人教版八年级下册数学勾股定理导学案
人教版八年级下册数学勾股定理导学案
B ACD 课题:17.1 勾股定理(3)主备: 审核: 时间:2017.3教学目标1.会用勾股定理解决较综合的问题。
2.树立数形结合的思想。
重难点1.重点:勾股定理的综合应用。
2.难点:勾股定理的综合应用。
一、前置学习例4(教材P68页探究3)分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
(变式训练:在数轴上画出表示,13- ,32- 的点。
)二、交流展示例1:已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60CD=3,求线段AB 的长。
分析:本题是“双垂图”的计算题, “双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
三、合作探究例2、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。
四、课堂检测1.△ABC 中,AB=AC=25cm ,高AD=20cm,则BC= ,S △ABC = 。
B CC CB D2.△ABC 中,若∠A=2∠B=3∠C ,AC=32cm ,则∠A= 度,∠B= 度,∠C= 度,BC= ,S △ABC = 。
3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D , 则AC= ,CD= ,BD= ,AD= ,S △ABC = 。
4.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC 。
八年级数学下_勾股定理导学案(全)
18.1 勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2、培养在实际生活中发现问题总结规律的意识和能力。
3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。
重点:勾股定理的内容及证明。
难点:勾股定理的证明。
学习过程:一、预习新知1、正方形边长和面积有什么数量关系?2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。
(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。
(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S正方形=_______________=____________________方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一个等腰直角三角形,它的面积等于c2.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是。
三、随堂练习1、如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B的对边和斜边:;(3)三边之间的关系:四、课堂检测1、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC =________。
第十八章勾股定理全章导学案
第十八章勾股定理勾股定理(1)主备人:初审人:终审人:【导学目标】1.能用几何图形的性质和代数的计算方法探索勾股定理.2.知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3.能运用勾股定理理解用关直角三角形的问题.【导学重点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法验证勾股定理.【学法指导】探究、发现.【课前准备】查阅有关勾股定理的文化背景资料.【导学流程】一、呈现目标、明确任务1.了解勾股定理的文化背景,体验勾股定理的探索过程.2.了解利用拼图验证勾股定理的方法.3.利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1.动手画画、动手算算、动脑想想.在纸上作出边长分别为:(1)3、4、5(2)6、8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)观察课本P64页图,思考:等腰直角三角形有什么性质吗?你是怎样得到的?它们满足上面的结论吗?(2)在P65页图中的三个直角三角形中,是否仍满足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展示交流阅读P65页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.探究P66页“探究1”.在Rt△ABC中,根据勾股定理AC2 = 2+ 2因为AC=5≈2.236,因此AC木板宽,所以木板从门框内通过.2.讨论《配套练习》P24页选择填空题.五、布置预习预习“探究2”,完成P68页的练习.【教后反思】勾股定理(2)主备人:初审人:终审人:【导学目标】1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数轴的知识【导学流程】一、呈现目标、明确任务1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.二、检查预习、自主学习1.展示P66页“探究2”,完成填空.2.探究P68页“探究3”.提示:两直角边为1的等腰直角三角形,斜边长为多少?三、问题导学、展示交流1.展示上面的探究成果.2.研究P68页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1.完成练习题.2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .3.完成《配套练习》P25页选择填空题.六、布置预习预习习题18.1中1—5题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.