2020新人教A版高中数学必修一2.1.2指数函数及其性质一课时作业

合集下载

2.1.2__指数函数及其性质(第一课时)

2.1.2__指数函数及其性质(第一课时)

2.1.2 指数函数及其性质(第一课时)1、若函数f(x)=3x +3-x 与g(x)=3x -3-x 的定义域为R ,则( )A .f(x)与g(x)均为偶函数B .f(x)为偶函数,g(x)为奇函数C .f(x)与g(x)均为奇函数D .f(x)为奇函数,g(x)为偶函数2、已知函数f(x)=⎩⎨⎧ 2x+1,x <1x 2+ax ,x≥1,若f[f(0)]=4a ,则实数a 等于( )A.12B.45 C .2 D .9 3.不论a 取何正实数,函数f(x)=a x +1-2恒过点( )A .(-1,-1)B .(-1,0)C .(0,-1)D .(-1,-3)4、使不等式23x -1>2成立的x 的取值为( )A .(23,+∞)B .(1,+∞)C .(13,+∞)D .(-13,+∞)5、为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x 的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6、在同一平面直角坐标系中,函数f(x)=ax 与g(x)=a x (a >0且a≠1)的图象可能是()7、当x>0时,指数函数f(x)=(a -1)x <1恒成立,则实数a 的取值范围是( )A .a>2B .1<a<2C .a>1D .a ∈R8、函数y =a x (a>0且a≠1)在[0,1]上的最大值与最小值的和为3,则a 的值为( )A.12 B .2 C .4 D.149、函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .A <1C .0<a <1D .a≠110、函数y =-2-x 的图象一定过第________象限.11、方程4x +1-4=0的解是x =________.12、函数y =a 2x +b +1(a >0,且a≠1)的图象恒过定点(1,2),则b =________.13、方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.14、函数y =(12)|x|的图象有什么特征?你能根据图象指出其值域和单调区间吗?15、若关于x 的方程a x =3m -2(a >0且a≠1)有负根,求实数m 的取值范围.16、已知-1≤x≤2,求函数f(x)=3+2·3x +1-9x的值域.17、 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=x 2的图象的关系,⑴y =12+x 与y=22+x . ⑵y =12-x 与y=22-x .18、 求下列函数的定义域、值域(1)110.3x y -=(2)y =19、 求下列函数的定义域与值域(1)412-=x y ;(2)||2()3x y =;(3)1241++=+x x y ;20、用函数单调性定义证明a >1时,y = a x 是增函数.。

高中数学必修一第二章2.1.2指数函数及其性质习题(含答案)

高中数学必修一第二章2.1.2指数函数及其性质习题(含答案)

2.1.2 指数函数及其性质知识清单1.指数函数的概念一般地,______________________叫做指数函数,其中x 是自变量,函数的定义域是____.2.指数函数y =a x (a >0,且a ≠1)的图象和性质a >1 0<a<1图象定义域 R 值域 (0,+∞)性 质 过定点过点______,即x =____时,y =____函数值 的变化 当x >0时,______; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性是R 上的________是R 上的________基础练习一、填空题1.下列以x 为自变量的函数中,是指数函数的是______.(填序号)①y =(-4)x ;②y =πx ;③y =-4x ;④y =a x +2(a >0且a ≠1). 2.函数f (x )=(a 2-3a +3)a x 是指数函数,则a 的值为________. 3.函数y =a |x |(a >1)的图象是________.(填序号)4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x,那么f (2)=________.5.如图是指数函数 ①y =a x ; ②y =b x ; ③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是________.6.函数y =(12)x -2的图象必过第________象限.7.函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为____.8.若函数y =a x -(b -1)(a >0,a ≠1)的图象不经过第二象限,则a ,b 需满足的条件为________.9.函数y =8-23-x (x ≥0)的值域是________. 二、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7; (2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m 3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期.(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图象是________.(填序号)13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ). (1)求f (1)的值;(2)若f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).能力提升一、填空题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则P 、Q 的关系为________. 2.函数y =16-4x 的值域是________.3.函数y =a 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是________.4.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则下列命题正确的是________.(填序号)①f (x )与g (x )均为偶函数;②f (x )为偶函数,g (x )为奇函数; ③f (x )与g (x )均为奇函数;④f (x )为奇函数,g (x )为偶函数.5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的解析式为________. 6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是________.7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.9.函数y =2212x x-+⎛⎫ ⎪⎝⎭的单调递增区间是________.二、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性; (2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12].(1)设t =2x ,求t 的取值范围; (2)求函数f (x )的值域.12.函数y =2x -x 2的图象大致是________.(填序号)13.已知函数f (x )=2x-12x +1.(1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.知识清单1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 基础练习 1.②解析 ①中-4<0,不满足指数函数底数的要求,③中因有负号,也不是指数函数,④中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数. 2.2解析 由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1,解得a =2. 3.②解析 该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.4.-19解析 当x >0时,-x <0,∴f (-x )=3-x ,即-f (x )=(13)x ,∴f (x )=-(13)x .因此有f (2)=-(13)2=-19.5.b <a <1<d <c解析 作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系. 6.二、三、四解析 函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x -2的图象,所以观察y =(12)x -2的图象可知.7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8)解析 y =8-23-x =8-23·2-x =8-8·(12)x=8[1-(12)x ].∵x ≥0,∴0<(12)x ≤1,∴-1≤-(12)x <0,从而有0≤1-(12)x <1,因此0≤y <8.10.解 (1)考察函数y =0.2x . 因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数.又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考察函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数.又因为13<23,所以1314⎛⎫ ⎪⎝⎭>2314⎛⎫ ⎪⎝⎭1.(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50 000×28=12 800 000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50 000×2-1=25 000(m 3).(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50 000×2n ,图象如图所示.(5)因为对任意的整数n,2n >0,所以V =50 000×2n >0,因此曲线不可能与横轴相交. 12.①解析 由题意f (x )=1⊕2x=⎩⎪⎨⎪⎧1, x ≥0;2x , x <0.13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0.(2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t ,且s >t ,又f (12)>0,∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t ]=sf (12)-tf (12)=(s -t )f (12)>0,∴f (x 1)>f (x 2).故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1,当a =0时,x ∈∅,当a >0时,0<x <1a ,当a <0时,1a<x <0,不合题意.故x ∈∅.综上:a ≤0时,x ∈∅;a >0时,不等式解集为{x |0<x <1a}.能力提升 1.Q P解析 因为P ={y |y ≥0},Q ={y |y >0},所以Q P . 2.[0,4)解析 ∵4x >0,∴0≤16-4x <16, ∴16-4x ∈[0,4). 3.3解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 4.②解析 f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ).5.f (x )=-e -x -2解析 ∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2. 6.c <a <b解析 ∵y =(35)x 是减函数,-13>-12,∴b >a >1.又0<c <1,∴c <a <b . 7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半. 8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知x ∈(-∞,-1). 9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得()12g x<()22g x ,即f (x 1)<f (x 2), 所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2, 则u 在区间[1,+∞)上为增函数.根据(1)可知y =2212x x --在[1,+∞)上为增函数. 同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增,∴t ∈[22,2].(2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增,比较得g (22)<g (2). ∴f (x )min =g (1)=2, f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22]. 12.①解析 当x →-∞时,2x →0,所以y =2x -x 2→-∞, 所以排除③、④.当x =3时,y =-1,所以排除②.13.(1)解 ∵f (0)=20-120+1=0,∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517.(2)证明 设x 1,x 2∈R 且x 1<x 2, 则22x>12x>0,22x-12x>0,∴f (x 2)-f (x 1)=212121212121x x x x ---++ =()()()21212222121x x x x -++>0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.。

