题(本题共18分,每小题3分)11.若2(2)0m ++= 则m n -=.12.若一个凸n 边形的内角和为1080︒,则边数n =. 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式:_____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线ny x =(n ≠0)在第一象限的公共点是(1,)P m .小明说:“从图象上可 以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是.16.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对 应的函数表达式为,直线3OC 对应的函数表达式为.三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC的延长线上,BD =CE ,连接AE ,CD . 求证:∠E =∠D .18.计算:1012cos 30()1(3)3π-++-- .19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值. 20.解方程:231233x x x x-=--. 21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD 按如图方式折叠,使点C与点A 重合,点D 的落点记为点D ′ ,折痕为EF ,连接 CF . (1)求证:四边形AFCE 是菱形;(2)若∠B =45°,∠FCE =60°,AB =D ′F 的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010来的最高值;③2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB为⊙O的直径,弦CD⊥AB于点E,点F在线段ED上.连接AF并延长交⊙O于点G,在CD的延长线上取一点P,使PF=PG.(1)依题意补全图形,判断PG与⊙O的位置关系,并证明你的结论;(2)如图2,当E为半径OA的中点,DG∥AB,且OA PG的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△相似,CD 的长度等于,线段CD 与线段的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD =;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠. 请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a 的取值范围.28.正方形ABCD 的边长为3,点E ,F 分别在射线DC ,DA 上运动,且DE=DF .连接BF ,作EH ⊥BF 所在直线于点H ,连接CH .(1)如图1,若点E 是DC 的中点,CH 与AB 之间的数量关系是; (2)如图2,当点E 在DC 边上且不是DC 的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E ,F 分别在射线DC ,DA 上运动时,连接DH ,过点D 作直线DH 的垂线,交直线BF 于点K ,连接CK ,请直接写出线段CK 长的最大值.29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形.(1)如图1,已知点(0,A ,(3,0)B ,以原点O 为圆心的⊙O 的半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τm 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.北京市西城区2015年初三二模数学试卷参考答案及评分标准2015. 6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.证明:如图1. ∵△ABC 是等边三角形,∴AC =BC ,∠ACB=∠ABC =60°. (1)分 ∵D ,E 两点分别在AB ,BC 的延长线上,∴∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,=………………………3分 ∴△ACE ≌△CBD .………………………4分∴∠E =∠D .……………………………………………………………………5分18.解: 1012cos 30()1(3)3π-++-2311=+-………………………………………………………………4分1=.…………………………………………………………………………5分19.解:(2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分=224252x x x --+-=256x x -+-.………………………………………………………………………3分 ∵2540x x --=,∴254x x -=.……………………………………………………………………4分∴原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得3(3)2x x --=.……………………………………………………1分 去括号,得 332x x -+=.………………………………………………………2分 整理,得 21x =-.………………………………………………………………3分解得12x =-. ……………………………………………………………………4分经检验,12x =-是原方程的解.…………………………………………………5分所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩……………………………………………………2分解得 85.x y ==⎧⎨⎩,………………………………………………………………………3分(124125)88-⨯=(盒).…………………………………………………………4分 答:第三天卖出牙膏8盒.………………………………………………………………5分22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点.………………………………………………………………1分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+.∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴11x =-,23x m =.………………………………………………………3分∵此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分)23.(1)证明:如图2.∵点C与点A重合,折痕为EF,∴12∠=∠,AE=EC.∵四边形ABCD为平行四边形,∴AD∥BC.∴32∠=∠.∴13∠=∠.∴AE=AF∴AF=EC.又∵AF∥EC,∴四边形AFCE是平行四边形.…………………………………………2分又AE=AF,∴四边形AFCE为菱形.…………………………………………………3分(2)解:如图3,作AG⊥BE于点G,则∠AGB=∠AGE=90°.∵点D的落点为点D′ ,折痕为EF,∴D F DF'=.∵四边形ABCD为平行四边形,∴AD=BC.又∵AF=EC,∴AD AF BC EC-=-,即DF BE=.∵在Rt△AGB中,∠AGB=90°,∠B=45°,AB=∴AG=GB=6.∵四边形AFCE为平行四边形,∴AE∥FC.∴∠4=∠5=60°.∵在Rt△AGE中,∠AGE=90°,∠4=60°,∴tan60AGGE==︒∴6BE BG GE=+=+.∴6D F'=+.…………………5分24.解:(1)③④ (2)分(2)补全统计图见图4.…………………3分1055万人.…………………………4分(3)1.3%. …………………………………………………………………………… 5分 25.解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵PF =PG , ∴∠1=∠2.又∵OG =OA , ∴∠3=∠A .∵CD ⊥AB 于点E , ∴∠A +∠AFE =90°. 又∵∠2 =∠AFE , ∴∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG .∵OG 为⊙O 的半径,∴PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴∠OEC =90°. ∵DG ∥AB ,∴∠GDC =∠OEC =90°.∵∠GDC 是⊙O 的圆周角, ∴CG 为⊙O 的直径. ∵E 为半径OA 的中点,∴22OA OCOE ==. ∴∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==∴tan 4PG CG GCP =⋅∠==. …………………………… 5分 26.解:(1)CADBC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴20,4 1.k bk b +=⎧⎨+=⎩ 解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴1211-=xy .………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分 28.解:(1)CH=AB .………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE .在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°.∵ DE=DF ,∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上.∴ ∠3=∠2.∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°,∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)3.………………………………………………………………………7分29.解:(1)点A .………………………………………1分画图见图12.(画出一个即可)………… 2分△AMN (或△AJK ).…………………… 3分(2)如图13,作OL ⊥EF 于点L .∵线段EF 为点O 的τ型线,∴OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ∴OL =.……………………………… 4分 ∵2OE =,OF m =,∴EL ==.∴cos 1EL OE ∠==∴cos 2cos 1OL OL OF ==∠∠∴m =………………………………………………………………………6分(3)n ≤54-.……………………………………………………………………………8分。

2015丰台区数学二模试题(word)及答案

2015丰台区数学二模试题(word)及答案

丰台区2015年初三毕业及统一练习(二)数学试卷学校姓名准考证号考生须知1.本试卷共7页,共五道大题,29道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.13的倒数是A.3B.3-C.13D.13-2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是A.6×10-6 B. 6×10-5 C. 6×10-4 D. 0.6×10-43.下面的几何体中,主视图为三角形的是A B C D4.函数2y x=-中,自变量x的取值范围是A.2x≠ B.2x> C.2x≥ D.2x≤5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是A.110B.15C.310D.126.下面的几何图形中,既是轴对称图形又是中心对称图形的是菱形扇形平行四边形等边A B C D7.如图,A ,B 是函数2=y x的图象上关于原点对称的任意两点, BC ∥x 轴, AC ∥y 轴,如果△ABC 的面积记为S ,那么A .4S =B .2S =C .24S <<D .4S > 8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资 格,表中统计了他们五次测试成绩的平均分和方差.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参 加全市“汉字听写大赛”,那么应选A .甲B .乙C .丙D .丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米, 那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)A B C D10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是甲 乙 丙 丁平均分 80 80 85 85 方 差 59 41 54 42FCBA EEAFCB OyAxA O BM N图3图1 图2A E Fy1y1y1y1A B C D二、填空题(本题共18分,每小题3分) 11.分解因式:34a a -= .12.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 如果35AD DB =,AE =6,那么EC 的长为 .13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知AB 的长是_________m .14.将二次函数245y x x =-+化为2()y x h k =-+的形式,那么=h k + .15.在四边形ABCD 中,如果AB AD =,AB CD ∥,请你添加一个..条件,使得该四边形是菱形,那么这个条件可以是 .16.如图,在平面直角坐标系xOy 中,直线l 的表达式是y =33x ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,点B 4的坐标为 ,2015OA = .2m ABCO A BCED图1图 2l : y=33xy xOB 3B 2B 1A 4A 3A 2A 1三、解答题(本题共30分,每小题5分)17.计算:20153822cos45+--+︒(-1).18.已知:如图,AB =AE ,∠1=∠2 ,∠B =∠E .求证:BC =ED . 19.解不等式组:240,321 5.x x +⎧⎨-->⎩≤()20.已知3=yx ,求代数式22212y x y x xy y x⎛⎫--⋅ ⎪-+⎝⎭的值.21.已知关于x 的方程2(3)30(0)mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m 的值.22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)21ABCED23.如图,在□ABCD 中,E 为BC 边上的一点,将△ABE 沿AE 翻折得到△AFE ,点F 恰好落在线段DE 上.(1)求证:∠FAD =∠CDE ;(2)当AB =5,AD =6,且tan 2ABC ∠=时,求线段EC 的长.24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,学生测试成绩频数分布表 学生测试成绩频数分布直方图(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”;(2)这20个数据的中位数所在组的成绩范围是 ;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F . (1)求证:OD ∥AC ;成绩x (分) 频数累计 频数 频率 50≤x <60 3 0.15 60≤x <70 70≤x <80 80≤x <90 90≤x ≤1005 0.25合计201.00BFACEDOA1357成绩(分)10090807060506284频数(2)当AB =10,5cos 5ABC ∠=时,求BE 的长.26.问题背景:在△ABC 中,AB ,BC ,AC 三边的长分别为5,32,17,求这个三角形的面积. 小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.CBA图1 图2 (1)请你直接写出△ABC 的面积________; 思维拓展:(2)如果△MNP 三边的长分别为10,25,26,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP ,并直接写出△MNP 的面积.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 76541123321213xOy果图象G 沿y 轴向上平移t (0t >)个单位后与直线 AB 只有一个公共点,求t 的取值范围.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . 错误!未找到引用源。