继续运用勾股定理的数学模型解决实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数的开方运算.【导学流程】一、呈现目标、明确任务继续运用勾股定理的数学模型解决实际问题.二、检查预习、自主学习分小组展示预习成果.三、教师引导讲解习题18.1中10题.1.一个剖面图,怎样抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为x,还可以表示哪些线段?5.在这个直角三角形中利用勾股定理可以列一个怎样的式子?四、问题导学、展示交流1.展示上面的讨论结果.2.讨论完成7,8题.五、点拨升华、当堂达标讨论9题.六、布置预习预习下一节,阅读例1前面的课文,完成练习1.【教后反思】勾股定理的逆定理(1)主备人:初审人:终审人:【导学目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.【导学重点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等.【导学流程】一、呈现目标、明确任务1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系. 二、检查预习、自主学习下面的三组数分别是一个三角形的三边长a ,b ,c .5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形.问题二:命题1: ,命题2: .命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 .三、教师引导1.说出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行.⑵如果两个实数的平方相等,那么两个实数平方相等. ⑶线段垂直平分线上的点到线段两端点的距离相等. ⑷直角三角形中30°角所对的直角边等于斜边的一半. 四、问题导学、展示交流 自学P74页例1.五、点拨升华、当堂达标 1.完成习题18.2中1—3题.2.下列三条线段不能组成直角三角形的是( )A . 8, 15, 17B . 9, 12,15C .5,3,2 D .a :b :c =2:3:43.完成练习2. 六、布置预习1.完成《配套练习》P29页选择填空题.2.预习下一节,弄懂方位角的表示.3.完成练习3. 【教后反思】勾股定理的逆定理(2)主备人: 初审人: 终审人:【导学目标】1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.【导学重点】灵活应用勾股定理及逆定理解决实际问题. 【导学难点】灵活应用勾股定理及逆定理解决实际问题. 【学法指导】抽象、迁移. 【课前准备】勾股定理的逆定理. 【导学流程】一、呈现目标、明确任务1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识. 二、检查预习、自主学习2.边长分别是c b a ,,的△ABC ,下列命题是假命题的是( ).A 、在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形; B 、若()()c b c b a -+=2,则△ABC 是直角三角形;C 、若∠A ︰∠B ︰∠C =5︰4︰3,则△ABC 是直角三角形;D 、若3:4:5::=c b a ,则△ABC 是直角三角形.3.在△ABC 中,∠C =90°,已知4:3:=b a , 15=c ,求b 的值.4.展示练习3. 三、教师引导 例1(P75例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形;⑶依题意可得PR =12×1.5=18,PQ =16×1.5=24,QR =30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR =90°; ⑸∠PRS =∠QPR -∠QPS =45°. 四、问题导学、展示交流一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 五、点拨升华、当堂达标1.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,点E 是BC 上的点,∠BAE =∠CED =60o,AB =3,CE =4.求:①AE 的长. ②DE 的长. ③AD 的长(提示:先证△____是直角三角形).2.完成《配套练习》P30页选择填空题. 六、布置预习预习这两节的《配套练习》中大题.AB D C【教后反思】练习课主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】抽象、迁移.【课前准备】勾股定理的逆定理.【导学流程】一、呈现目标、明确任务1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.二、检查预习、自主学习分小组展示预习成果.三、教师引导如图,在四边形ABCD中,∠D=90°,AB=12,CD=3,DA=4,BC=13, 求S四边形ABCD.分析:因为∠D=90°,可连接AC构成直角形,由勾股定理求出AC,这样在△ABC中,三边均知道大小,利用勾股定理可以判断三角形的形状,再用两个三角形的面积求出S四边形ABCD.四、问题导学、展示交流讨论上面的问题,再展示交流.五、点拨升华、当堂达标讨论《配套练习》P29页5—7题和P31页6,7题.六、布置预习DB1.讨论《配套练习》剩余题目.2.预习复习题十八,1—3题.【教后反思】小结(1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】转化和数形结合.【课前准备】复习本章内容.【导学流程】一、呈现目标、明确任务1.用勾股定理及其逆定理解决简单问题;2.了解逆命题、逆定理的概念.二、检查预习、自主学习展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.直角三角形三边的长有什么关系?2.已知一个三角形的三边,能否判定它是直角三角形?举例说明.3.如果一个命题成立,那么它的逆命题一定成立吗?举例说明.4.如图,已知P是等边三角形ABC内上点,PA=5,PB=4,PC=3,求∠PBC.四、问题导学、展示交流提示:如果三角形的三条边分别是三、四、五,那么这个三角形一定是直角三角形.但本题长为3,4,5的三条线段不在同一个三角形中,联想到等边三角形的性质,可以将△APC绕点C旋转得到△BCP′.五、点拨升华、当堂达标1.讨论完成“复习题18”中4—7题.4题,可先设每份为k,再用勾股定理的逆定理.5题,不成立的需举反例.6题,可以数单位面积的正方形个数.7题,直接用勾股定理.2.讨论8,9题.六、布置预习预习下一章.B CP'。
