极坐标与参数方程训练

合集下载

高考数学题极坐标与参数方程大训练含答案

高考数学题极坐标与参数方程大训练含答案

高考23题(极坐标与参数方程)大训练1.(1)在极坐标系中,O 为极点,已知圆C 的圆心为⎝⎛⎭⎪⎫2,π3,半径r =1,P 在圆C 上运动,求圆C 的极坐标方程; (2).设直线l 经过点)3,2(πP ,倾斜角6πα=,写出直线l 的极坐标方程.2.(2009·高考辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M 、N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求出M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.3.已知曲线C 的极坐标方程是=ρ2sin θ ,设直线l 的参数方程是32,545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). (1)将曲线C 的极坐标方程转化为直角坐标方程; (2)设直线l 与x 轴的交点是,M N 是曲线C 上一动点,求MN 的最大值.4.已知曲线1C 的参数方程为210cos ,10sin x y θθ⎧=-+⎪⎨=⎪⎩ (θ为参数),曲线2C 的极坐标方程为θθρsin 6cos 2+=. (1)将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程. (2)曲线1C ,2C 是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.5.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.6.(本题满分12分)已知圆的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.7.(2014·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.8.(2013·高考课标全国卷)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).9.(2015·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.10.(2013·福建高考理科·T21)在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎪⎭⎫⎝⎛4,2π,直线l 的极坐标方程为a =-)4cos(πθρ,且点A 在直线l 上。

高中数学极坐标与参数方程大题(详解)

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。

极坐标与参数方程经典练习题 带详细解答

极坐标与参数方程经典练习题 带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。

(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。

5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程. 8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。

极坐标与参数方程单元练习(六套)

极坐标与参数方程单元练习(六套)

极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。

A. 53,-⎛⎝⎫⎭⎪πB. 543,π⎛⎝⎫⎭⎪C. 523,-⎛⎝⎫⎭⎪πD. ⎪⎭⎫⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2+2y 2=6,则x 2+y 2的最大值为( )A 、27 B 、29 C 、4 D 、3二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。

2、若A 33,π⎛⎝⎫⎭⎪,B ⎪⎭⎫⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。

(其中O 是极点)3、极点到直线()cos sin ρθθ+=________ _____。

4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。

5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM的长为 。

三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C 36,π⎛⎝⎫⎭⎪,半径为3的圆的极坐标方程。

2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

极坐标与参数方程例题

极坐标与参数方程例题

极坐标与参数方程例题例题1:求曲线r=2sinθ的极坐标方程对应的参数方程。

解答:我们可以将极坐标方程r=2sinθ转化为参数方程。

首先,我们需要找到x和y与r和θ之间的关系。

根据定义,我们有x=r*cosθ,y=r*sinθ。

将r=2sinθ代入上述公式中,可以得到x=2sinθ*cosθ,y=2sinθ*sinθ。

因此,曲线r=2sinθ对应的参数方程为x=2sinθ*cosθ,y=2sinθ*sinθ。

例题2:求曲线x=2cosθ,y=3sinθ的参数方程对应的极坐标方程。

解答:要将参数方程x=2cosθ,y=3sinθ转化为极坐标方程,我们需要找到r和θ与x和y之间的关系。

通过平方求和公式,我们有cos²θ+sin²θ=1将x=2cosθ,y=3sinθ代入上述公式中,我们可以得到(2cosθ)²+(3sinθ)²=1化简得到4cos²θ+9sin²θ=1因此,曲线x=2cosθ,y=3sinθ对应的极坐标方程为4cos²θ+9sin²θ=1例题3:已知曲线的参数方程为x=t+1,y=2t-2,求其对应的极坐标方程。