(人教a版)数学必修一课时训练:2.1.2(第1课时)指数函数的图象及性质(含答案)

(人教a版)数学必修一课时训练:2.1.2(第1课时)指数函数的图象及性质(含答案)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升卷(十六)指数函数的图象及性质(45分钟 100分)一、选择题(每小题6分,共30分)1.若函数y=(2a-3)x是指数函数,则a的取值范围是( )A.a>B.a>,且a≠2C.a<D.a≠22.指数函数y=f(x)的图象经过点(-2,),那么f(4)·f(2)等于( )A.8B.16C.32D.643.(2013·黄冈高一检测)已知集合M={y|y=-x2+2,x∈R},集合M)∩N=( )N={y|y=2x,0≤x≤2},则(RA.[1,2]B.(2,4]C.[1,2)D.[2,4)4.当x>0时,指数函数f(x)=(a-1)x<1恒成立,则实数a的取值范围是( )A.a>2B.1<a<2C.a>1D.a∈R5.(2012·四川高考)函数y=a x-(a>0,a≠1)的图象可能是( )二、填空题(每小题8分,共24分)6.已知函数f(x)=则f(2)+f(-2)= .7.(2012·山东高考改编)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x2在[0,+∞)上是增函数,则a= .8.(2013·长沙高一检测)关于下列说法:(1)若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1}.(2)若函数y=的定义域是{x|x≥2},则它的值域是{y|y≤}.(3)若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|0<x≤2}.其中不正确的说法的序号是.三、解答题(9题,10题14分,11题18分)9.已知函数f(x)=a x+b(a>0,且a≠1).若f(x)的图象如图所示,求a,b 的值.10.(2013·长春高一检测)已知函数f(x)=a x-1(x≥0)的图象经过点(2,),其中a>0且a≠1.(1)求a的值.(2)求函数y=f(x)(x≥0)的值域.11.(能力挑战题)已知函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=.(1)求a的值.(2)证明f(x)+f(1-x)=1.(3)求f()+f()+f()+…+f()的值.答案解析1.【解析】选B.由题意得2a-3>0,且2a-3≠1,所以a>,且a≠2.2.【解析】选D.设f(x)=a x(a>0且a≠1),由已知得=a-2,a2=4,所以a=2,于是f(x)=2x,所以f(4)·f(2)=24·22=26=64.3.【解析】选B.由题可知M=(-∞,2],N=[1,4],∴R M=(2,+∞),(RM)∩N=(2,4].【变式备选】若集合M={y|y=2-x},P={y|y=},则M∩P等于( ) A.{y|y>1} B.{y|y≥1}C.{y|y>0}D.{y|y≥0}【解析】选C.y=2-x的值域为{y|y>0},y=的值域为{y|y≥0},因此,其交集为{y|y>0}.故选C.4.【解题指南】结合指数函数的图象,若x>0时,(a-1)x<1恒成立,则必有0<a-1<1,进而求解.【解析】选B.∵x>0时,(a-1)x<1恒成立,∴0<a-1<1,∴1<a<2.5.【解析】选D.当a>1时,y=a x-在R上为增函数,且与y轴的交点为(0,1-),又0<1-<1,故排除A,B.当0<a<1时,y=a x-在R上为减函数,且与y轴的交点为(0,1-),又1-<0,故选D.6.【解析】f(2)+f(-2)=22+3-2=.答案:【举一反三】若对于本题中的函数f(x),有f(a)=16,试求a的值.【解析】当a≤1时,f(a)=3a≤3<16,故a>1,此时有f(a)=2a=16,所以a=4.7.【解析】当a>1时,有a2=4,a-1=m,此时a=2,m=,此时g(x)=-x2在[0,+∞)上是减函数,不合题意.若0<a<1,则a-1=4,a2=m,故a=,m=,检验知符合题意.答案:8.【解题指南】解答本题一方面要注意利用函数的单调性由定义域求值域,由值域求定义域;另一方面要注意结合函数的图象,弄清楚函数值与自变量的关系.【解析】(1)不正确.由x≤0得0<2x≤20=1,值域是{y|0<y≤1}.(2)不正确.由x≥2得0<≤,值域是{y|0<y≤}.(3)不正确.由2x≤4=22得x≤2,所以若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|x≤2}.答案:(1)(2)(3)9.【解析】由图象得,点(2,0),(0,-2)在函数f(x)的图象上,所以解得10.【解析】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(2,),∴=a2-1,∴a=.(2)由(1)知f(x)=()x-1=2·()x,∵x≥0,∴0<()x≤()0=1,∴0<2·()x≤2,∴函数y=f(x)(x≥0)的值域为(0,2].11.【解析】(1)函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,∴a+a2=20,得a=4或a=-5(舍去).(2)由(1)知f(x)=,∴f(x)+f(1-x)=+=+=+=+=1.(3)由(2)知f()+f()=1,f()+f()=1,…,f()+f()=1,∴f()+f()+f()+…+f()=++…+=1+1+…+1=1 006.关闭Word文档返回原板块。

人教A版高中数学必修一:第2章指,对,幂函数2.1.2指数函数及其性质

人教A版高中数学必修一:第2章指,对,幂函数2.1.2指数函数及其性质
年份 1999 2000 2001 2002 „ 1999+x 经过年数 0 1 2 3 „ x
• x y=13(1+1%)
人口数(亿)
练习
1设y1=a3x+1,y2=a-2x,其中a>0且a1, 确定x为何值时,有 (1)y1=y2(2)y1>y2
1 2 求函数y 2
x2 2x 1
的单调递增区间。

1、指数函数的定义。 2、指数函数简图的作法以及应注意的地方。 3、指数函数的图像和性质。


2.1.2指数函数及其 性质

材料1:某种细胞分裂时,由1个分
裂成2个,2个分裂成4个……一个这样 的细胞分裂x次后,得到的细胞分裂的个 数y与x的函数关系是什么?
材料2:当生物死后,它机体内原有
的碳14会按确定的规律衰减,大约每经 过5730年衰减为原来的一半,这个时间 称为‘‘半衰期”.根据此规律,人们获 得了生物体内碳14含量P与死亡年数t之 间的关系,这个关系式应该怎样表示呢?