人教版八年级数学下册第十七章勾股定理导学案(全章)
第十七章勾股定理课题:17.1勾股定理(1)学习目标:1 •了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理2 •培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明学习过程:、自主学习画一个直角边为3cm和4cm的直角△ ABC用刻度尺量出AB的长。
(勾3,股4,弦5)以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ ABC用刻度尺量AB的长。
你是否发现3 +4与5的关系,5 +12和13的关系,即3 +4 ___________ 5,5 +12 ____ 13,那么就有______ 2+ ____ 2= ___ 。
(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在厶ABC中, Z C=90°,/ A、/ B、/ C的对边为a 、b、c。
求证:a2+ b2=c2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S"S小正=S大正即4X 1X +〔〕2= c2,化简可证2⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在厶ABC 中,/ C=90°,/ A 、/ B 、/ C 的对边为a 、b 、c 。
求证:a 2 + b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
数学人教版八年级下册《勾股定理》导学案
《勾股定理》导学案班级姓名
(2)求下列图中字母所表示的正方形的边长。
(3)设直角三角形两条直角边长分别为a和b,斜边长为c。
①已知a=9,c=15,求b;②已知a=5,b=12,求c;
(4)若直角三角形的三边分别为2,3,x,则以x为边长的正方形的面积为多少?
(5)学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们踩伤了小草,却仅仅少走了多少米路?
(6)今年2月25日,南昌市某酒店KTV发生火灾,6楼有对夫妻被困,消防官兵正前往救援。
每层楼房高3米,消防队员搬来一架25米长的梯子,要求梯子的底部离墙脚15米,请问消防队员能否顺利进入6楼救人?。
八年级数学下册 17.1 勾股定理导学案(新版)新人教版
八年级数学下册 17.1 勾股定理导学案(新版)新人教版1、了解多种方法验证勾股定理,感受解决同一个问题方法的多样性。
2、通过实例进一步了解勾股定理,应用勾股定理进行简单的计算。
学习过程:活动一动手做一做1、画出Rt△A B C令∠C =90,直角边A C =3cm,B C=4cm,(1)用刻度尺量出斜边A B = ________(2)计算:2、探究:之间的关系:_______________________活动二毕达哥拉斯的发现1、图中两个小正方形分别为A、B,大正方形为C,则三个正方形面积之间的关系:-____________________________2、设三个正方形围成的等腰直角三角形的直角边为a,斜边为c,则图中等腰直角三角形三边长度之间的关系:_____________________活动三探索与猜想观察下面两幅图:(每个小正方形的面积为单位1)A的面积B的面积C的面积左图右图(1(1)你是怎样得到正方形C的面积的?与同伴交流一下。
(2)猜想命题:如果直角三角形的两条直角边分别为a、b,斜边为c,那么_______________活动四认识赵爽弦图活动五证明猜想已知:如图,在边长为c的正方形中,有四个两直角边分别为a、b,斜边为c全等的直角三角形,求证:证明:根据同一个图形的面积相等得:所以 ______________ + ________________________ =____________ ______________ + ________________________ = _____________________ + ________ = __________勾股定理:直角三角形两条_______的平方和等于_____的平方如果直角三角形的两直角边分别为a、b,斜边为c,那么_________________活动六证法积累利用下图,模仿上述推导,能否得到相同的结果?(美国第20任总统茄菲尔德的证法)已知,如图,Rt△A D E和Rt△B C E是两个全等的直角三角形,其直角边长分别为a、b,斜边为c,这两个直角三角形围成了直角边为c的Rt△A B E,求证:证明:135y活动七活学活用x861、如右图,在直角三角形中,X=______,y=______2、在Rt△A B C中,∠C =90,(1)若a =2,b =3,则c = _________(2)若c =5,b =4 ,则a =3、在Rt△A B C中,∠A =90,a =7,b =5,则 c =___________4、在一个直角三角形中, 两边长分别为3、4,则第三边的长为______________________活动八学习反馈说说你的收获!。
八年级数学下册 17.1 勾股定理导学案1 (新版)新人教版
八年级数学下册 17.1 勾股定理导学案1 (新版)新人教版【励志语录】1、学会思考,头脑清晰,明白自己的渺小,切忌自我陶醉。