解答:我们需要找到r和θ与x和y之间的关系。

根据定义,我们有x=r*cosθ,y=r*sinθ。

将参数方程x=t+1,y=2t-2代入上述公式中,我们可以得到t+1=r*cosθ,2t-2=r*sinθ。

进一步化简可得r²=t²+2t+1+4t²-8t+4化简得5t²-6t+5=r²。

因此,参数方程x=t+1,y=2t-2对应的极坐标方程为5t²-6t+5=r²。

通过以上例题,我们可以看出极坐标与参数方程之间的转换可以通过代入关系来进行。

在已知形式的方程中,我们可以根据已知的方程形式求解出另一种形式的方程。

这种转换在解决特定问题或者在研究特定曲线时非常有用。

极坐标参数方程全套试题

极坐标参数方程全套试题

极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。

A. 53,-⎛⎝ ⎫⎭⎪πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。

2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。

(其中O 是极点)3、极点到直线()cos sin 3ρθθ+=的距离是________ _____。

4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。

5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。

三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。

2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

极坐标与参数方程专项训练和详细答案

极坐标与参数方程专项训练和详细答案

一.选择题(共4小题)1.在极坐标系中.圆C :ρ2+k 2cosρ+ρsinθ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4.﹣)引圆ρ=4sinθ的一条切线.则切线长为( )B二.填空题(共11小题) 5.极坐标系下.直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为..则曲线C 1上的点与曲线C 2上的点的最远距离为_________ .7.在极坐标系中.点M (4.)到直线l :ρ(2cosθ+sinθ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A.B 两点.则点M (﹣1.2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sinθ.以极点为坐标原点.极轴为x的正半轴.建立平面直角坐标系.直线l 的参数方程是为参数).则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中.以原点为极点.x 轴的正半轴为极轴建极坐标系.两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acosθ(a >0).过点P (﹣2.﹣4)的直线l 的参数方程为.直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列.则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A.B..则|AB|=13.在平面直角坐标下.曲线.曲.若曲线C 1、C 2有公共点.则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中.直线l 的参数方程为(t 为参数).在极坐标系(与直角坐标系xoy 取相同的长度单位.且以原点O 为极点.以x 轴正半轴为极轴)中.圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B.若点P 的坐标为.求|PA|+|PB|.15.已知过定点P (﹣1.0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M.N 两点.则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中.已知曲线C 的参数方程为.以直角坐标系原点为极点.x轴的正半轴为极轴建立极坐标系.直线l 的极坐标方程为.点P为曲线C上的一个动点.求点P到直线l距离的最小值.17.在平面直角坐标系xOy中.圆C 的参数方程为(θ为参数).直线l经过点P(1.1).倾斜角.(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A.B.求点P到A.B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中.曲线C 的参数方程为(θ为参数).在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点.以x轴正半轴为极轴)中.直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中.圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()则圆心所以.2.过点A(4.﹣)引圆ρ=4sinθ的一条切线.则切线长为().)即==43.在平面直角坐标系xOy中.点P的坐标为(﹣1.1).若取原点O为极点.x轴正半轴为极轴.建立极坐(((|OP|=∠POX=2kπ+∠POX=2kπ﹣.kB∴圆心的极坐标二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下.直线与圆的公共点个数是1 .解:直线.x+y=半径等于圆心到直线的距离等于.6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为..则曲线C 1上的点与曲线C 2上的点的最远距离为.的极坐标方程分别为的极坐标方程分别为d=|CQ|=故答案为:7.(2004•上海)在极坐标系中.点M (4.)到直线l :ρ(2cosθ+sinθ)=4的距离d=.))化成直角坐标方程为(2.2)故填:8.极坐标方程所表示曲线的直角坐标方程是.4ρ解:∵极坐标方程∴4ρ=5.9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A.B 两点.则点M (﹣1.2)到弦AB 的中点的距离为 .==. ×=…(故答案为:.10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sinθ.以极点为坐标原点.极轴为x的正半轴.建立平面直角坐标系.直线l的参数方程是为参数).则直线l 与曲线C 相交所得的弦的弦长为 4 ..圆心距为.所以11.(坐标系与参数方程)在直角坐标系中.以原点为极点.x 轴的正半轴为极轴建极坐标系.两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acosθ(a >0).过点P (﹣2.﹣4)的直线l 的参数方程为.直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列.则实数a 的值为 1 .2|x |x 程则由∴2=.2=|x 12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A.B..则|AB|=.解:把曲线化为普通方程得:=.把曲线=联立得:..x ﹣|AB|=.213.在平面直角坐标下.曲线.曲线.若曲线C 1、C 2有公共点.则实数a 的取值范围为 . 解:曲线.曲线∴﹣2|≤2.≤2a﹣2≤2≤a≤1+.故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中.直线l 的参数方程为(t 为参数).在极坐标系(与直角坐标系xoy 取相同的长度单位.且以原点O 为极点.以x 轴正半轴为极轴)中.圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B.若点P 的坐标为.求|PA|+|PB|. 的方程为∴的直角坐标方程:(Ⅱ)即由于所以=15.已知过定点P(﹣1.0)的直线l :(其中t为参数)与圆:x2+y2﹣2x﹣4y+4=0交于M.N两点.则PM.PN= 7 .:()﹣4×t=7=0.三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中.已知曲线C的参数方程为.以直角坐标系原点为极点.x轴的正半轴为极轴建立极坐标系.直线l的极坐标方程为.点P为曲线C上的一个动点.求点P到直线l距离的最小值.)化简为:ρcosθ+ρsinθ=2d=cosγ=.sinγ==2.17.在平面直角坐标系xOy中.圆C的参数方程为(θ为参数).直线l经过点P(1.1).倾斜角.(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A.B.求点P到A.B两点的距离之积.的参数方程把直线∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中.曲线C的参数方程为(θ为参数).在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点.以x轴正半轴为极轴)中.直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.的距离为=。

