七年级数学平面直角坐标系3
七年级数学平面直角坐标系3
如图是某市旅游景 点的示意图。 1、你是怎样确定各 个景点的位置的? 2、“大成殿”在 “中心广场”的西、 南各多少格?碑林 在“中心广场”的 东、北各多少格? 3、如果中心广场处定为(0,0)一个小格的 边长为1,你能表示“碑林”的位置吗?
你知道吗
早在1637年以前,法国数学家、解析几何的创始人 笛卡尔受到了经纬度的启发,地理上的经纬度是以 赤道和本初子午线为标准的,这两条线从局部上可 以看成是平面内互相垂直的两条直线。所以笛卡尔 的方法是在平面内画两条互相垂直的数轴,其中水 平的数轴叫 x 轴 ( 或横轴 ) ,取向右为正方向,铅直 的数轴叫 y 轴 ( 或纵轴 ) ,取向上为正方向,它们的 交点是原点,这个平面叫坐标平面。
-4
-3
-2 原点
-1
0 -1 -2 -3 -4
1
2
3
4
5
x
横轴
第Ⅲ象限
注
第Ⅳ象限
意:坐标轴上的点不属于任何象限。
纵轴
y 5 4
A点在x 轴上的坐标为4 A点在y 轴上的坐标为2
A点在平面直角坐标系中的坐标为(4, 2)
记作:A(4,2) A
B(-4,1)
B
·
-3 -2 -1
3 2
1 0 -1 1 2 3
数轴上的点A表示表示 数1.反过来,数1就是点A 的位置。我们说点1是点A 在数轴上的坐标。 同理可知,点B在数轴 上的坐标是-3;点C在数轴 上的坐标是2.5;点D在数 轴上坐标是0.
行 10 黎明 8 6 4 2 m(4,6)
·
4
0
讲 台
1
2
3
5 列
纵轴
y 5 4 3 2 1
七年级数学下册第七章平面直角坐标系章末复习与小结3课件新版新人教版
第七章 平面直角坐标系
章末复习与小结3 第七章(平面直角坐标系)
重热点一 平面直角坐标系中点的坐标特征
【例1】在平面直角坐标系中,若点M既在x轴下方,又在y轴右侧,且距离
x轴与y轴分别为3个单位长度和5个单位长度,则点M的坐标为( B )
A.(3,5)
B.(5,-3)
C.(-3,5)
北走300 m就到小华家,若选取小华家为原点,分别以正东、正北方向为x
轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1 m长,则公
园的坐标是( C ) A.(-300,-200)
B.(200,300)
C.(-200,-300)
D.(300,200)
4.如图,在平面直角坐标系中,三角形ABC位于第一象限,点A的坐标是(4, 3),把三角形ABC向左平移6个单位长度,得到三角形A1B1C1,则点B1的坐 标是( C ) A.(-2,3) B.(3,-1) C.(-3,1) D.(-5,2)
1
1
2
2
2
2
(2)在y轴上找一点P,使三角形APB的面积等于四边形ABCD面积的一半,求
点P的坐标.
(2)设三角形APB的边AB上的高为h.
∵点A的坐标为(-4,0),点B的坐标为(6,0),
∴AB=10.由S三角形APB=
1 2
×S四边形ABCD,
得 1 ×10×h= 1 ×24,解得h=2.4.
A.(2,2)
B.(0,1)
C.(2,-1)
D.(2,1)
【变式训练】如图,把狮子座的星座图放在网格中,若点A的坐标是(1,1), 点B的坐标是(2,3),则点C的坐标是( D ) A.(0,2) B.(-1,1) C.(-2,0) D.(-1,2)
人教版数学七年级下册:第七章 平面直角坐标系 第3课时 课件
※11.如图,正方形A1A2A3A4, A5A6A7A8,A9A10A11A12,…,(每 个正方形从第三象限的顶点开始 ,按顺时针方向顺序,依次记为 A1,A2,A3,A4;A5,A6,A7, A8;A9,A10,A11,A12;…)的中 心均在坐标原点O,各边均与x轴 或y轴平行,若它们的边长依次是 2为,(45,,6﹣…,5)则.顶点A20的坐标
•
12、人乱于心,不宽余请。2021/4/30 2021/4/ 302021 /4/30F riday, April 30, 2021
•
13、生气是拿别人做错的事来惩罚自 己。202 1/4/30 2021/4/ 302021 /4/302 021/4/3 04/30/ 2021
•
14、抱最大的希望,作最大的努力。2 021年4 月30日 星期五 2021/4 /30202 1/4/302 021/4/ 30
•
9、 人的价值,在招收诱惑的一瞬间被决定 。2021/ 4/30202 1/4/30 Friday, April 30, 2021
•
10、低头要有勇气,抬头要有低气。2 021/4/ 302021 /4/3020 21/4/3 04/30/2 021 2:39:36 PM
•
11、人总是珍惜为得到。2021/4/3020 21/4/30 2021/4 /30Apr-2130-A pr-21
课后作业
3.在平面直角坐标系中,若点P的坐标为 (﹣3,2),则点P所在的象限是( B ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
课后作业
人教版初中七年级数学下册第七单元《平面直角坐标系》经典测试题(含答案解析)(3)
一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 2.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 4.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,7.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4) 8.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上 9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1210.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 11.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)12.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 13.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.17.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.18.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 19.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______20.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 21.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.22.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 23.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.24.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______25.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .26.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题27.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.28.如图,△ABC 在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.29.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点Ca-+|b﹣6|=0,点B在第一象限内,点P从原点出的坐标为(0,b),且a、b满足4发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.30.在平面直角坐标系中,有A(-2,a +1),B(a -1,4),C(b - 2,b)三点.(1)当AB// x轴时,求A、B两点间的距离;(2)当CD ⊥x轴于点D,且CD = 1时,求点C的坐标.。