2015北京中考数学二模试题28题汇编及答案

2015北京中考数学二模试题28题汇编及答案

2015北京中考数学二模试题28题汇编及答案28.如图1,在△ABC中,AB=AC,∠ABC =α,D是BC边上一点,以AD为边作△ADE,使AE=AD,DAE∠+BAC∠=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.图1 图2 图328.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH 的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.28. 如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC 上任意一点(点E 与点A ,C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,连接BE ,AD . (1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2) 若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,如图3,连接BD ,AE ,计算22BD AE +的值.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . ①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.图3EAC图1 图228.如图1,点O 为正方形ABCD 的中心.(1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连结EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF,AB =2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值.ECCBH EFGODA图1图228.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么P A、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想: P A2+PC2=PB2 .小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段特点,可以利用旋转解决问题,旋转△P AB后得到△P′CB ,并且可推出△PBP′ ,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①P A=4,PC=PB= .②用等式表示P A、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.图1 图228.如图,△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α角得到线段BP,连结PA,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,直接写出∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.EF OA BCD28.在△ABC 中,AB =BC=2,∠ABC =90°,BD 为斜边AC 上的中线,将△ABD 绕点D 顺时针旋转α(0°<α<180°)得到△EFD ,其中点A 的对应点为点E ,点B 的对应点为点F . BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN = 22FC ;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系: .28.如图,在平行四边形ABCD 中,AB =5,BC =12,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH . (1)补全图形; (2)求证:OG =OH ;(3)若OG ⊥OH ,直接写出∠OAF 的正切值.图3CDD图2图1ABPCBCPA图2图1图328.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70°,∠B =80°.则∠C = 度,∠D = 度. (2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60°,∠ABC =90°,AB =5,AD =4.求对角线AC 的长.28.如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB =2,如果PD =1,∠BPD =90°,请直接写出点A到BP 的距离.图1 图2DAB CPDC AB图1图228.如图①,∠MON =60°,点A ,B 为射线OM ,ON 上的动点(点A ,B 不与点O 重合),且AB =34,在∠MON 的内部、△AOB 的外部有一点P ,且AP =BP ,∠APB =120°. (1)求AP的长;(2)求证:点P 在∠MON 的平分线上;(3)如图②,点C ,D ,E ,F 分别是四边形AOBP 的边AO ,OB ,BP ,P A 的中点,连接CD ,DE ,EF ,FC ,OP .当A B ⊥OP 时,请直接..写出四边形CDEF 周长的值.图① 图②OO答案28.(本小题满分7分) (1)∠ADE=90α︒-.…………………………………………………………… ……………………….…1分(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC , ∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAE α∠=, ∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠.α∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分 (3)3.………………………………………………………………………7分28.(1)①解: BE AD =,BE AD ⊥;……2分 ②BE AD =,BE AD ⊥仍然成立;证明:设BE 与AC 的交点为点F ,BE 与AD 的交点为点G ,如图1. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠. 在ACD △和BCE △中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ACD BCE △≌△.∴AD BE =,CAD CBE ∠=∠.……3分∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BE AD ⊥.……4分(2)证明:设BE 与AC 的交点为点F ,BE 的延长线与AD 的交点为点G ,如图2. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠.∵8CA =,6CB =,3CE =,4CD =,∴43CA CD CB CE ==. ∴ACD BCE △∽△.……5分∴CAD CBE ∠=∠.∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒,∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BG AD ⊥.……6分 ∴90AGE BGD ∠=∠=︒.∴222AE AG EG =+,222BD BG DG =+. ∴222222BD AE AG EG BG DG +=+++. ∵222AG BG AB +=,222EG DG ED +=,∴22222222125BD AE AB ED CA CB CD CE +=+=+++=.……7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分 证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠. ∴°902EDA ACB α∠=∠=-.∵BA BC =, ∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED = . …….4分 ∵E 是AC 中点,∴EA EC =. ∴EA EC ED ==. ∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分 ∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN . ∴ EM=EN .…….7分28.解:(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分 ∵O 为正方形ABCD 的中心, ∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF ∴OF OE =∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分 在△EOA 和△FOB 中,OF OE =,OB OA =,∠EOA =∠FOB ,∴△EOA ≌△FOB ∴BF AE =.……5分 ∴∠OEA =∠OFB ∵∠OEA +∠OHA ∴∠OFB +∠FHG =90 ∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP ′. …………………………4分 ∴PA =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分28.解:(1)∵边BA 绕点B 顺时针旋转α角得到线段BP , ∴BA = BP ,∵α=60°,∴△ABP 是等边三角形,..................................1分 ∴∠BAP =60º,AP = AC , 又∵∠BAC =90°,∴∠PAC =30º,∠ACP =75º,∵PD⊥AC于点D,∴∠DPC=15º.....................................................................2分(2)结论:∠DPC=75º...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90º,∵∠ABP=150°,∴∠1=30º,∠BAE=60º,又∵BA= BP,∴∠2=∠3=15º,∴∠PAE=75º,∵∠BAC=90°,∴∠4=75º,∴∠PAE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,∴△ADP≌△CDP,.............................................................6分∴∠DCP=∠4=75º,∴∠DPC=15º........................................................................7分4123EDBAC PEBC P321EAPC BD28.(1)=BE CF . ………………………………………………………………2分 (2)证明:如图2,∵AB =BC ,∠ABC =90°,BD 为斜边中线 ∴BD =AD =CD =12AC ,BD ⊥AC∵ △EFD 是由△ABD 旋转得到的,∴DE =DF =DB =DC ,∠EDF =∠ADB =∠BDC =90° ∴∠EDF +∠BDF =∠BDC +∠BDF ,即∠BDE =∠FDC ∴△BDE ≌△FDC ∴BE =FC 且∠1=∠2 又∵∴ ,即…………………………………………3分 连接BF ,取BF 中点G ,连接MG 、NG . ∵M 为EF 中点,G 为BF 中点,N 为BC 中点 ∴MG ∥BE ,MG =12BE ;NG ∥FC ,NG =12FC 又∵EB =FC ,BE ⊥FC ∴MG =NG ,∠MGN =90° ∴△MGN 为等腰直角三角形∴MN =22FC …………………………………………………………………5分 (3) ……………………………………………………………7分28.解:(1)………………………………∠3=∠4FHE FDE ︒==90∠∠BE CF ⊥222BF CE AC +=B图2………… 1分 (2)证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD . ∴∠DAE =∠AEB,∠BAE =∠DPA . ……………………………………… 2分∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DPA . ∴BA =BE,DA =DP , ……………………………………………………… 3分又 ∵ BG ⊥ AE ,DH ⊥ AE , ∴G为AE中点,H为AP中点. …………………………………………… 4分又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-, ()()111222OH CP DP CD AD AB ==-=- . …………………………… 5分∴OG =OH . ………………………………………………………………… 6分 (3)717. ……………………………………………………………………………… 7分28.解:(1)∠D =80°, (1)B∠C =130°; (2)(2)①如图2,连接BD , ∵AB =AD ,∴∠ABD =∠ADB .………………………………………………3 ∵∠ABC =∠ADC ,∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB . ∴∠CBD =∠CDB .∴CB =CD .………………………………………………………4 (3)(Ⅰ)如图,当∠ADC =∠ABC =90°时,延长AD ,BC 相交于点E , ∵∠ABC =90°,∠DAB =60°,AB =5, ∴AE =10.∴DE =AE ﹣AD =10﹣4═6.……………………………………5 ∵∠EDC =90°,∠E =30°,∴CD∴AC=2 (6)(Ⅱ)如图,当∠BCD =∠DAB =60°时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N , ∵DM ⊥AB ,∠DAB =60°,AD =4, ∴AM =2,DM=2∴BM =AB ﹣AM =5﹣2=3.………………………………………7 ∵四边形BNDM 是矩形, ∴DN =BM =3,BN =DM∵∠BCD =60°, ∴CN∴BC =CN +BN∴AC=2……………………………………………………8 即AC28.(本小题满分7分)解:(1)① 依题意补全图形(如图);…………………………………………1分 ② ∠ADC +∠CDE =180°.……………………………………………2分 (2)线段CM ,AE 和BE 之间的数量关系是AE =BE +2CM ,理由如下: ∵ 线段CD 绕点C 逆时针旋转90°得到线段CE , ∴ CD =CE ,∠DCE =90°. ∴ ∠CDE =∠CED =45°.又∵ ∠ADC =135°, ∴ ∠ADC +∠CDE =180°,∴ A 、D 、E 三点在同一条直线上.∴ AE =AD +DE . …………………………………………………………3分 又∵ ∠ACB =90°,AAMDABCE∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.………………………………………………………………4分∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.…………………………………………………………5分∴AE=BE+2CM.……………………………………………………6分(3)点A到BP的距离为.…………………………………………7分。

2015西城二模试题及答案

2015西城二模试题及答案

北京市西城区2015年初三二模试卷语文 2015.6考生须知1.本试卷共8页,共四道大题,24道小题。

满分120分。

考试时间150分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和学号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

一、基础·运用(共22分)(一)选择。

下面各题均有四个选项,其中只有一个..符合题意,选出答案后在答题卡上用铅笔把对应题目的选项字母涂黑涂满。

(共10分)成语是经过长期锤炼而形成的汉语言文化精髓.,它浓缩了中国古代传统文化的精华,承载着历代华夏儿女千百年来形成的处世哲学。

成语多来源于寓言故事,神话传说,古典诗文,也有些源自民间惯用语,谚语,歇后语等,是中华民族宝贵的文化遗产,堪称中华文化的“活化石”。

它言简意赅,以简驭繁,以极少的文字传达丰富的内涵,成为汉语言文化中的一道亮丽风景。

人们讲话、写文章都喜欢运用成语,是由于成语除了(甲),还(乙)。

而最能体现后者的,莫过于比喻的运用。

成语的比喻用法大致有两种情况。

一种是明显的比喻。

例如“如虎添翼”“门庭若市”“归心似箭”“味同嚼蜡”等,特点是带有“如”“若”“似”“同”这类比喻词。

因此不管放在什么语言环境里,一眼就能看出是比喻。

这类成语生动形象,表达效果值得__①__。

更多的一种情况是运用成语的比喻意义。

什么叫“成语的比喻意义”呢?那就是一个成语由于它的比喻用法而逐渐形成并固定下来的意义。

如“完(bì)归赵”出自蔺相如设法把国宝从秦国送回赵国的历史故事,后用来比喻原物完整无损地归还本人,这一比喻义用得多了,得到社会认可,就作为这个成语的固定意义确定下来了。

运用这类成语不仅能收到比喻的表达效果,还能提升语言的文化__②__。

1.文中加点字“髓”的注音和“完(bì)归赵”注音处应填入的汉字正确的一项是A.髓(sǔi)壁(声旁为“辟”,形旁为“土”)B.髓(suǐ)璧(声旁为“辟”,形旁为“玉”)C.髓(suǐ)壁(声旁为“辟”,形旁为“土”)D.髓(sǔi)璧(声旁为“辟”,形旁为“玉”)2.根据句意,依次填入①②两处的词语,最恰当的一项是A.①品位②品味 B.①品味②品味C.①品位②品位 D.①品味②品位3.对文中画线句标点修改正确的一项是A.成语多来源于寓言故事,神话传说,古典诗文;也有些源自民间惯用语、谚语、歇后语等B.成语多来源于寓言故事,神话传说,古典诗文。

2015北京初三数学二模试题及答案WORD

2015北京初三数学二模试题及答案WORD

中考统一练习㈡数 学 2015.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14π C.13π D .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = . 12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBEACD OB EACD图1 图2 证明:⑴ ⑵ 20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长; ⑵求sin ∠DAO 的值. 解:⑴ ⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:y x31D B O A FED BOA C⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么? 解:⑴ ⑵ ⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵①② 24.探究问题:已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD 、BE 交于点O .⑴△ABC 为等边三角形,如图1,则AO ︰OD = ;⑵当小明做完⑴问后继续探究发现,若△ABC 为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC 中,点E 是边AC 的中点,AD 平分∠BAC , AD ⊥BE 于点F ,若AD =BE =4. 求:△ABC 的周长.ODE ABCOE DBCA1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4 -3-2-1D CF B EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a364222-=--++ ---------------------------------------2分 24=a ---------------------------------------3分 21=a ---------------------------------------4分是原方程的根经检验:21=a∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分 16.证明: AD 是中线∴BD=CD ---------------------------------------1分 分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分 CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分 ,于B AB CB ⊥ DC ∥AB∴.90==CB DE ---------------------------------------2分A DE AD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= EC AD B∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。