江苏附加题专项训练(极坐标与参数方程)

江苏附加题专项训练(极坐标与参数方程)

附加题专项训练 (极坐标与参数方程)1. 已知在直角坐标系x O y 内,直线l 的参数方程为22,14,x t y t =+⎧⎨=+⎩ (t 为参数).以O x 为极轴建立极坐标系,圆C的极坐标方程为)4πρθ=+.(1)写出直线l 的普通方程和圆C 的直角坐标方程; (2)判断直线l 和圆C 的位置关系.2.已知圆的极坐标方程为:2cos 604πρθ⎛⎫--+= ⎪⎝⎭.(1)将极坐标方程化为普通方程;(12)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.3. 已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为1212x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度。

4. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为 (1,–5),点M 的极坐标为)2,4(π.若直线l 过点P ,且倾斜角为3π,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系。

5. 若两条曲线的极坐标方程分别为ρ=l 与ρ=2)3cos(πθ+,它们相交于A ,B 两点,求线段AB 的长.6. 圆222)1(r y x =+-与椭圆⎩⎨⎧==ααsin cos 2y x 有公共点,求圆的半径r 的取值范围。

7. 在极坐标系中,已知圆C 的圆心坐标为C (2,3π),半径R 求圆C 的极坐标方程.8. 已知圆锥曲线C 的参数方程为2212(1x t t t y t t ⎧=+-⎪⎪⎨⎪=-⎪⎩为参数) (1) 试将圆锥曲线C 的参数方程化为直角坐标方程;(2) 以圆锥曲线C 的焦点为极点,以它的对称轴为极轴建立极坐标系,试求它的极坐标方程9. 已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 1:cos()4ρθπ+=C 2:24,4x t y t ⎧=⎨=⎩(t ∈R )交于A 、B 两点.求证:OA ⊥OB .10. 在极坐标系中,直线l 的极坐标方程为()3πθρ=∈R ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2cos ,1cos 2αα=⎧⎨=+⎩x y (α为参数),求直线l 与曲线C 的交点P 的直角坐标.11. 已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=.(1)将直线l 的极坐标方程化为直角坐标方程;(2)点P 在曲线C 上,求P 点到直线l 距离的最小值.12. 已知直线l 经过点P (1,1),倾斜角6πα=,设l 与曲线2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)交于两点A 、B ,求点P 到A ,B 两点的距离之积。