七年级数学第七章《平面直角坐标系》测试三(附解析)
七年级数学第七章《平面直角坐标系》测试三(附解析)一、单选题1.如图,直角坐标系中,过点A(0,2)的直线a 垂直于y 轴,M(9,2)为直线a 上一点,若P 点从M 出发,以2cm/s 的速度沿着直线a 向左移动;点Q 从原点同时出发,以1cm/s 的速度沿x 轴向右移动,当PQ∥y 轴时,点P 的运动时间为()A.3s B.2s C.1s D.4s2.要将抛物线223y x x =++平移后得到抛物线2y x =,下列平移方法正确的是()A.向左平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位3.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是()A.()7,1-B.()3,1--C.()1,5D.()2,54.点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么A 2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)6.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)7.在平面坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2018个正方形的面积为()A.5·201732⎛⎫⎪⎝⎭B.5·201832⎛⎫⎪⎝⎭C.5·403632⎛⎫⎪⎝⎭D.5·403432⎛⎫⎪⎝⎭8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时点P 的坐标是()A.(2016,0)B.(2017,1)C.(2017,-1)D.(2018,0)9.如图所示,在平面直角坐标系中,锐角三角形ABC 的三个顶点坐标分别是(,)A a b 、(,)B c d 、(,)C e d ,在直线BC 上有四个点坐标分别是(1,)D a d -、(1,)E a d +、(,)F a d 、(1,)G e d +,则点A 到直线BC 上的最短距离的点是()A.点D B.点E C.点F D.点G10.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(-2,-2)C.(-2,2)D.(2,-2)11.已知点(3,24)A x x +-在第四象限,则x 的取值范围是()A.32x -<<B.3x >-C.2x <D.2x >12.如图,在平面直角坐标系中,已知点B,C 在x 轴上,AB⊥x 轴于点B,DA ⊥AB.若AD=5,点A 的坐标为(-2,7),则点D 的坐标为()A.(-2,2)B.(-2,12)C.(3,7)D.(-7,7)13.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是()A.B.C.D.14.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(0,2)B.(﹣4,0)C.(0,﹣2)D.(4,0)15.在平面直角坐标系内,点()3,5P m m --在第三象限,则m 的取值范围是()A.5m <B.35m <<C.3m <D.3m <-二、填空题16.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______17.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________.18.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足2|2|(2)a b b -+++=C 点坐标为______;BC 与y 轴的交点坐标为_______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根据这个规律,第2025个点的坐标为________.20.已知在平面直角坐标系中,P 点的坐标为(1,4),则在坐标轴上到P 点的距离是21.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是___.22.在平面直角坐标系中,若点M(2,3)与点N(2,y)之间的距离是4,则y 的值是___________.23.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.24.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.25.将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 在第_____象限.26.已知点A (1,0)、B (0,2),点P 在y 轴上,且△PAB 的面积是3,则点P 的坐标是_______.27.如图,已知长方形OABC,动点P 从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P 1(3,0),当点P 第2016次碰到长方形的边时,点P 2016的坐标是_____.28.如果点P(a-1,a+2)向右平移2个单位长度正好落在y 轴上,那么点P 的坐标为__________.29.点A(a 2+1,﹣2﹣b 2)在第_____象限.30.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 20A 21B 21的顶点A 21的坐标是_____.参考答案1.A【分析】可设当PQ∥y 轴时,点P 的运动时间为xs,根据等量关系:AP=OQ,列出方程求解即可.【详解】设当PQ∥y 轴时,点P 的运动时间为xs,依题意有9-2x=x,解得x=3.故当PQ∥y 轴时,点P 的运动时间为3s,故选A.2.D【分析】先将解析式化为顶点式2223(1)2y x x x =++=++,由平移的性质可得2y x =从而得出正确选项.【详解】2223(1)2y x x x =++=++,由平移的性质向右平移1个单位,再向下平移2个单位可得2y x =,故选:D 3.D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案。
人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)
-3 -2 -1 0 1 2 3 4
A: -3; B: 2. 点C. 思考2 : 由(1)你发现数轴上的点与实数是什么关系?
一一对应. ①数轴上的每个点都对应一个实数(这个实数叫作这个
点在数轴上的坐标); ②反过来,知道一个数, 这个数在数轴上的位置就确定了.