2015年山东省青岛市市南区中考数学二模试卷及参考答案

2015年山东省青岛市市南区中考数学二模试卷及参考答案

2015年山东省青岛市市南区中考数学二模试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)如果a与|﹣7|互为相反数,则a的值是()A.7 B.﹣7 C.D.﹣2.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是()A.B.C.D.3.(3分)在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣55.(3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C 点,则BC=()A.B.C.D.6.(3分)如表是12名同学的爱心捐款统计,则由捐款数组成的这组数据中,中位数与众数分别是()A.15,15 B.20,20 C.17.5,15 D.15,207.(3分)点P是图①中三角形边上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为()A.(a,b) B.(a,b)C.(a﹣2,b)D.(a﹣1,b)8.(3分)反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.(3分)化简:+3=.10.(3分)如图,⊙O是△ABC外接圆,AB是直径,若∠BOC=80°,则∠A等于°.11.(3分)一个口袋有15个白球和若干个黑球,在不允许将球倒出来数的前提下,小明为估计口袋中黑球的个数,采用了如下的方法:从袋中一次摸出10个球,求出白球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程5次,得到的白球数与10的比值分别是0.4,0.3,0.2,0.3,0.3,根据上述数据,小明估计口袋中大约有个黑球.12.(3分)某车间有甲乙两个小组,甲组的工作效率比乙组高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间还少30分钟.若设乙组每小时加工x个零件.根据题意,可列出方程.13.(3分)如图,在△ABC中,∠C=45°,DE垂直平分AB于点E,交BC于点D;FG垂直平分AC于点G,交BC于点F,连接AD,AF.若AC=3cm,BC=12cm,则DF=cm.14.(3分)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)三、作图题(共1小题,满分4分)15.(4分)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(共9小题,满分74分)16.(8分)(1)化简:÷(x﹣)(2)已知关于x的一元一次不等式2x﹣6>a的解集为x>﹣1,求a的值.17.(6分)某学校为了解该校学生的课余活动情况,抽样调查了部分同学,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如下:(1)在这次研究中,一共调查了名学生.(2)补全频数分布折线图;(3)该校共有2200名学生,估计该校学生中爱好阅读的人数大约是多少?18.(6分)一对质地均匀的正方体骰子的六个面上分别有1到6个点数,将骰子抛掷两次,若两骰子正面点数和为2、10、11、12,则甲赢;如果两骰子正面点数的和为7,则乙赢;若两骰子正面点数的和为其它数,则甲乙都不赢.继续下去,直到有一个人赢为止.你认为游戏对甲、乙是否公平?请说明理由;若不公平,请你修改规则使该游戏对双方公平.19.(6分)如图,是某货运站传送货物的平面示意图.传送带AB长为4米,在离B点5米远的地方有一堆货物DEFG等待运输.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.但要保证货物着地点C的左侧留出2米的通道,试判断货物DEFG是否需要挪走.(结果精确到0.1米:参考数据:≈1.41,≈1.73,≈2.24,≈2.45)20.(8分)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如图,建立直角坐标系,求此抛物线的解析式;(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?21.(8分)已知:如图,在▱ABCD中,点E在BC边上,连接AE,O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△EOB;(2)当AE平分∠BAD时,四边形ABEF是什么特殊四边形?并证明你的结论.22.(8分)某旅游商店购进某种工艺品原料140个.准备加工后销售,根据前期销售经验,加工成半成品销售每个可获利10元.加工成成品每个可获利20元,已知该店每天只能加工半成品15个或成品5个,两种加工不能同时进行.(1)若用12天刚好加工完这批原料,则该店加工半成品和成品各多少个?(2)试求出销售这批工艺品的利润y与加工成品的天数a(天)之间的函数关系表达式;(3)临近旅游旺季,该商店要在不超过14天的时间内,将140个原料全部加工完后进行销售,并要使售后或利润最大,则应该如何安排加工的时间?能获得的最大利润是多少?23.(12分)【问题提出】如何把n个边长为1的小正方形,剪拼成一个大正方形?【探究一】若n是完全平方数,我们不用剪切小正方形,可直接将小正方形拼成个大正方形.请你用9个边长为1的小正方形拼成一个大正方形.(如图正方形)【探究二】若n=2、5、10、13等,这些数,都可以用两个正整数平方和的算术平方根来表示,如:2=;5=.解决方法:以n=5为例(1)计算:拼成的大正方形的面积是5,边长为;(2)剪切:如图1,将5个小正方形按如图所示分成5部分,虚线为剪切线;(3)拼图:以图1中的虚线为边,拼成一个边长为的大正方形,如图2.请你仿照上面的研究方式,用13个边长为1的小正方形剪拼成一个大正方形.(1)计算:拼成的大正方形的面积是13,边长为;(2)剪切:请画出剪切的图形;(3)拼图:请画出拼成的图形;【问题拓展】如图3,给你两个大小不相等的正方形ABCD和EFGH,设正方形ABCD的边长为a,正方形EFGH的边长为b.请你仿照上面的研究方式,把它剪拼成一个大正方形.(1)计算:拼成的大正方形的面积是a2+b2,边长为;(2)剪切:请在图3中完成;(3)拼图:请画出拼成的图形.24.(12分)如图,在梯形ABCD中,AD∥BC,DC=6cm,AD=4cm,BC=20cm,∠C=60°.点P从点A出发沿折线AD→DC方向向点C匀速运动,速度为1cm/s;点Q从点B出发,沿BC方向向点C匀速运动,速度为2cm/s,P、Q同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点P、Q运动的时间是t (s).(1)当点P在AD上运动时,如图(1),DE⊥CD,是否存在某一时刻t,使四边形PQED是平行四边形?若存在,求出t的值;若不存在,请说明理由;(2)当点P在DC上运动时,如图(2),设△PQC的面积为S,试求出S与t的函数关系式;(3)是否存在某一时刻t,使△PQC的面积是梯形ABCD的面积的?若存在,求出t的值;若不存在,请说明理由;(4)在(2)的条件下,设PQ的长为xcm,试确定S与x之间的关系式.2015年山东省青岛市市南区中考数学二模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)如果a与|﹣7|互为相反数,则a的值是()A.7 B.﹣7 C.D.﹣【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:由a与|﹣7|互为相反数,得a=﹣7,故选:B.2.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:D.3.(3分)在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、既是轴对称图形又是中心对称图形,故A选项正确;B、是轴对称图形,但不是中心对称图形,故B选项错误;C、不是轴对称图形,是中心对称图形,故C选项错误;D、是轴对称图形,但不是中心对称图形,故D选项错误.故选:A.4.(3分)PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:B.5.(3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C 点,则BC=()A.B.C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.6.(3分)如表是12名同学的爱心捐款统计,则由捐款数组成的这组数据中,中位数与众数分别是()A.15,15 B.20,20 C.17.5,15 D.15,20【分析】根据众数的定义即可得到捐款金额的众数是15;在12个数据中,第6个数和第7个数分别是15元,15元,然后根据中位数的定义求解.【解答】解:共有数据12个,第6个数和第7个数分别是15元,15元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选:C.7.(3分)点P是图①中三角形边上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为()A.(a,b) B.(a,b)C.(a﹣2,b)D.(a﹣1,b)【分析】根据已知点坐标变化规律确定出P′坐标即可.【解答】解:根据题意得:(2,0)变化后的坐标为(1,0),(4,0)变化后的坐标为(2,0),则P坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标(a,b),故选:B.8.(3分)反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.【分析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx﹣k的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx﹣k 的图象过一、三、四象限,无符合选项.故选:C.二、填空题(共6小题,每小题3分,满分18分)9.(3分)化简:+3=3.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=2+=3.10.(3分)如图,⊙O是△ABC外接圆,AB是直径,若∠BOC=80°,则∠A等于40°.【分析】因为⊙O是△ABC外接圆,AB是直径,∠ACB=90°,∠A+∠B=90°,又因为∠BOC=80°,OB=OC,所以∠B=∠BCO=50°,所以∠A=40°.【解答】解:∵⊙O是△ABC外接圆,AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OB=OC,∴∠B=∠BCO,∵∠BOC=80°,∴∠B=∠BCO=50°∴∠A=40°.11.(3分)一个口袋有15个白球和若干个黑球,在不允许将球倒出来数的前提下,小明为估计口袋中黑球的个数,采用了如下的方法:从袋中一次摸出10个球,求出白球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程5次,得到的白球数与10的比值分别是0.4,0.3,0.2,0.3,0.3,根据上述数据,小明估计口袋中大约有35个黑球.【分析】首先计算5次比值的平均数,即估计总体中白球所占的百分比.根据已知部分求全体,用除法即可求得总数,从中去掉白球,即为所求.【解答】解:∵(0.4+0.3+0.2+0.3+0.3)÷5=0.3,∴口袋中球的总数为:15÷0.3=50,∴口袋中共有黑球:50﹣15=35.即口袋中大约有35个黑球.故答案为35.12.(3分)某车间有甲乙两个小组,甲组的工作效率比乙组高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间还少30分钟.若设乙组每小时加工x个零件.根据题意,可列出方程﹣=0.5.【分析】首先设乙组每小时加工x个零件,则甲组每小时加工(1+25%)x个零件,根据题意可得乙组加工180个零件所用的时间﹣甲组加工200个零件所用的时间=30分钟,根据等量关系,列出方程即可.【解答】解:设乙组每小时加工x个零件,由题意得:﹣==0.5.故答案为:﹣=0.5.13.(3分)如图,在△ABC中,∠C=45°,DE垂直平分AB于点E,交BC于点D;FG垂直平分AC于点G,交BC于点F,连接AD,AF.若AC=3cm,BC=12cm,则DF=4cm.【分析】根据线段的垂直平分线的性质得到FA=FC,DA=DB,根据直角三角形的判定得到∠AFC=90°,设DF=x,根据勾股定理列出方程,解方程得到答案.【解答】解:∵FG垂直平分AC,∴FA=FC,∴∠FAC=∠C=45°,∴∠AFC=90°,又FA=FC,∴FA=FC=3,∵DE垂直平分AB,∴DA=DB,设DF=x,则DA=DB=9﹣x,由勾股定理得(9﹣x)2=x2+32,解得,x=4,故答案为:4.14.(3分)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【分析】由三角形的相似性可求得S 2、S3、S4的值,则Sn的值也可用含n的式子表示出来.