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

极坐标及参数方程高考题练习含答案

极坐标及参数方程高考题练习含答案

极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。

直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。

二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。

高三数学专项训练:极坐标与参数方程(附答案)

高三数学专项训练:极坐标与参数方程(附答案)

x 中,⊙ 的参数方程为cos ,( 为参数), xOy O过点 0, 2 且倾斜角为 的直线 与⊙ 交于 , 两点.l O AB Ptl,( 为参数),设 与 的交点为 ,当 变化时, 的轨迹为曲线 . m l l P k P Cm y , k(1)写出 的普通方程: C(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设l : (co s s in ) , 为 与 M lxC3 cosx 3、(2016 全国 I I I 卷高考)在直角坐标系s in1坐 标 原 点 为 极 点 , 以 x 轴 的 正 半 轴 为 极 轴 ,, 建 立 极 坐 标 系 , 曲 线) 2 2 . 41(II )设点 P 在 上,点 Q 在 上,求|P Q |的最小值及此时 P 的直角坐标.4、(成都市 2018 届高三第二次诊断)在平面直角坐标系xOy 中,曲线C 的参数方程为x.在以坐标原点O 为极点,轴的正半轴为极轴的极坐标2s ins in ( ) 5 2 0 ,直线的极坐标方程为 . 44(1)求直线的直角坐标方程与曲线C 的普通方程;5、(成都市 2018 届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是 ,直线l 的2 s in 在直线l 上.以极点为坐标原点 O ,极轴为 x 轴的4正半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程; (Ⅱ)若直线l 与曲线C 相交于不同的两点 A,求 Q A Q B 的值.6、(达州市 2017 届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴2tx 2建立极坐标系,直线l 的参数方程为.t 2y 2 t2 2(1)若l 的参数方程中的t1 1(0, 2) l (2)若点 P, 和曲线C 交于 两点,求.7、(德阳市 2018 届高三二诊考试)在平面直角坐标系xOy 中,直线l : (t 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线C :x.0,0l与直线 和曲线C 的交点分别为点M 和点 N (异于点O ), 2 O N 求 的最大值.O M8、(广元市 2018 届高三第一次高考适应性统考)在平面直角坐标系x Oy4cos a 2(a 为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线 的极坐标方y程为 ( ) .R 6C(2)设直线 与曲线 相交于 , 两点,求的值.ABC A B 轴为极轴建立极坐标系,已知直线 l 的极坐标方程为 3 c os s inC3 0 , 的极坐标方程为.4s in( ) 6(I )求直线 l 和 的普通方程;C (II )直线 l 与 有两个公共点 A 、B ,定点 P (2, 3) ,求|||| 的值.C 10、(绵阳市 2018 届高三第一次诊断)在直角坐标系中,曲线C 的参数方程是yx(1)求曲线C 的极坐标方程;C, AOB与曲线 分别交于异于原点的 A B 两点,求 的面积.(2)设l, ,若631211、(南充市 2018 届高三第二次高考适应性考试)在直角坐标系xOy 中,曲线C 的参数方程为1:1 ,以坐标原点O 为极点,以 轴正半轴y1x22 2(Ⅰ)求曲线C 的普通方程和曲线C 的极坐标方程;12C C,与曲线 , 分别交于 A B 两点,求61 212、(仁寿县 2018 届高三上学期零诊)在平面直角坐标系xoy 中 ,圆 C 的参数方程为l3)=7. 43 t 2 (t 为参数),以坐标原 1224 c os(3(1)求圆C 的直角坐标方程; 2(2)若 P(x, y )是直线l 与圆面 4cos( )的公共点,求 3x y的取值范围.32 0( PQ (1)求点 的轨迹C 的直角坐标方程;3 (2)若C 上点 M 处的切线斜率的取值范围是,求点 M 横坐标的取值范围. 315、(雅安市 2018 届高三下学期三诊)在直角坐标系中,已知圆 的圆心坐标为(2,0) ,半径为CXCl(2)点 的极坐标为 1,,直线 与圆 相交于 , ,求 PAC 的值.P l A B 235 cos16、(宜宾市 2018 届高三第一次诊断)在直角坐标系 中,曲线C 的参数方程为xOy 5 s iny(其中参数 ).xCx 1 t c os (2)直线l 的参数方程为(其中参数 , 是常数),直线l 与曲线 交于t RC y点,且 ,求直线l 的斜率.AB2 3 l2t , x 2 y 4 t的极坐标方程为 4cos .(1)写出直线 l 普通方程和曲线 C 的直角坐标方程;(2)过点 M (1,0) 且与直线 平行的直线 交 于 A , B 两点,求| AB | .l l C 在平面直角坐标系中,以坐标原点为极点, 轴x si n 2 cos ( 0) ,过点 的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 a a2x 2 ( 为 t参数),直线 与曲线 相交于 两点. 的直线 的参数方程为2 y 42 (1)写出曲线 的直角坐标方程和直线 的普通方程; 2 PA PB AB 求 的值 (2)若 ,. a 1、解答:的参数方程为的普通方程为 22yl : x 0 与e O有两个交点,当| 0 0 2 |t an2 ,由直线l 与e O时,设直线l 的方程为 y x1 两个交点有,得 ,∴或,综上时,点P 坐标为 (0,0)ly 22A22为 y, 1 1 2 2③2 2k 2(1 k )x 2 2kx 1 0 2 2 ,∴,∴得121222y ④2xk 代入④得 x y 2y 0 .