新课导入
1596-1650
数学家笛卡儿潜心研究能否用代数中的 计算来代替几何中的证明. 有一天, 在梦中他 用金钥匙打开了数学宫殿的大门, 遍地的珠 子光彩夺目, 他看见窗框角上有一只蜘蛛正 忙着结网, 顺着吐出的丝在空中飘动, 一个念 头闪过脑际: 眼前这一条条的横线和竖线不 正是自己全力研究的直线和曲线吗?
5 N
A
平面内的点就可以用一个
4
x轴上的点的
(3, 4)
有序数对来表示了.
纵坐标为0; y 3
轴上的点的 2 C 例如, 由点 A 分别向 x 轴、横坐标为0. 1
原点O的坐标 为(0, 0)
y轴作垂线, 垂足M 在 x 轴 上的坐标3, 垂足 N 在 y 轴 -4 -3
-2
-1 O
M 1 2 3456
y
D (0, 6)
6
C(6, 6)
5
4
3
2
1
A(O) (0,10)2 3 4 5 B (6, 0)
x
新知探究
请另建立一个平面直角坐标系, 这时正方形的顶点A, B, C, D 的坐标又分别是什么?与同学们交流一下.
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
新知探究
由上得知, 建立的平面直角坐标系不同, 则各点的坐标也 不同. 你认为怎样建立直角坐标系才比较适当?
人教版七年级数学7.1.2平面直角坐标系说课讲稿
⼈教版七年级数学7.1.2平⾯直⾓坐标系说课讲稿《平⾯直⾓坐标系》说课稿今天我说课的内容是九年义务教育⼈教版七年级数学下册第七章第⼀节第⼆课时平⾯直⾓坐标系,我将从教材分析、学情分析、教法与学法、教学过程、教学评价⼏个⽅⾯谈谈我对本节课的认识。
⼀、教材分析(⼀)教材的地位和作⽤平⾯直⾓坐标系是在学习了数轴和有序数对后安排的⼀次概念性教学,也是初中⽣与坐标系的第⼀次亲密接触。
平⾯直⾓坐标系的建⽴架起了数与形之间的桥梁,是数形结合的具体体现。
这⼀节课主要是让学⽣认识平⾯直⾓坐标系,了解点与坐标的对应关系;在给定的平⾯直⾓坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。
因此,本节课的学习,是进⼀步学习函数及其它坐标系必备的基础知识,也就是说它在整个初中数学教材体系中有着举⾜轻重的作⽤。
(⼆)教学⽬标知识⽬标让学⽣理解平⾯直⾓坐标系的有关概念,并会由点确定坐标、由坐标描点的位置;能⼒⽬标让学⽣经历从实际⽣活中的具体问题抽象出数学模型—平⾯直⾓坐标系的过程;情感⽬标通过对问题情境的探索、交流等数学活动,培养学⽣的合作意识;(三)教学重难点教学重点:平⾯直⾓坐标系及相关概念。
教学难点:理解建⽴平⾯直⾓坐标系的必要性,体会坐标系中点与坐标的⼀⼀对应关系。
⼆、学情分析七年级的学⽣具有活泼好动,好奇的天性,他们正处于独⽴思维发展的重要阶段,对数学的求知欲较强,并且具有初步的⾃主、合作探究的学习能⼒,由于对数轴有⼀定的认识,因此,对于平⾯直⾓坐标系的构成和建⽴较为容易理解。
另外⼼理上,学⽣爱听⼩故事,我抓住这⼀点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学⽣进⾏数学⽂化的熏陶,以此来激发学⽣学习的积极性。
三、教法与学法教学⽅法:1.探索发现法2.指导阅读法3.讲练结合法学习⽅法:新课标倡导积极主动,勇于探索的学习⽅式,要求把课堂交给学⽣,因此本节课我主要引导学⽣在⼤胆猜想、⾃主探索、合作交流的学习过程中⾃主参与知识的形成过程,从⽽培养学⽣探究问题,交流合作的良好品质。
七年级下数学第七章_平面直角坐标系知识点总结
七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。
【知识解读+练习】初一下数学第三章:平面直角坐标系
第三节 平面直角坐标系知识解读一、 有序数对1.概念:用含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作:(),a b .注:有序数对是强调顺序的,a 与b 表示不同的含义.因此(),a b 与(),b a 顺序不同,含义也不同.二、 平面直角坐标系1.概念:在平面内画两条互相垂直,原点重合的数轴,就组成了平面直角坐标系.(1)水平的数轴称为x 轴或横轴,习惯取向右为正方向;(2)竖直的数轴称为y 轴或纵轴,取向上为正方向;(3)两坐标轴的交点称为平面直角坐标系的原点.2.坐标系中的点及点的坐标:有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.确定坐标系中点的坐标只需从这点分别向x 轴和y 轴作垂线,垂足在坐标轴上对应的数就是这一点的横坐标和纵坐标,我们把横坐标和纵坐标写成有序数对的形式就是这一点的坐标.如图:P 点的坐标为()3,2,Q 点坐标为()2,3.注:书写坐标的时候一定要把横坐标写在前面,纵坐标写在后面.3.平面内点与有序数对的关系:对于平面内任意一点M ,都有惟一的一对有序数对(),x y 和它对应对于任意一对有序数对(),x y ,在坐标平面内都有注:考察到坐标轴距离问题要注意多解,例如:横坐标3,到x 轴距离为4的点为(3,4)或(3,-4)5.象限:在直角坐标系中,两条坐标轴把平面分成四个区域,按照逆时针顺序分别称第一、二、三、四象限.注:坐标轴上的点不属于任何一个象限.原点属于两条坐标轴.6.点的位置与坐标特征(1)第一象限(),++、第二象限(),−+、第三象限(),−−、第四象限(),+−;(2)x 轴(),0x 、y 轴()0,y ;(3)一三象限角平分线(),x x 、二四象限角平分线(),x x −.巩固练习一.选择题1.在平面直角坐标系中,点(2,3)P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.点(4,2)−所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)4.将某图形的各点的横坐标减去2,纵坐标保持不变,可将该图形( )A .横向向右平移2个单位B .横向向左平移2个单位C .纵向向上平移2个单位D .纵向向下平移2个单位5.若点(1,1)P a b +−在第二象限,则点(,1)Q a b −在第( )象限.A .一B .二C .三D .四6.在平面直角坐标系xOy 中,点P 在第二象限,且点P 到x 轴的距离是4,到y 轴的距离是5,则点P 坐标是( )A .(5,4)−B .(4,5)−C .(4,5)D .(5,4)−7.