4 2 练习:将 பைடு நூலகம்2 , 3 3
1 2
1 3
2 3
3
3 , 用“”号连接起来。 4
1 3
1 2
2 3 4 2 3 4 3

3
2 3
例8、截止到1999年底,我国人口约13亿。如果今 后能将人口年平均增长率控制在1%,那么经过20年 后,我国人口数最多为多少(精确到亿)?

2.1.2指数函数及其性质(1)

2.1.2指数函数及其性质(1)

1.图像向左、向右是无限延伸的。 (0,1)
2.图像都在x轴的上方。 3.都过定点(0,1)。
0
x
y a x (a 0且a 1) 的图象和特征:
a>1

6
5
象 4
3
2
11
-4
-2
0
2
4
6
-1
1.图象在x轴上方
特 2.从左到右上升 征 3.过定点 (0,1)
4、a越大,向上越靠近y轴
0<a<1
2.1.2指数函数及其性质
第一课时
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入

4.单调性:
在R上是增函数
单调性: 在R上是减函数
对称性: y=ax和y=a-x关于y轴对称
例3、 如图为指数函数:
(1) y ax (2) y bx (3) y cx (4) y d x的图象,
y
(2) (3)
(1)
(4)
比较 a, b, c, d 与1的大小关系.
O
x
c d 1 a b
例5、已知指数函数 f (x) ax (a 0且a 1) 的图像经过 点(3,π)求 f(0), f(1), f(-3)的值。
解:因为 f (x) a x 的图像过点(3, ),所以

高中数学课时作业二十二指数函数的概念图象及性质新人教A版必修第一册

高中数学课时作业二十二指数函数的概念图象及性质新人教A版必修第一册

课时作业(二十二) 指数函数的概念、图象及性质练 基 础1.下列函数中,不能化为指数函数的是( ) A .y =2x ·3x B .y =2x -1C .y =32xD .y =4-x2.若指数函数f (x )的图象过点(4,81),则f (x )的解析式为( ) A .f (x )=x 3B .f (x )=3xC .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=x 133.函数y =x +a 与y =a x,其中a >0,且a ≠1,它们的大致图象在同一直角坐标系中有可能是( )4.函数y =4-2x的值域是( ) A .[0,+∞) B .[0,2] C .[0,2) D .(0,2)5.(多选)若函数f (x )=(12a -3)·a x(a >0且a ≠1)是指数函数,则下列说法正确的是( )A .a =8B .f (0)=-3C .f (12)=2 2 D .a =46.函数y =ax +3+3(a >0且a ≠1)的图象恒过定点________.7.[2022·山东烟台高一期末]函数f (x )=2x-1+1x -1的定义域为________. 8.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域提 能 力9.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =( ) A .-32 B .-1C .1D .3210.(多选)已知实数a ,b 满足等式2 021a =2 022b,下列式子可以成立的是( ) A .a =b =0 B .a <b <0 C .0<a <b D .0<b <a11.函数y =2x的图象与函数y =2-x的图象关于________对称,它们的交点坐标是________.12.求函数y =4x-2x+1的定义域、值域.13.已知函数f (x )=⎩⎪⎨⎪3x -1,x ≥0的值域为R ,则实数a 的取值范围为________.课时作业(二十二) 指数函数的概念、图象及性质1.解析:对于A ,y =2x·3x=6x是指数函数; 对于B ,y =2x -1=2x2不是指数函数; 对于C ,y =32x=9x是指数函数; 对于D ,y =4-x=(14)x 是指数函数.答案:B2.解析:设f (x )=a x (a >0且a ≠1),则81=a 4,∴a =3, ∴f (x )=3x. 答案:B3.解析:∵a >0,则y =x +a 单调递增,故排除AC ;对于BD ,y =a x单调递减,则0<a <1, ∴y =x +a 与y 轴交于0和1之间,故排除B. 答案:D4.解析:∵2x >0,故0≤4-2x<4,∴函数值域为[0,2). 答案:C5.解析:因为函数f (x )是指数函数,所以12a -3=1,所以a =8,所以f (x )=8x,所以f (0)=1,f (12)=812=22,故B 、D 错误,A 、C 正确.答案:AC6.解析:当x =-3时,y =a 0+3=4, 所以函数y =ax +3+3(a >0且a ≠1)的图象恒过定点(-3,4).答案:(-3,4)7.解析:根据题意,由⎩⎪⎨⎪⎧2x-1≥0x ≠1,解得x ≥0且x ≠1,因此定义域为[0,1)∪(1,+∞).答案:[0,1)∪(1,+∞)8.解析:(1)∵f (x )的图象过点(2,12),∴a2-1=12,则a =12. (2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2,所以函数y =f (x )(x ≥0)的值域为(0,2].9.解析:当a >1时,⎩⎪⎨⎪⎧f (-1)=a -1+b =-1f (0)=a 0+b =0,方程组无解; 当0<a <1时,⎩⎪⎨⎪⎧f (-1)=a -1+b =0f (0)=a 0+b =-1,解得⎩⎪⎨⎪⎧a =12b =-2∴a +b =12-2=-32.答案:A 10.解析:分别画出y =2 021x ,y =2 022x的图象,如示意图: 实数a ,b 满足等式2 021a =2 022b, 可得:a >b >0,或a <b <0,或a =b =0. 答案:ABD11.解析:函数y =2x的图象与函数y =2-x的图象如下:由指数函数的性质可知,函数y =2x的图象与函数y =2-x的图象关于y 轴对称,它们的交点坐标是()0,1.答案:y 轴 (0,1)12.解析:函数的定义域为R ,y =(2x )2-2x +1=(2x -12)2+34,∵2x >0,∴当2x=12,即x =-1时,y 取最小值34,同时y 可以取一切大于等于34的实数,∴值域为[34,+∞).13.解析:∵函数f (x )=⎩⎪⎨⎪⎧(1-a )x +2a ,x <03x -1,x ≥0的值域为R ,又当x ≥0时,3x -1≥13,∴⎩⎪⎨⎪⎧1-a >02a ≥13,解得16≤a <1.答案:16≤a <1。

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)

人教版高中数学必修一第2章课件+课时作业+章末总结(29份)(2.1.2.1)

人教版高中数学必修一第2章课件+课时作业+章末总结(29份)(2.1.2.1)

