浙教版八年级数学上册练习:3.4 一元一次不等式组
初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)
章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。
初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3
浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。
A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少12元。
”乙说“至多10元。
”丙说“至多8元.”小明说:“你们三个人都说错了。
浙教版数学八年级上册《3.4一元一次不等式组》说课稿
浙教版数学八年级上册《3.4 一元一次不等式组》说课稿一. 教材分析浙教版数学八年级上册《3.4 一元一次不等式组》这一节主要介绍了什么内容呢?我们通过教材分析可以看到,本节内容是在学习了分数、有理数、一元一次方程等基础知识后,引入了一元一次不等式组的概念,让学生了解和掌握不等式组的解法和应用。
教材通过实例引入不等式组,让学生通过自主探究、合作交流的方式,掌握解不等式组的方法,并能够运用不等式组解决实际问题。
二. 学情分析对于八年级的学生来说,他们已经掌握了分数、有理数、一元一次方程等基础知识,对于这些知识点的理解和运用都已经有一定的基础。
但是,对于一元一次不等式组,它与方程有很大的区别,学生在学习过程中可能会存在一定的困难。
因此,在教学过程中,我们需要关注学生的学习情况,对于学生的困难和问题,要及时进行解答和引导。
三. 说教学目标根据教材内容和学情分析,本节课的教学目标如下:1.了解一元一次不等式组的概念,掌握解一元一次不等式组的方法。
2.能够运用一元一次不等式组解决实际问题。
3.培养学生的逻辑思维能力和团队协作能力。
四. 说教学重难点根据教材内容和学情分析,本节课的教学重难点如下:1.一元一次不等式组的解法。
2.如何运用一元一次不等式组解决实际问题。
五. 说教学方法与手段为了达到本节课的教学目标,我采用了以下教学方法与手段:1.启发式教学法:通过提问、引导等方式,激发学生的思维,让学生主动参与学习过程。
2.案例教学法:通过实例引入一元一次不等式组的概念,让学生更好地理解和掌握知识。
3.小组合作学习:通过小组讨论、分享等方式,培养学生的团队协作能力和沟通能力。
4.多媒体教学:利用多媒体课件,生动形象地展示一元一次不等式组的概念和解法,提高学生的学习兴趣。
六. 说教学过程本节课的教学过程分为以下几个环节:1.导入:通过一个实际问题,引出一元一次不等式组的概念。
2.自主学习:学生自主探究一元一次不等式组的解法。
新浙教版八上数学第三章一元一次不等式和不等式组测试卷
新浙教版八上数学第三章一元一次不等式和不等式组测试卷It was last revised on January 2, 2021一元一次不等式和不等式组测试卷 一、选择题:1.在方程组221x y m y x -=⎧⎨-=⎩ 中,x,y 满足x+y>0,m的取值范围是 ( )A . B. C. D.2.下列按要求列出的不等式中错误的是 ( )是非负数,则m ≥0 是非正数,则m ≦0不大于-1,则m<-1 倍m 为负数,则2m<03.不等式9-114x>x+23的正整数解的个数是 ( ).24.若a<0,下列式子不成立的是 ( ) +2<3-a +2<a+3 C.-2a <-3aD.2a>3a5. 若a 、b 、c 是三角形三边的长,则代数式a 2 + b 2 —c 2 —2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于06.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ( ) >m>12 >m>-12 C.112>m>-12 D.12>m>-1127.若方程35x a-=26b x-的解是非负数,则a 与b 的关系是 ( ) ≤56b ≥56b ≥-56b ≥528b8.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ( )≤-1 <-1 ≥1 >1.9.若方程组3133x y k x y +=+⎧⎨+=⎩ 的解、满足01x y <+<,则k 的取值范围是 ()A.40k-<< B. 10k-<< C.08k<< D. 4k>-10.设a、b、c的平均数为M,a、b的平均数为N,N、c的平均数为P,若a>b>c,则M与P的大小关系是().A. M= PB. M > PC. M < PD. 不确定二、填空题:1.不等式组3231xx-≥⎧⎨->⎩的解集是 .2.当x________ 时,代数式354x-的值是非正数,当x_______时,代数式3(2)5x-的值是非负数.3.关于x的方程3x+2m=x-5的解为正数,则m的取值范围是.4.能使代数式12×(3x-1)的值大于(5x-2)+14的值的最大整数x是.5. 已知x >0,y<0.且x + y <0,那么有理数x , y,- x ,- y的大小关系为 .6.若关于x的不等式组4132x xx a+⎧>+⎪⎨⎪-<⎩解集为x<2,则a的取值范围是.7. 在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.8.已知机器工作时,每小时耗油9kg,现油箱中存油多于38kg但少超过45kg,问这油箱中的油可供这台机器工作时间t的范围为___________ 。
