平行四边形培优讲义
浙教版八年级下册 第4章 平行四边形 培优讲义(含解析)
![浙教版八年级下册 第4章 平行四边形 培优讲义(含解析)](https://img.taocdn.com/s3/m/28391d4314791711cc791785.png)
平行四边形第1讲命题点一:利用多边形内(外)角和定理求边角问题【思路点拨】(1)多边形内角和定理:n边形的内角和为(n-2)×180°(n≥3)且n为整数.此公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和.除此方法之外还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360°.①多边形的外角和指在每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.②借助内角和和邻补角概念共同推出以下结论:外角和=180°n-180°(n-2)=360°. 例1一块正六边形硬纸片(如图①),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形AGA′H,那么∠GA′H的大小是 60°.例2(保送生模拟题)E,F是四边形ABCD边AD,BC上的点,连结EF,将四边形ABFE沿直线EF折叠,使点A,点B落在四边形ABCD的内部,分别为A′,B′,再折叠将点D与点A′重合,折痕为GH,则下列结论一定正确的是( C )A.∠1+∠2+∠3+∠4=2∠C B.∠1+∠2+∠3+∠4=180°+∠CC.∠1+∠2+∠3+∠4=360°-2∠C D.∠1+∠2+∠3+∠4=540°-2∠C命题点二:平行四边形的定义与性质例3(2019·武汉期中改编)(1)在图①,②,③中,给出▱ABCD的顶点A,B,D的坐标(如图所示),写出图①,②,③中的顶点C的坐标,它们分别是 (5,2) , (c+e,d) , (c+e-a,d) .(2)通过对图①,②,③,④的观察和顶点C的坐标的探究,你会发现:无论▱ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则四个顶点的横坐标a,c,m,e之间的等量关系为m+a=c+e;纵坐标b,d,n,f之间的等量关系为n+b=d+f.例4在△ABC中,AB=AC,P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图①,若点P在BC边上,此时PD=0,猜想并写出PD,PE,PF与AB满足的数量关系,然后证明你的猜想.(2)如图②,若点P在△ABC内,猜想并写出PD,PE,PF与AB满足的数量关系,然后证明你的猜想.(3)如图③,若点P在△ABC外,猜想并写出PD,PE,PF与AB满足的数量关系(不必证明).解:(1)PD+PE+PF=A B.理由如下:∵AB=AC,PF∥AB,PE∥AC,∴四边形PFAE是平行四边形.∴∠B=∠C,∠EPB=∠C,∠B=∠FP C.∴∠B=∠EPB,即△BPE为等腰三角形.∴BE=PE.又∵四边形PFAE是平行四边形,∴PF=AE.∴PE+PF=BE+AE=A B.又∵PD=0,∴PD+PE+PF=A B.(2)PD+PE+PF=A B.理由如下:如图,过点P作MN∥BC分别交AB,AC于点M,N.由题意,得四边形PFAE,四边形PDBM为平行四边形.∴PF=AE,PD=BM.由题(1)的证明方法可同证△MEP为等腰三角形.∴PE=ME.∴PD+PE+PF=BM+EM+AE=A B.(3)PE+PF-PD=A B.命题点三:利用平行四边形的性质解决边、角问题【思路点拨】本题考查的知识比较综合,包括平行四边形的性质、全等三角形的性质和判定以及等边三角形的性质.要解答本题,可以参照下面的思路:在等边三角形中,三条边相等,三个角都是60°,则可由60°角及平行四边形对角相等的性质可得∠DAE=∠1,即△DAE≌△FCD,得出DF=DE,同理可得出三条边都相等,进而可得出结论.例5(浙江省自主招生模拟题)如图所示,在▱ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.证明:∵△ABE和△BCF都是等边三角形,且四边形ABCD是平行四边形.∴AE=AB=CD,CF=BC=A D.∴∠BAE=∠BCF=60°,即∠DAE+∠BAD=∠1+∠BCD=60°.在▱ABCD中,∠BAD=∠BCD,∴∠DAE=∠1.∴△DAE≌△FC D.∴DF=DE.∵∠2=180°-∠ABE-∠CBF-∠BCD=60°-∠BCD,∠1=60°-∠BCD,∴∠1=∠2=∠EA D.∵EA=EB,AD=BC=BF,∴△BEF≌△AE D.∴DE=EF.∴DE=DF=EF,即△DEF为等边三角形.例6如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,AN=MC,AM与BN相交于点P,求证:∠BPM=45°.解:如图,过点M作ME∥AN,且ME=AN,连结NE,BE,则四边形AMEN为平行四边形,从而得到NE=AM,ME⊥B C.∵ME=CM,∠EMB=∠MCA=90°,BM=AC,∴△BEM≌△AM C.∴BE=AM=NE,∠1=∠2,∠3=∠4.∵∠1+∠3=90°,∴∠2+∠4=90°,且BE=NE.∴△BEN为等腰直角三角形,∠BNE=45°.∵AM∥NE,∴∠BPM=∠BNE=45°.命题点四:中心对称的应用【思路点拨】本题主要考查了轴对称图形和中心对称图形的作法,在解题过程中,正确理解轴对称图形和中心对称图形的概念是解题的关键.例7如图,A,B,C是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形(要求新添加的小正方形与原小正方形至少有一边重合),使所得的新图形分别为下列(1)(2)(3)题要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形.(2)是轴对称图形,但不是中心对称图形.(3)既是中心对称图形,又是轴对称图形.解:(1)如图①,取其中一个涂色的小正方形,则构成的图形是中心对称图形,但不是轴对称图形.(2)如图②,取其中一个涂色的小正方形,则构成的图形是轴对称图形,但不是中心对称图形.(3)如图③,在右边一个正方形上侧画一个正方形,则构成的图形既是轴对称图形,又是中心对称图形.例8图①、图②均为7×6的正方形网格,点A,B,C在格点上.(1)在图①中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可).(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).解:(1) (2)课后练习1.在▱ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若▱ABCD的周长是16,则EC的长度是( A )A.2 B.3 C.4 D.62.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+AD,则( C )A.AD>BC B.AD<BC C.AD=BC D.AD与BC的大小关系不能确定3.如图,在▱ABCD中,∠ABC=75°,AF⊥BC于点F,AF交BD于点E.若DE=2AB,则∠AED 的大小是( B )A.60° B.65° C.70° D.75°4.(武汉市自主招生模拟题)如图,在▱ABCD中,BC=2AB,CE⊥AB于点E,F为AD的中点,若∠AEF=54°,则∠B等于 ( D )A.54° B.60° C.66° D.72°5.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为28 cm2,四边形ABCD的面积是18 cm2,则①②③④四个平行四边形周长的总和为( B )A.72 cm B.64 cm C.56 cm D.48 cm6.如图,在五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE 的面积为( C )A.2 B.3 C.4 D.57.如图,在△ABC中,AB=AC,AP=QP=QB=BC,则∠A= 20°.8.如图,▱OABC的顶点A,C分别在直线x=1和x=4上,O为坐标原点,则对角线OB长的最小值为 5 .9.在面积为15的▱ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=5,BC=6,则CE+CF的值为11+1132或1+32.10.如图,在▱ABCD中,∠ABC=60°,AE⊥AD交BD于点E,若DE=2DC,则∠DBC的大小是 20°.11.(2019·吉林省“城市杯”初中数学应用能力展示真题)如图,在四边形ABCD中,∠A=∠C=90°,AB=AD,若这个四边形的面积为16,则BC+CD= 8 .12.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45°,且AE+AF=22,求▱ABCD的周长.解:∵∠EAF=45°,∴∠C=360°-∠AEC-∠AFC-∠EAF=135°.∴∠B=∠D=180°-∠C=45°.∴AE=BE,AF=DF.设AE=x,则AF=22-x.在Rt△ABE中,根据勾股定理,得AB=AE2+BE2=2x.同理可得AD=2(22-x)=4-2x.∴▱ABCD的周长为2(AB+AD)=2(2x+4-2x)=8.13.如图,一个凸六边形的六个内角都是120°,六条边长分别为a,b,c,d,e,f,则下列等式中成立的是( C )A.a+b+c=d+e+f B.a+c+e=b+d+fC.a+b=d+e D.a+c=b+d14.如图,在▱ABCD中,AB=BC=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,点A的对应点为A′.当CA′的长度最小时,CQ的长为是 7 .15.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图①中,证明CE=CF.(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数.(3)若∠ABC=120°,FG∥CE,FG=CE,分别连结DB,DG(如图③),求∠BDG的度数.解:(1)∵AF平分∠BAD,∴∠BAF=∠DAF.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥C D.∴∠DAF=∠CEF,∠BAF=∠F.∴∠CEF=∠F.∴CE=CF.(2)∠BDG=45°.(3)如图,延长AB至点H,使AH=AD,连结DH,则△AHD是等边三角形.∵∠ABC=120°,AF平分∠BAD,∴∠DAF=∠BAF=30°,∠ADC=120°,∠DFA=30°.∴AD=DF.∵AH=AD=DF,∴BH=CF=CE=GF.又∵FG∥CE,∠BCD=60°,∴∠GFC=60°.又∵∠BHD=∠GFD=60°,DH=DF,∴△DBH≌△DGF,∠BDH=∠GDF.∴∠BDG=∠ADC-∠ADB-∠GDF=∠ADC-(∠ADB+∠BDH)=120°-60°=60°.。
平行四边形的判定定理培优讲解及练习
![平行四边形的判定定理培优讲解及练习](https://img.taocdn.com/s3/m/0912a169192e45361066f584.png)