在平面直角坐标系xOy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y ,则点P 的坐标为( )A.1)−B .( C.(1, D.(−8.在平面直角坐标系xOy 中,(2,4)A ,(2,3)B −,(4,1)C −,将线段AB 平移得到线段CD ,其中点A 的对应点是C ,则点B 的对应点D 的坐标为()A .(4,8)−B .(4,8)−C .(0,2)D .(0,2)−9.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .(1.9,0.7)−C .(0.7, 1.9)−D .(3.8, 2.6)−10.如图,把图①中的A 经过平移得到O (如图②),如果图①中A 上一点P 的坐标为(,)m n ,那么平移后在图②中的对应点P '的坐标为( )A .(2,1)m n ++B .(2,1)m n −−C .(2,1)m n −+D .(2,1)m n +− 二.填空题11.平面直角坐标系中,已知点(2,1)A −,线段//AB x 轴,且3AB =,则点B 的坐标为 .12.在平面直角坐标系中,点(3,1)A −−关于y 轴的对称点的坐标为 .13.点A 到x 轴的距离是3,到y 轴的距离是1,且点A 在x 轴下方,则点A 的坐标为 .14.在平面直角坐标系中,点(3,42)P m m −−不可能在第 象限.15.如图,直线12l l ⊥,在某平面直角坐标系中,x 轴1//l ,y 轴2//l ,点A 的坐标为(2,4)−,点B 的坐标为(4,2)−,那么点C 在第 象限.16.将点(2,3)P −先向右平移2个单位,再向上平移3个单位后,则平移后点P的坐标是.17.已知点(3,0)A ,点B 在y 轴上,6ABO S ∆=,则B 点坐标为 .18.若点(2,31)P m m −+在y 轴上,则点P 的坐标是 .19.若点(4,26)P a a −−在x 轴上,则点P 的坐标为 .20.在平面直角坐标系xOy 中,(4,0)A ,(0,3)B ,(,7)C m ,三角形ABC 的面积为14,则m 的值为21.平面直角坐标系xOy 中,已知线段AB 与x 轴平行,且5AB =,若点A 的坐标为(3,2),则点B 的坐标是 .22.今年清明假期164万游客游园,玉渊潭、动物园、天坛公园游客最多,如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(6,1)−,表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为 .23.在平面直角坐标系中,我们定义,点P 沿着水平或竖直方向运动到达点Q 的最短路径的长度为P ,Q 两点之间的“横纵距离”.如图所示,点A 的坐标为(2,3),则A ,O 两点之间的“横纵距离”为5.(1)若点B 的坐标为(3,1)−−,则A ,B 两点之间的“横纵距离”为 ;(2)已知点C 的坐标为(0,2),D ,O 两点之间的“横纵距离”为5,D ,C 两点之间的“横纵距离”为3.请写出两个满足条件的点D 的坐标: ,.三.解答题24.如图,在平面直角坐标系中,三角形ABC 的三个顶点分别是(1,6)A −,(4,3)B −,(1,4)C .将三角形ABC 先向右平移4个单位,再向下平移3个单位,得到三角形A B C '''.(1)请在图中画出平移后的三角形A B C ''';(2)三角形A B C '''的面积是 .25.在平面直角坐标系xOy 中,ABC ∆的三个顶点分别是(2,0)A −,(0,4)B ,(3,0)C .(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为(3,3)D −,将ABC ∆作同样的平移得到DEF ∆,点B 、C 分别与点E 、F 对应,画出平移后的DEF ∆;(3)在(2)的条件下,在坐标轴上找到点Q ,使得DFQ ∆的面积与ABC ∆的面积相等,则ABC ∆的面积为 ,点Q 的坐标为 .26.已知点(36,1)A a a −+,试分别根据下列条件,求出点A 的坐标,(1)点A 在x 轴上;(2)点A 在过点(3,2)P −,且与y 轴平行的直线上.27.如图,在正方形网格中,横、纵坐标均为整数的点叫做格点,点A 、B 、C 、O 均在格点上,其中O 为坐标原点,(3,3)A −.(1)点C 的坐标为 ;(2)将ABC ∆向右平移6个单位,向下平移1个单位,对应得到△111A B C ,请在图中画出平移后的△111A B C ,并求△111A B C 的面积;(3)在x 轴上有一点P ,使得△11PA B 的面积等于△111A B C 的面积,直接写出点P 坐标.28.如图,这是某市部分建筑分布简图,若火车站的坐标为(1,2)−,市场的坐标为(3,5),请在图中画出平面直角坐标系,并分别写出超市、体育场和医院的坐标.超市的坐标为 ;体育场的坐标为 ;医院的坐标为 .29.在平面直角坐标系xOy 中,点(0,4)A ,(6,4)B ,将点A 向右平移两个单位得到点C ,将点A 向下平移3个单位得到点D .(1)依题意在下图中补全图形并直接写出三角形ABD 的面积.(2)点E 是y 轴上的点A 下方的一个动点,连接EC ,直线EC 交线段BD 于点F ,若DEF ∆的面积等于三角形ACF 面积的2倍.请画出示意图并求出E 点的坐标.30.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单−.位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;−−,请在坐标系中标出中国人民大学的位(2)若中国人民大学的坐标为(3,4)置.。
人教版七年级数学下册课件平面直角坐标系3
解若:连点 接3A点对.P应 ,在的Q(数3地-为a-图,3a,上+点2)我B,对则们应线的段要数P为Q确与2;定___一___(个选填地“x点轴”的或位“y轴置”,)平行需.要借助经线和纬线,这两条 4三.象在限平线和面__直从_角__局坐__标_部_系_.中上坐,可标坐轴标以上平的面看点被成不两属条是于坐任标平何轴面象分限成内.了_两___条个部互分相,每垂个部直分的称为直___线___,_,有分别刻叫度做第、一象有限方、__向___的______、第 解4.:如(1图)直A,(0根线,据0,)图,中B进(正-方而2,形0抽的),位象C置(-,成2分,数别2)写,轴出D(边.0,长2在为);2平的正面方形内AB,CD两的各条点坐互标相. 垂直的且有公共原点的数 若 2.连如接图轴点,P写,,出Q就(数3-轴如a上,A同a,+B地2两),点图则所线上对段应的P的Q与数经_,_线反__过_和_来(选,纬填描“线出x数轴,-”4可或,“0以y和轴1帮”所)对平助应行的我.点们. 确定平面内任何一个点