4.观察同一直角坐标系中函数y=2x,y=3x,y=4x,y =(12)x,y=(13)x,y=(14)x的图象如图所示,能得到什么规律?
提示:(1)当a>1时,a的值越大,图象越靠近y轴,递增 速度越快.
(2)当0<a<1时,a的值越小,图象越靠近y轴,递减的 速度越快.
(3)底互为倒数时,图象关于y轴对称,即y=ax与y= (1a)x图象关于y轴对称.
预习篇01
新知导学
指数函数的概念
一般地,函数 y=ax (a>0,且a≠1)叫做指数函 数,其中x是自变量,函数的定义域是 R .
1.下列函数是指数函数吗? ①y=3x+1;②y=3x+1;③y=3×2x;④y=5x+2-2. 提示:它们都不满足指数函数的定义,所以都不是指 数函数.
2.指数函数定义中为什么规定a>0且a≠1? 提示:①如果a=0,当x>0时,ax恒等于0;当x≤0 时,ax无意义. ②如果a<0,例如y=(-4)x,这时对于x=12,14,…, 在实数范围内的函数值不存在. ③如果a=1,则y=1x是一个常量,无研究的必要. 为了避免上述各种情况,所以规定a>0且a≠1.
答案:(1)C (2)(1,2)
指数函数的定义域与值域 【例3】 (1)函数y= 1-3x的定义域是________;
(2)求函数y=
的定义域和值域.
【解】 (1)由1-3x≥0,得3x≤1=30. 因为函数y=3x在实数集上是增函数, 所以x≤0,故函数y= 1-3x的定义域为(-∞,0]. (2)由x-2≥0,得x≥2, 所以此函数的定义域为[2,+∞). 当x∈[2,+∞)时, x-2≥0,又0<13<1.
由指数函数的性质知,y= y>0,故此函数的值域为(0,1].

新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

高中数学 2.1.2-1指数函数及其性质导学案 新人教A 版必修1学习目标:1、理解指数函数的定义 2、掌握指数函数的图象和性质 学习重点:指数函数性质的应用 学习过程:一、情景体验、获得新知1、一张纸对折1次,厚度变为原来的2倍;对折2次,厚度变为原来的 倍;对折3次,厚度变为原来的2倍;对折4次,厚度变为原来的____ 倍;对折次,厚度变为原来的______倍。

2、指数函数的概念____________________ 练习:1、下列函数中是指数函数的是________ ① ② ③ ④ ⑤ ⑥2、函数是指数函数,则a=_________二、指数函数的图象与性质1、图象:在直角坐标系中作出下列函数的图象(1)(2)2、指数函数的图象和性质练习:1、 若a>1,-1<b<0,则函数的图象一定在第_____象限 2、 比较大小(1) ,(2),(3) ,一、选择题(每小题5分,共20分)1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 22.若⎝ ⎛⎭⎪⎫142a +1<⎝ ⎛⎭⎪⎫143-2a,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B.()1,+∞C .(-∞,1) D.⎝⎛⎭⎪⎫-∞,123.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)5.已知集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x +1<4,x∈Z,则M∩N 等于( )A .{-1,1}B .{-1}C .{0}D .{-1,0} 6.设14<⎝ ⎛⎭⎪⎫14b <⎝ ⎛⎭⎪⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a二、填空题(每小题5分,共10分)7.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =____8.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.9.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.10.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.三、解答题(每小题10分,共20分)11.根据下列条件确定实数x 的取值范围:a<⎝ ⎛⎭⎪⎫1a 1-2x(a >0且a ≠1).12.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性...13.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.。

2.1.2指数函数及其性质-2020-2021学年高一数学尖子生同步培优题典(人教A版必修1)

2.1.2指数函数及其性质-2020-2021学年高一数学尖子生同步培优题典(人教A版必修1)