平行四边形的判定定理【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定例1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG ∥HE可用来证明四边形EGFH为平行四边形.【答案与解析】证明:∵四边形AECF为平行四边形,∴ AF∥CE.页1∵四边形DEBF为平行四边形,∴ BE∥DF.∴四边形EGFH为平行四边形.【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.【答案】证明:∵∠BAD的平分线交直线BC于点E,∴∠1=∠2,∵AB∥CD,∴∠1=∠F,∵CE=CF,∴∠F=∠3,∴∠1=∠3,∴∠2=∠3,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形.例2、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【思路点拨】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.页2(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【总结升华】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.例3、已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.页3页 4【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明. 【答案与解析】证明:连接BD 交AC 与O 点,∵四边形ABCD 是平行四边形, ∴AO=CO,BO=DO , 又∵AP=CQ, ∴AP+AO=CQ+CO, 即PO=QO ,∴四边形PBQD 是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式1】如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF=DC ,连接CF .试说明:D 是BC 的中点.【答案】证明:∵AF∥BC ,∴∠AFE=∠DBE , ∵E 是AD 的中点, ∴AE=DE ,页 5在△AEF 和△DEB 中,∵ ∴△AEF ≌△DEB (AAS ), ∴AF=BD , ∵AF=DC , ∴BD=DC , ∴D 是BC 的中点.【变式2】如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . (1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.【答案】证明:(1)∵Rt △ABC 中,∠BAC=30°, ∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴Rt △AFE ≌Rt △BCA (HL ),,,,===AFE DBE AEF DEB AE DE ∠∠⎧⎪∠∠⎨⎪⎩页 6∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC +∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD , ∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.例4、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD是平行四边形,∴OD=OB ,OA=OC , ∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO , ∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO≌△EBO(AAS),∴OF=OE,∴四边形AECF是平行四边形.类型二、平行四边形的性质定理与判定定理的综合运用例1、如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系: ________________.(2)请证明你的猜想.【思路点拨】(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF即可.【答案与解析】(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.【总结升华】本题考查了平行四边形的性质和判定的应用,能否熟练地运用平行四边形的性质和判定进行推理是你解决本题的关键,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.举一反三:【变式】如图,在ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.页7页 8【答案】解:猜想BE 与DF 的关系是BE=DF ,BE ∥DF ,理由是:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴AD-AE=BC-CF , 即DE=BF , ∵DE ∥BF ,∴四边形BFDE 是平行四边形, ∴BE=DF ,BE ∥DF .例2、如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF . (1)求证:PA=PC .(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积.【思路点拨】(1)首先在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF ,可得PN=PM ,则易证四边形EMFN 是平行四边形,则可得ME=FN ,∠EMA=∠CNF ,即可证得△EAM ≌△FCN ,则可得PA=PC ;(2)由PA=PC ,EP=PF ,可证得四边形AFCE 为平行四边形,易得△PED ≌△PFB ,则可得四边形ABCD 为平行四边形,由AB=15,AD=12,∠DAB=60°,即可求得四边形ABCD 的面积. 【答案与解析】(1)证明:在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF . ∵AP+AE=CP+CF , ∴PN=PM . ∵PE=PF ,∴四边形EMFN 是平行四边形.∴ME=FN ,∠EMA=∠CNF.又∵∠AME=∠AEM,∠CNF=∠CFN,∴△EAM≌△FCN.∴AM=CN.∵PM=PN,∴PA=PC.(2)解:∵PA=PC,EP=PF,∴四边形AFCE为平行四边形.∴AE∥CF.∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,∴△PED≌△PFB.∴DP=PB.由(1)知PA=PC,∴四边形ABCD为平行四边形.∵AB=15,AD=12,∠DAB=60°,∴四边形ABCD的面积为90.【总结升华】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.例3、如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:3页9∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】页10∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.例4、如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】页11页 12∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF . 又∵AG=CH ,∴BG=DH . 又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE , ∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形. 举一反三 【变式】如图,ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°, 在△ABE 和△CDF 中,∴△ABE ≌△CDF (AAS ), ∴BE=DF , ∴BO-BE=DO-DF , 即:EO=FO ,同理:△ABG ≌△CDH , ∴AG=CH , ∴AO-AG=CO-CH , ,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩即:GO=OH,∴四边形GEHF是平行四边形.【课堂练习】一.选择题1.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个 B.2个 C.3个 D.4个2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ).A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形 C.菱形 D.梯形5. 已知一个凸四边形ABCD的四条边的长顺次是a、b、c、d,且a2+ab-ac-bc=0,b2+bc-bd-cd=0,那么四边形ABCD是()A.平行四边形 B.矩形 C.菱形 D.梯形页136. 如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙二.填空题7. 如图,E、F 是ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.8.如图,平行四边形ABCD的对角线交于点O,直线EF过点O且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有______________个.9.如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则秒时四边形ADFE是平行四边形.页1410. 如图,已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=______________.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,平行四边形ABCD中,AC、BD相交于点O,E、F、G、H分别是AB、OB、CD、OD 的中点.有下列结论:①AD=BC,②△DHG≌△BFE,③BF=HO,④AO=BO,⑤四边形HFEG是平行四边形,其中正确结论的序号是.三.解答题13.如图,在口ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.14.在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.页1515.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.【答案与解析】一.选择题1.【答案】C;【解析】解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l∥QR、m∥PR、n∥PQ,分别交于点D、E、F,∵DP∥QR,DQ∥PR,∴四边形PDQR为平行四边形,同理可知四边形PQRF、四边形PQER也为平行四边形,故D、E、F三点为满足条件的M点,故选C.页162.【答案】C;【解析】①②③能判定平行四边形.3.