2、、别人光鲜的背后或者有着太多不为人知的痛苦【学习目标】1、用数格子的办法体验勾股定理的探索过程2、熟记勾股定理的内容,能用面积法证明勾股定理、3、有兴趣参与“观察---猜想----归纳---验证”的探索过程,体会数形结合与从特殊到一般的思想方法、【学习重点】XXXXX:勾股定理、的证明及利用一、知识链接1、三角形的三边有何关系?2 让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长让学生猜测:32+42与AB 的平方有何关系/二、教材预习1、预习内容:学生独立阅读课本P64---P66,探究课本中的例1 ,并完成P68的练习第3题。
2、预习测试① 用语言表达勾股定理② 用式子表达勾股定理③ 运用勾股定理时该注意些什么?3、在Rt△ABC中,∠C=90若a=6,b=8,则c=_______;三、合作探究合作探究1 勾股定理的运用在Rt△ABC中,∠C=90(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。
合作探究2:勾股定理的灵活应用下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)提示:正方形是以直角三角形的一边作为边,故面积可表达为合作探究3:利用面积证勾股定理已知:在△ABC中,∠C=90,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
四、小结提升你本节课有哪些收获?有何困惑?五、达标测试A、基础达标1 在Rt△ABC中,∠A,∠B,∠C的对边为a,b,c(1)已知∠C是Rt∠,a=6,b=8、则c= 、(2)已知∠C是Rt∠,c=25,b=15、则a=2 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________、3、分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有组。
八年级数学下册《勾股定理》导学案新人教版
《18.4 勾股定理》导学案学习目标:1、经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理.2、掌握勾股定理以及逆定理的应用.3、掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆 定理来解决实际问题.重点难点:熟练应用直角三角形的勾股定理和逆定理来解决问题.一、知识回顾:(1)基础知识:1、勾股定理:直角三角形两直角边a 、b 和斜边c 之间满足关系式: . 2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足关系式 ,那么这个三角形是直角三角形,其中 为斜边.3、满足a 2+b 2=c 2的三个正整数,称为 .常见的勾股数有 3、 , 6, , 9, , 5, 12, , 8, 15, , 7,24, .4、互逆命题:如果一个命题的题设和结论刚好是另一个命题的 ,我们把 这样的两个命题叫做互逆命题.如果我们把其中一个叫原命题,则另一命题叫做它的 .(2)基础练习:1、三角形三边长为15、17、8.,这个三角形的形状是面积是2、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .1∶2∶3;C .4,6,7;3、若一个三角形的三边满足222c a b -=,则这个三角形是 。
4、如图,在△ABC 中,∠ACB =90º, C D ⊥AB ,D 为垂足,AC =6cm ,BC =8cm . 斜边AB的长为 ;斜边AB 上的高CD 的长为 .5、一等腰三角形的腰长为25,底边长14,则底边上的高是________, 面积是_________.6、一根旗杆在离地9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前的高为____米.C BD A 二、典例示范:1.如图,A 、B 是公路l (l 为东西走向)两旁或同侧的两个村庄,A 村到公路l 的距离AC =1km ,B 村到l 的距离BD =2km ,CD =4km.现在要在公路l 上C 、D 两点之间新建一个公共汽车站P . ⑴如图1,使得C ,D 两点到P 站的距离相等,P 站应建在离A 村多少千米处? ⑵如图2,A 、B 在直线L 两旁,则P 到A 、B 两点的最短距离是多少千米?(3)如图3,A 、B 在直线L 同侧,则P 到A 、B 两点的最短距离是多少千米?2.如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB =16,AD =12,求折痕EF 的长.三、达标训练:1、 如图:a ,b ,c 表示以直角三角形三边为边长的正方形的面积..,则下列结论正确的是( ) A. a 2 + b 2=c 2 B. ab=cC. a+b=cD. a+ b=c 22、若已知直角三角形的两边长为6和8,则第三边长为3、如图,∠C =90°,AC =3,BC =4,AD =12,BD =13,试判断△ABD 的形状,说明理由.ba c4、在一次夏令营活动中,如图所示,小明从营地A出发,沿北偏东60°方向走了5003米到达B点,然后再沿北偏西30°方向走了500米达到目的地C点.求A、C两地之间的距离.5.已知:如图,△ABC中,∠C=90º,AD是角平分线,CD=15,BD=25.求AC的长.四:课堂小结:五、堂清测试:(1、2、3题为必做题,4题为选做题)1、若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形; B.直角三角形;C.等腰三角形或直角三角形; D.等腰直角三角形.2、若一个三角形的三边之比为5∶12∶13,且周长为60cm,则它的面积为.3、如图,已知长方形ABCD中AB=8cm,B C=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.4、台风是一种自然灾害,它以台风重心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图所示,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就减弱一级,该台风中心正以15千米/时的速度沿北偏东30°的方向往C移动,且台风中心的风力不变.若城市所受风力达到或超过4级,则称为受台风影响.⑴该市是否受到这次台风的影响?请说明理由;⑵若会受到台风影响,那么台风影响该市的持续时间有多长?⑶该市受到台风影响的最大风力为几级?。