2.教材P67 思考及以下内容. 提出问题:
(1)原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点? (2)什么叫做象限?平面直角坐标系有几个象限?它们是如何分布的? (3)每个象限内的点的坐标符号能够确定吗?请分别指出各象限内点的坐 标的符号特征. (4)坐标轴上的点属于第几象限? (5)坐标平面内的点与有序数对有什么关系?
4.在平面直角坐标系中,坐标平面被两条坐标轴分成4了____个部分,每个部分称为_______,分别叫做第一象限、___________、第
三象限和__________.坐标轴上的点不属于任何象限.
2.教材P67 思考及以下内容.第二象限
3
最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题
期末复习(三) 平面直角坐标系考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( ) A.15 B.7.5 C.6 D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN 平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O 为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:12×3×7=21 2.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
2021年七年级数学下册第七单元《平面直角坐标系》经典测试题(答案解析)(3)
一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 3.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1) 5.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 6.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-57.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 8.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( )A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1210.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 11.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 12.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ). A .第一象限B .第二象限C .第三象限D .第四象限 13.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限 B .第二象限 C .第三象限D .第四象限 14.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 15.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.18.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.19.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.20.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 21.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.22.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.23.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 24.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.25.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.26.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题27.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”);()3试写出点n A 的坐标(n 是正整数).28.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.29.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.30.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD,求四边形ABCD的面积.。
七年级数学人教版下册平面直角坐标系
-2
-3
④数轴上的单位长度一致。
-4
-5
-6
⑤X轴上的刻度数写在下方,
Y轴上的刻度数写在左方。
平面内画两条互相垂直的数轴,构成平面直角坐标系.
水平的叫X轴或横轴 以天下为己任。
鸭仔无娘也长大,几多白手也成家。
Y轴
远大的希望造就伟大的人物。
竖直的叫Y轴或纵轴 志之所向,金石为开,谁能御之?
人惟患无志,有志无有不成者。
C(-3,-·2 ) · y轴上的点,横坐标为0.
下列各点分别在坐标平面的什么位置上?
-3 让自己的内心藏着一条巨龙,既是一种苦刑,也是一种乐趣。
B(3,-2) (a,b)与(b,a)表示 的是两个不同的位置。
-4
你能说出点P关于x轴、y轴、原点的对称点坐 标吗?