【答案】B;【解析】平行四边形对角相等.∠A与∠C为对角,∠B与∠D为对角.4.【答案】A;【解析】∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.5.【答案】A;【解析】由a2+ab-ac-bc=0,可知(a+b)(a-c)=0,则a-c=0,即a=c;由b2+bc-bd-cd=0,可知(b+c)(b-d)=0;则b-d=0,即b=d.(其中a,b,c,d都是正数,a+b、b+c一定不等于0)由a=c;b=d知四边形ABCD的两组对边分别相等,则四边形ABCD是平行四边形.故选A.6.【答案】D;【解析】图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.页17页 18二.填空题 7.【答案】BE=DF ;【解析】添加的条件是BE=DF ,理由是:连接AC 交BD 于O , ∵平行四边形ABCD , ∴OA=OC ,OB=OD , ∵BE=DF , ∴OE=OF ,∴四边形AECF 是平行四边形. 故答案为:BE=DF .8.【答案】18;【解析】图中平行四边形有:AEOG ,AEFD ,ABHG ,GOFD ,GHCD ,EBHO ,EBCF ,OHCF ,ABCD ,EHFG ,AEHO ,AOFG ,EODG ,BHFO ,HCOE ,OHFD ,OCFG ,BOGE .共18个.故答案为:18. 9.【答案】3;【解析】解:设t 秒时四边形ADFE 是平行四边形;理由:当四边形ADFE是平行四边形,则AE=DF,即t=9﹣2t,解得:t=3,故3秒时四边形ADFE是平行四边形.故答案为:3.10.【答案】8;【解析】过E点作EG∥PD,过D点作DH∥PF,∵PD∥AC,PE∥AD,∴PD∥GE,PE∥DG,∴四边形DGEP为平行四边形,∴EG=DP,PE=GD,又∵△ABC是等边三角形,EG∥AC,△BEG为等边三角形,∴EG=PD=GB,同理可证:DH=PF=AD,∴PD+PE+PF=BG+GD+AD=AB=8..11.【答案】平行四边形;12.【答案】①,②,③,⑤;【解析】解:平行四边形ABCD中,∴AD=BC,故①正确;∵平行四边形ABCD,∴DC∥AB,DC=AB,OD=OB,∴∠CDB=∠DBA,∵E、F、G、H分别是AB、OB、CD、OD的中点,∴DG=BE=AB,DH=BF=OD,∴②△DHG≌△BFE,故②正确;∵HO=DH,DH=BF,∴BF=HO,故③正确;平行四边形ABCD,OA=OC,OB=OD,故④错误;E、F、G、H分别是AB、OB、CD、OD的中点,∴HG∥OC,HG=OC,EF∥OA,EF=OA,∴HG∥EF,HG=EF,HEFG是平行四边形,故⑤正确;故答案为:①,②,③,⑤.三.解答题页1913.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,∵AG=CH,∴BG=DH,在△BEG和△DFH中,,∴△BEG≌△DFH(SAS);(2)∵△BEG≌△DFH(SAS),∴∠BEG=∠DFH,EG=FH,∴∠GEF=∠HFB,∴GE∥FH,∴四边形GEHF是平行四边形.14.【解析】证明:∵在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,∴DE∥AC,CD=AB=AD=BD,∴∠B=∠DCE,∵∠FEC=∠B,∴∠FEC=∠DCE,∴DC∥EF,∴四边形CDEF是平行四边形.15.【解析】解:∵∠ACB=90°,DE⊥BC,页20∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2在Rt△CDE中,由勾股定理∵D是BC的中点,∴BC=2CD=在Rt△ABC中,由勾股定理.∵D是BC的中点,DE⊥BC,∴EB=EC=4∴四边形ACEB的周长=AC+CE+BE+BA=10+.【课后作业】一.选择题1.如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A.(3,-1) B.(-1,-1) C.(1,1) D.(-2,-1)2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数CD==AB==页21页 223.A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有( ) A .6种 B .5种 C .4种 D .3种4. 如图,在▱ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形(不包括四边形ABCD )的个数共有( )A .9个B .8个C .6个D .4个5. 如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A. AE =CFB.DE =BFC. D.6.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形; ②△BCE 是等腰三角形; ③四边形ACEB 的周长是10+2; ④四边形ACEB 的面积是16. 则以上结论正确的是( )CBF ADE ∠=∠CFB AED ∠=∠A.①②③ B.①②④ C.①③④ D.②④二.填空题7.已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD ②AD∥BC③AB=CD ④∠BAD=∠DCB,从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有____________组.8.在▱ABCD中,对角线相交于点O,给出下列条件:①AB=CD,AD=BC,②AD=AB,AD∥BC,③AB∥CD,AD∥BC,④AO=CO,BO=DO其中能够判定ABCD是平行四边形的有____________.9.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出______个平行四边形.10.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=___________度.11.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是.(只写出一种情况即可)12.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.页23三.解答题13. 在ABCD中,对角线BD、AC相交于点O,BE=DF,过点O作线段GH交AD于点G,交BC于点H,顺次连接EH、HF、FG、GE,求证:四边形EHFG是平行四边形.14.如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE是平行四边形.15. 如图所示,已知△ABC是等边三角形,D、F两点分别在线段BC、AB上,∠EFB=60°,DC=EF.页24(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案与解析】一.选择题1.【答案】D;【解析】A、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(3,-1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴BO∥AC1,∴四边形OAC1B是平行四边形;故此选项正确;B、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(-1,-1)时,∴BO=AC2=2,∵A,C2,两点纵坐标相等,∴BO∥AC2,∴四边形OC2AB是平行四边形;故此选项正确;C、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,页25页 26当第四个点为(1,1)时, ∴BO=AC 1=2,∵A ,C 1,两点纵坐标相等, ∴C 3O=BC 3=, 同理可得出AO=AB=,进而得出C 3O=BC 3=AO=AB ,∠OAB=90°, ∴四边形OABC 3是正方形;故此选项正确;D 、∵以O (0,0)、A (1,-1)、B (2,0)为顶点,构造平行四边形, 当第四个点为(-1,-1)时,四边形OC 2AB 是平行四边形;∴当第四个点为(-2,-1)时,四边形OC 2AB 不可能是平行四边形; 故此选项错误.故选:D .2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形. 3.【答案】C ;【解析】根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C .4.【答案】B ;【解析】设EF 与NH 交于点O ,∵在▱ABCD 中,EF ∥AD ,HN ∥AB ,∴AD ∥EF ∥BC ,AB ∥NH ∥CD ,则图中的四边AEOH 、DHOF 、BEON 、CFON 、AEFD 、BEFC 、AHNB 、DHNC 和ABCD 都是平行四边形,共9个. 故选B .5.【答案】B ; 22页 27【解析】C 选项和D 选项均可证明△ADE ≌△CBF ,从而得到AE =CF ,EO =FO ,BO =DO ,所以可证四边形DEBF 是平行四边形.6.【答案】A ;【解析】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°, ∴AC∥DE, ∵CE∥AD,∴四边形ACED 是平行四边形,故①正确; ②∵D 是BC 的中点,DE⊥BC, ∴EC=EB,∴△BCE 是等腰三角形,故②正确; ③∵AC=2,∠ADC=30°, ∴AD=4,CD=2,∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB,∴EB=4,DB=2, ∴CB=4,∴AB==2,∴四边形ACEB 的周长是10+2故③正确; ④四边形ACEB 的面积:×2×4+×4×2=8,故④错误,故选:A .二.填空题 7.【答案】4;【解析】①和②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和④,②和④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有四组.故答案为:4.8.【答案】①③④;【解析】∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴①正确;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∴②正确;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴③正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴④正确;即其中能判定四边形ABCD是平行四边形的有①②③④,故答案为:①②③④.9.【答案】15;【解析】两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.10.【答案】180°;【解析】依题意得ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°.11.【答案】AD=BC;【解析】∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故答案为:AD=BC.12.