初中数学八下 《勾股定理》导学案
数学八年级下册《勾股定理》导学案学习目标知识:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
能力:培养在实际生活中发现问题总结规律的意识和能力。
情感:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
学习重点:1. 勾股定理的内容及证明。
学习难点:1. 勾股定理的证明。
教学流程 【导课】目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗? 【阅读质疑 自主探究】例1已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正4×21ab +(b -a )2=c 2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷ 勾股定理的证明方法,达300余种。
人教版数学八年级下册导学案:(勾股定理)勾股定理(导学案)
第十七章 勾股定理17.1 勾股定理第1课时 勾股定理一、导学1.导入课题在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦,并探索出了勾、股、弦之间的关系(即直角三角形三边之间的关系),这种关系是怎样的关系呢?又把这种关系叫做什么呢?2.学习目标(1)了解勾股定理的文化背景,了解常见的利用拼图验证勾股定理的方法.(2)知道勾股定理的内容.3.学习重、难点重点:勾股定理内容的条件与结论.难点:勾股定理的几何验证方法.4.自学指导(1)自学内容:探究:直角三角形三边之间存在怎样的等量关系.(2)自学时间:10分钟.(3)自学方法:结合探究提纲动手拼图,思考面积关系.(4)探究提纲:①投影家中地板砖铺成的地面图案,并框定某一个直角三角形.a.右图中正方形ABFG 、正方形ACDE 和正方形BMNC 的面积之间有何关系?b.如果设AB=a ,AC=b ,BC=c,那么由a.可得到a 2+b 2=c 2.c.猜想:直角三角形两直角边的平方和等于斜边的平方.②根据下面拼图,验证猜想的正确性.拼成的正方形面积等于4个直角三角形面积+小正方形面积,即()22142c ab a b =⨯+-,化简得222c a b =+ .二、自学结合探究提纲进行自学.三、助学1.师助生:(1)明了学情:了解学生探究中存在的问题.(2)差异指导:指导学生运用面积法找到等量关系.2.生助生:同桌之间相互研讨,帮助解决疑难.四、强化1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.五、评价1.学生的自我评价:小组学生代表介绍自己的学习方法、收获和疑惑.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、合作探究的成绩和不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课通过向学生介绍勾股定理的悠久历史,让学生了解古代劳动人民在数学方面的成就,感受数学文化是人类文化的重要组成部分.本节课教学应把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流;另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,从而教给学生探求知识的方法,教会学生获取知识的本领.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)在Rt△ABC中,两直角边长分别为35,则斜边长为14.2.(15分)在Rt△ABC5,一条直角边的长为2,则另一条直角边的长为1.3.(10分)在Rt△ABC中,∠C=90°,a=6,c=10,则b=8.4.(20分)在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知6,∠A=60°,求b,c.()()22222221251520260,90,2,2,22 2.a c b A C c b a b c b c b =-=-=∠=︒∠=︒∴=+====解:;,代入得:二、综合运用(20分)5.已知直角三角形的两边长分别为3,2,求另一条边长.解:当斜边的长为3时,另一条边长22325=-=;当两条直角边长分别为3、2时,斜边长 223213=+= .三、拓展延伸(20分)6.如图,已知长方形ABCD 沿直线BD 折叠,使点C 落在C ′处,BC ′交AD 于E ,AD=8,AB=4,求DE 的长. 解:∵∠A=∠C ′=∠C=90°,∠AEB=∠C ′ED,AB=C ′D,∴△AEB ≌△C ′ED.∴AE=C ′E,∴C ′E=AD-ED=8-ED.又在Rt EC D ' 中,222ED C E C D ='+'∴()222845ED ED ED =-+=,解得.。
八年级数学下册 17.1.3 勾股定理导学案 (新版)新人教版
八年级数学下册 17.1.3 勾股定理导学案 (新版)新人教版17、1、3勾股定理预习案一、学习目标1、利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等、2、利用勾股定理,能在数轴上找到表示无理数的点、3、进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题、二、预习内容1、阅读课本第26-27页2、勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么:(或)变形:(或)(或)3、对应练习:(1)、①在Rt△ABC,∠C=90,a=3,b=4,则c= 。
②在Rt△ABC,∠C=90,a=5,c=13,则b= 。
(2)、如图,已知正方形ABCD的边长为1,则它的对角线AC= 。
三、预习检测1、已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。
2、已知等边三角形的边长为2cm,则它的高为,面积为。