专题2.1.2 指数函数及其性质姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间45分钟,试题共20题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题4分,共48分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数()f x = ) A .(2,)-+∞ B .[1,)-+∞C .(,1)-∞-D .(,2)-∞-【答案】B【解析】要使函数有意义,需满足2113027x --≥,即:21333x --≥,因为3xy =为增函数,所以213x -≥-,解得:1x ≥-.2.(2020·浙江高一课时练习)函数2212x xy -⎛⎫=⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .(,2]-∞D .(0,2]【答案】D【解析】由二次函数的性质可知222(1)1[1,)x x x -=--∈-+∞,因此221(0,2]2x xy -⎛⎫=∈⎪⎝⎭,即函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(0,2].3.(2020·安徽高一月考)若函数xy a b =-,(0a >,且1a ≠)的图像经过第一,第三和第四象限,则一定有( ) A .01a <<且1b > B .1a >且1b > C .01a <<且1b < D .1a >且1b <【答案】B【解析】根据指数函数的图象和性质可知,要使函数y =a x ﹣(b +1)(a >0且a ≠1)的图象经过第一、三、四象限,则函数为增函数,∴a >1,且f (0)<0,即f (0)=1﹣b <0,解得b >1.4.(2020·上海华师大二附中高一期末)若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3【答案】B【解析】函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.5.如果1111222b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,那么( )A .a b a a a b <<B .a a b a b a <<C .b a a a a b <<D .b a a a b a <<【答案】C【解析】根据函数()1()2x f x =在R 是减函数,且1111222b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,所以10b a >>>,所以a ab a b a <<,故选C .6.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]【答案】B【解析】由f(1)=得a 2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.7.函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系是 A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x ) D .与x 有关,不确定【答案】A【解析】∵f (1+x )=f (1﹣x ),∴f (x )图象的对称轴为直线x =1,由此得b =2.又f (0)=3,∴c =3. ∴f (x )在(﹣∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ).∴f (3x )≥f (2x ). 8.函数2x y a a a =-+(0a >且1a ≠)的图象不可能是( )A .B .C .D .【答案】D【解析】当01a <<时,2x y a a a =-+为减函数,取0x =时,函数值202155244y a a a a ⎛⎫=-+=--+= ⎪⎝⎭,又01a <<,所以2021551244a a a a ⎛⎫<-+=--+≤ ⎪⎝⎭故C 选项符合题意,D 选项不符合题意;当1a >时,函数2xy a a a =-+为增函数,取0x =时,函数值2021524y a a a a ⎛⎫=-+=--+ ⎪⎝⎭,又1a >,所以20215124a a a a ⎛⎫-+=--+< ⎪⎝⎭,故A 选项符合题意,B 选项也符合题意.故选:D.9.(2020·河南高一月考)已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( ) A .35B .35C .1D .-1【答案】A 【解析】()g x 为偶函数,()h x 为奇函数,且()()2x g x h x -=①,()()()()2x g x h x g x h x -∴---=+=②①②两式联立可得()222x x g x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141xy =-+在[]1,1x ∈-为增函数,∴max231415x ⎛⎫-= ⎪+⎝⎭,故选:A. 10.已知实数a ,b 满足等式1123ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,给出下列五个关系式:①0<b<a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b.其中,不可能成立的有( ) A .1个 B .2个C .3个D .4个【答案】B【解析】作y =12x ⎛⎫ ⎪⎝⎭与y =13x⎛⎫ ⎪⎝⎭的图象.当a =b =0时, 1123a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;当a<b<0时,可以使1123a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;当a>b>0时,也可以1123a b⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭故①②⑤都可能成立,不可能成立的关系式是③④.故选B.11.(2020·四川西昌高一期末)已知函数()228f x x x =+-,则不等式()13516x f --≤的解集是( )A .[]1,3B .[]1,9C .[)1,∞D .(],3-∞【答案】A【解析】函数()228f x x x =+-的定义域为R ,关于原点对称,且()()()222828f x x x x x f x -=-+--=+-=,该函数为偶函数,当0x ≥时,()()222819f x x x x =+-=+-,该函数在区间[)0,+∞上为增函数,由()13516x f --≤,得()()1354x f f --≤,1354x -∴-≤,即14354x --≤-≤,得1139x -≤≤,可得012x ≤-≤,解得13x ≤≤.因此,不等式()13516x f --≤的解集是[]1,3.12.(2020·广东濠江金山中学高一期末)已知函数2()33x xf x -=+,则( )A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于y 轴对称【答案】C【解析】930,xt y t t =>=+,根据对勾函数的图像特征,9y t t=+在(0,3)单调递减,在(3,)+∞单调递增,3x t =在R 上单调递增,根据复合函数的单调性可得,当(0,3)t ∈,即(,1)x ∈-∞,函数2()33x x f x -=+单调递减,当(3,)t ∈+∞,即(1,)x ∈+∞,函数2()33x x f x -=+单调递增,所以选项A,B 错误; 由22(2)2(2)3333()xx x x f x f x -----=+=+=,()y f x =的图像关于直线1x =对称,选项C 正确;由82(1)6,(1)3f f =-=,()y f x =的图像不关于y 轴对称,选项D ,错误.故选C. 二、填空题(本大题共4小题,每小题4分,共16分.不需写出解答过程,请把答案直接填写在横线上)13.已知函数2221()2x x f x ++⎛⎫= ⎪⎝⎭,则该函数的单调递增区间是__________.【答案】(,1]-∞-【解析】由题得函数的定义域为R .设2122,()2uu x x v =++=,函数222,u x x =++在∞(-,-1]单调递减,在[1,)-+∞单调递增,函数1()2u v =在其定义域内单调递减,所以2221()2x x f x ++⎛⎫= ⎪⎝⎭在∞(-,-1]单调递增,在[1,)-+∞单调递减.14.已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________. 【答案】52【解析】设2x t =,02x ≤≤,则14t ≤≤,()12221114325353222x x y t t t -=-⨯+=-+=-+,故当1t =,即0x =时,函数有最大值为52. 15.已知函数|2|()21x f x -=-在区间[0,]m 上的值域为[0,3],则实数m 的取值范围为__________. 【答案】[2,4] 【解析】函数()221x f x -=-的对称轴为2x =,且在(],2-∞上单调递减,在()0,∞+上单调递增,由函数()221x f x -=-在区间[]0,m 上的值域为[]0,3,知022,m ≤-≤ 即[]2,4m ∈。

高中数学人教版A版必修一课时作业及解析:第二章2-1指数函数

高中数学人教版A版必修一课时作业及解析:第二章2-1指数函数

∴原式=--24x1-≤2x<3 -3<x<1 .
12.解
1
1
1
原式=
a3
2
a 8b
1
2
a3
2b3
1
1
×a3
4b3 2a3 a 3
a3
13.解 ∵x- xy-2y=0,x>0,y>0, ∴( x)2- xy-2( y)2=0, ∴( x+ y)( x-2 y)=0, 由 x>0,y>0 得 x+ y>0, ∴ x-2 y=0,∴x=4y, ∴y2+x-2 xxyy=8yy+-42yy=65.
6
1
-32>0, 33
<0,C
选项错.故选
D.]
6.B [①中,当 a<0 时,
a2
3 2
a2
1 2
3
=(-a)3=-a3,
∴①不正确;
②中,若 a=-2,n=3,
则3 -23=-2≠|-2|,∴②不正确;
x-2≥0, ③中,有3x-7≠0,
即 x≥2 且 x≠73,
故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a=5,10b=2, ∴102a=5,10b=2,102a×10b=10,即 102a+b=10.
1 2
3
xy
1 2
·(xy)-1
12
= x3 ·y 3
1
x6
y
1 6
x
1 2
y
1 2
=x1 3·x1 31, =-1,x<0
x>0
.
(2)原式= 1 + 1 + 2+1-22 22
=2 2-3.

2.1.2指数函数及其性质(第一课时)

2.1.2指数函数及其性质(第一课时)
2.1.2指数函数及其性质
莘县一中 袁 迪
学习目标:
1、了解指数函数模型的实际背景 2、理解指数函数的概念,掌握指数函数的性质
3、会利用指数函数的单调性比较大小
一、情景引入
情景1、把一张厚度为1毫米的纸对折1次,2次,3次的厚 度分别是多少?对折30次呢?
2
2
223ຫໍສະໝຸດ 230那么,假设厚度为1,对折x次后,厚度y如何表示?
q x = ( ) 3
1x
6
h x =
x 3
5
4
g x =
(2 )
-2
1x
3
fx = 2 x
2
1
-4
2
4
y
y
y
1 y 2
x
1 y 3
x
x
y 3
x
y 2
x
ya
( a 1)
ya
x
( 0 a 1)
1 1
1 1
0
x
0
16
0
1
14
1
3
2
9
3
27 1/27

… …
y3

x
1/27 1/9 27 9
1/3 3
12 10
1 y 3

1
1/3 1/9
g x =
(3 )
1x
8
6
fx =
x 3
4
2
-10
-5
5
10
q x = ( ) 3
1x
6
h x =
x 3
5
4
g x =

必修1教案2.1.2指数函数及其性质(一)

必修1教案2.1.2指数函数及其性质(一)

2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。

人教版高中数学必修一2.1.2.1课时练习习题(含答案解析)

人教版高中数学必修一2.1.2.1课时练习习题(含答案解析)