浙教版八年级数学上册《3.4一元一次不等式组在实际生活中的应用》同步练习含答案
一元一次不等式组在实际生活中的应用一、解答题。
1.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?二、选择题。
2.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.44.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A.10道题B.12道题C.13道题D.16道题5.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%三、填空题(共2小题,每小题3分,满分6分)7.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为克.8.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是立方米.四、解答题。
9.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.10.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨 2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分 8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?11.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?12.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130 290 (x)累计购物在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?一元一次不等式组在实际生活中的应用参考答案与试题解析一、解答题。
浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
浙教版八年级上册数学第3章 一元一次不等式含答案(完整版)
浙教版八年级上册数学第3章一元一次不等式含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.若a 2>0,则a>0B.若a 2>a,则a>0C.若a<0,则a 2>aD.若a<1,则a 2<a2、不等式组的解集在数轴上表示如图,则该不等式组是()A. B. C. D.3、若x-3<0,则()A.2 x-4<0B.2 x+4<0C.2 x>7D.18-3 x>04、若关于x的不等式组无解,则a的取值范围是()A.a<-2B.a≤-2C.a>-2D.a≥-25、已知关于x的不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.6、若a-b>0,则下列变形正确的是()A.a+3<b+3B.a-3<b-3C.-3a>-3bD.- <-7、已知关于x的不等式组的解集是1≤x<3,则a=( )A.1B.2C.0D.-18、x的2倍减去7的差不大于﹣1,可列关系式为()A.2x﹣7≤﹣1B.2x﹣7<﹣1C.2x﹣7=﹣1D.2x﹣7≥﹣19、已知a>b,则下列不等式中正确的是()A.﹣2a>﹣2bB.C.2﹣a>2﹣bD.a+2>b+210、下列哪个不等式组的解集在数轴上的表示如图所示( )A. B. C. D.11、不等式组的解集在数轴上表示正确的是()A. B. C.D.12、如果点P(3x+9,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A. B. C.D.13、把不等式组的解集表示在数轴上,如下图,正确的是()A. B. C. D.14、不等式组的解在数轴上表示为()A. B. C. D.15、不等式组的解集在数轴上表示正确的是()A. B. C.D.二、填空题(共10题,共计30分)16、若,则x的取值范围是________ .17、某商品的进价是500元,标价是700元,商店要求以不低于5%的利润率打折出售,售货员最低可以打________折.18、在平面直角坐标系中,若点在第二象限,则整数m的值为________.19、若关于x,y的二元一次方程组的解满足2x+y<3,则a的取值范围是________.20、不等式4-x>1的正整数解为________21、不等式2x+4>10的解集是________.22、对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作恰好进行三次才停止,则x的取值范围是________.23、若关于的方程的解为负数,则的取值范围是________24、若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是________.25、规定[x]表示不超过x的最大整数,如[2.3]=2,[-π]=-4,若[y]=2,则y的取值范围是________。