3、已知等腰三角形腰长是10,底边长是16,这个等腰三角形的面积为____________。
4、将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A、16B、32C、8πD、64 探究案一、合作探究(9分钟),要求各小组组长组织成员进行先自主学习再合作探究、讨论。
【探究一】XXXXX:运用勾股定理证明全等判定方法:斜边直角边(HL)已知:如图,在中和中,,求证:≌、【探究二】XXXXX:如何在数轴上画出表示的点?点拨:①:由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可、②长为的线段能否是直角边为正整数的直角三角形的斜边呢?设c =,两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13、若a,b为正整数,则13必须分解为两个正整数的平方和,即13=2+2、所以长为的线段是直角边为、的直角三角形的斜边、请在数轴上完成作图、二、合作、交流、1、例1:已知:如图,△ABC中,AB=4,∠C=45,∠B=60,根据题设可求出什么?【点拨】如何添加辅助线将一般三角形的问题转化为直角三角形的计算问题呢?2、例2:已知:如图,∠B=∠D=90,∠A=60,AB=4,CD=2、求:四边形ABCD的面积、【点拨】如何将四边形的问题转化为三角形问题求解,如何添加辅助线?3、问题:根据勾股定理,你能做出哪些长为无理数的线段呢?欣赏下图,你会得到什么启示?每小组口头或利用投影仪展示,一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)交流内容展示小组(随机)点评小组(随机)____________第______组第______组____________第______组第______组三、归纳总结这节课我们学习了(1)勾股定理的应用;(2)分类、转化、方程思想、你能说说具体内容吗?四、课堂达标检测1、△ABC中,AB=AC=25cm,高AD=20cm,则BC= ,S△ABC= 。
人教八年级下册数学-勾股定理导学案
第十七章 勾股定理漂市一中 钱少锋 17.1 勾股定理 第1课时 勾股定理【学习目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理; 2.培养在实际生活中发现问题总结规律的意识和能力. 学习重点:勾股定理的内容及证明. 学习难点:勾股定理的证明. 学习过程一、自学导航(课前预习)1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边: 2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________方法二;已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________ABbb b右边S=_______________ 左边和右边面积相等,即 化简可得。
二、合作交流(小组互助)思考:(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢?由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。
(三)展示提升(质疑点拨) 1.在Rt △ABC 中,90C ∠=︒ , (1)如果a=3,b=4,则c=________; (2)如果a=6,b8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c +=(1)观察图1-1。
人教版八年级下册数学17.1 勾股定理导学案
第十七章勾股定理ABCC BA一、要点探究探究点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A ,B 和C 面积之间的关系,你能想到是什么关系吗?2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_______.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想. 证法 利用我国汉代数学家赵爽的“赵爽弦图”课堂探方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c =__________________________; 右图:S c =__________________________.教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片6-19)3.探究点2新知讲授(见幻灯片20-24)要归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.公式变形:222222--.a cb bc a c a b+, ,探究点2:利用勾股定理进行计算典例精析例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,a;(2)若b=15,∠A=30°,求a,c.证明:∵S大正方形=________,S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.教学备注3.探究点2新知讲授(见幻灯片20-24)方法总结:已知直角三角形两边关系和第三边的长求未知边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分讨论,否则容易漏解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.求下列图中未知数x 、y 的值:二、课堂小结内 容勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 注 意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论1.下列说法中,正确的是 ( ) A.已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2 B.