当点 P(0,0) 时满足方程 x y 2y 0 ,∴ AB 中点的 P2 2 2 2 y22 2 的 轨 迹 方 程 是 x, 即 xy2 22 2 2 222 2 22B (y 0 ,故点 P 的参数方程为 ,则22 2 2 2y s in2 2 0).2、【解析】⑴将参数方程转化为一般方程l : y k x 2 112k① ②消 可得: 4k x 2 y 2 即 的轨迹方程为 4 ;P ⑵将参数方程转化为一般方程……③Cl3422x 2y2 c os解得 5y.5s in c os 10 0.4c oss in ,可得直线的直角坐标方程为y , 2 3 c osx x 2 y 2 将曲线C 的参数方程C12 4(2)设Q(2 3cos ,2s in ) (0 ).(4 2, ) 化为直角坐标为(4, 4).4则 M.2s in( ) 103 cos s in 103.225s in ( ) 1,即 当 3 6∴点 M 到直线的距离的最大值为6 25、.316C242 2 t ) (2 2 22 2121 21121 121 2,4. s in c os2由得:2,所以 x 2 y 2 y ,所以曲线C 的直角坐标方程为: x .224 2s in, s in c oss in s in cos 2O N所以,4 4 23由于0 ,所以当时, 取得最大值:.2844cos a 2得曲线 的普通方程:C所以曲线 的极坐标方程为: 4 c os 12 C 2(2)设 , 两点的极坐标方程分别为( , ),( , ) ,661224 c os 12 0 的两根2是 C2∴ 2 3, 12121 29、解:(I )直线 l 的普通方程为: 3 3 0, ·································································· 1 分x y因为圆 的极坐标方程为, C 63 1所以 2 4( s i n cos ) , ··············································································· 3 分2 2所以圆 的普通方程 22 3 0 ;·························································· 4 分 C x 2 y 2 x y (II )直线 l : 3 3 0的参数方程为: x y3 y 3 t2代入圆 的普通方程 22 3 0 消去 x 、y 整理得: x 2 y 2 x y 2 9 17 0 , ··········································································································· 6 分t t | | | ,| | | |,··························································································· 7 分PB tPA t 1 2|| PA | | PB |||| t | | t ||| t t | (t t ) ······························································· 8 分2 12122 12219 417 13 .··································································································· 10 分2 10、解:(Ⅰ)将 C 的参数方程化为普通方程为(x -3) +(y -4) =25,2 2 22.(Ⅱ)把 代入 6 c os 8s in ,得,6 1∴ . ……………………………………………………………6 分A66 c os 8s in32∴ . ……………………………………………………………8 分B31s in AOB2 1 21225 3. 4211、解:(Ⅰ)由2.3yx 2所以曲线 的普通方程为C 2.13 c os1 s i n 1,得到,化简得到曲线把 x,代入22的极坐标方程为2 cos.C 2(Ⅱ)依题意可设 A,曲线C 的极坐标方程为 2.2 261211代入C 的极坐标方程得 2 2,解得 .621.622.12)=7.根据 ρcosθ=x ,ρsinθ=y 可得:﹣y+x=7. 即直线 l 的直角坐标方程为 x.---------------------------5 分(θ 为参数),其圆心为(﹣1,2),半径r=4.----6 分5 2.---------------------8 分2∴ AB 的最小值为圆心到直线的距离 d ﹣r ,即 AB min4 c os( )13、【解析】(1)∵圆C 的极坐标方程为323 14 c os ( cos )∴ , 322又∵ 2222∴圆C 的普通方程为 x 22(2)设 z,y 2x 2 3y 0 (x 1) (y 3) 4 ,22 2 2 ∴圆C 的圆心是(1, 3)3 t2 3x y 得 z t , 代入 z 12,圆C 的半径是 ,2 3,即 x y 的取值范围是∴,∴.……10 分 2 0 14、解:(1)由,得22设,,1 1x 2 yx 2x 2, y 2y则 x ,122111 1得22,∴221,0 为圆心,1半径的半圆,如图所示,,设点处切线 的倾斜角为 lM设253 由l 斜率范围, …………7 分3 3 63 而,∴,∴ ,26 3 22M , 所以,点 横坐标的取值范围是 . …………10 分22,,化简得圆 的极坐标方程:,:由l 得 ,y1l 的极坐标方程为.4(1,0), (2)由 PP22 t x2直线 的参数的标准方程可写成2y 1 t2 2 2t 2) (1 t) 2 ,2 2 2 2,,.3 5 cosx Q 16、解: (1)5 s iny 的普通方程 x 22x 1t c osQ1 直线l 的普通方程 y k xy3k 0 k k 122 t ,217、(1)由2y 4 t2 又由 4cos 得 4cos ,则 的直角坐标方程为 0 . ··············5 分2C x 2 y 22 t , x2 (2) 过点 M ( 1,0) 且与直线 平行的直线 的参数方程为l l 2 y t .2 将其代入 4 0 得 2 23 0 ,则 t t,x 2 y 2 x tt 1 2 所以| AB ||t t | (t t ) 4t t14 . ······················································10 分2 1212(1)由 整理得= ,,(2)将直线 的参数方程代入曲线 的直角坐标方程 = 得,.设两点对应的参数分别为,则有∵=,即=,解得或者(舍去),。