【答案】6;【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴BC2=AB2+AC2,∴∠BAC=90°,页28页 29∵△ABD,△ACE 都是等边三角形, ∴∠DAB=∠EAC=60°, ∴∠DAE=150°.∵△ABD 和△FBC 都是等边三角形, ∴∠DBF+∠FBA=∠ABC+∠ABF=60°, ∴∠DBF=∠ABC. 在△ABC 与△DBF 中,∴△ABC≌△DBF(SAS ), ∴AC=DF=AE=4,同理可证△ABC≌△EFC, ∴AB=EF=AD=3,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). ∴∠FDA=180°﹣∠DAE=30°,∴S 口AEFD =AD•(DF ×)=3×(4×)=6. 即四边形AEFD 的面积是6. 故答案为:6.二.解答题 13.【解析】 证明:在ABCD 中AD ∥BC ,AO =CO ,BO =DO∴∠GAO =∠HCO 在△AGO 和△CHO 中∴△AGO ≌△CHO∴GO =HO 又∵BO =DO ,BE =DF GAO HCO AO CO GOA HOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴EO=FO∴四边形EHFG为平行四边形.14.【解析】证明:(1)如图1,∵OB=OC,∴∠ACE=∠DBF,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS);(2)如图2,∵∠ACE=∠DBF,∠DBG=∠DBF,∴∠ACE=∠DBG,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.15.【解析】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°.页30又∵∠EFB=60°,∴ EF∥BC,即EF∥DC.又∵ DC=EF,∴四边形EFCD是平行四边形.(2)如图,连接BE.∵ BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴ BE=BF=EF,∠EBF=60°,∴ DC=EF=BE.∵△ABC是等边三角形,∴ AC=AB,∠ACD=60°.在△ABE和△ACD中,∵ AB=AC,∠ABE=∠ACD,BE=CD,∴△ABE≌△ACD,∴ AE=AD.页31。
平行四边形讲义
![平行四边形讲义](https://img.taocdn.com/s3/m/5b4d8e28cd1755270722192e453610661ed95a8e.png)
平行四边形一、知识梳理1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形.平行四边形用符号示.平行四边形ABCD记作QLECD,读作平行四边形ABCD.2.平行四边形的性质:(1)平行四辿形的对这平行且相等.(2).平行四边形的对角相等,邻角互补。
(3)平行四边形的对角线互相平分.(4)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交. 点,且这条直线二等分平行四边形的面积.例1. = ABCD中,ZA的平分线分BC成4cm和3cm两条线段,则Q ABCD的周长为.例2.在U7ABCD 中,ZC=6O°,DE1AB 于E,DF丄BC 于F.(1)则ZEDF= __________ ;rt ----------- (-(2)如图,若AE=4, CF=7, //则UABCD周长= _______________ ;/ Y F例3.在平行四边形ABCO中,已知NA=40° ,则NB = 例4.ZZ7ABCD.中,周长为20cm,对角线AC交BD于点O, AOAB比△OBC的周长多4,则边AB =,BC=变式训练•如图,在平行四诊形ABCD中,已知对角线A匚和BD相交于点0, A AOB的周长为15, AB = 6,那么又角线AC 和BD的和是多少?例5、如图,在cABCD^,。
是对角线的交点,过。
的宜线交厶8于£,交DC于F,图中全等三角形共有(A. 2对B. 3对C. 6对D. 8对3.两条平行线间的距离,(1〕定义,两条平行线中,一条宜线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.例6、有以下四个说怯;①两点的距离,点;到直线的距离,两条平行线间的距离,都是指某种线段的长.②如果两点的位置固定,那么它们的距离是定值.③如果一点和一条直线的位置固定,那么它们的距离是定值.④两条平行线间的距离不是定值其中正确说法的个数是A. 1B. 2C. 3D. 44-平行四边形的面积:⑴如图①,S^ABCI =BC * AE=CD • AF .① ②(2)同底(等底)同高(等高)的平行四边形面积相等.如图②,必ECD与U7EBCF有公共边BC,则Scwm = SaHRm.例7、如图.四边形ABCD是平行四边形.AB=10, AD=8, AC J. BC.求AC、OA以及平行四边形ABCD的面积变式训练:1、平行四边形两邻边分别是4和6.其中一位上的高是*则平行四苞形的面积是.2、平行四边形的周长为20皿,AE丄BC于E, AF1CD于F, AE=2 cm, AF=3 cm.求平行四边形旭CD的面积。
初三特殊的平行四边形培优同步讲义
![初三特殊的平行四边形培优同步讲义](https://img.taocdn.com/s3/m/16add02f43323968011c927c.png)
学科教师辅导讲义体系搭建一、知识梳理二、知识概念(一)菱形1、定义:有一组邻边相等的平行四边形叫做菱形.2、菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.3、菱形的面积计算②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.考点一:菱形的性质与判定例1、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.4例2、如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()A.1个B.2个C.3个D.4个例3、如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.考点二:矩形的性质与判定例1、矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等例2、矩形ABCD中,AB=2,AD=1,点M在边CD上,若AM平分∠DMB,则DM的长是()A.B.C.D.例3、如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.考点三:正方形的性质与判定例1、正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等例2、如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4C.8﹣4D.+1例3、已知:如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.求证:(1)EF=FP=PQ=QE;(2)四边形EFPQ是正方形.考点四:线段和最短问题例1、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)例2、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)考点五:折叠问题例1、如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.6例2、如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.实战演练➢课堂狙击1、下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分2、如图,菱形ABCD的周长为8cm,高AE的长为cm,则对角线BD的长为()A.2cm B.3cm C.cm D.2cm3、如图,在菱形ABCD中,下列结论中错误的是()A.∠1=∠2B.AC⊥BDC.AB=AD D.AC═BD4、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°5、如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个B.2个C.3个D.4个6、如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB、OC,点E在线段BC上(点E不与点B、C重合),过点E作EM⊥OB于M,EN⊥OC 于N,则EM+EN的值为()A.6B.1.5C.D.7、如图,P是边长为1的正方形ABCD的对角线BD上的一点,点E是AB的中点,则PA+PE的最小值是()A.B.C.D.8、如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.9、如图,正方形ABCD和正方形CEFG中,点D在DG上,BC=1,CE=3,H是AF的中点,求CH的长.➢课后反击1、在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形2、已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,则此菱形的面积为()A.48cm2 B.24cm2C.18cm2D.12cm23、如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5C.6D.94、已知菱形ABCD在平面直角坐标系中的位置如图所示,∠DAO=30°,点D的坐标为(0,2),动点P从点A出发,沿A→B→C→D→A→B→…的路线,以每秒1个单位长度的速度在菱形ABCD的边上移动,当移动到第2016秒时,点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.(2,0)D.(0,2)5、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.6、如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1 O1的对角线交BD于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC2016O2016的面积为()A.B.C.D.7、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.直击中考1、【2016•广安】下列说法:①三角形的三条高一定都在三角形内;②有一个角是直角的四边形是矩形;③有一组邻边相等的平行四边形是菱形;④两边及一角对应相等的两个三角形全等;⑤一组对边平行,另一组对边相等的四边形是平行四边形;其中正确的个数有()A.1个B.2个C.3个D.4个2、【2016•广东】如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1D.2+13、【2016•遵义】如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BDC.AC=BD D.∠BAC=∠DAC4、【2009•深圳】如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是()A.3B.5C.D.5、【2006•淮安】如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积为S,则()A.S=2B.S=2.4 C.S=4D.S与BE长度有关6、【2015•遵义】在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.重点回顾1、菱形、矩形、正方形的性质与判定;2、最短问题与翻折问题的解决。