★若设点M(a,b),
M(a,b)点关于X轴的对称点M1(a,-b )
;
-4 -3 -2 -1 · X 用平面直角坐标系表示一个点的位置(a,b)
O
1 2 3 4 5 虽长不满七尺,而心雄万丈。
-1 海纳百川有容乃大壁立千仞无欲则刚
思考:在坐标系中,如何找出点的坐标?
-2 法国数学家笛卡尔----法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,引入坐标系,用代数方法解决几何问题。
2
1
-4 -3 -2 -1 O -1
1 2 3 4x
C
-2
D
(-,-) -3 (+,-)
第三象限 -4 E 第四象限
交流:不看平面直角坐标系,你能迅速说出A(4,5) , B(-2,3), C(-4,
-1), D(2.5,-2), E(0,-4)所在的象限吗?你的方法又是什么?
第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.
七年级数学下册第7章平面直角坐标系复习导学案3新人教
平面直角坐标系学习目标:1、复习与平面直角坐标系相关的知识点 2、会应用知识点解答相关的题目 学习重点:点的坐标特征与点的平移 学习难点:点的坐标与图形的综合应用 课堂引入:1、平面直角坐标系的组成?2、几类特殊点的符号特征?3、点的坐标的平移规律?自学例题:如图,已知在平面直角坐标系中,ΔABC 的位置如图所示 (1)把ΔAB C 平移后,三角形某一边上一点P (x ,y )的对应点为()4,2P x y '+-,平移后所得三角形的各顶点的坐标分别为、 、(2)如果第一象限内有一点D ,与A 、B 、C 点同为平行四边形ABCD 的顶点,则点D 的坐标是 (3)请计算ΔABC 的面积。
当堂训练:1、如果点A (x ,y )在第三象限,则点B (-x ,y -1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、已知点A (1,0),B (0,2),点P 在x 轴上,且三角形PAB 的面积为5,则P 点的坐标为( ) A .(-4,0) B .(6,0) C .(-4,0)或(4,0) D .(-4,0)或(6,0) 3、平面直角坐标系中,点A (-3,0),B (0,2),以O 、A 、B 为顶点作平行四边形,第四个顶点的坐标不可能是( ) A .(-3,2) B .(3,2) C .(3,-2) D .(-3,-2)4、已知点A 在x 轴上,位于原点右侧,距原点3个单位长度,则点A 关于y 轴的对称点坐标为 。
5、在平面直角坐标系中,点A 的坐标为(-1,3),线段AB ∥X 轴,且AB=4,则点B 的坐标为6、若过点P 和点(3,2)A 的直线平行于x 轴,过点P 和(1,2)B --的直线平行于y 轴,则点P 的坐标为( ) A 、(1,2)- B 、(2,2)- C 、(3,1)- D 、(3,2)-7、坐标平面内,点P 在y 轴右侧,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是 ( )A .(2,3)B .(3,2)C .(2,3)或(2,-3)D .(3,2)或(3,-2)8、我区某校七年级(1)班周末组织学生进行创新素质实践“活动”,参观了如图中的一些景点和设施,为了便于确定方位,带队老师在图中建立了平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位C BA-3-2-11234012345-4-1-2-3-4长度)(1)若带队老师建立的平面直角坐标系中,网球场的坐标为(—3,2),请你在图中画出这个平面直角坐标系。
2020春人教版七年级数学下册-第7章 平面直角坐标系-单元说课稿
平面直角坐标系一、说教材(一)教学内容与地位《平面直角坐标系》是人教版九年义务教育七年级数学下册第七章第一节内容,它是在学习了数轴和有序数对后安排的一次概念性教学。
《数学课程标准》7~9年级的学段内容标准中对平面直角坐标系的要求是:(1)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
(2)在实际问题中,能建立适当的直角坐标系,描述物体的位置。
平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。
这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系。
因此,本节课的学习是今后学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。
(二)教学三维目标《数学课程标准》中明确指出,要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学知识的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
遵循这一理念,结合课程标准中对该部分的要求与本节课在这一章节中的作用,结合学生实际我制订了以下教学目标:1.知识与能力目标:使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。
2.过程与方法目标:通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。
3.情感态度价值观目标:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。
(三)教学重难点教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置。
教学难点:知道点的坐标描点,认识点与坐标的对应。
七年级数学下册期末复习3平面直角坐标系作业pptx课件新版新人教版
7.如图所示,直角坐标系中四边形的面积是( A ) A.15.5 B.20.5 C.26 D.31
8.如图,点 A,B 的坐标分别为(-5,6),(3,2),则三角形 ABO 的面积为( B )
A.12 B.14 C.16 D.18
思 想 方 法 2 分类讨论思想
【例 5】已知 A(0,1),B(2,0),C(4,3). (1)求三角形 ABC 的面积; (2)设点 P 在坐标轴上,且三角形 ABP 与三角形 ABC 的面积 相等,求点 P 的坐标.
10.在平面直角坐标系 xOy 中,我们把横、纵坐标都是整数的 点叫做整点,已知点 A(0,4),点 B 是 x 轴正半轴上的整点, 记△AOB 内部(不包括边界)的整点个数为 m,当 m=3 时,则 点 B 的横坐标是___3_或__4_________.