【解答】解:由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3,∵△AB1C1是等边三角形,∴AD1=AC1•sin60°=2×=,∵△B1C1B2也是等边三角形,∴C1B1是∠AC1B2的角平分线,∴AD1=B2D1=,故S1=S△B2C1A﹣S△AC1D1=×2×﹣×2×=;S2=S△B3C2A﹣S△AC2D2=×4×﹣×4×=2﹣=;作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…B n在一条直线上.∵B n C n∥AB,∴==,∴B n D n=•AB=,则D n C n=2﹣BnDn=2﹣=.△B n C n B n+1是边长是2的等边三角形,因而面积是:.D n C n面积为S n=•=•=.△B n+1即第n个图形的面积Sn=.三、作图题(共1小题,满分4分)15.(4分)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.【分析】首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a 为半径画弧即可得出C的位置.【解答】解:如图所示:△ABC即为所求.四、解答题(共9小题,满分74分)16.(8分)(1)化简:÷(x﹣)(2)已知关于x的一元一次不等式2x﹣6>a的解集为x>﹣1,求a的值.【分析】(1)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简;(2)先求解不等式,再根据已知条件即可得出答案.【解答】解:(1)÷(x﹣)=÷=×=;(2)2x﹣6>a,2x>6+a,x>3+a,∵解集为x>﹣1,∴3+a=﹣1,解得a=﹣24.17.(6分)某学校为了解该校学生的课余活动情况,抽样调查了部分同学,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如下:(1)在这次研究中,一共调查了200名学生.(2)补全频数分布折线图;(3)该校共有2200名学生,估计该校学生中爱好阅读的人数大约是多少?【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;(2)先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全频数分布折线图;(3)利用样本估计总体的方法计算即可解答.【解答】解:(1)40÷20%=200(人)答:一共调查了200名学生;(2)200×30%=60(人)200﹣(60+30+20+40)=200﹣150补全频数分布折线图如下:;(3)2200×=550(人).答:估计该校学生中爱好阅读的人数大约是55人.18.(6分)一对质地均匀的正方体骰子的六个面上分别有1到6个点数,将骰子抛掷两次,若两骰子正面点数和为2、10、11、12,则甲赢;如果两骰子正面点数的和为7,则乙赢;若两骰子正面点数的和为其它数,则甲乙都不赢.继续下去,直到有一个人赢为止.你认为游戏对甲、乙是否公平?请说明理由;若不公平,请你修改规则使该游戏对双方公平.【分析】列举出所有情况,找到点数和为2、10、11、12的情况数及点数和为7的情况数,求得甲赢的概率和乙赢的概率,若概率相等则公平.【解答】解:表格如下共有36种情况,点数和为2、10、11、12的情况数有7种,所以甲赢的概率为;点数和为7的情况数有6种,所以概率为,则游戏不公平,甲赢的概率比乙大,掷一次骰子,向上一面的点数为偶数为甲赢,为奇数为乙赢.19.(6分)如图,是某货运站传送货物的平面示意图.传送带AB长为4米,在离B点5米远的地方有一堆货物DEFG等待运输.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.但要保证货物着地点C的左侧留出2米的通道,试判断货物DEFG是否需要挪走.(结果精确到0.1米:参考数据:≈1.41,≈1.73,≈2.24,≈2.45)【分析】过A作AD⊥BC于D,在Rt△ABD中,根据特殊角的三角函数值求出AD,再根据在直角三角形中,30°所对的直角边等于斜边的一半求出AC,根据勾股定理求出CD,从而求出CB,最后根据DC=DB﹣CB求出DC,然后与2米进行比较,即可得出答案.【解答】解:如图,作AD⊥BC于点D;在Rt△ABD中,AD=BD=ABsin45°=4×=2,在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=4;在Rt△ACD中,CD===2;∴CB=CD﹣BD=2﹣2≈2.1.∵DC=DB﹣CB≈5﹣2.1=2.9>2;∴货物DEFG不需要挪走.20.(8分)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如图,建立直角坐标系,求此抛物线的解析式;(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?【分析】(1)以抛物线的对称轴为y轴,水平地面为x轴,建立平面直角坐标系,设解析式,结合已知确定抛物线上点的坐标,代入解析式确定抛物线的解析式;(2)利用当x=1时,y=;当x=1.5 时,y=.得出当竖直摆放5个圆柱形桶时,得出桶高进而比较;即可得出答案;(3)由圆桶的直径,求出圆桶两边缘纵坐标的值,确定m的范围,根据m为正整数,得出m的值,即可得到当网球可以落入桶内时,竖直摆放圆柱形桶个数.【解答】解:(1)M(0,5),B(2,0),C(1,0),D(,0),设抛物线的解析式为y=ax2+k,∵抛物线过点M和点B,则k=5,.即抛物线解析式为;(2)当x=1时,y=;当x=时,y=.即P(1,),Q(,)当竖直摆放7个圆柱形桶时,桶高=×7=2.1.∵2.1<且2.1<,∴网球不能落入桶内;(3)设竖直摆放圆柱形桶m个时网球可以落入桶内,由题意,得,≤0.3m≤,解得:≤m≤;∵m为整数,∴m的值为8,9,10,11,12.∴当竖直摆放圆柱形桶至多12个时,网球可以落入桶内.21.(8分)已知:如图,在▱ABCD中,点E在BC边上,连接AE,O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△EOB;(2)当AE平分∠BAD时,四边形ABEF是什么特殊四边形?并证明你的结论.【分析】(1)根据平行四边形的定义可得AD∥BC,进而可得∠FAE=∠AEB,∠AFO=∠EBO,再由O为AE中点可得AO=EO,然后可利用AAS判定:△AOF≌△EOB;(2)首先证明四边形ABEF是平行四边形,然后再证明AB=AF可得四边形ABEF 是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∠AFO=∠EBO,∵O为AE中点,∴AO=EO,在△AOF和△EOB中,,∴△AOF≌△EOB(AAS);(2)解:四边形ABEF是菱形;∵△AOF≌△EOB,∴AF=BE,∵AD∥BC,∴AF∥BE,∴四边形ABEF是平行四边形,∴AE平分∠BAD,∴∠ABF=∠EBF,∵∠AFO=∠EBO,∴∠ABO=∠AFO,∴AF=AB,∴四边形ABEF是菱形.22.(8分)某旅游商店购进某种工艺品原料140个.准备加工后销售,根据前期销售经验,加工成半成品销售每个可获利10元.加工成成品每个可获利20元,已知该店每天只能加工半成品15个或成品5个,两种加工不能同时进行.(1)若用12天刚好加工完这批原料,则该店加工半成品和成品各多少个?(2)试求出销售这批工艺品的利润y与加工成品的天数a(天)之间的函数关系表达式;(3)临近旅游旺季,该商店要在不超过14天的时间内,将140个原料全部加工完后进行销售,并要使售后或利润最大,则应该如何安排加工的时间?能获得的最大利润是多少?【分析】(1)设该店加工半成品x个,则加工成品(140﹣x)个,根据用12天刚好加工完这批原料,列出方程解答即可;(2)利用总利润=加工半成品的利润+加工成品的利润列出函数解析式即可;(3)根据(2)中求得的解析式,求出自变量的取值范围,利用一次函数的性质即可解决.【解答】解:(1)设该店加工半成品x个,则加工成品(140﹣x)个,由题意得+=12解得:x=120则140﹣x=20答:该店加工半成品120个,加工成品20个.(2)由题意得销售这批工艺品的利润y与加工成品的天数a(天)之间的函数关系表达式为y=20×5a+10×(140﹣5a)=50a+1400.(3)由题意:a+≤14解得a≤7,∵y=50a+1400,∴k=50>0,y随a的增大而增大,∴a=7时,y最大值=50×7+1400=1750元.23.(12分)【问题提出】如何把n个边长为1的小正方形,剪拼成一个大正方形?【探究一】若n是完全平方数,我们不用剪切小正方形,可直接将小正方形拼成个大正方形.请你用9个边长为1的小正方形拼成一个大正方形.(如图正方形)【探究二】若n=2、5、10、13等,这些数,都可以用两个正整数平方和的算术平方根来表示,如:2=;5=.解决方法:以n=5为例(1)计算:拼成的大正方形的面积是5,边长为;(2)剪切:如图1,将5个小正方形按如图所示分成5部分,虚线为剪切线;(3)拼图:以图1中的虚线为边,拼成一个边长为的大正方形,如图2.请你仿照上面的研究方式,用13个边长为1的小正方形剪拼成一个大正方形.(1)计算:拼成的大正方形的面积是13,边长为;(2)剪切:请画出剪切的图形;(3)拼图:请画出拼成的图形;【问题拓展】如图3,给你两个大小不相等的正方形ABCD和EFGH,设正方形ABCD的边长为a,正方形EFGH的边长为b.请你仿照上面的研究方式,把它剪拼成一个大正方形.(1)计算:拼成的大正方形的面积是a2+b2,边长为;(2)剪切:请在图3中完成;(3)拼图:请画出拼成的图形.【分析】探究一:由大正方形的面积计算出边长,从而可画出图形;探究二:将13正正方形分割为1个边长为1的正方形和4个两直角边分别为2和3的直角三角形即可;探究三:将两个正方形分割为1个边长为(a﹣b)的正方形和4个两直角边分别为a和b的直角三角形即可.【解答】解:探究一:∵9个边长为1的正方形的面积为9,∴所拼成的正方形的边长为3.所拼图形如图所示:探究二:(1)=;(2)如图所示:(3)拼成的图形如图所示:探究三:(1)计算:拼成的大正方形的面积是a2+b2,边长为;(2)如图4所示:(3)拼成的图形如图5所示:24.(12分)如图,在梯形ABCD中,AD∥BC,DC=6cm,AD=4cm,BC=20cm,∠C=60°.点P从点A出发沿折线AD→DC方向向点C匀速运动,速度为1cm/s;点Q从点B出发,沿BC方向向点C匀速运动,速度为2cm/s,P、Q同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点P、Q运动的时间是t(s).(1)当点P在AD上运动时,如图(1),DE⊥CD,是否存在某一时刻t,使四边形PQED是平行四边形?若存在,求出t的值;若不存在,请说明理由;(2)当点P在DC上运动时,如图(2),设△PQC的面积为S,试求出S与t的函数关系式;(3)是否存在某一时刻t,使△PQC的面积是梯形ABCD的面积的?若存在,求出t的值;若不存在,请说明理由;(4)在(2)的条件下,设PQ的长为xcm,试确定S与x之间的关系式.【分析】(1)求出CE长度,根据平行四边形对边平行且相等,建立等量关系:PD=QE,根据题意建立方程求解即可;(2)过点P作PM⊥BC,用t表示出CP,CQ,PM,进一步表示三角形面积即可;(3)分情况表示出三角形PQC的面积,求出梯形面积,根据题意建立方程即可求解;(4)求出x与t的关系,代入(2)中关系式即可求解.【解答】解:(1)不存在,理由如下:∵DE⊥CD,∠C=60°,DC=6cm,∴∠CED=30°,∴CE=2CD=12,设点P、Q运动的时间是t(s),PD=4﹣t,QE=BC﹣CE﹣BQ=20﹣12﹣2t=8﹣2t,使四边形PQED是平行四边形,有PD=QE,∴4﹣t=8﹣2t,解得:t=4,此时点P与点D重合,不能构成平行四边形;(2)如图②由题意可求:PC=10﹣t,QC=20﹣2t,过点P作PM⊥BC,∵∠C=60°,∴=sin60°=,可求PM=(10﹣t),∴S=×(20﹣2t)×(10﹣t)=t2﹣+;(3)如图3过点D作DN⊥BC,由DC=6,∠DCB=60°,可求:DN=,∴梯形ABCD的面积为:(4+20)×÷2=,当t≤4时,QC=20﹣2t,此时,△PQC的面积为:(20﹣2t)×÷2,由题意得:(20﹣2t)×÷2=×,解得:t=(舍去);当4<t≤10时,由(2)知,△PQC的面积为:t2﹣+,由题意:t2﹣+=×,解得:t=6,或t=14(舍去),所以当t=6时,△PQC的面积是梯形ABCD的面积的;(4)如图②由(2)知:PC=10﹣t ,QC=20﹣2t , 过点P 作PM ⊥BC , ∵∠C=60°, ∴=sin60°=,PM=(10﹣t ),可求:CM=(10﹣t ),QM=QC ﹣CM=(10﹣t ), 由勾股定理可求:PQ=(10﹣t ),当PQ=x 时,(10﹣t )=x ,解得:t=10﹣,∴S=×(20﹣2t )×(10﹣t )=,赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。