八年级数学培优讲义(下册)52547
![八年级数学培优讲义(下册)52547](https://img.taocdn.com/s3/m/fab310a9b8f67c1cfad6b89c.png)
第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.15.已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数xk y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,24BG,则△CEF的周长为______.9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
(完整版)平行四边形专题讲义
![(完整版)平行四边形专题讲义](https://img.taocdn.com/s3/m/474d223f69dc5022abea0043.png)
平行四边形专题讲义一、学习目标 复习平行四边形、特殊平行四边形性质与判定,能利用它们进行计算或证明. 二、学习重难点 重点:性质与判定的运用;难点:证明过程的书写。
三、本章知识结构图1.平行四边形是特殊的 ;特殊的平行四边形包括 、 、 。
2.梯形 (是否)特殊平行四边形, (是否)特殊四边形。
3.特殊的梯形包括 梯形和 梯形。
4、本章学过的四边形中,属于轴对称图形的有 ;属于中心对称图形的有 。
四、复习过程 (一)知识要点1:平行四边形的性质与判定1.平行四边形的性质:(1)从边看:对边 ,对边 ; (2)从角看:对角 ,邻角 ; (3)从对角线看:对角线互相 ; (4)从对称性看:平行四边形是 图形。
2、平行四边形的判定:(1)判定1:两组对边分别 的四边形是平行四边形。
(定义)(2)判定2:两组对边分别 的四边形是平行四边形。
(3)判定3:一组对边 且 的四边形是平行四边形。
(4)判定4:两组对角分别 的四边形是平行四边形。
(5)判定5:对角线互相 的四边形是平行四边形。
【基础练习】1.已知□ABCD 中,∠B =70°,则∠A =____,∠C =____,∠D =____.2.已知O 是ABCD 的对角线的交点,AC =38 mm ,BD =24 mm,AD =14 mm ,那么△BOC 的周长等于__ __.3.如图1,ABCD 中,对角线AC 和BD 交于点O ,若AC =8,BD =6,则边AB 长的取值范围是( ). A.1<AB <7 B.2<AB <14 C.6<AB <8 D.3<AB <44.不能判定四边形ABCD 为平行四边形的题设是( ) A.AB=CD,AD=BC B.ABCD C.AB=CD,AD ∥BC D.AB ∥CD,AD ∥BC5.在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE=4,AF=6,ABCD 的周长为40,则ABCD 的面积是 ( ) A 、36 B 、48 C 、 40 D 、24【典型例题】例1、若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长. F DA OA B CDOA DDC AB E F M NBE F C AD例2、 如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。
第九讲 培优 班 平行 四边形性质与判定应用辅导
![第九讲 培优 班 平行 四边形性质与判定应用辅导](https://img.taocdn.com/s3/m/bf2b73cea58da0116c17491c.png)
第九讲平行四边形的性质和判定培优辅导一、知识梳理1.平行四边形:(1)平行四边形的定义:两组对边的四边形是平行四边形.平行四边形用符号表示.平行四边形ABCD记作,读作平行四边形ABCD.2.平行四边形的性质:平行四边形是对称图形,对称中心是(1)边: 。
(2)角:。
(3)对角线:。
(4)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线等分平行四边形的面积.3.两条平行线间的距离:(1)定义:两条平行线中,,叫做这两条平行线间的距离.(2)两平行线间的距离.4.平行四边形的面积:(1)如图①,.(2)同底(等底)同高(等高)的平行四边形面积相等.如图②,有公共边BC,则.(3)平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形,如图有:5.平行四边形的判别方法:平行四边形的判定的方法有从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角__________的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形__________是平行四边形。
6.平行四边形知识的运用:(1)直接运用平行四边形特征解决某些问题,如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍分等.(2)识别一个四边形为平行四边形,从而得到两直线平行.(3)先识别—个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题.二、基础巩固1、平行四边形一条对角线分一个内角为25°和35°,则四个内角分别为__________.2、□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是__________.3、平行四边形周长是40cm,则每条对角线长不能超过__________cm.4、以不共线三点A、B、C为顶点的平行四边形共有________个.5、□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=___,BC=__ .6、如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=__________;AB与CD的距离为__________;AD与BC的距离为__________;∠D=__________.7、如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有________个平行四边形.8、如图,在□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F 处,若△FDE的周长为8,△FCB的周长为22,则□ABCD 的周长为___________.9、如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC____S△BNC.(填大小)10、如图,若E是□ABCD的AD边上一点,F是BE的中点,则有( ).(A)S□ABCD=5S△BCF(B)S□ABCD=4S△BCF(C)S□ABCD=3S△BCF(D)S□ABCD=2S△BCF11、能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3 (C)1∶2∶2∶1 (D)1∶2∶1∶2二、重点突破(一)平行四边形的性质1、如图6,在平行四边形ABCD中,DB=DC、,CE BD于E,则.2、在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC和DA的三等分点,已知四边形A4 B2 C4 D2的面积为1,则平行四边形ABCD面积为.3、如图,已知平分,,,则.4、平行四边形的周长为20cm ,AE⊥BC于E,AF⊥CD于F,AE=2 cm,AF=3 cm,求平行四边形ABCD的面积.5、如图,△ABC是边长为1的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB交AC、BC于点E、F,作GH∥BC交AB、AC于点G、H,作MN∥AC交AB、BC于M、N,请你猜想EF+GH+MN的值是多少?其值是否随点P位置的改变而变化?并证明你的结论.(二)平行四边形的判定★1.两组对边分别平行的四边形为平行四边形如图,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MQNP 是平行四边形吗?为什么?★2.两组对边分别相等的四边形为平行四边形如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM , BL =DN ,则四边形KLMN 为平行四边形吗?说明理由.★3.一组对边平行且相对的四边形为平行四边形如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE=21AB ,CF=21CD ,试证明AECF 为平行四边形.★4.两组对角分别相等的四边形为平行四边形 如图,在平行四边形ABCD 中,∠ABC 的平分线交CD 于点E,∠ADC 的平分线交AB 于点F.试证明四边形DFBE 为平行四边形.★5.对角线互相平分的四边形为平行四边形如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.三、综合提升【例1】已知:如图,在□ABCD中,E、F分别在AD、BC上,且AE=CF,AF、BE交于G,CE、DF交于H.求证:EF与GH互相平分.【变式题组】如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.【例2】如图:在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点.⑴若点D与A、B、C三点构成平行四边形,请写出所有符合条件的点D的坐标;⑵选择⑴中符合条件的一点D,求直线BD的解析式.培优升级检测1、(成都)已知四边形ABCD,有以下四个条件:①AB∥CD②AB=CD③BC∥AD④BC=AD从这四个条件中任选两个,能使四边形ABCD为平行四边形的选法种数有()A.6种B.5种C.4种D.3种2、某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫6得颜色的花,如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等3、(陕西)如图,l1∥l2BE∥CF, BA⊥l1DC⊥l2,下面四个结论中①AB=DC; ②BE=CF③S△ADE=S△DCF④S□ABCD=S□BCFE,其中正确的有()A.4个B .3个C.2个D .1个4、已知,如图,△ABC是等边三角形,D是AB边上的点,将线段DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC,AE.⑴求证:△ADE≌△DFC⑵过点E作EH∥DC交DB于点G ,交BC于点H,连接AH,求∠AHE的度数.5、已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.6、如图,如图,△ABC中,AB=3,AC=4,BC=5,△ABD ,△ACE△BCF都是等边三角形,试证明四边形AEFD 为平行四边形并求四边形AEFD的面积.。