八年级数学上册第3章一元一次不等式3.4一元一次不等式组练习浙教版(2021年整理)
2018年秋八年级数学上册第3章一元一次不等式3.4 一元一次不等式组练习(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第3章一元一次不等式3.4 一元一次不等式组练习(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第3章一元一次不等式3.4 一元一次不等式组练习(新版)浙教版的全部内容。
3.4 一元一次不等式组A组1.下列不等式组是一元一次不等式组的是(C)A.错误! B.错误!C.错误! D.错误!2.不等式组错误!的解表示在数轴上正确的是(C)3.在下列不等式组中,解为-1≤x〈5的是(C)A.错误! B.错误!C.错误! D.错误!4.一元一次不等式组错误!的解是(B)A.x>-1 B.x≤2C.-1〈x≤2 D.x>-1或x≤25.已知三角形的三边长分别是3,5,x,则x的取值范围是__2<x<8__.6.不等式组错误!的整数解是__0,1,2__.7.解不等式组:(1)错误!【解】解不等式2x+5〉3(x-1),得x〈8.解不等式4x>错误!,得x〉1.∴不等式组的解为1<x<8.(2)错误!【解】解不等式x-3(x-2)≥4,得x≤1.解不等式错误!>x-1,得x<4.∴不等式组的解为x≤1.8.解不等式组,并把解在数轴上表示出来.(1)错误!【解】解2x+5≥3,得x≥-1.解3错误!〈2x-4,得x<2.∴不等式组的解为-1≤x<2.在数轴上表示如解图①所示.(第8题解①)(2)错误!【解】解x-1≤0,得x≤1.解1+错误!x>0,得x>-2.∴不等式组的解为-2<x≤1.在数轴上表示如解图②所示.,(第8题解②))9.先化简,再求值:错误!÷错误!,其中x是不等式组错误!的整数解.【解】错误!解①,得x〈3.解②,得x〉1.∴不等式组的解为1<x<3,∴不等式组的整数解为x=2.∵错误!÷错误!=错误!×错误!=4(x-1),∴当x=2时,原式=4×(2-1)=4.B组10.(1)关于x的不等式组错误!的解为x<3,则m的取值范围是(D)A.m=3 B.m>3C.m<3 D.m≥3【解】不等式组可化简为错误!∵不等式组的解为x<3,∴m的取值范围是m≥3.(2)若不等式组错误!恰有两个整数解,则m的取值范围是(A)A.-1≤m<0 B.-1<m≤0C.-1≤m≤0 D.-1<m<0【解】由题意得,不等式组的解为m-1<x<1,又∵不等式组恰有两个整数解,∴-2≤m-1<-1,解得-1≤m<0.11.已知关于x,y的方程组错误!的解是正数,且x〈y.(1)求a的范围.(2)化简:|8a+11|-|10a+1|.【解】(1)解方程组错误!得错误!由题意,得错误!解不等式①,得a〉-错误!.解不等式②,得a〈5.解不等式③,得a〈-错误!.∴不等式组的解是-错误!〈a〈-错误!.(2)∵-错误!<a〈-错误!,∴8a+11〉0,10a+1<0.∴|8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.12.解不等式组:错误!请结合题意,解答下列问题.(1)解不等式①,得x≥-3,依据是不等式的性质3.(2)解不等式③,得x〈2.(3)把不等式①,②和③的解在数轴上表示出来.(第12题)(4)从图中可以找出三个不等式的解的公共部分,得不等式组的解为-2<x<2.13.某玩具商计划生产A,B两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号的玩具能全部售出,这两种玩具的生产成本和售价如下表:(1)该玩具商对这两种型号玩具有哪几种生产方案?型号A B成本(元)200240售价(元)250300(2)求该玩具商所能获得的最大利润.【解】(1)设该厂生产A型玩具x个,则生产B型玩具(100-x)个.由题意,得22400≤200x+240(100-x)≤22500,解得37.5≤x≤40.∵x为整数,∴x的取值为38或39或40.故有三种生产方案:方案一,生产A型玩具38个,B型玩具62个;方案二,生产A型玩具39个,B型玩具61个;方案三:生产A型玩具40个,B型玩具60个.(2)由题意知,生产B型玩具越多获利越大,故生产A型玩具38个,B型玩具62个才能获得最大利润,此时最大利润为38×(250-200)+62×(300-240)=5620(元).答:该玩具商所能获得的最大利润为5620元.数学乐园14.已知a,b为实数,则解可以为-2<x<2的不等式组是(D)A.错误! B.错误!C.错误! D.错误!导学号:91354021【解】从解出发,逆向分析.-2<x<2,即错误!观察选项知,所给不等式组的右边均为1,∴x<2的两边都除以2,得错误!x<1,x>-2的两边都除以-2,得-错误!x<1,即错误!的解为-2<x<2.∴当a=-错误!,b=错误!或a=错误!,b=-错误!时,D选项中的不等式组的解为-2<x <2.。