2.1.2.1一、选择题1.下列函数中,值域是(0,+∞)的函数是( )A .y =21xB .y =2x -1C .y =2x +1D .y =(12)2-x [答案] D [解析] 在A 中,∵1x≠0,∴21x ≠1,所以函数y =21x 的值域是{y |y >0,且y ≠1}. 在B 中,∵2x -1≥0,∴2x -1≥0,所以函数y =2x -1的值域是[0,+∞).在C 中,∵2x +1>1,∴2x +1>1,所以函数y =2x +1的值域是(1,+∞).在D 中,由于函数y =(12)2-x 的定义域是R ,也就是自变量x 可以取一切实数,所以2-x 也就可以取一切实数,所以(12)2-x 取一切正实数,即函数y =(12)2-x 的值域为(0,+∞),故选D. 2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成( )A .511个B .512个C .1 023个D .1 024个 [答案] B[解析] ∵每20分钟分裂一次,故3个小时共分裂了9次,∴29=512,故选B.3.如果函数y =(a x -1)-12的定义域为(0,+∞)那么a 的取值范围是( )A .a >0B .0<a <1C .a >1D .a ≥1 [答案] C[解析] y =(a x -1)-12=1a x -1,因此a x -1>0 ∴a x >1,又∵x >0,∴a >1,故选C.4.函数y =a |x |(0<a <1)的图象是( )[答案] C[解析] y =⎩⎪⎨⎪⎧ a x (x ≥0)⎝⎛⎭⎫1a x (x <0),∵0<a <1,∴在[0,+∞)上单减,在(-∞,0)上单增,且y ≤1,故选C.[点评] 可取a =12画图判断.A .a >b >cB .b >a >cC .b >c >aD .c >b >a[答案] B即a >c ,∴b >a >c .[点评] 指数函数的图象第一象限内底大图高,6.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a 等于( )A.12 B .2C .4 D.14[答案] B[解析] 当a >1时,y min =a 0=1;y max =a 1=a ,由1+a =3,所以a =2.当0<a <1时,y max =a 0=1,y min =a 1=a .由1+a =3,所以a =2矛盾,综上所述,有a =2.7.在同一平面直角坐标系中,函数f (x )=ax 与指数函数g (x )=a x 的图象可能是()[答案] B[解析] 由指数函数的定义知a >0,故f (x )=ax 的图象经过一、三象限,∴A 、D 不正确. 若g (x )=a x 为增函数,则a >1,与y =ax 的斜率小于1矛盾,故C 不正确.B 中0<a <1,故B 正确.8.函数y =(12)x 2+2x 的值域是( ) A .(0,+∞)B .(0,2]C .(12,2] D .(-∞,2][答案] B[解析] ∵u =x 2+2x =(x +1)2-1≥-1,y =(12)u 在[-1,+∞)上是减函数, ∴y ≤⎝⎛⎭⎫12-1=2.∴y ∈(0,2].二、填空题9.指数函数y =f (x )的图象过点(-1,12),则f [f (2)]=________. [答案] 16[解析] 设f (x )=a x (a >0且a ≠1),∵f (x )图象过点(-1,12),∴a =2,∴f (x )=2x , ∴f [f (2)]=f (22)=f (4)=24=16.10.当x ∈[-1,1]时,函数f (x )=3x -2的值域为__________.[答案] {y |-53≤y ≤1} [解析] 当-1≤x ≤1时,13≤3x ≤3,∴y ∈[-53,1],值域为{y |-53≤y ≤1}. 11.已知x >0时,函数y =(a 2-8)x 的值恒大于1,则实数a 的取值范围是________.[答案] a >3或a <-3[解析] 当x >0时(a 2-8)x >1,∴a 2-8>1,∴a >3或a <-3.12.(09·江苏文)已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.[答案] m <n[解析] ∵a =5-12,∴0<a <1, ∴函数f (x )=a x 在R 上单调递减,∵f (m )>f (n ),∴m <n .三、解答题13.已知f (x )=12(a x -a -x ),g (x )=12(a x +a -x ), 求证:[f (x )]2+[g (x )]2=g (2x ).[解析] f 2(x )+g 2(x )=14(a x -a -x )2+14(a x +a -x )2 =14(2a 2x +2a -2x )=12(a 2x +a -2x )=g (2x )成立. 14.分别把下列各题中的三个数按从小到大的顺序用不等号连接起来.15.已知f (x )=73x +1,g (x )=2x ,在同一坐标系中画出这两个函数的图象.试问在哪个区间上,f (x )的值小于g (x )?哪个区间上,f (x )的值大于g (x )?[解析] 在同一坐标系中,画出函数f (x )=2x 与g (x )=7x 3+1的图象如图所示,两函数图象的交点为(0,1)和(3,8),显然当x ∈(-∞,0)或x ∈(3,+∞)时,f (x )>g (x ),当x ∈(0,3)时,f (x )<g (x ).16.判断函数f (x )=x 2x -1+x 2的奇偶性.[解析] ∵2x -1≠0,∴x ≠0,定义域{x ∈R |x ≠0}∵f (x )=x 2x -1+x 2=x (2x +1)2(2x -1),∴f (-x )=-x (2-x +1)2(2-x -1)=-x (1+2x )2(1-2x )=x (2x +1)2(2x -1)=f (x ),∴f (x )为偶函数.17.求下列函数的定义域和值域[解析] (1)函数的定义域为R ,值域为(0,+∞)(2)要使函数有意义,必须且只须3x -2≥0,即x ≥23,∴函数的定义域为[23,+∞)设t =3x -2,则t ≥0,y =5t ∴y ≥1∴函数的值域为[1,+∞).(3)要使函数有意义,必须且只须x +1≠0,即x ≠-1.∴函数的定义域为{x ∈R |,x ≠-1}设t =x +2x +1,则t ∈R 且t ≠1,y =(13)t ,∴y >0且y ≠13∴函数的值域为(0,13)∪(13,+∞)。