平行四边形及其性质讲义讲义
![平行四边形及其性质讲义讲义](https://img.taocdn.com/s3/m/ec5b97d2bed5b9f3f80f1c16.png)
辅导讲义课题平行四边形及其性质教学目标1.1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.2理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.重点、难点1平行四边形对角线互相平分的性质,以及性质的应用.2综合运用平行四边形的性质进行有关的论证和计算.3平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.考点及考试要求平行四边形性质, 有关的论证和计算教学容一,基础知识(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角(3)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(4)、平行四边形的对边相等、对角相等.证明结论:已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明:六、随堂练习1.填空:(1)在ABCD中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD=cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.1.(选择)在下列图形的性质中,平行四边形不一定具有的是().(A)对角相等(B)对角互补(C)邻角互补(D)角和是︒3602.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.(2)平行四边形的性质:①具有一般四边形的性质(角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴ AB=CD(平行四边形对边相等).∴AB—AE=CD—CF.即BE=FD.例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.六、随堂练习1.在平行四边形中,长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的长是____ ___cm . 3.ABCD 一角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的长是_____cm .七、作业1.判断对错(1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的围是__ ______.3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的长是 .4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积.课后练习平行四边形一、选择题 1、如图,在□ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2,则平行四边形ABCD 的长是 .GFEDCBA1题图 2题图 3题图2、如图,在□ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连结CG 、CF ,则以下四个结论一定正确的是( )①△CDF ≌△EBC ②∠CDF =∠EAF ③△ECF 是等边三角形 ④CG ⊥AE A .只有①② B .只有①②③ C .只有③④ D .①②③④3、如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的长为( )A.8B.9.5C.10D.11.54、如图,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的长为 A .6 B .9 C .12D .154题图 5题图 6题图5、如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A .AB CD =B .AD BC = C .AB BC =D .AC BD =6、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...的是 A .S △ADF =2S △EBF B.BF=21DF C.四边形AECD 是等腰梯形 D. ∠AEC=∠ADC AB CD7、已知四边形ABCD,有以下四个条件:①//AB CD;②AB CD=;③//BC AD;④BC AD=.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()(A)6种(B)5种(C)4种(D)3种8、点A、B、C是平面不在同一条直线上的三点,点D是平面任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面符合这样条件的点D有()A.1个B.2个C.3个D.4个9、下列条件中,能判定四边形是平行四边形的是().A、一组对边相等,另一组对边平行;C、一组对角相等,一组邻角互补;B、一组对边平行,一组对角互补;D、一组对角互补,另一组对角相等。
八年级数学四边形讲义完整版(共6讲)
![八年级数学四边形讲义完整版(共6讲)](https://img.taocdn.com/s3/m/401357c25022aaea998f0fc4.png)
八年级数学四边形讲义全面完整版(全六讲)第一讲平行四边形的性质一、【基础知识精讲】1.平行四边形的定义:两组对边分别平行的四边形是平行四边形.用符号“”表示.2.平行四边形的性质:(1) 平行四边形的对边平行且相等.(2) 平行四边形的对角相等,邻角互补。
(3) 平行四边形的对角线互相平分.3.两条平行线间的距离:(1) 定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2) 两平行线间的距离处处相等.(3)平行线间的平行线段相等.4.平行四边形的面积:(1) 如图12-1-2①,.((2)同底(等底)同高(等高)的平行四边形面积相等.如图12-1-2②,有公共边BC,则.二、【例题精讲】例1(1)已知中,∠A比∠B小20°,那么∠C的度数是_______.(2)在中,周长为28,两邻边之比为3︰4,则各边长为_______ _.(3)一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x的取值范围为__________ .(4)平行四边形邻边长是4 cm和8cm,较短边上的高是5 cm,则另一边上的高是____________.例2.已知:在□ABCD中,过AC与BD的交点O作直线,与BA、DC的两条延长线交于M、N两点,求证:OM=ON.例3.如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.【练一练】1. 已知□ABCD中,∠B=70°,则∠A=_____,∠C=_____,∠D=______.2.在ABCD中:①∠A: ∠B=5:4,则∠A=_______;②∠A+∠C=200°,则∠A=______,∠B=______;3.在□ABCD中,AB=3cm,BC=4cm,则□ABCD的周长等于_______.4. 若平行四边形周长为54,两邻边之比为4:5,则这两边长度分别______________;5. 已知ABCD对角线交点为O,AC=24mm,BD=26mm, 若AD=22mm,则△OBC的周长为_________;【探究与拓展】例1、如图,已知ABCD中,若AD=2AB,AB=BF=AE,则EC与FD垂直,试说明其理由。
(完整版)经典特殊的平行四边形讲义+家教专用
![(完整版)经典特殊的平行四边形讲义+家教专用](https://img.taocdn.com/s3/m/aeb2b68282d049649b6648d7c1c708a1284a0afb.png)
学科教师指导讲义教课内容一、知识回首矩形、菱形、正方形1、菱形的性质:①菱形的四条边都相等.②菱形的对角线相互垂直,而且每条对角线均分一组对角.③拥有平行四边形全部性质.2.菱形的判断:①对角线相互垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.3.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形拥有平行四边形的全部性质.4.矩形的判断:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.5.正方形的性质:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,而且相互垂直均分,每条对角线均分一组对角.6.正方形的判断:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线相互垂直的矩形是正方形.课前练习 : 1 .已知平行四边形ABCD的周长是28cm, CD-AD=2cm,那么 AB=______cm, BC=______cm.2.菱形的两条对角线分别是6cm, 8cm,则菱形的边长为_____,一组对边的距离为_____3.在菱形ABCD中,∠ ADC=120°,则 BD: AC等于 ________4.已知正方形的边长为a,则正方形内随意一点到四边的距离之和为_____.5.矩形 ABCD 被两条对角线分红的四个小三角形的周长之和是86cm,对角线长是13cm,则矩形ABCD 的周长是6.如图,将一张等腰直角三角形纸片沿中位线剪开,能够拼出不一样形状的四边形,请写出此中两个不一样的四边形的名称:.7.如图,有一张面积为 1 的正方形纸片ABCD,M,N分别是AD,BC边的中点,MAD将 C 点折叠至 MN 上,落在 P 点的地点,折痕为BQ,连接PQ,则PQQ8.如图,梯形ABCD中,AD∥BC,AB CD AD1,B60o,直线 MN 为梯形 ABCD 的对称轴, P 为 MN 上一点,那么PC PD 的最小值为BNC.9.如图, OBCD是边长为 1 的正方形,∠ BOx=60°,则点 C 的坐标为 ________10.如图,把正方形 ABCD 沿着对角线 AC 的方向挪动到正方形 A B C D 的地点,它们的重叠部分的面积是正方形ABCD 面积的一半,若AC =2,则正方形挪动的距离AA 是A MDD DA A C CB CNB B第 3题图二、例题解说D CO矩形A B例 1.如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使 C 落在 C’处, BC’边交 AD 于 E, AD=4 , CD=2( 1)求 AE 的长( 2)△ BED 的面积C’A E DB C 稳固练习:1.如图,矩形ABCD中, AD=9, AB=3,将其折叠,使其点 D 与点 B 重合,折痕为EF求 DE和 EF的长。
八年级平行四边形讲义