2015年北京13区中考数学二模分类汇编及答案——选填基础题

2015年北京13区中考数学二模分类汇编及答案——选填基础题

(东城)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图,数轴上有A ,B ,C ,D 四个点,其中到原点距离相等的两个点是 A .点B 与点DB .点A 与点CC .点A 与点DD .点B 与点C2.据统计,中国每年浪费的食物总量折合粮食约为50 000 000 吨,将50 000 000用科学记数法表示为 A . 5×107B . 50×106C . 5×106D . 0.5×1083. 下列运算正确的是A .236a a a ⋅=B .336a a a += C .22a a -=- D .326()a a -=4.甲、乙、丙、丁四名运动员参加了射击预选赛,他们射击的平均环数-x 及其方差2s如下表所示.如果选出一个成绩较好且状态稳定的人去参赛,应选运动员A .甲B .乙C .丙D .丁5. 如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是6.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从此布袋里任意摸出1个球,该球是红球的概率为13,则a 等于 A .1B . 2C . 3D . 47. 如图,将△ABC 沿BC 方向向右平移2cm 得到△DEF ,若△ABC 的周长为16cm ,则四边形ABFD 的周长为8.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于2BC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠B =25°,则∠ACB 的度数为 A . 90° B . 95°C . 100°D . 105°9.如果三角形的一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是 ,,二、填空题(本题共18分,每小题3分)11x 的取值范围是 .12.如图,AB //CD ,∠D = 27°,∠E =36°.则∠ABE 的度数是 .13.一次函数y kx b =+ 的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是_________________.14.小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是_________________2cm .第12题图 第14题图15. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为 .(西城)一、选择题(本题共30分,每小题3分)1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为 A. 90.1210⨯ B. 71.210⨯ C. 81.210⨯ D. 71210⨯ 2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于A. 75°B. 80°C. 100°D. 120° 3.64的立方根是A. 8±B. 4±C. 8D. 44.函数y =x 的取值范围是A.2x ≠B. x ≥2C. x >2D. x ≥2- 5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为A. 3B. 4C. 9D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是A. 35B. 26C. 25D. 20 7. 若一个正六边形的半径为2,则它的边心距等于A. 2B. 1C.D.8.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于 A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为,则点C 的坐标为A .B .(-C .(D .(1)-二、填空题(本题共18分,每小题3分)11.若2(2)0m ++= 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = .13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式: ______. ny x =(n ≠0)在第15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线满足3nx x >的x 的取一象限的公共点是(1,)P m .小明说:“从图象上可以看出,值范围是1x >.”你同意他的观点吗?答: .理由是 .(海淀)一、选择题(本题共30分,每小题3分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为A .70.210⨯ B .6210⨯ C .52010⨯ D .6102⨯ 2.有意义,则x 的取值范围是A .0≤xB .0≥xC .2≤xD .2≥x 3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签A .13 B .4 C .6 D .124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立 A .()2222a b a ab b +=++B.()2222a b a ab b -=-+C.()()22a b a b a b +-=-D.()2a a b a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A .甲的方差比乙的方差小B .甲的方差比乙的方差大C .甲的平均数比乙的平均数小D .甲的平均数比乙的平均数大 7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下: 对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C OD ≌△COD ,所以∠'''A O B=∠AOB8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D .60元9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开, 则在展开图中A ,B 两点间的距离为A .2 BC .D 二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为_______________.12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是__________. 13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为_____________.14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为______________米. 15.如图,在Rt △ABC 中,∠C =90°,∠BAC =30°,BC =1,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则AC的长为_______________.(朝阳)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm 左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92合并的是ABCD3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是 A . 10 B. 14 C. 16 D. 40 6.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示: 设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙 7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .9 8.某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 28 9. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 9 二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 . 12.分解因式:22312x y - = .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 . 14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是(要求:不在图中添加其他辅助线,写出一个条件即可 ).(丰台)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.13的倒数是 A .3 B .3- C .13 D .13-2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是 A .6×10-6 B . 6×10-5 C . 6×10-4 D . 0.6×10-43.下面的几何体中,主视图为三角形的是D42≠ B . 2x >C . 2x ≥D . 2x ≤510个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是 A .110 B .15 C .310 D . 126. 下面的几何图形中,既是轴对称图形又是中心对称图形的是A B C D7.如图,A ,B 是函数2=y x的图象上关于原点对称的任意两点, BC ∥x 轴, AC ∥y 轴,如果△ABC 的面积记为S ,那么A .4S = B .2S = C .24S << D .4S >8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资 格,表中统计了他们五次测试成绩的平均分和方差.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全市“汉字听写大赛”,那么应选 A .甲 B .乙 C .丙 D .丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米, 那么适合该地下车库的车辆限高标志牌为 (参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)A B C D二、填空题(本题共18分,每小题3分)11.分解因式:34a a -= . 12.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 如果35AD DB =,AE =6,那么EC 的长为 . 13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知AB 的长是_________m .14.将二次函数245y x x =-+化为(y x ==h k + . 15.在四边形A B C D 中如果A B =请你添加一个..条件,使得该四边形是菱形那么这个条件可以是FCBA E 图3 图1 图2菱形扇形平行四边形 等边三角形C 图1(顺义)1.25-的倒数是( )A .52-B .52C .25-D .252.2015年春节,顺义区相关部门做了充分的准备工作,确保了消费品市场货源充足.据统计,春节一周长假期间共实现销售收入约3.284亿元,同比增长4.8%.将“3.284亿”用科学记数法表示正确的是 A .83.28410⨯ B .732.8410⨯ C .73.28410⨯ D .93.28410⨯ 3.若分式21x x --的值为0,则x 的值为 A . 1或2 B .2 C .1 D .0 4.某品牌吹风机抽样检查的合格率为99%,则下列说法中正确的是 ( )A .购买100个该品牌的吹风机,一定有99个合格B .购买1000个该品牌的吹风机,一定有10个不合格C .购买10个该品牌的吹风机,一定都合格D .即使购买1个该品牌的吹风机,也可能不合格 5.校足球队10名队员的年龄情况如下:则这个队队员年龄的众数和平均数分别是( )A .12, 13.1B .12,13C .13,13.1D .13,136. 某中学的铅球场地如图所示,已知半径OA =10米,2AB π=米,则扇形OAB 的面积为 A. π平方米 B. 5π平方米 C. 10π平方米 D. 20π平方米7.如图,在数轴上,点A 表示的数是B ,C 表示的数是两个连续的整数,则这两个整数为 A .4和5 B . -5和-4 C .3和4 D .-4和-3 8.在平行四边形、正方形、正五边形、正六边形四个图形中是中心对称图形的个数是 A .1 B .2 C .3 D .4 9.如图,A ,B ,C ,D 为⊙O 上四点,若∠BOD =110º, 则∠A 的度数是A . 110ºB . 115ºC .120ºD .125º 二、填空题(本题共18分,每小题3分)DC B A -3-2-13210A11.计算:84a a ÷= .12.分解因式:2242m m -+= .13.如图,B 为地面上一点,测得点B 到树底部C 的距离为10米, 在点B 处放置一个1米高的测角仪BD ,并测得树顶A 的仰角为53°, 则树高AC 约为 米(精确到0.1米). (参考数据:cos53°≈0.60,sin53°≈0.80,tan53°≈1.33)14.如果关于x 的方程x 2﹣2x +k =0的一个根是-1,则另一个根是 .15.乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费 元;若一次乘坐这种出租车付费20元,则乘车路程是 千米.(昌平)1.小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000 ,这个数用科学记数法表示为A .410165⨯ B .51.6510⨯ C .61065.1⨯ D .710165.0⨯ 2.如图,数轴上有A ,B ,C ,D 四个点,其中表示 -3的相反数的点是 A .点A B .点B C .点C D .点D 3.用5个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为4.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为 A.12 B. 14 C. 34D.1 5.如图,直线AB ∥CD ,Rt △DEF 如图放置,∠EDF =90°,若∠1+∠F =70°,则∠2的度数为A .20°B .25°C .30°D .40°6.五一期间(5月1日-7日),昌平区每天最高温度(单位:℃)情况如图所示,则表示最高温度的这组数据的中位数是A .24B .25 26D .277.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为MCAB D N友 诚信 爱 国A .2B . 4CD . 8.小明在学习之余去买文具,打算购买5 支单价相同的签字笔和3 本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付A .10元B .11元C .12元D .13元 9.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠A =50°,则∠ACB 的度数为 A .90°B . 95°C .100°D . 