在直角三角形中两边和的平方等于第三边的平方 C.在Rt △ABC 中,∠C =90°,所以a 2+b 2=c 2 D.在Rt △ABC 中,∠B =90°,所以a 2+b 2=c 22. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.3.在△ABC 中,∠C =90°.(1)若a =15,b =8,则c =_______. (2)若c =13,b =12,则a =_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm 、一条直角边长15cm 的直角三角形的面积.6.如图,在△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°,AD =1,求△ABC 的周长.当堂检能力提升:7.如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,求△ABE及阴影部分的面积.【素材积累】不停地工作,即使慢,也一定会获得成功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB18.1 勾股定理(2)班级: 姓名: 评价: 设计:张伟 编号:007学习目标1.会用勾股定理进行简单的计算。
2.树立数形结合的思想、分类讨论思想。
3.积极参与,全心投入学习重点:勾股定理的简单计算。
学习难点:勾股定理的灵活运用。
学习过程:一、温故知新1.勾股定理的具体内容是: 。
2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑵若D ⑶若∠B=301、在Rt △ABC ,∠C=90°⑴已知a=b=5,求c 。
⑵已知a=1,c=2, 求b 。
⑶已知c=17,b=8, 求a 。
⑷已知a :b=1:2,c=5, 求a 。
⑸已知b=15,∠A=30°,求a ,c 。
2、在Rt △ABC 中,有一边是2,另一边是3,则第三边的长是 。
A CB D 3、已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。
4、已知:如图,在△ABC 中,∠B=45°,∠C=60°,AB=26。
求:(1)BC 的长;(2)S △ABC 。
三、反馈巩固1.填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。
⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。
⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。
⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。
3.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。
BA勾股定理的应用导学案班级:姓名:评价:设计:张伟编号:008学习目标:1.能用勾股定理解决简单的实际问题。
2.经历将实际问题转化为直角三角形的数学模型过程3.积极参与,全心投入学习重点:将实际问题转化为直角三角形模型。
学习难点:如何构建直角三角形,利用勾股定理解决实际问题。
学习过程:一、温故知新:1、判断:若直角三角形的两条边长为6cm、8cm,则第三边长一定为10cm.( )2、在△ABC中,∠C=90°,若a=5,b=10,则c =二、探究新知:活动一:小美妈妈买了一部29英寸(74厘米)的电视机,小美量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,她觉得一定是售货员搞错了。
你同意她的想法吗?你能解释这是为什么吗?活动二:数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?三、学以致用、展示提升问题一、大风将一根木制旗杆吹裂,随时都可能倒下,十分危急。
“110”迅速赶24米到现场,并决定从断裂处9米将旗杆折断。
现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗?问题二、一种盛饮料的圆柱形杯,测得内部底面直径为5㎝,高为12㎝,吸管放进杯里,杯口外面露出5㎝,问吸管要做多长?问题三、小东拿着一根长竹竿进一个宽3米的城门,他先横着拿进不去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端正好顶着城门的对角,问竿长几米?问题四:古代问题:葭生池中今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。
问:水深、葭长各几何四、反馈检测:1、如图,要登上8米高的建筑物BC,为了安全需要,需使梯子底端离建筑物距离AB为6米,问至少需要多长的梯子?2、利用勾股定理作出长为的线段.勾股定理的逆定理(一)导学案班级: 姓名: 评价: 设计:张伟 编号:009学习目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.理解原命题、逆命题、逆定理的概念及关系。
3.阳光参与,做最好的自己。
学习重点:掌握勾股定理的逆定理及简单应用。
学习难点:勾股定理的逆定理的证明。
学习过程:一.自主预习,探究新知(阅读教材P73 — 75 , 思考下列问题):1三边长度分别为3 cm 、4 cm 、5 cm 的三角形与以3 cm 、4 cm 为直角边的直角三角形之间有什么关系?他们全等吗?画图试试2.你能证明以6cm 、8cm 、10cm 为三边长的三角形是直角三角形吗?3.什么叫互为逆命题?什么叫互为逆定理?任何一个命题都有 _____,但任何一个定理未必都有 __4.说出下列命题的逆命题。
这些命题的逆命题成立吗?(1) 两直线平行,内错角相等;逆命题:(2) 如果两个实数相等,那么它们的绝对值相等;逆命题:二.学以致用、展示提升1、判断由线段a 、b 、c 组成的三角形是不是直角三角形:(1)25,24,7===c b a ; (2)5.2,2,5.1===c b a;2.如果△ABC 的三边a,b,c 满足关系式182-+b a +(b-18)2+30-c =0则△ABC 是 _______三角形。