![八年级平行四边形讲义](https://img.taocdn.com/s3/m/2a8d0756e009581b6ad9eb82.png)
平行四边形1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
2、平面上以不在同一直线上的三个点为顶点作平行四边形,最多能作( 3)个。
3.如图在平行四边形ABCD中,AC,BD相交于点O,下列结论中正确的个数有( 1,2,4)结论:①OA=OC;②∠BAD=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°4、平行四边形的一条对角线与边垂直,且此对角线为另一边的一半,则此平行四边形两邻角的度数之比为(1∶5 )题型一、面积问题2.如图1,一个平行四边形被分成面积为4321,,SSSS,的四个平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,41SS⋅与32SS⋅的大小关系为(= )。
题型二、周长问题1.平行四边形ABCD的周长为40cm,两邻边AB、AC之比为2:3,则AB=___8____,BC=____12____.2.四边形ABCD是平行四边形,∠BAC=90°,AB=3,AC=4, AD的长是 5 。
3,平行四边形ABCD的周长为50,其中AB=15,∠ABC=60°,那么平行四边形面积是753。
4、平行四边形ABCD的周长为16cm,AC,BD相交于点O,OE⊥AC于O,则△DCE的周长为______题型三、角的问题1.平行四边形ABCD中,AE是∠DAB的平分交CD于E, ∠DEA=20°,则∠C=__40 __,∠B_=140____.2、如图(4),在△ABC中,AB=AC,DE∥AC,DF∥AB,则下列各式中,不成立的是()A、DF=CF,DE=BE;B、DF=AE,DE=AF;C、DF-DE=DB;D、DE+DF=AB;3、如图(5),在平行四边形ABCD中,E,F分别是平行四边形ABCD两对边的中点,则图中平行四边形的个数是()A、4; B、6; C、7; D、8;平行四边形判 定性 质两组对边分别平行两组对边分别相等一组对边平行且相等两组对角分别相等对角线互相平分12、ABCD中,∠A:∠B:∠C:∠D的值可能是()。
八年级数学上册一对一培优讲义(平行四边形)
![八年级数学上册一对一培优讲义(平行四边形)](https://img.taocdn.com/s3/m/126ea38b26fff705cc170aa3.png)
八年级数学一对一个性化辅导教案学生学校年级次数第次科目数学教师日期时段课题平行四边形教学重点1、平行四边形2、常考题型及相关的方法讲解教学难点1、平行四边形2、常考题型及相关的方法讲解教学目标1、平行四边形2、常考题型及相关的方法讲解教学步骤及教学内容教学过程:一、教学衔接(课前环节)1、对学生上节课的错题回顾讲解2、回顾上节课的知识点3、对本堂课要讲的教学内容进行说明二、教学内容1、平行四边形2、常考题型及相关的方法讲解3、教学辅助练习(或探究训练)4、知识总结5、知识的延伸和拓展布置作业:课后作业(详见讲义)管理人员签字:日期:年月日作业布置1、学生上次作业评价:○好○较好○一般○差备注:2、本次课后作业:课堂小结本堂课通过对平行四边形及相关的方法讲解,使学生对这些内容掌握更好。
学生签字:日期:年月日平行四边形要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.类型一、平行四边形的性质1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为∠DAB、∠CBA的平分线.求证:DF=EC.举一反三:【变式】如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.类型二、平行四边形的判定2、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.举一反三:【变式】如图所示,在ABCD中,E、F分别为BC、AD上的点,且BE=DF,求证:∠AEC=∠AFC.类型三、平行四边形与面积有关的计算3、如图所示,在ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=60°,BE=2cm,DF=3cm,求AB,BC的长及ABCD的面积.举一反三:【变式】如图,已知ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,求该平行四边形的面积.类型四、三角形的中位线4、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【巩固练习】1. 如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是().A.AC⊥BDB.AB=CDC. BO=ODD.∠BAD=∠BCD2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ). A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图所示,在ABCD中,AC与BD相交于点O,E是边BC的中点,AB=4,则OE的长是( ).A.2 B.2 C.1 D.1 25. 平行四边形的一边长是10cm,那么它的两条对角线的长可以是().A.4cm和6cmB.6cm和8cmC.8cm和10cmD.10cm和12cm6. 如图,ABCD中,∠DAB的平分线AE交CD于E,AB=5,BC=3,则EC的长().A.1 B.1.5 C.2 D.37. 如图所示,在ABCD中,对角线相交于点O,已知AB=24 cm,BC=18 cm,△AOB的周长为54 cm,则△AOD的周长为________cm.cm.8. 已知ABCD,如图所示,AB=8cm,BC=10cm,∠B=30°,ABCD的面积为____29.在ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.10. 在ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则ABCD的面积为______.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点AD=BC,∠PEF=18°,则∠PFE的度数是.三.解答题13. 已知:如图,E、F是ABCD的对角线AC上的两点,AE=CF.求证:四边形BEDF是平行四边形.14.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.。
中考数学复习《平行四边形》专用讲义
![中考数学复习《平行四边形》专用讲义](https://img.taocdn.com/s3/m/35ce6c95b84ae45c3a358cd1.png)
2020 年中考数学复习《平行四边形》专用讲义一.知识点梳理平行四边形矩形菱形正方形边 对边平行且相等对边平行且相 对边平行,四边相等对边平行,四边相等等角 对角相等四个角都是直 对角相等四个角都是直角性角质 对相互垂直均分,且每角 相互均分相互均分且相相互垂直均分且相等 , 每条对角线均分一组对等条对角线均分一组对角角线1、有三个角1、四边相等的四边1、两组对边分别平行; 是直角的四边 1、有一个角是直角的菱形;2、两组对边分别相等; 形;形;2、对角线相互垂直3、一组对边平行且相 2、有一个角 2、对角线相等的菱形;判断的平行四边形;等;是直角的平行 3、有一组邻边相等的矩3、有一组邻边相等4、两组对角分别相等; 四边形;形;的平行四边形。
5、两条对角线相互平 3、对角线相 4、对角线相互垂直的矩 4、每条对角线均分 分.等的平行四边 形;一组对角的四边形。
形.对称 不过中心对称图形既是轴对称图形,又是中心对称图形性面积S= ahS=abS=1d 1 d 2S= a 22二 . 诊疗练习1. 依据条件判断它是什么图形,并在括号内填出,在四边形 ABCD 中,对角线AC 和 BD 订交于点 O :(1) AB = CD,AD = BC(平行四边形 ) (2) ∠ A =∠ B =∠ C =90°( 矩形 ) (3)AB =BC ,四边形 ABCD 是平行四边形 (菱形) (4)OA =OC = OB =OD , AC ⊥BD ( 正方形) (5) AB = CD, ∠ A =∠ C(? )2. 菱形的两条对角线长分别是6 厘米和 8 厘米,则菱形的边长为 5厘米。
3. 按序连结矩形 ABCD 各边中点所成的四边形是菱形。
4. 若正方形 ABCD 的对角线长 10 厘米,那么它的面积是50平方厘米。
15.平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
著名机构初中数学培优讲义平行四边形.第01讲(A级).教师版
![著名机构初中数学培优讲义平行四边形.第01讲(A级).教师版](https://img.taocdn.com/s3/m/fa7daeeb25c52cc58bd6be87.png)
内容基本要求略高要求较高要求平行四边形 会识别平行四边形掌握平行四边形的概念、判定和性质,会用平行四边形的性质及判定解决简单问题 会运用平行四边形的性质及判定解决有关问题一、平行四边形的性质平行四边形的边:平行四边形的对边平行且对边相等. 平行四边形的角:平行四边形的对角相等,邻角互补. 平行四边形的对角线:平行四边形的对角线互相平分. 平行四边形的对称性:平行四边形是中心对称图形. 平行四边形的周长:一组邻边之和的2倍. 平行四边形的面积:底乘以高.二、平行四边形的判定两组对边分别平行的四边形是平行四边形. 两组对边分别相等的四边形是平行四边形. 两条对角线互相平分的四边形是平行四边形. 两组对角分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形.一、平行四边形的性质【例1】 如图所示,已知四边形ABCD ,从⑴AB DC ∥;⑵AB DC =;⑶AD BC ∥;⑷AD BC =;⑸A C ∠=∠;⑹B D ∠=∠中取两个条件加以组合,能推出四边形ABCD 是平行四边形的有哪几种情形?请写出具体组合。