2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)
一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是 .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。
第3章 一元一次不等式数学八年级上册-单元测试卷-浙教版(含答案)
第3章一元一次不等式数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知a>b,若c是任意实数,则下列不等式中总是成立的是( )A.a+c<b+cB.a﹣c>b﹣cC.ac<bcD.ac>bc2、不等式组的解集在数轴上表示正确的是()A. B. C.D.3、不等式组的解集是()A.x>﹣2B.﹣2<x<C.x>D.无解4、不等式组的解集在数轴上表示正确的是()A. B. C. D.5、不等式组的解集在数轴上表示正确的是()A. B. C.D.6、如果不等式组的解集是3<x<5,那么a,b的值分别为()A.3,5B.-3,-5C.-3,5D.3,-57、不等式组的解集在数轴上表示正确的是()A. B. C.D.8、按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否大于365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50B.x<95C.50<x<95D.50<x≤959、若关于x的分式方程=1的解为正数,则字母a的取值范围是()A.a<2B.a≠2C.a>1D.a>1且a≠210、如果,,那么下列不等式成立的是A. B. C. D.11、不等式2x﹣2<0的解集是()A.x<1 B.x<﹣1C.x>1D.x>﹣112、已知不等式,其解集在数轴上表示正确的是()A. B. C. D.13、不等式2x+3≥1的解集在数轴上表示为()A. B. C.D.14、不等式组的解集在数轴上表示正确的是( )A. B. C.D.15、知a>b,则下列不等式中,正确的是( )A.-4a>-4bB.a-4>4-bC.4-a>4-bD.a-4>b-4二、填空题(共10题,共计30分)16、不等式组的解集为________.17、a________时,不等式(a﹣3)x>1的解集是x<.18、邮政部门规定:信函重100g以内(包括100g)每20g贴邮票0.8元,不足20g重以20g计算;超过100g,先贴邮票4元,超过100g部分每100g加贴邮票2元,不足100g重以100g计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12g,每个信封重4g,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是________元.19、商场有一种小商品进价为元,出售标价为元,后来由于积压,准备打折销售,但要保证利润率不低于,则最多可打________折.20、不等式的解集为,则m的值为________.21、若关于x的分式方程=1的解为正数,那么字母a的取值范围是________.22、不等式的正整数解为________.23、不等式的解为________.24、若关于的不等式的整数解共有个,则的取值范围是________.25、不等式的最小整数解是________.三、解答题(共5题,共计25分)26、解不等式组并把它的解集表示在数轴上.27、解不等式:4x+5≥1﹣2x.28、(1)解方程:;(2)解不等式组:.29、解不等式组:,并在数轴上表示出不等式组的解集.30、解不等式组:,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、D5、B6、D7、B8、D9、D10、D11、A12、A13、C14、A15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
新浙教版八年级上3.4一元一次不等式组
x >m 1.若不等式组 的解是x>2, x >2 m≤2 则m的取值范围是 .
x 2a 1 2.如果不等式组 x a 3 无解,则a的取
{
a≤-4 值范围是____________. 3.若不等式组
x a 的解为 x b
x b
则下列各式正确的是(
x 72 . 4.
3 x 2 x 例1:解一元一次不等式组 1 x2 3
解一元一次不等式组的步骤:
(1)依次求解每个不等式
(2)将每个不等式的解表示在同一条数轴上 (3)利用数轴找出公共部分
解一元一次不等式组的步骤: (1)依次求解每个不等式
(2)将每个不等式的解表示在同一条数轴上 (3)利用数轴找出公共部分 练一练:解下列一元一次不等式组
科学中,在做“用天平称物体的质量”实验 时,你遇到过这样的情况吗?