新教材高中数学指数函数的图象和性质第2课时指数函数的图象和性质的综合应用课时作业新人教A版必修第一册

新教材高中数学指数函数的图象和性质第2课时指数函数的图象和性质的综合应用课时作业新人教A版必修第一册

第2课时 指数函数的图象和性质的综合应用必备知识基础练1.函数f (x )=(a -1)x是R 上的单调减函数,则a 的取值范围是( ) A .a >2 B .1<a <2 C .0<a <1 D .a >12.已知指数函数f (x )=(2a 2-5a +3)a x在(0,+∞)上单调递增,则实数a 的值为( ) A .12 B .1 C .32D .2 3.下列不等式中成立的是( ) A .1.12.1<1.11.9B .0.82.1<0.81.9C .0.82.1>1.11.9D .1.12.1<0.82.14.[2022·广东汕尾高一期末]若a =(12)13,b =(14)13,c =(12)14,则( )A .c >a >bB .c >b >aC .b >c >aD .a >b >c5.[2022·江苏宿迁高一期末]函数f (x )=x 22x+2-x的图象大致是( )6.(多选)已知函数f (x )=e x-e -x,则下列说法正确的是( ) A .函数f (x )是奇函数 B .函数f (x )是偶函数 C .函数f (x )在R 上是减函数 D .函数f (x )在R 上是增函数7.函数f (x )=2|x |的递增区间是________. 8.已知a =5+12,函数f (x )=a x,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.关键能力综合练1.已知函数y =(a -2)x,且当x <0时,y >1,则实数a 的取值范围是( ) A .a >3 B .2<a <3 C .a >4 D .3<a <42.若(13)2a +1>(13)4-a,则实数a 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(3,+∞)D .(-∞,3)3.已知实数x ,y 满足(12)x <(12)y,则下列关系式中恒成立的是( )A.x 2>y 2B .πx >πyC .1x <1yD .x >y4.已知函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x ≥1a x ,x <1是R 上的单调递增函数,则实数a 的取值范围是( )A .a >1B .1<a <32C .1<a <2D .1<a ≤325.设14<(14)b <(14)a<1,那么( )A .a a<a b<b aB .a a<b a<a bC .a b<a a<b aD .a b<b a<a a6.[2022·重庆九龙坡高一期末](多选)已知函数f (x )=2x-12x +1,则下列结论正确的是( )A .函数f (x )的定义域为R B.函数f (x )的值域为(-1,1)C .函数f (x )的图象关于y 轴对称D .函数f (x )在R 上为增函数7.若f (x )=a 2x -1+12是奇函数.则实数a 的值是________.8.函数f (x )=(12)x2-2x -3的单调减区间是________.9.[2022·湖南邵阳高一期末]已知函数f (x )=a 3-x,(a 为常数,a >0且a ≠1),若f (2)=3.(1)求a 的值; (2)解不等式f (x )>9.10.[2022·广东广州高一期末]已知f (x )=a ·2x +a -22x+1是定义在R 上的奇函数.(1)求实数a 和f (1)的值;(2)根据单调性的定义证明:f (x )在定义域上为增函数.核心素养升级练1.(多选)设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ) A .f (x 1+x 2)=f (x 1)·f (x 2) B .f (x 1·x 2)=f (x 1)+f (x 2) C .f (x 1)-f (x 2)x 1-x 2<0D .f (x 1+x 22)<f (x 1)+f (x 2)22.写出一个同时具有下列性质①②③的函数f (x )=________. ①定义域为R ; ②值域为(-∞,1);③对任意x 1,x 2∈(0,+∞)且x 1≠x 2,均有f (x 1)-f (x 2)x 1-x 2>0.3.[2022·湖北十堰高一期末]已知函数f (x )=2a +2x +11+2x .(1)当a =6时,求方程f (x )=2x的解;(2)若对任意x ∈(0,+∞),不等式f (x )≥a 恒成立,求a 的取值范围.第2课时 指数函数的图象和性质的综合应用必备知识基础练1.答案:B解析:函数f (x )=(a -1)x是R 上的单调减函数, 所以0<a -1<1,解得1<a <2. 2.答案:D解析:由题得2a 2-5a +3=1,∴2a 2-5a +2=0,∴a =2或a =12.当a =2时,f (x )=2x在(0,+∞)上单调递增,符合题意; 当a =12时,f (x )=(12)x在(0,+∞)上单调递减,不符合题意.所以a =2. 3.答案:B解析:A.因为y =1.1x 在R 上是增函数,所以1.12.1>1.11.9,故错误; B .因为y =0.8x 在R 上是减函数,所以0.82.1<0.81.9,故正确; C .因为0.82.1<1,1.11.9>1,所以0.82.1<1.11.9,故错误; D .因为1.12.1>1,0.82.1<1,所以1.12.1>0.82.1,故错误. 4.答案:A解析:b =(14)13=(12)23,因为y =(12)x 在R 上为减函数,且14<13<23,所以(12)14>(12)13>(12)23,所以c >a >b .5.答案:C 解析:x ∈R ,f (-x )=x 22-x+2x=f (x ),所以f (x )为偶函数,图象关于y 轴对称,排除选项AB ; 当x >0时,f (x )=x 22-x +2x >0,故D 错误.6.答案:AD解析:f (-x )=e -x-e x =-f (x ),函数f (x )=e x -e -x的定义域为R , 函数f (x )是奇函数,A 正确,B 错误;y =e x 为R 上的增函数,y =e -x 为R 上的减函数,则函数f (x )=e x-e -x为R 上的增函数,C 错误,D 正确. 7.答案:(0,+∞)解析:因为f (x )=2|x |=⎩⎪⎨⎪⎧2x,x >0(12)x ,x ≤0,故函数f (x )的单调递增区间为(0,+∞).8.答案:m >n 解析:∵a =5+12>1,所以,函数f (x )=a x为R 上的增函数, ∵f (m )>f (n ),∴m >n .关键能力综合练1.答案:B解析:∵当x <0时,y >1,∴0<a -2<1,解得2<a <3. 2.答案:A解析:因为函数y =(13)x在R 上为减函数,∴(13)2a +1>(13)4-a,等价于2a +1<4-a ,解得a <1, 所以实数a 的取值范围是(-∞,1). 3.答案:B解析:由(12)x <(12)y 以及指数函数y =(12)x为减函数,可得x >y ,对于A,当x =1>y =-1时,x 2>y 2不成立,故A 不正确;对于B,根据指数函数y =πx为R 上的增函数可知,πx>πy恒成立,故B 正确; 对于C,当x >0,y <0时,1x <1y不成立,故C 不正确;对于D,当x 或y 为负数时,x 或y 无意义,所以D 不正确. 4.答案:D解析:根据题意可列不等式如下,⎩⎪⎨⎪⎧2-a >0a >1(2-a )+1≥a 解得 1<a ≤32,选项D 正确. 5.答案:C解析:∵14<(14)b <(14)a<1,∴0<a <b <1,因为y =a x单调递减,所以a a>a b, 因为y =x a在(0,1)单调递增,所以a a<b a, ∴a b<a a<b a . 6.答案:ABD解析:A :因为2x>0,所以函数f (x )的定义域为R ,因此本选项结论正确;B :f (x )=2x-12x +1=1-22x +1,由2x >0⇒2x+1>1⇒0<12x +1<1⇒-2<-22x +1<0⇒-1<1-22x+1<1,所以函数f (x )的值域为(-1,1),因此本选项结论正确; C :因为f (-x )=2-x -12-x +1=1-2x1+2x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称,不关于y 轴对称,因此本选项说法不正确;D :因为函数y =2x +1是增函数,因为y =2x+1>1,所以函数y =22x +1是减函数,因此函数f (x )=1-22x +1是增函数,所以本选项结论正确.7.答案:1解析:由题意f (-x )+f (x )=0即a2-x-1+12+a 2x -1+12=0,-a +1=0,a =1. 8.答案:(1,+∞)解析:由题知函数f (x )的定义域为R ,∵y =(12)x 单调递减,故只需求出y =x 2-2x -3的单调递增区间即可,∵y =x 2-2x -3开口向上,对称轴为x =1,故在(1,+∞)单调递增,∴f (x )=(12)x 2-2x -3的单调递减区间是(1,+∞).9.解析:(1)∵函数f (x )=a 3-x,f (2)=3,∴f (2)=a3-2=a =3,∴a =3.(2)由(1)知f (x )=33-x,由f (x )>9,得33-x>32,∴3-x >2,即x <1,∴f (x )>9的解集为(-∞,1).10.解析:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,a =1, f (x )=2x-12x +1=1-22x +1, f (1)=13.