思 想 方 法 3 从特殊到一般的思想
6.在平面直角坐标系中,三角形 ABC 的三个顶点的位置如图所 示,点 A′的坐标是(-2,2),现将三角形 ABC 平移,使点 A 移到 点 A′的位置,这时点 B,C 的对应点分别是点 B′,C′. (1)请描述点 A 到点 A′的平移过程; (2)请画出平移后的三角形 A′B′C′(不写画法),直接写出点 B′、C′ 的坐标; (3)若三角形 ABC 内部一点 P 的 坐标为(a,b),则经过平移后点 P 的对应点 P′的坐标为________.
一、选择题(每小题 4 分,共 24 分)
1.(玉环期末)下列各点中,在第四象限的是( B )
A.(-1,3)
B.(1,-3)
C.(-1,-3 )
D.(1,3)
2.(椒江期中)在平面直角坐标系中,点 P(3,-x2-1)所在
的象限是( D )
第8套人教初中数学七下 7.1.2 平面直角坐标系课件3 【经典初中数学课件 】
三、研读课文
例 在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-y,-1),D(2.5,-2),E
(0,-4).
解:如图,现在__x___轴上找出表示4的点,再在__y___轴
上找出表示5的点,过这两个点分别作x轴和y轴垂__线_____, 垂线的交点就是点A.类似的,请你在图中描出点B,C,D, E.
2、类似的,请写出图中点B、C、D的坐标:B(_-_3_,_-4__), C(_0__,_2__),D(__0_,_-_4_)
3、思考:原点O的坐标是(_0_,_0_), x 轴 上的点纵坐标都 是__0__,y轴上的点的横坐标都是_0__. 即:横轴上的点坐标 为(x,_0__),纵轴上的点坐标为(_0__,y).
Q(0,5)
M(4,0)
P(5,-3.5)
四、强化训练
在下面的平面直角坐标系中 1、请写出A、B、C的坐标:
A(1,1) B(4,3) C(-3,2)
;
2、若D、E的坐标分别为:(2,-2)、(-2,-3), 请在图中标出来;
3、原点O的坐标是( 0 ,0 ), 横轴上的点的坐标为 (x,__0__) ,纵轴上的点坐标为(__0__,y)
1
-4 -3 -2 -1 o
1234
x
-1
-2
(-2,-3)F· -3
·G(2,-3)
做 一
做
告诉大家 本节课你的收获!
小结:这节课主要学习了平面直角坐标系的有 关概念和一个最基本的问题,坐标平面内的点 与有序数对是一一对应的,渗透了数形结合 的思想等。
掌握x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何确定直线上点的位置?
在直线上规定了原点、正方向、单位长度 单位长度 就构成了数轴。 A •
原点
-3 -2 -1 0
·1
B •
2
3
4
数轴上的点可以用一个数来表示,这个数叫做这个 点在数轴上的坐标. 例如点A在数轴上的坐标为-3, 点B在数轴上的坐标为2。反过来,知道数轴上一个 点的坐标,这个的点在数轴上的位置也就确定了。
雁塔 碑林
如图,是 某城市旅 游景点的 示意图。 (1)你 是如何确 定各个景 点的位置 的? 科技大学
钟楼
中心广场
大成殿
影月湖
雁塔 如果以“中 心广场”为 原点作两条 钟楼 相互垂直的 中心广场 数轴,分别 取向右和向 上的方向为 大成殿 数轴的正方 向,一个方 格的边长看 做一个单位 影月湖 长度,那么 你能表示 “碑林”的 科枝大学 位置吗? “大成殿” 的位置呢? 碑林
为Y轴,相邻两个同学之间的距离为单位长度建立坐 标系.(1)下面大家一起找一找自己在坐标系中的坐标 分别是什么? 行 (2)下面这些坐标分别表示谁的 位置?
A(2,1) B(2,-1) C(-2,1) D(3,0) E(0,1)
4 3 2
1
A(2,1)
1 2 3 4 5 列
0
讲台
通过这节课的学习你有什么收获呢?
例2、描出下列各点:A(4,3),B(-2,3), C(-4,-1),D(2,-2)。
纵轴 y 5 4 3
B
·
-1
A
2
1
·
4 5 x 横轴
C
-4
·
-3
-2
0 -1
-2
1
2
3
-3
-4
· D
练习2、在如图建立的直角坐标系中描出下列各 组点,并将各组的点用线段依次连接起来.
y (0 , 6) 6
·
①(0 , 6), (-4, 3), (4 , 3)
纵轴
y 5 4
B(-4,1)
B
·
-3 -2
3 N 2
1
A的横坐标为4 A的纵坐标为2 有序数对(4, 2)就叫做A的坐标 记作:A(4,2) 横坐标写在前, A
·
4
纵坐标写在后, 中间用逗号隔开
-4
-1 0 -1
1
2
3
M
5
x
横轴
-2 -3
-4
方法:先横后纵
y 5 4
横坐标写在前, 纵坐标写在后, 中间用逗号隔开
1、能够正确画出直角坐标系。 2、能在直角坐标系中,根据坐标找出点, 由点求出坐标.