极坐标与参数方程高考题专题练习

极坐标与参数方程高考题专题练习

1.在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,以分别为与轴,轴的交点(1)写出的直角坐标方程,并求出的极坐标.(2)设的中点为,求直线的极坐标方程.2.已知曲线:(为参数),:的参数方程(为参数)(1)化,的方程为普通方程,并说明它们分别表示什么曲线.(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.3.已知曲线:(为参数),:的参数方程(为参数)(1)指出,是什么曲线,并说明与的公共点的个数.(2)若把,上各点的纵坐标都压缩为原来的一半,分别得到曲线,,写出,参数方程,与公共点的个数和与公共点个数是否相同,说明理由.4.在在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.5.已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段长度.6.已知圆的参数方程为,若是圆与轴正半轴的交点,以坐标原点为极点,轴正半轴为极轴建立极坐标系,试求过点的圆的切线的极坐标方程.7.在极坐标系中,已知圆的圆心坐标为,半径,求圆的极坐标方程.8.在平面直角坐标系中,动圆,的圆心为,求的取值范围.9.已知圆锥曲线:(为参数),点、分别是圆锥曲线的左、右焦点,点为圆锥曲线上的上顶点,求经过点且垂直于直线的直线的方程.10.求圆被直线(为参数)截得的弦长.11.已知直线的参数方程(为参数),是椭圆上的任意一点,求点到直线距离的最大值.12.已知圆,直线,求过点且与直线垂直的直线的极坐标方程。