每个砝码的质量为1克,设物体A的质量为x克。 那么物体A 的质量x的范围是什么?
x>2
x<3
1.一元一次不等式组的概念 像这样
次不等式所组成的一组不等式叫做一元一次 不等式组.
x>2 由几个同一未知数的一元一 x<3
下列式子中哪些是一元一次不等式组? 3.5 x 5 x 2 x y 0 x 1 (3) (1) (2) 1 x x 3 2 x y 1 x 3 3 2 不是
在同一数轴上表示这两个不等式的 解集
0
1
2
3
不等式组的解集 记作: 2<x<3 几个一元一次不等式的解的公共部分, 公共部分
叫做一元一次不等式组的解 一元一次不等式组的解.
2023-2024学年浙教版数学八年级上册3.3一元一次不等式同步练习2
2 3 y x O 3.3 一元一次不等式 同步练习一、 选择题1、如果a >b ,下列各式中错误..的是 ( )A .a -3>b -3B .-2a <-2bC .2a >2b D .3-a >3-b 2、直线b x y +=交x 轴于点A (-2,0),则不等式0<+b x 解集是 ( )A. 2-<xB. 2<xC. 2->xD. 2>x3、小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,根火腿肠,则满足上述条件的不等式是 ( )A .24243>+⨯xB . 24243≤+⨯xC .24423<⨯+xD . 24423≥⨯+x4、已知:03)3(2=++++m y x x 中,为负数,则的取值范围是 ( )A 、>9B 、<9C 、>-9D 、<-9 5、已知方程组⎩⎨⎧=++=+3313y x k y x 的解y x ,满足0<y x +<1,则k 的取值范围是 ( ) A 、-4<k <0 B 、-1<k <0 C 、0<k <8 D 、k >-46、关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是( )A .a >3B .a ≤3C .a <3D .a ≥3 7、一次函数y kx b =+的图象如图所示,不等式kx+b <0的解集是( )A .0x >B .0x <C .2x >D .2x < 8、不等式2(x -2)≤x -2的非负整数解的个数为( ) A.1个 B.2个 C.3个 D.4个 9、D 在比例尺为1:100000的地图上某海员量得从海岸到A 岛的距离是2cm ,并且知道 船在海上行驶速度为40千米/时,那么此海员要到达A 岛最少需 ( )A 2分钟B 3分钟C 4分钟D 5分钟10、直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)
浙教版八年级上册数学第3章一元一次不等式单元测试卷(含答案)一、单选题(共11题;共22分)1.若a<b,则下列结论不一定成立的是()。
A.a-1<b-1B.2a<2bC.D.2.九年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是()A.7x+9-9(x-1)>0B.7x+9-9(x-1)<8C.D.3.x与的差的一半是正数,用不等式表示为()A.(x﹣)>0B.x﹣<0C.x﹣>0D.(x﹣)<04.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A.3种B.4种C.5种D.6种5.关于x的不等式组只有4个整数解,则a的取值范围是()A.5≤a≤6B.5≤a<6C.5<a≤6D.5<a<66.若不等式组无解,则a的取值范围是()A.a≥﹣3B.a>﹣3C.a≤﹣3D.a<﹣37.已知关于x的不等式组仅有三个整数解,则a的取值范围是()。
A.≤a<1B.≤a≤1C.<a≤1D.a<18.不等式组的解集为()A.x>B.x>1C.<x<1D.空集9.下列说法中错误的是()A.如果a<b,那么a﹣c<b﹣cB.如果a>b,c>0,那么ac>bcC.如果m<n,p<0,那么>D.如果x>y,z<0,那么xz>yz10.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.11.不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共8题;共8分)12.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________cm.13.不等式x+1≥0的解集是________.14.不等式组的最小整数解是________.15.不等式组的整数解是x=________.16.已知,,若,则实数的值为________.17.不等式组的解集为________.18.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是________.19.关于x的不等式组只有4个整数解,则a的取值范围是________.三、解答题(共7题;共49分)20.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?21.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。
八年级数学上册阶段许7第3章一元一次不等式3-1-3-4浙教版
整数,∴m=3.