105°二、填空题(共6道小题,每小题3分,共18分)11.分解因式:29my m -= .12.若关于x 的一元二次方程2210kx x -+=有实数根,则k 的取值范围是 .13.已知:如图,在△ABC 中,点D 为BC 上一点,CA =CD ,CF 平分∠ACB ,交AD 于点F ,点E 为AB 的中点.若EF =2,则BD = .14.把方程2630x x ++=变形为()2x h k +=的形式,其中h ,k 为常数,则k = .15.在阳光体育课上,小腾在打网球,如图所示,网高0.9m ,球刚好打过网,而且落在离网6 m 的位置上,则球拍击球的高度h = m .(石景山)1.4的相反数是 A .4- B .4C .41 D .41-2.将800000用科学记数法表示为 A .70.810⨯B .5810⨯C .60.810⨯D .48010⨯3.有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字2-,3,0,上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是无理数的概率是 A .41 B .21C . 43D .14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是A .爱B .国C .善D .诚5.如图,CD AB //,AC 的垂直平分线交CD 于点F ,交AC 于点E ,连接AF ,若︒=∠80BAF ,则C ∠的度数为A .︒40B .︒50C .︒60D .︒80 6.如图,△ABC 中,∠C =90°,∠B =60°,AC=,点D 在AC 上,以CD 为直径作⊙O 与BA 相切于点E ,则BE 的长为A .2B .3C .2D .37.在某校科技节“知识竞赛”中共进行四次比赛,甲、乙两个参赛同学,四次比赛成绩情况下表所示:设两同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B .x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲D .x x <乙甲,22S S <乙甲8.等腰三角形一个角的度数为50︒,则顶角的度数为 A .50︒ B .80︒ C .65︒ D .50︒或80︒9.如图,等边△ABC 及其内切圆与外接圆构成的图形中,若外接圆的半径为3,则阴影部分的面积为A .π2B .π3C .π4D .π6 11.分解因式:=+-22882y xy x __________.12.分式211x x --的值为零的条件是___________.13.如图,四边形ABCD 为矩形,添加一个条件:,____________可使它成为正方形.14.如图所示,已知函数y x b =+和1y ax =-的图象交点为M ,则不等式1x b ax +<-的解集为___________. 15.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量 2.1BE =米,若小宇的身高是1.7米,则假山AC 的高度为________________.(门头沟)1.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为A .25×105B .2.5×106C .2.5×107D .0.25×107FEDCBA DCB AS (千米)t (时)O8成绩(环)甲乙次1234524610779889681082.如果右图是某几何体的三视图,那么这个几何体是A .圆柱B .正方体C .球D .圆锥3.如图,如果数轴上A ,B 两点表示的数互为相反数,那么点B 表示的数为A .2B .-2C .3D .-34.在下列图形中,既是中心对称图形又是轴对称图形的是A B C D5.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是⊙O 上一点,如果∠ADC =26º,那么∠AOB 的度数为 A .13ºB .26ºC .52º D .78º6.如果一个多边形的内角和是外角和的3A .五边形 B .六边形 C .七边形 D .八边形 7.在下列运算中,正确的是A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 5+a 5=2a 10 8.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下图所示: 设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、 2S 乙, 那么下列判断中正确的是A .x x =甲乙,22S S =甲乙B .x x =甲乙, 22>S S 甲乙C .x x =甲乙,22<S S 甲乙D .<x x 甲乙, 22<S S 甲乙9.一辆自行车在公路上行驶,中途发生了故障,停下修理一段时间后继续前进.已知行驶路程S (千米)与所用时间t (时)的函数关系的图象如图所示,那么自行车发生故障后继续前进的速度为 A .20千米/时 B .353千米/时 C .10千米/时 D .503千米/时 11.在函数y =x 的取值范围是 . 12.在半径为1的圆中,120°的圆心角所对的弧长是 . 13.分解因式:ax 2-9a = .30°D ABC 60°14.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进10m 到达点D 处,又测得点 A 的仰角为60°,那么建筑物AB 的高度是 m . 15.为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是 类(填“A 、B 、C ”中的一个).(平谷)1.根据北京市统计局2015年3月发布的数据,2015年3月北京市工业销售产值累计4006.4亿元,将4006.4用科学记数法表示应为A .40.4006410⨯B .34.006410⨯C .44.006410⨯D .240.06410⨯2. 下列水平放置的四个几何体中,主视图与其它三个不相同的是 A . B . C . D . 3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是A .点A 与点B B .点A 与点DC .点B 与点DD .点B 与点C4.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为A. 10°.B. 15°.C. 20°.D. 25°. 5.下列运算中,正确的是A .22x x -=B .452x x x ⋅= C .22x y y x ÷= D .()3326x x -=-6.某商场一天中售出某种品牌的运动鞋11双,其中各种尺码的鞋的销售量如下表所示,那么这11双鞋的尺码组成的一组数据中,众数与中位数分别为A. 23.5,24B.24,24.5C.24,24D.24.5,24.5 7.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是A .0.5千米B .1千米C .1.5千米D .2千米8.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB '''∠=∠的依据是 A .(SAS ) B .(SSS ) C .(AAS) D .(A SA )9.如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是 A .30° B . 45° C . 60° D . 70° 11.分式2aa -有意义的条件是 . 12.把a ﹣4ab 2分解因式的结果是 .13.下表记录了一名球员在罚球线上投篮的结果.那么,这名球员下次投篮,投中的概率约是_________(精确到0.1).14CD 为 米.15.如图,这个二次函数图象的表达式可能是 .(只写出一个).通州1.3的相反数是( )A .31B .31-C .3D .3-2.据科学家估计,地球的年龄大约是4600000000年,这个数用科学计数法表示为( ) A .4.6×108B .46×108C .4.6×109D .0.46×10103.如图,△ABC 中,∠C =90°,BC =2,AB =3,则下列结论正确的是() A .35sin =A B .32cos =A C .32sin =A D .25tan =A 4 )A C D5.下列说法正确的是( A 100100次这样的游戏一定会中奖B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差20.2S =甲,乙组数据的方差20.5S =乙,则乙组数据比甲组数据稳定A第3题图6.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( ) A .12B .15C .23D .137.如图,数轴上用点A ,B ,C ,D 表示有理数,下列语句正确的有( )①A②B 点所表示的有理数的绝对值大于C 点所表示的有理数的绝对值; ③A 点所表示的有理数与D点所表示的有理数和为0; ④C 点所表示的有理数与B 点所表示的有理数的乘积大于0 A .①② B .①③C .②③D .③④8.如图,在⊙O 中,如果2AB AC =,那么( ) A .AB =AC B .AB =2ACC .AB <2ACD .AB >2AC9.如图,点A 的坐标为(-1,0),点B 在直线x y =上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .21,21(--C .)22,22(-D .)22,22(--11.分解因式:241x -= .12.将抛物线22y x =向上平移3个单位长度得到的抛物线表达式是 . 13.已知扇形的半径为4㎝,圆心角为120°,则此扇形的弧长是 cm 14.将一副三角尺如图所示叠放在一起,则BE EC的值是 .15.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h .房山1. 4的算术平方根是A .16B .2C .﹣2D .±22. 舌尖上的浪费让人触目惊心! 据统计,中国每年浪费的食物总量折合成粮食约为50000000000千克,把50000000000用科学记数法表示为 A .5×1010B . 50×109C . 5×109D .0.5×1011A8题图O第14题图3. 计算62a a ÷的结果是A.3a B .4a C . 8a D. 12a4. 如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠DCE 等于A.35°B. 45°C.55°D.65°5.在下列图形中,既是轴对称图形又是中心对称图形的是6.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,连接OC , 若CD =6,OE =4,则OC 等于A .3B .4C .5 D .6 7.有11名同学参加了书法比赛,他们的成绩各不相同.若其中一位同学想知道自己能否进入前6名,则他不仅要知道自己的成绩,还要知道这11名学生成绩的 A.方差 B.平均数 C.众数D.中位数8. 如图,A .1:9.A .11. 分解因式: =________________. 12.若分式12x -有意义,则x 的取值范围是________________. 13.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,点H 是AF 的中点,那么CH 的长是.14.如图1,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为cm 2.15.辉三角”中有许多n 的展开式中a 按次数从大到小排列的项的系数.例如,()222a b a +=+开式中的系数1、2、1恰好对应图中第三行的数字.请认真观察此图,写出()3a b +的展开式()3a b += .怀柔BEDCB AA B C D 8822+-x x A图11.如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是A. 4B. 0C. -2D. -42.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A .13.1×106B .1.31×107C .1.31×108D .0.131×1083.正八边形的内角和等于A. 720°B. 1080°C. 1440°D.1880° 4. 下列各式计算正确的是A .23523a a a +=B .235()a a = C .623a a a ÷= D .235a a a ⋅= 5. 以下问题,不适合用普查方法的是A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间C.公司招聘职员,对应聘人员的面试 C. 旅客上飞机前的安检6.一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为 A .18B .38C .58D .347.如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子 测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个 主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为A .15mB .25mC .30mD .20m8. 在四边形ABCD 中,AB ∥DC , AD ∥BC ,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是A .90D =∠B .AB CD =C .AD BC = D .BC CD =9. 一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是A. m >1B. m =1 B. m <1C. m ≤1 11.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_________________性.12.分解因式x 3-9x=__________.13.矩形,菱形,正方形都是特殊的四边形,它们具有很多共性,如___________.(填一条即可). 14. 如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,A将△ABC 折叠,使A 点与BC 的中点D 重合, 折痕为MN ,则线段BN 的长为__________. 15. 观察下列一组坐标:(a,b ),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)…… ,它们是按一定规律排列的,那么第9个坐标是 ,第2015个坐标是 .答案 东城西城海淀朝阳11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠丰台顺义11.4a ; 12.()221m -; 13.14.3; 14.3; 15.12,8;(第一空1分第二空2分)昌平石景山11.22x y -; 12.1x =-;13.AB BC =等(答案不唯一)14.1x <- 15.17米;门头沟平谷1114.12;15.答案不唯一,如y =x 2﹣x ;通州1. D2. C3.C4.A5.C.6. D.7. D.8. C.9. C11.(x -1)(x +1);12.223y x =+; 13.83π; 15. 4;房山1.B2.A3.B4.A5.A6.C7.D8.D9.B11. 2(x -2)2 12. 2x ≠ 13. 14. 36 15.322333a a b ab b +++怀柔c,a。