课 堂 小 结
3、坐标平面内的点与有序数对是一一 对应的,渗透了数形结合 的思想等。
作业:
习题6.1 第3、4、9
; / 贴针灸代理 贴针灸男人帮 bgk582vgs 对此,父母都是始料未及的、然后没有任何商量地暴揍了他一顿“不想上学,你想去放牛吗?就算放牛,你以为牛有那么好放 吗?我这么累死累活的不都是为了让你好好念书么,你倒好,还跟我说不想上学,我今天就告诉你,你死也要给我死到学校 去!” 那是他从小到大,记忆中父亲第一次在盛怒之下痛揍了他,他也很盛怒,可是他没有反抗的资本! 他在父亲的威逼下不得不再次回到学校,他的父亲从来都不知道,他那一年里居然学会了逃课、上网、抽烟以及更恶劣的斗殴。 老师在跟父亲聊完他所有的“光荣”行径之后,父亲羞愧到不断的低下了原本就有些佝偻的腰身以及越发低沉的头颅。牛爱书 在那样的一种时刻,却觉得全身所有的细胞终于得以、以最舒适的姿态欢腾起来,从他开始上学起,从来不曾有那一刻那般舒 坦过!父亲跟老师聊完天后,再也没有多余的心情来教育他,只是步伐沉重的迈出了他的视线。 牛爱书为自己的所作所为感到很得意,他继续在父亲所认为的不思进取的路上奔腾的欢实,课本多无聊、老师讲的课多枯燥, 还不如去打两把游戏来得痛快!他也终于在哪些不思进取的路上结束了他的初中生涯,对于接下来的路,他没有过多的念想, 反正不要念书就好! 可惜,即使他再怎么不愿意念书,父亲还是没有商量地将他送到了学校,一个非常一般的中专学校,跟他所读的初中简直是云 泥之别,但是他却觉得很好,觉得那样的地方才是更好的归宿!他在那样的地方也更容易找到志同道合之人,打游戏的团体越 发壮大了起来,他甚至在那个一名不闻的学校里谈起了早恋,不为别的,同伴们都有所谓的“女朋友”,他可不能落单! 父亲早已不是当年的父亲,他比以前要衰弱、也要苍老,再也没有更好的体力去暴揍这样一个不思进取的他,只是在看到他的 成绩单后,越发沉寂的抽一管旱烟,然后默默地将旱烟管在鞋帮子上磕干净,他很瞧不上那样的父亲,都什么年代了,还抽那 老古董! 中专毕业后父亲终于不再逼问他“要不要好好念书”,因为他的高考成绩已然让他没有·
·
3
B ( 3,2 )
-4
-3
-2
-1
0 -1 -2 -3
2
4
5
x
横轴
D ( -4,- 3 )
·
· E
( 1,- 2 )
-4
雁塔 碑林
钟楼
中心广场 各个景点的坐标为:
大成殿 雁塔(0,3) 碑林(3,1)
钟楼(-2,1) 影月湖
科技大学 大成殿(-2,-2) 科技大学(-5,-7) 影月湖(0,-5) 中心广场(0,0)
y
平面直角坐标系
6
5 4
y轴或纵轴 第一象限
Ⅰ 原点
1 2 3 4 5
第二象限
Ⅱ
3
2 1 -1 -2 -3 -4
x轴或横轴
6
-6 -5 -4 -3 -2 -1
o
X
第三象限
Ⅲ
第四象限
Ⅳ
-5 ①两条数轴 ②互相垂直 ③公共原点 -6 叫平面直角坐标系
注
意:坐标轴上的点不属于任何象限。
如何表示平面内的位置早 在1637年以前,法国数学家笛 卡儿受到了经、纬线的启发, 地理上的经纬度是以赤道和本 初子午线为标准的,这两条线 从局部上看是平面内互相垂直 的两条直线。在平面内画两条 互相垂直的数轴,其中水平的 数轴叫X轴(或横轴)取向右 为正方向,铅直的数轴叫Y轴 (或纵轴),取向上为正方向, X轴或Y轴统称为坐标轴,它们 的交点是原点,这个平面叫坐 标平面。
(- 4,1)
B
·
-3 -2
3 2 M2
1 -1 0 -1 1
(2,3) · N (3,2) M ·
-4
2
( 4 , 0) M1 Q X 3 4 5
·
0( 0, 0)
-2 P (0,-2) -3
-4
·
例1、写出图中A、B、C、D、E各点的坐标。
纵轴 y 5 坐标是有序 数对。
4
3 2 1 1
A ( 2, 3 )
5
A(-4,3)
②(-2 , 3), (-2 , -3), (2 , -3), (2 , 3)
· · C(-2,3)
-3 -2
4 3 2 1
· D(2,3) ·
1 2 3 4
B(4,3)
观察所得的图 形,你觉得它 象什么?
-4
-1 o -1 -2 -3
x
E(-2,-3)
·
·
F(2,-3)
练习3 :以xx同学为原点,以第二桌为X轴,以第三组