16.(10 分)定义:如果一元一次不等式①的解都 是一元一次不等式②的解,那么称一元一次不等 式①是一元一次不等式②的蕴含不等式.例如: 不等式 x<-3 的解都是不等式 x<-1 的解,则 x <-3 是 x<-1 的蕴含不等式. (1)在不等式 x>1,x>3,x<4 中,是 x>2 的蕴 含不等式的是________; 解:(1)在不等式 x>1,x>3,x<4 中,是 x>2 的蕴含不等式的是 x>3;
(2)①设采购甲商品 m 件,17m+12(30-m)≤460,
解得,m≤20,答:最多可采购甲商品 20 件;
m≤20,
②由题意可得, 30-m≤4m, 5
解得 162 3
≤m ≤20,
∴购买方案有四种.
方案一:甲商品 20 件,乙商品 10 件,此时花费 为:20×17+10×12=460(元); 方案二:甲商品 19 件,乙商品 11 件,此时花费 为:19×17+11×12=455(元); 方案三:甲商品 18 件,乙商品 12 件,此时花费 为:18×17+12×12=450(元); 方案四:甲商品 17 件,乙商品 13 件,此时花费 为:17×17+13×12=445(元). 答:购买甲商品 17 件,乙商品 13 件时花费最少, 最少要用 445 元.
A.x>0 B.x>2 C.x<0 D.x<2
5.已知关于 x 的不等式4x+a >1 的解都是不等 3
式2x+1 >0 的解,则 a 的范围是( C )
3 A.a=5 B.a≥5 C.a≤5 D.a<5
6.已知(a-1)x>a-1 的解集是 x<1,则 a 的取
值范围是( C )
A.a>1 B.a>2 C.a<1 D.a<2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4 一元一次不等式组
A 组
1.下列不等式组是一元一次不等式组的是(C )
A .⎩
⎨⎧x 2+1≥3x ,7x -8<4 B .⎩⎨⎧x +y >2,x <3 C .⎩⎪⎨⎪⎧3x +5<4,-2x +6≥10,12
(x +3)+2≥-1 D .⎩⎪⎨⎪⎧x -1x +3<0,x -2>3
2.不等式组⎩
⎨⎧x +1>2,3x -4≤2的解表示在数轴上正确的是(C ) 3.在下列不等式组中,解为-1≤x<5的是(C )
A .⎩⎨⎧x ≥-1,x >5
B .⎩
⎨⎧x -5>0,x +1≤0 C .⎩⎨⎧x -5<0,x +1≥0 D .⎩⎨⎧x +5<0,x +1≤0
4.一元一次不等式组⎩⎪⎨⎪⎧-2x>x -9,12
x ≤1的解是(B ) A . x >-1 B . x ≤2
C . -1<x ≤2
D . x >-1或x ≤2
5.已知三角形的三边长分别是3,5,x ,则x 的取值范围是__2<x<8__.
6.不等式组⎩⎪⎨⎪⎧2x +1>-1,2x -13
≥x -1的整数解是__0,1,2__. 7.解不等式组:
(1)⎩
⎪⎨⎪⎧2x +5>3(x -1),4x>x +72. 【解】 解不等式2x +5>3(x -1),得x<8.
解不等式4x>x +72,得x>1.
∴不等式组的解为1<x<8.
(2)⎩⎪⎨⎪⎧x -3(x -2)≥4,1+2x 3
>x -1. 【解】 解不等式x -3(x -2)≥4,得x≤1.
解不等式1+2x 3
>x -1,得x<4. ∴不等式组的解为x≤1.
8.解不等式组,并把解在数轴上表示出来.
(1)⎩
⎨⎧2x +5≥3,3(x -2)<2x -4. 【解】 解2x +5≥3,得x≥-1.
解3()x -2<2x -4,得x <2.
∴不等式组的解为-1≤x <2.
在数轴上表示如解图①所示.
(第8题解①)
(2)⎩⎪⎨⎪⎧x -1≤0,1+12
x >0. 【解】 解x -1≤0,得x≤1.
解1+12x>0,得x >-2.
∴不等式组的解为-2<x≤1.
在数轴上表示如解图②所示.
,(第8题解②))
9.先化简,再求值:⎝ ⎛⎭⎪⎫1+3x -1x +1÷x x 2-1,其中x 是不等式组⎩⎪⎨⎪⎧1-x>-1-x 2,x -1>0
的整数解.