2015年区二模数学题

2015年区二模数学题

2014—2015年度数学模拟调研试题(二)一、选择题(每小题3分,共计30分)1.某冰箱冷藏室的温度是5℃,冷冻室的温度是-2℃,则冷藏室比冷冻室温度高( ). (A )3℃ (B )-3℃(C )-7℃(D )7℃2.下列图形中,不是轴对称图形的是( ).(A ) (B ) (C ) (D ) 3.下列各式运算结果为2m 的是( ).(A ) (B ) (C ) (D )4.反比例函数12ky x-=的图象经过点(-2,3),则k 的值为( ). (A )6 (B )-6 (C )72 (D )72-5.如图所示的几何体的左视图是( ).6.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离 AC 为6m,则这两棵树之间的坡面AB 的长为( ). (A) 12m (B) 33m (C) 43m (D) 123m(第5题图)36m m ÷2-4mm •()21-m 24-m m7.如图,△ABC 中,若DE ∥BC ,EF ∥AB ,则下列结果正确的 是( ).(A )BC DEDB AD =(B )AD EF BC BF = (C )FC BF EC AE = (D )BCDEAB EF =(第7题图)8.如图,菱形ABCD 中,对角线AC 、BD 相交于点O , H 为AD 边的中点,若菱形ABCD 的周长为20,则 OH 的长为( ).(A) 2 (B) 2.5 (C) 3 (D) 3.59.若同一个圆的内接正三角形、正方形、正六边形的边长分别记作a 346a 3:a 4:a 6等于( ).(A ) (B ) 1:2:3 (C ) 3:2:1 (D 10.甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止行驶.下列说法:①M 、N 两地的路程是560千米;②乙车的速度是100千米/小时;③a =11003;④乙车出发3小时与甲车相遇.其中正确的个数为( ).(A )1个 (B )2个 (C )3个 (D )4个 二、填空题(每小题3分,共计30分) 11.将670 000用科学记数法表示为________. 12.在函数321-+=x x y 中,自变量x 的取值范围是13.________.E14.把多项式2x 2-12x +18分解因式的结果是________.15.一个扇形的面积是12πcm 2,圆心角是60°,则此扇形的半径是 cm . 16.不等式组⎩⎨⎧-≥+>+12201x x x 的解集为________.17.某商场将一件商品在进价的基础上加价80%标价,再八折出售,售价为144元,则这件商品的进价为________元.18.从分别标有1、2、3、4的四张卡片中一次同时抽两张,则抽取两张卡片中数字的和为奇数的概率是________.19.已知Rt △ABC 中,∠C =90°,AC =BC,直线m 经过点C,分别过点A 、B 作直线m 的垂线,垂足分别为点E 、F,若AE =3,AC =5,则线段EF 的长为________. 20.如图,正方形ABCD 中,点E 是AB 的中点,连接DE, 在DE 上取一点G , 连接BG ,使BG=BC,连接CG 并延长 与AD 交于点F,在CG 上取一动点P(不与点C 、点G 重 合),过点P 分别作BG 和BC 的垂线,垂足分别为点M 、 点N,若四边形AEGF 的面积是45,则PM+PN 的值为_____.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(本题7分)先化简,再求代数式 (1+12x -)÷212x x --的值,其中x=2cos45°-tan45°.22.(本题7分)如图,在小正方形的边长均为1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D 均在小正方形的顶点上. (1)在方格纸中画出以AB 为斜边的直角三角形ABE ,点E 在小正方形的顶点上,且△ABE 的面积为5; (2)在方格纸中画出以CD 为一边的△CDF ,点F 在小正方形的顶点上,且△CDF 的面积为4,CF 与(1)中所画线段BE 平行,连接AF ,请直接写出线段AF 的长.A23.(本题8分)某市教育局为了解该市八年级学生参加社会实践活动情况,随机抽查了某区部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图):请根据图中提供的信息,回答下列问题: (1)求出a 的值,并补全条形图;(2)请直接写出在这次抽样调查中,众数是 _____天,中位数是 _____天;(3)如果该区共有八年级学生3000人,请你估计“活动时间不少于7天”的学生有多少人? 24.(本题8分)已知:将矩形纸片ABCD 折叠,使点A 与点C 重合(点D 与/D 为对应点),折痕 为EF ,连接AF.(1)如图1,求证:四边形AECF 为菱形;(2)如图2,若FC=2DF ,连接AC 交EF 于点O ,连接DO 、/D O ,在不添加任何辅助线的情况下,请直接写出图2中所有等边三角形.25.(本题10分)哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需要成本l700元;若购进甲种3株,乙种l株.则共需要成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?26.(本题10分)已知:四边形ABCD内接于⊙O,对角线AC和BD相交于点E.(1)如图1,当AC⊥BD,OF⊥CD于点F,交AC于点G时,求证:∠OGA=∠BAC;(2)如图2,在(1)问的条件下,求证:AB=2OF;(3)如图3,当AB=AD,∠BAC=∠BCD,BK⊥AC于点K时,且AK=1,BD=12,求CD的长.D B27.(本题10分)在平面直角坐标系中,点O 为坐标原点,抛物线2()8y a x h =-+(a ≠0,a 、h 为常数)与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴的正半轴交于点C ,且AB=12,B(9,0).(1)如图1,求a ,h 的值;(2)如图2,点P 在第一象限对称轴右侧的抛物线上,PE ⊥x 轴于点E ,交线段BC 于点D ,点F 在线段BD 上,且PD=5PF ,FQ ⊥BC ,交直线PE 于点Q ,当PQ=8时,求点P 的坐标;(3)如图3,在(2)的条件下,R 是线段CD 上的一点,过点R 作RG 平行于x 轴,与线段PQ 交于点G ,连接OG 、OQ ,恰好使∠GOQ=45°,延长QR 到点H ,使QR=RH ,连接AH ,求线段AH 的长,并直接判断点H 是否在此抛物线上?2014—2015年度数学模拟调研试题(二)参考答案一、选择题1.D;2.A;3.B;4.C;5.A;6.C;7.C;8.B;9.D; 10.C . 二、填空题11.6.7×105; 12.23- ≠x ;13. 14.22(3)x -; 15. 62; 16. 17. 100 ; 18.23;19.1或7; 20.85. 三、解答题21.解:原式=12x x --÷212x x --= 12x x --×2(1)(1)x x x -+-=11x +…………………3分∵x =2cos45°-tan45°=2×2-1=2-1……………2分∴原式2分22.解:(1)正确画图……………………3分(2)正确画图……………………3分 AF=5……………………1分EF31-≤<x24.(1)证明:如图1,∵将矩形ABCD 折叠,EF 为折痕∴AE=EC ,∠AEF=∠CEF …………………1分 ∵矩形ABCD ∴AB ∥CD∴∠CFE=∠AEF∴∠CFE=∠CEF∴CF=CE……………………1分∴FC=AE ∵FC ∥AE∴四边形AECF 为平行四边形……………………1分 ∵AE=CE∴四边形AECF 为菱形……………………1分(2)图2中等边三角形分别是:△AEF ,△EFC ,△ADO, △/CD O .(每答对一个给1分)25.解:(1)设甲、乙两种君子兰的每株成本价分别为x 元、y 根据题意 得⎩⎨⎧=+=+15003170032y x y x ……………………3分 解得 ⎩⎨⎧==300400y x ……………………2分 ∴甲、乙两种君子兰每株成本分别为400元、300元.(2)设种植甲种君子兰为a 株,则种植乙种君子兰为(3a +10)株.400a +300(3a +10)≤30000 ……………………2分 解得a ≤102013……………………1分 ∵a 为正整数,∴a 的最大整数是20……………………1分 ∴最多购进甲种君子兰20株……………………1分 26. (1)证明:如图1∵AC ⊥BD OF ⊥CD∴∠GED=∠GFD=90° ∵∠GED+∠EDF+∠DFG+∠FGE=360°∴∠EGF+∠EDF=180°……………1分 ∵∠EGF+∠OGE=180°∴∠EDF=∠OGE……………1分∵弧BC=弧BC∴∠BAC=∠BDC ∴∠OGA=∠BAC……………1分(2)证明:如图2,过点O 作OH ⊥AB 垂足为H ,∴AH=BH 连接OA 、OC∵OA=OC ∴∠OCA=∠OAC ∵∠OGA=∠BAC ∴∠OGA-∠OCA=∠BAC-∠OAC 即∠COF=∠OAH……………1分 ∵∠OFC=∠AHO OC=OA ∴△OFC ≌△AHO……………1分∴OF=AH ∵AB=2AH∴AB=2OF……………1分(3)解:如图3,过点B 作DA 延长线的垂线,垂足为M∵∠BAC=∠BDC ∠BAC=∠BCD∴∠BCD=∠BDC ∴BC=BD=12 ∵∠BAD+∠BCD=180° ∠BAD+∠BAM=180°∴∠BCD=∠BAM ∴∠BAM=∠BAK∵BM ⊥AM BK ⊥AK ∴BM=BK ∴Rt △BMD ≌Rt △BKC……………1分∴MD=KC ∵BM=BK BA=BA ∴Rt △BMA ≌Rt △BKA∴MA=AK=1设AB=AD=a,则MD=KC=a+1在Rt △AKB 中22221BK AB AK a =-=- 在Rt △BKC 中2222212(1)BK BC KC a =-=-+ ∴222212112(1)9(8a a a a 舍去),-=-+=-=MB∴AB=AD=8……………1分连接BO 并延长和CD 相交于点N ,连接OD ,OC ∵BC=BD ∴点B 在CD 的垂直平分线上 ∵OC=OD ∴点O 在CD 的垂直平分线上∴BN 是CD 的垂直平分线上∴CD=2DN……………1分在Rt △ABK 中cos ∠BAK=18AK AB =在Rt △BND 中cos ∠BDN=DNBD∵cos ∠BAK=cos ∠BDN ∴18DN BD =∴DN=12382=∴CD=2DN=3……………1分27.解:(1)∵AB=12 B(9,0) ∴A(-3,0)根据抛物线的对称性可知:对称轴x=h=3…………1分∴抛物线解析式为2(3)8y ax =-+ 把B(9,0)代入抛物线2(3)8y a x =-+,解得29a =-…………1分 (2)如图1,由(1)知:抛物线的解析式为22224(3)8993y x x x =--+=-+ 由此抛物线可得C(0,6),B(9,0) ∴直线BC 的解析式:263y x =-+ ∴P 224,693t t t ⎛⎫-++ ⎪⎝⎭,D 2,63t t ⎛⎫-+ ⎪⎝⎭, ∴PD=2224226629339t t t t t ⎛⎫⎛⎫-++--+=-+ ⎪ ⎪⎝⎭⎝⎭过点P 作PT ⊥BC 于点T , ∵PD ∥y 轴,∴∠PDT=∠OCB , ∴tan ∠PDT=tan ∠OCB ,∴9362PT OB DT OC ===…1分 设PT=3m ,则DT=2m ,由勾股定理可得,∵PD=5PF ∴PF=5m , 在Rt △PTF 中,由勾股定理可得TF=4m ,∴DF=DT=2m ∵PT ⊥BC ,FQ ⊥BC ,∴∠PTD=∠QFD=90°∵∠PDT=∠QDF ,∴△PDT ≌△QDF ,∴PD=DQ …………1分 ∴PQ=2PD=)292(22t t +-=8,解得t=3或t=6∵点P 在对称轴右侧,∴t=6,∴P (6,6)…………1分 (3)如图2,连接CP,CH,QB根据题意可知:四边形COEP 为正方形 QE=PQ-PE=2过点Q 作QK ⊥OG 于点K,交OB 于点S ∵∠GOQ=45° ∴KO=KQ ∵∠KOS+∠KSO=90°∠EQS+∠ESQ=90°∠KSO=∠ESQ ∴∠KOS=∠EQS∵∠OKS=∠QKG ∴△OKS ≌△QKG…………1分 ∴OS=QG SE=OE-OS=OE-QG=6-(2+EG)=4-EG ∵tan ∠EOG=tan ∠SQE∴462EG SEOE EQ EG EG=-= ∴EG=3…………1分 ∴点G 是PE 中点 ∵CP ∥RG ∥EB ∴CR=RB 过H 作HM ⊥y 轴于点M ∵QR=HR ∠CRH=∠BRQ ,∴△CRH ≌△BRQ∴CH=BQ ,∠HCR=∠RBQ ∵PQ ∥y 轴,∴∠MCR=∠PDB , ∴∠MCH+∠HCR=∠EQB+∠RBQ∴∠MCH=∠EQB∵∠HMC=∠BEQ=90°,∴△HMC ≌△BEQ ∴CM=EQ=2,MH=EB=3 ∴H (3,8) 由勾股定理可得AH=10,…………1分 且点H 在该抛物线上…………1分(以上各解答题如有不同解法并且正确,请按相应步骤给分)2015年区二模数学题11 / 11。