(2)设任意x 1<x 2,则f (x 1)-f (x 2)=-22x 1+1+22x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1), ∵x 1<x 2,∴2x 1<2x 2,2x 1-2x 2<0, 所以f (x 1)-f (x 2)<0,f (x 1)<f (x 2), 故f (x )在定义域上为增函数.核心素养升级练1.答案:AD 解析:2x 1·2x 2=2x 1+x 2,所以A 项成立;2x 1+2x 2≠2x 1x 2,所以B 项不成立;函数f (x )=2x在R 上是单调递增函数,若x 1>x 2,则f (x 1)>f (x 2),则f (x 1)-f (x 2)x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f (x 1)-f (x 2)x 1-x 2>0,故C 项不正确;函数f (x )=2x任意两点之间的连线在其图象的上方,所以f (x )=2x的图象满足f (x 1+x 22)<f (x 1)+f (x 2)2,故D 项正确.2.答案:f (x )=1-12x (答案不唯一)解析:f (x )=1-12x ,定义域为R ;12x >0,f (x )=1-12x <1,值域为(-∞,1);是增函数,满足对任意x 1,x 2∈(0,+∞)且x 1≠x 2,均有f (x 1)-f (x 2)x 1-x 2>0.3.解析:(1)当a =6时,由f (x )=2x,可得12+2x +11+2x =2x,则(2x )2-2x -12=0,所以2x =4或2x=-3(舍去),解得x =2. 故方程f (x )=2x的解为2.(2)由题意知2a +2x +11+2x ≥a 在(0,+∞)上恒成立,即2×2x ≥a (2x-1)在(0,+∞)上恒成立.又因为x ∈(0,+∞),所以2x-1>0,则a ≤2×2x2x -1=2+22x -1.因为22x -1>0,所以2+22x -1>2,所以a ≤2,即a 的取值范围是(-∞,2].。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2 指数函数及其性质(一)课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质. 1.指数函数的概念一般地,__________________叫做指数函数,其中x 是自变量,函数的定义域是____.2xa >1 0<a <1 图象定义域 R 值域 (0,+∞) 性 质 过定点 过点______,即x =____时,y =____函数值 的变化 当x >0时,________; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性 是R 上的__________ 是R 上的__________1.下列以x 为自变量的函数中,是指数函数的是( )A .y =(-4)xB .y =πxC .y =-4xD .y =a x +2(a >0且a ≠1)2.函数f (x )=(a 2-3a +3)a x是指数函数,则有( ) A .a =1或a =2 B .a =1C .a =2D .a >0且a ≠13.函数y =a |x |(a >1)的图象是( )4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x,那么f (2)的值为( )A .-9 B.19C .-19D .95.右图是指数函数①y =a x ;②y =b x ;③y =c x ;④y =d x的图象,则a 、b 、c 、d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c6.函数y =(12)x-2的图象必过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限题 号 1 2 3 4 5 6 答 案二、填空题7.函数f (x )=a x的图象经过点(2,4),则f (-3)的值为________.8.若函数y =a x-(b -1)(a >0,a ≠1)的图象不经过第二象限,则a ,b 必满足条件________________.9.函数y =8-23-x(x ≥0)的值域是________. 三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2) 1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m 3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期周期数n 体积V (m 3)0 50 000×201 50 000×22 50 000×22… …n 50 000×2n(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么? 能力提升12.定义运算a ⊕b =⎩⎪⎨⎪⎧a a ≤b b a >b,则函数f (x )=1⊕2x的图象是( )13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y)=yf (x ). (1)求f (1)的值;(2)若f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).1.函数y =f (x )与函数y =f (-x )的图象关于y 轴对称;函数y =f (x )与函数y =-f (x )的图象关于x 轴对称;函数y =f (x )与函数y =-f (-x )的图象关于原点对称.2.函数图象的平移变换是一种基本的图象变换.一般地,函数y =f (x -a )的图象可由函数y =f (x )的图象向右(a >0)或向左(a <0)平移|a |个单位得到.2.1.2 指数函数及其性质(一)知识梳理1.函数y =a x(a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 作业设计1.B [A 中-4<0,不满足指数函数底数的要求,C 中因有负号,也不是指数函数,D中的函数可化为y =a 2·a x ,a x的系数不是1,故也不是指数函数.]2.C [由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1.解得a =2.]3.B [该函数是偶函数.可先画出x ≥0时,y =a x的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.]4.C [当x >0时,-x <0,∴f (-x )=3-x,即-f (x )=(13)x,∴f (x )=-(13)x.因此有f (2)=-(13)2=-19.]5.B [作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.]6.D [函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x-2的图象,所以观察y =(12)x-2的图象知选D.]7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8)解析 y =8-23-x =8-23·2-x=8-8·(12)x=8[1-(12)x].∵x ≥0,∴0<(12)x≤1,∴-1≤-(12)x<0,从而有0≤1-(12)x<1,因此0≤y <8.10.解 (1)考查函数y =0.2x. 因为0<0.2<1,所以函数y =0.2x在实数集R 上是单调减函数. 又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考查函数y =(14)x .因为0<14<1,所以函数y =(14)x在实数集R 上是单调减函数.又因为13<23,所以(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50 000×28=12 800 000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50 000×2-1=25 000(m 3). (3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积.(4)n 与V 的函数关系式是V =50 000×2n,图象如图所示.(5)因为对任意的整数n,2n >0,所以V =50 000×2n>0,因此曲线不可能与横轴相交.12.A [由题意f (x )=1⊕2x=⎩⎪⎨⎪⎧1, x ≥0;2x , x <0.]13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0.(2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t,且s >t ,又f (12)>0,∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t]=sf (12)-tf (12)=(s -t )f (12)>0,∴f (x 1)>f (x 2).故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1,当a =0时,x ∈∅,当a >0时,0<x <1a,当a <0时,1a<x <0,不合题意.故x ∈∅.综上:a ≤0时,x ∈∅;a >0时,不等式解集为{x |0<x <1a}.。

相关文档
最新文档