知识点睛例题精讲中考要求平行四边形BC【解析】 本题6个条件中任取2个,共有15种组合情形,其中能证明是平行四边形的有9种情况: ① ⑴,⑶;② ⑵,⑷;③ ⑸,⑹;④ ⑴,⑵;⑤ ⑶,⑷;⑥ ⑴,⑸;⑦ ⑴,⑹;⑧ ⑶,⑸;⑨ ⑶,⑹. 【答案】① ⑴,⑶;② ⑵,⑷;③ ⑸,⑹;④ ⑴,⑵;⑤ ⑶,⑷;⑥ ⑴,⑸;⑦ ⑴,⑹;⑧ ⑶,⑸;⑨ ⑶,⑹.【例2】 如图,在平行四边形ABCD 中,EF BC GH AB EF ∥,∥,与GH 相交于点O ,图中共有 个平行四边形O HGF EDC BA【解析】省略【答案】9个【例3】 以三角形的三个顶点作平行四边形,最多可以作( )A .2个B .3个C .4个D .5个 【解析】省略 【答案】B【例4】 如图,在平行四边ABCD 中,AC 、BD 为对角线,6BC =,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .24(1)DB【解析】利用平行线的性质及割补法可得C .【答案】C【例5】 如图,在平行四边ABCD 中,已知8cm AD =,6cm AB =,DE 平分ADC ∠交BC 边于点E ,则BE 等于 cm .E CB【解析】过E 作EF AB ∥交AD 于点F ,由于DE 平分ADC ∠,有ADE EDC CED FED ∠=∠=∠=∠即,6EF FD EC AB ====,即2BE AF AD AF ==-=FE DCB A【答案】见解析【例6】 如图,在平形四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A ∠=︒,则BCE ∠= .EDCBA【解析】过A 作AF CE ∥交CD 于点F ,可得四边形AECF 为矩形,从而有(BCE AFD HL ∆∆≌)则1259035o o o BCE FAD ∠=∠=-=【答案】见解析【例7】 如图,平行四边形ABCD 的周长是28cm ,ABC △的周长是22cm ,则AC 的长为 .DCB A【解析】略 【答案】8cm【例8】 如图,平行四边形ABCD 中,35AB BC AC ==,,的垂直平分线交AD 于E ,则CDE △的周长是EDCBA【解析】由中垂线定理可知AE =EC ,则CDE △的周长为8AD CD += 【答案】8【例9】 M 为平行四边形ABCD 两个角平分线AM 和BM 的交点,AM 3=,4BM =,平行四边形ABCD 的周长为18,则BC = .MDCBA【解析】由于AM 、BM 均为角平分线,故90o AMB ∠=,则由勾股定理可得AB =5即可得BC =4【答案】4【例10】 平行四边形的两个邻边得长分别为16和20,两条长边间的距离为8,则短边间的距离为 . 【解析】由平行四边形面积公式即可得【答案】10【例11】 如图,在平行四边形ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,若4,6AE AF ==,平行四边形的周长为40,则平行四边形ABCD 的面积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形培优题周长面积类以不在同一直线上的三个点为顶点作平行四边形,最多能作( )A .1B .2C .3D .4如图,△ABC 为等边三角形,P 是△ABC 内任意一点PD AB PE BC PF AC P P P ,, ,若ABC V 的周长为12,则PD PE PF ++= .如图:A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点…这样延续下去.已知△ABC 的周长是1,△A 1B 1C 1的周长是L 1,△ABC 的周长是L 2…A n B n C n 的周长是L n ,则L n = _________ .如图,在△ABC 中,AB=AC .M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连接DN 、EM .若AB=13cm ,BC=10cm ,DE=5cm ,则图中阴影部分的面积为 cm 2.如图,一个平行四边形被分成面积为S 1,S 2,S 3,S 4的四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,S 1·S 4与S 2·S 3的大小关系为( )A.S 1·S 4>S 2·S 3B. S 1·S 4<S 2·S 3C. S 1·S 4=S 2·S 3D.不能确定如图,点P是□ABCD的对角线BD上任意一点,过P作EF∥BC,分别交AB、CD于E、F,过P作HG∥AB,分别交AD、BC于G、H,请问四边形AEPG和PHCF的面积相等吗?并说明理由.如图,设P为平行四边形ABCD内的一点,△PAB,△PBC,△PDC,△PDA的面积分别记为S1,S2,S3,S4,则可以得出何结论?平行四边形+角平分线(含垂直)如图,在▱ABCD中,∠A=65°,DE⊥AB,垂足为点E,点F为边AD上的中点,连接FE,则∠AFE的度数为()A.40° B.50° C.60° D.70°如图,在▱ABCD中,AE平分∠BAD交边CD于点E.若AD=3,AB=4,则EC长为()A .3B .2C .1D .0.5如图,▱ABCD 的对角线AC ,BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC=60°,12AB BC =,连接OE .下列结论:①∠CAD=30°;②•ABCD S AB AC =Y ;③OB=AB ;④∠COD=60°,成立的个数有( )A .1个B .2个C .3个D .4个如图,在平行四边形ABCD 中,AB=10,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 恰好为DC 的中点,DG ⊥AE ,垂足为G .若DG=3,则AE 的边长为( )A .B .4C .8D .16如图,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 的中点,CE ⊥AB 于E ,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE 的长;(2)当60°<α<90°时,是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC 又是怎样的形状.(直接写出结论不必证明)(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?即:FG= AB+BC+AC)(直接写出结果即可)(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG 与△ABC三边之间数量关系是平行四边形的综合题已知:如图,90,BAC AD BC ∠=︒⊥ 于D ,12,EF BC ∠=∠⊥于F. 求证:AF 与EG 互相平分如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连接DE 并延长至点F ,使EF =AE ,连接AF 、BE 和CF .(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC ,求四边形ABEF 的面积.已知,如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2.(1)若CF=2,AE=3,求BE 的长;(2)求证:12CEG AGE ∠=∠.如图,已知▱ABCD 中,DE ⊥BC 于点E ,DH ⊥AB 于点H ,AF 平分∠BAD ,分别交DC 、DE 、DH 于点F 、G 、M ,且DE=AD .(1)求证:△ADG ≌△FDM .(2)猜想AB 与DG+CE 之间有何数量关系,并证明你的猜想.已知平行四边形ABCD ,对角线AC 和BD 相交于点O ,点P 在边AD 上,过点P 作PE ⊥AC ,PF ⊥BD ,垂足分别为E 、F ,PE=PF .(1)如图,若1PE EO == ,求∠EPF 的度数;(2)若点P 是AD 的中点,点F 是DO 的中点,4BF BC =+ ,求BC 的长.如图,▱ABCD 中,E 是BC 边的中点,连接AE ,F 为CD 边上一点,且满足2DFA BAE ∠=∠ .(1)若∠D=105°,∠DAF=35°.求∠FAE 的度数;(2)求证:AF=CD+CF .已知如图,四边形ABCD 为平行四边形,AD=a ,AC 为对角线,BM ∥AC ,过点D 作 DE ∥CM ,交AC 的延长线于F ,交BM 的延长线于E .(1)求证:△ADF ≌△BCM ;(2)若AC=2CF ,∠ADC=60°,AC ⊥DC ,求四边形ABED 的面积(用含a 的代数式表示).平行四边形的几何变换已知:如图,ABC V 是等边三角形,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边ADE V 。
求证:(1)ACD CBF ≅V V(2)四边形CDEF 为平行四边形如图,在▱ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE ,90FAB EAD ∠=∠=︒ ,连接AC 、EF .在图中找一个与△FAE 全等的三角形,并加以证明.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF ∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).如图,在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF,点P为直线CD上一点(不与点C重合).(1)在图1中画图探究:当点P在CD延长线上时,连结EP并把EP绕点E逆时针旋转90°得到线段EQ.作直线QF交直线CD于H,求证:QF⊥CD.(2)探究:结合(1)中的画图步骤,分析线段QH、PH与CE之间是否存在一种特定的数量关系?请在下面的空格中写出你的结论;若存在,直接填写这个关系式.①当点P在CD延长线上且位于H点右边时,;②当点P在边CD上时,.(3)若AD=2AB=6,AE=1,连接DF,过P、F两点作⊙M,使⊙M同时与直线CD、DF相切,求⊙M的半径是多少?三角形中位线如图,在△ABC中,D、E、F分别为BC、AC、AB的中点,AH△BC于点H,FD=8cm,则HE的值为()A.20cm B.16cm C.12cm D.8cm(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD 中,对角线交点为O ,1111A B C D 、、、分别是OA 、OB 、OC 、OD 的中点,2222A B C D 、、、分别是1111OA OB OC OD 、、、的中点,…,以此类推.若▱ABCD 的周长为1,直接用算式表示各四边形的周长之和?(3)借助图形3反映的规律,猜猜C 可能是多少?观察探究,完成证明和填空.已知:△ABC 是任意三角形.(1) 如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点,求证:∠MPN=∠A .(2) 如图2所示,点M 、N 分别在边AB 、AC 上,且11,33AM AN AB AC == ,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N+∠MP 2N=∠A 是否正确?请说明你的理由.(3) 如图3所示,点M 、N 分别在边AB 、AC 上,且11,20102010AM AN AB AC ==,P 1、P 2、…、P 2009是边BC 的2010等分点,则∠MP 1N+∠MP 2N+…+∠MP 2009N= .(请直接将该小问的答案写在横线上)平行四边形动点问题如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;60cm?(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于2(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.在平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,点E为射线BC上的一动点(不与点B、C重合),过点E作EF⊥AB,FE分别交线段AB、射线DC于点F、G.(1)如图,当点E在线段BC上时,①求证:△BEF∽△CEG;②如设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并写出自变量的取值范围;(2)点E在射线BC上运动时,是否存在S△AFD:S△DEC=3:2?如存在,请求出BE的长;如不存在,请说明理由.。