2015年杭州市下城区杭州市初中毕业升学文化考试二模试卷

2015年杭州市下城区杭州市初中毕业升学文化考试二模试卷

2015杭州市各类高中升学考试模拟(下城二模)试卷数 学考生须知:1.本试卷分试题卷和答题卡两部分.满分120分,考试时间100分钟; 2.答题前,必须在答题卡填写校名,班级,姓名,正确涂写考试号;3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π. 一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.给出四个数1107- )A .0B .117- C .D2.下列运算正确的是( )A .32()a a a a -÷=B . 325()a a =C .325a a a +=D .331a a ÷=3.PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,数0.0000025用科学计数法表示为( ) A .72510-⨯ B .62.510-⨯ C .50.2510-⨯ D .72.510-⨯ 4.如图,在△ABC 中,12AD AE DBEC==,若△ADE 的面积为1,则四边形DBCE 的面积为( )A .3B .5C .7D .85.已知5个正数12345a a a a a ,,,,的平均数是a ,且 12345a a a a a >>>>,则数据12345a a a a a ,,,0,,的平均数和中位数是( )A .32a a ,B .342a a a +,C .34+562a a a ,D .3562a a , 6.在平面直角坐标系中,O 为坐标原点,已知A ),在y 轴上确定点P ,使得△AOP 为等腰三角形,则符合条件的点P 共有( )A .4个B .3个C .2个D .1个 7.下列命题中,真命题是( )A .若a b >,则2a ab >; B1m =-,则1m ≤; C .若a b >,则11a b <; D .已知a ,b 为实数,若1a b +=,则14ab ≤. 8.如图1,在等边△ABC 中,点P 以每秒1厘米的速度从点A 出发,沿折线AB —BC 运动,到点C 停止.过点P 作PD ⊥AC ,垂足为D ,PD 的长度y (cm )与点P 的运动时间的函数图 象如图2所示,当点P 运动5.5秒时,PD 的长是( )A.2 B.4C. D.9.如图,点P 是等边三角形ABC 外接圆⊙O) A .当弦PB 最长时,△APC 是等腰三角形 B .当△APC是等腰三角形时,PO ⊥AC C .当PO ⊥AC 时,∠ACP =30° D .当∠ACP =30°时,△BPC 是直角三角形10.点P 11()x y ,和点Q 22()x y ,是关于x 的函数2(21)1y mx m x m =-+++(m 为实数)图象上两个不同的点.对于下列说法:①不论m 为何实数,关于x 的方程2(21)1mx m x m -+++=0必有一个根为1x =;②当0m =时,1212()()0x x y y --<成立; ③当120x x +=时,若120y y +=,则1m =-; ④当0m ≠时,抛物线顶点在直线112y x =-+上. 其中正确的是( ▲ )A .①②B .①②③C .③④D .①②④ 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.多项式2a b b -因式分解的结果是 ▲ .A CED8CBAP(秒)12.函数31y x =-+中自变量x 的取值范围是 ▲ .13.已知函数3y x=-与()200y ax bx a b =+>>,的图象交于点P ,点P 的纵坐标为2,则关于x 的方程230ax bx x++=的解为 ▲ .14.△ABC 和△BCD 都是直角三角形,其中∠ACB =∠D =90o ,AC =3,BC =4,若两个直角三角形相似,则BD 的长为 ▲ .15.如图1,正方形纸片ABCD 的边长为2,翻折∠B 、∠D ,使两个直角的顶点重合于对角线BD 上一点P ,EF 、GH 分别是折痕(如图2).设AE =x (0<x <2),则六边形AEFCHG 面积的最大值是 ▲ . 16.如图,在曲线3y x =(x >0)与两坐标轴之间的区域A 内,最多可以水平排放边长为12的正方形 ▲ 个.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分) (1)计算:20031()27(5)2cos 452π---+-+ (2)解方程:21133x x x-=--- 18.(本小题满分8分)如图,A ,B 两个城市相距80km ,现计划在这两座城市之间修建一条笔直的高速公路,经测量森林保护区中心M 在城市A 的北偏东45°和B 城市的北偏西30°的方向上,已知森林保护区的范围在以M 为圆心,以50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿过该森林保护区,为什么?(参考数据:2 1.414,3 1.732≈≈)19.(本小题满分8分)某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的500名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:球类名称 乒乓球 排球 羽毛球 足球 篮球 人数 a123618b解答下列问题:(1)a = ▲ ,b = ▲ ;(2)试估计上述500名学生中最喜欢羽毛球运动的人数;(3)该学校将组织趣味运动会,九(1)班决定从3名喜欢乒乓球、1名喜欢羽毛球,1名喜欢篮球的5名学生中随机抽取2人作为班级代表参加活动,那么被抽到的2名同学都是喜欢乒乓球的概率是多少?请用树状图或列表法说明理由.20.(本小题满分10分)为了解某一实际问题中变量)0(>y y 随变量)0(>x x 的变化情况.实验小组在一定条件下,通过一次又一次的实验,测出变量x 、y 在每一次实验后的一组对应数据如下表.(1)根据表中数据猜想变量)0(>y y 关于变量)0(>x x 的函数关系式,并说明理由; (2)若8090y <<,请估计x 的取值范围.M(第16题)篮球足球羽毛球排球10%乒乓球25%(第19题)图1图2(第15题)PAGDHCFEBB CADx 100 90 80 70 60 y 6067758610021.(本小题满分10分)已知AB ,BC 是平行四边形ABCD 的两条邻边,根据要求解答下列各题:(1)在图1中,用直尺和圆规把该平行四边形补画完整(不要求写作法,保留作图痕迹);(2)如图2,在平行四边形ABCD 中,以A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若»EF的长为2π,求图中阴影部分的面积.22.(本小题满分12分)如图1,在矩形ABCD 中,AB =4cm ,BC =8cm .E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,连结EF ,FG ,GH ,HE .(1)求证:四边形EFGH 是菱形;(2)如图2,若E 1,E 2分别从E 出发以1cm /s 的速度沿射线EA ,EB 方向运动,同时G 1,G 2从G 出发以同样的速度分别沿射线GC ,GD 方向运动,E 1F 与E 2H 交于点M ,1G H 与2G F 交于点N .设 运动的时间为t (s ),求四边形E 1FG 2H 与四边形E 2HG 1F 覆盖平面的总面积y 与运动时间t 之间的函数关系式; (3)当t 为何值时,四边形HMFN 为正方形.23.(本小题满分12分)已知点P 坐标为(0,2),点A 是抛物线1412+=x y 上在第一象限内的一个动点,直线AP 与抛物线的另一个交点为点B ,连结AO ,BO .(1)当点A 的纵坐标为5时,求点B 的坐标;(2)判断以点A 为圆心,AP 为半径的圆与x 轴的位置关系, 并说明理由;(3)求证:∠AOP =∠BOP .MNE 2G 1E 1G 2A BFCDHBAEFH CGD图1图2(第22题)(第23题)图2图1(第21题)FBECCAA2015年下城区第二次模拟考试卷答案一、选择题二、填空题11、b(a+1)(a-1) 12、31≤x 13、32x=-14、121655或 15、3 16、35三、简答题17. (本题6分)(1)原式=4-3+1+2x22……………2分=22+……………1分(2)2-x=x-3+1x=2……………2分检验……………1分18. (本题8分)解:过点M作MH垂直于AB,垂足为H设MH=x在Rt△AMH中,AH=MH=x ……………1分在Rt△BHM中,xBHMHBH333330tan0=∴==……………2分80=+BHAHΘ8012050.72503x x x∴+=∴=-≈>…………4分所以这条高速公路不会穿过该森林保护区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(15昌平229) 在平面直角坐标系xOy 中,给出如下定义:形如()()2y a x m a x m =-+-与()()2y a x m a x m =---的两个二次函数的图象叫做“兄弟抛物线”.(1)试写出一对兄弟抛物线的解析式 与 ; (2)判断二次函数2y x x =-与232y x x =-+的图象是否为兄弟抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对兄弟抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对兄弟抛物线的解析式.备用图2、(15朝阳229) .如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON . (1)求该二次函数的表达式; (2)若点P 的坐标是(-6,3),求△OPN 的面积; (3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.3、(15东城229)定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这个封闭图形的等分线。

(1)请在如下的三个图形中,分别作一条等分线.圆平行四边形等腰三角形(2)请在图中用尺规作图....作一条直线l,使它即是矩形的等分线,也是圆的等分线.(保留作图痕迹,不写作法)ARt9034.APABC A AB ACP∠===(3)如图,在中,,,,点P是边AB上的若存在,求动点,问是否存在出的长,若不过点存在的等分线由?,请说出理oVC4、(15海淀229) 如图1,在平面直角坐标系xOy内,已知点(1,0)A-,(1,1)B-,(1,0)C,(1,1)D,记线段AB为1T,线段CD为2T,点P是坐标系内一点.给出如下定义:若存在过点P的直线l与1T,2T都有公共点,则称点P是12T T-联络点.例如,点P1(0,)2是12T T-联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点, ①若1r =,求点M 的纵坐标; ②求r 的取值范围.5、(15门头沟229) 我们给出如下定义:在平面直角坐标系xOy 中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线. 如下图,抛物线F 2都是抛物线F 1的过顶抛物线,设F 1的顶点为A ,F 2的对称轴分别 交F 1、F 2于点D 、B ,点C 是点A 关于直线BD 的对称点.F 1F 2O (A )BDC xyF 1F 2OABCDxy图1 图2(1)如图1,如果抛物线y =x2的过顶抛物线为y =ax 2+bx ,C (2,0),那么① a = ,b = .② 如果顺次连接A 、B 、C 、D 四点,那么四边形ABCD 为( ) A 平行四边形 B 矩形 C 菱形 D 正方形(2)如图2,抛物线y =ax 2+c 的过顶抛物线为F 2,B (2,c -1).求四边形ABCD 的面积.(3)如果抛物线2127333y x x =-+的过顶抛物线是F 2,四边形ABCD的面积为,请直接写出点B 的坐标.xyO6、(15顺义229) 如图,在平面直角坐标系xOy 中,抛物线223y x bx c =-++与x 轴交于A ,B 两点,其中B (6,0),与y 轴交于点C (0,8),点P 是x 轴上方的抛物线上一动点(不与点C 重合). (1)求抛物线的表达式;(2)过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为'E ,若点'E 落在y 轴上(不与点C 重合),请判断以P ,C ,E ,'E 为顶点的四边形的形状, 并说明理由;(3)在(2)的条件下直接写出点P 的坐标.备用图7、(15西城229) 对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形.(1)如图1,已知点(0,A ,(3,0)B ,以原点O 为圆心的⊙O 的半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.8、(15丰台229)对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2. (1)分别判断函数1y x=-(0x <)和23y x =-(2x <) 是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围; (3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.9、(15石景山229)对于平面直角坐标系xOy 中的点(),P m n ,定义一种变换:作点(),P m n 关于y 轴对称的点'P ,再将'P 向左平移()0k k >个单位得到点'k P ,'k P 叫做对点(),P m n 的k 阶“ℜ”变换.(1)求()3,2P 的3阶“ℜ”变换后3'P 的坐标;(2)若直线33y x =-与x 轴,y 轴分别交于,A B 两点,点A 的2阶“ℜ”变换后得到点C ,求过,,A B C 三点的抛物线M 的解析式;(3)在(2)的条件下,抛物线M 的对称轴与x 轴交于D ,若在抛物线M 对称轴上存在一点E ,使得以,,E D B 为顶点的三角形是等腰三角形,求点E 的坐标.(房山)29.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有_______条.A . 1 B. 2 C. 3 D. 无数 (2)如图2,已知抛物线L 3:2284y x x =-+与y 轴交于点C ,点C 关于该抛物线对称轴的对称点为D ,请求出以点D 为顶点的L 3的“友好”抛物线L 4的表达式;(3)若抛物线21()y a x m n =-+的“友好”抛物线的解析式为22()y a x h k =-+,请直接写出1a(怀柔)29. 阅读理解:学习了三角形全等的判定方法:“SAS ”,“ASA ”,“AAS ”,“SSS ”和直角三角形全等的判定方法“HL ”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA ”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D . 初步探究:如图1,已知AC=DF, ∠A =∠D ,过C 作CH ⊥射线AM 于点H ,对△ABC 的CB 边进行分类,可分为“CB<CH ,CB=CH ,CH<CB<CA ,”三种情况进行探究.图2图1深入探究:第一种情况,当BC<CH 时,不能构成△ABC 和△DEF .第二种情况,(1)如图2,当BC=CH 时,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D ,根据 ,可以知道Rt △ABC ≌Rt △DEF .第三种情况,(2)当CH<BC<CA 时,△ABC 和△DEF 不一定全等.请你用尺规在图1的两个图形中分别补全△ABC 和△DEF,使△DEF 和△ABC 不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH 时,才一定能使△ABC ≌△DEF . 除了上述三种情况外,BC 边还可以满足什么条件,也一定能使△ABC ≌△DEF ?写出结论,并利用备用图证明.(平谷)29.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O . (1)“距离坐标”为(1,0)点有 个;HNAH NA(B)ANH图1ODCBA图2图3(2)如图2,若点M在过点O且与直线CD垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD=120°.请画出图形,并直接写出p,q的关系式;(3)如图3,点M的“距离坐标”为(1,且∠AOB=30°,求OM的长.。

相关文档
最新文档