3.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。
4、说出下列命题的逆命题。
这些命题的逆命题成立吗?(1)对顶角相等;逆命题:(2)角的内部到角的两边距离相等的点在角的平分线上。
逆命题:5、“神州七号”飞船上一个零件的形状如下图。
已知∠A=90°,按规定这个零件中∠DBC 都应该为直角。
工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?6、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?三.反馈检测,巩固提高1.以下列各组数为边长,能组成直角三角形的是( )A. 8,15,17B.4,5,6C.5,8,10D.7,10,14.2..若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )A .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。
3.如果三条线段长a,b,c 满足222b c a -=,这三条线段组成的三角形 (是不是)直角三角形,如果是直角三角形,那么它的斜边是4、.思考:我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗 一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗5.“如果a 2=b 2,则a=b ”的逆命题是______________。
这个命题_____(填“成立”或“不成立”)。
6、.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90DD勾股定理复习班级: 姓名: 评价: 设计:张伟 编号:010学习目标1.熟练应用直角三角形的勾股定理和逆定理来解题.2.经历反思理解和领会勾股定理和逆定理的过程.3.激发爱国主义思想,培养良好的学习态度.学习重点:掌握勾股定理以及逆定理的应用.学习难点:应用勾股定理以及逆定理.学习过程:一、学以致用,系统复习考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为______.2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.在数轴上作出表示10的点.4.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.考点二、利用列方程求线段的长1.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?2. 如图1所示,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m .现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离为3m ,同时梯子的顶端B 下降到B′,那么BB′也等于1m 吗?3.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.A DEB C O B ′图1 B A A ′考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有2. 若一个三角形的周长12c m,一边长为3c m,其他两边之差为1c m,则这个三角形是____________3.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角考点四、灵活变通1.在Rt △ABC 中, a ,b ,c 分别是三条边,∠B=90°,已知a=6,b=10,则边长c=2.直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .3.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm4.如图:带阴影部分的半圆的面积是 ( 取3)5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所爬行的最短路线的长是6.如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是二、反馈检测1.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =___2.下列各组线段中,能够组成直角三角形的是( ).A .6,7,8B .5,6,7C .4,5,6D .3,4,53.若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).A .3 cm 2B .2 cm 2C .3 cm 2D .4cm2 4.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .30/13cmD .60/13 cmAB 6 85.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B .2倍C .3倍D .4倍6.三个正方形的面积如图1,正方形A 的面积为( ) A . 6 B . 36 C . 64 D . 87.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是___.8.如图8,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m 处,已知旗杆原长16m ,你能求出旗杆在离底部什么位置断裂的吗?9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm10.如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .11.已知:如图△ABC 中,AB=AC=10,BC=16,点D 在BC 上,DA ⊥CA 于A .求:BD 的长.8m图8 图1 A 100 64。