【解】 ⎩⎪⎨⎪⎧1-x>-1-x 2,①x -1>0.②
解①,得x<3.
解②,得x>1.
∴不等式组的解为1<x<3,
∴不等式组的整数解为x =2.
∵⎝
⎛⎭⎪⎫1+3x -1x +1÷x x 2-1 =4x x +1
×(x +1)(x -1)x =4(x -1), ∴当x =2时,原式=4×(2-1)=4.
B 组
10.(1)关于x 的不等式组⎩⎨⎧3x -1>4(x -1),x <m
的解为x <3,则m 的取值范围是(D ) A . m =3 B . m >3
C . m <3
D . m ≥3
【解】 不等式组可化简为⎩⎨⎧x <3,x <m .
∵不等式组的解为x <3,
∴m 的取值范围是m ≥3.
(2)若不等式组⎩⎨⎧x <1,x >m -1
恰有两个整数解,则m 的取值范围是(A ) A . -1≤m <0 B . -1<m ≤0
C . -1≤m ≤0
D . -1<m <0
【解】 由题意得,不等式组的解为m -1<x <1,
又∵不等式组恰有两个整数解,
∴-2≤m -1<-1,解得-1≤m <0.
11.已知关于x ,y 的方程组⎩⎨⎧x +y =2a +7,x -2y =4a -3
的解是正数,且x<y . (1)求a 的范围.
(2)化简:|8a +11|-|10a +1|.
【解】 (1)解方程组⎩
⎨⎧x +y =2a +7,x -2y =4a -3,得 ⎩⎪⎨⎪⎧x =8a +113,
y =10-2a 3.
由题意,得⎩⎪⎨⎪⎧8a +113
>0,①10-2a 3
>0,②8a +113<10-2a 3.③
解不等式①,得a>-118.
解不等式②,得a<5.
解不等式③,得a<-110.
∴不等式组的解是-118<a<-110.
(2)∵-118<a<-110
, ∴8a +11>0,10a +1<0.
∴|8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12.
12.解不等式组:⎩⎨⎧-2x≤6,①
x>-2,②3(x -1)<x +1.③
请结合题意,解答下列问题.
(1)解不等式①,得x ≥-3,依据是不等式的性质3.
(2)解不等式③,得x<2.
(3)把不等式①,②和③的解在数轴上表示出来.
(第12题)
(4)从图中可以找出三个不等式的解的公共部分,得不等式组的解为-2<x<2.
13.某玩具商计划生产A ,B 两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号的玩具能全部售出,这两种玩具的生产成本和售价如下表:
(1)该玩具商对这两种型号玩具有哪几种生产方案?
【解】 (1)设该厂生产A 型玩具x 个,则生产B 型玩具(100-x)个.
由题意,得22400≤200x +240(100-x)≤22500,
解得37.5≤x≤40.
∵x 为整数,∴x 的取值为38或39或40.
故有三种生产方案:
方案一,生产A 型玩具38个,B 型玩具62个;
方案二,生产A 型玩具39个,B 型玩具61个;
方案三:生产A 型玩具40个,B 型玩具60个.
(2)由题意知,生产B 型玩具越多获利越大,
故生产A 型玩具38个,B 型玩具62个才能获得最大利润,此时最大利润为38×(250-200)+62×(300-240)=5620(元).
答:该玩具商所能获得的最大利润为5620元.
数学乐园
14.已知a ,b 为实数,则解可以为-2<x <2的不等式组是(D )
A . ⎩⎨⎧ax >1,bx >1
B . ⎩⎨⎧ax >1,bx <1
C . ⎩⎨⎧ax <1,bx >1
D . ⎩⎨⎧ax <1,bx <1
导学号:91354021
【解】 从解出发,逆向分析.
-2<x <2,即⎩
⎨⎧x<2,x>-2. 观察选项知,所给不等式组的右边均为1,
∴x <2的两边都除以2,得12x <1,
x >-2的两边都除以-2,得-12x <1,
即⎩
⎨⎧12x<1,
-12x<1的解为-2<x <2. ∴当a =-12,b =12或a =12,b =-12时,D 选项中的不等式组的解为-2<x <2.。