13.已知直线的参数方程为(为参数),曲线参数方程(为参数)(1)将曲线的参数方程化为普通方程.(2)若直线与曲线相交于点,两点,试求线段的长.14.已知在一个极坐标系中,定点,动点对极点和点的张角,在的延长线上取一点,使,当在极轴上方运动时,求点的轨迹的极坐标方程.15.设是曲线:(为参数,)上任意一点(1)将曲线化为普通方程.(2)求的取值范围.16.在平面直角坐标系中,圆参数方程(为参数),直线经过点,倾斜角.(1)写出直线的参数方程.(2)设与圆交于点,两点,求点到,两点的距离之积.17.在曲线:(为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点坐标和最小距离.18.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心,为半径.(1)求直线的参数方程和圆的极坐标方程.(2)试判定直线和圆的位置关系.19.已知圆参数方程(为参数),若是圆与轴正半轴的交点,以圆心为极点,轴正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程.。

极坐标参数方程基础50题

极坐标参数方程基础50题

其他1. 已知曲线:(为参数),为坐标原点,是曲线上的一点,与轴的正半轴所成的角为,则_____。

2. 已知椭圆的参数方程为(为参数),则该椭圆的长轴长为_____。

3. 已知直线的参数方程为(为参数),则其倾斜角为_____。

4. 化极坐标方程为直角坐标方程为_____ 。

5. 在极坐标系中,点到直线的距离为_____ 。

6. 若直线(为参数)与直线垂直,则常数 _____。

7. 已知椭圆的参数方程为,则该椭圆的普通方程为______ 。

8. 点的极坐标是,则点的直角坐标为_____。

9. 在极坐标系中,极点到直线:的距离是_____。

10. 以原点为极点,以轴正半轴为极轴且与直角坐标系取相同的长度单位建立极坐标系。

若圆的极坐标方程为,则其直角坐标方程为 。

11. 在极坐标系中,圆心为且过极点的圆的极坐标方程为_____。

12. 已知圆的参数方程为,(为参数),则圆的面积为_____;圆心到直线的距离为_____。

13. 在极坐标系中,定点,点在直线上运动,当线段最短时,点的极坐标为_____。

14. 曲线的参数方程为(为参数),曲线的直角坐标方程为_____。

15. 在极坐标系中,圆的圆心的极坐标是_____。

16. 在平面直角坐标系中,曲线的参数方程为(为参数,),若以为极点,以轴正半轴为极轴建立极坐标系,则曲线的极坐标方程为_____。

17. 已知在极坐标系中,为极点,,,则的面积为_____。

18. 在极坐标系中,曲线,曲线 ,若曲线与交于两点,则线段长度为_____。

19. 过点且平行于极轴的直线的极坐标方程是_____。

20. 已知椭圆的参数方程为(为参数),则该椭圆的离心率为_____。

21. 已知椭圆的参数方程为(为参数,),则此椭圆的焦距为_____。

22. 在极坐标系中,有点,,则,两点间的距离为_____。

23. 参数方程(是参数)对应的普通方程是_____。

24. 在极坐标系()中,曲线与的交点的极坐标为 。

极坐标与参数方程15道典型题

极坐标与参数方程15道典型题

极坐标与参数方程 15道典型题1在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系•圆C 1,直线C 2的极坐标方程分别为 4sin , cos(-) 2.2 . 4(1 )求C 1与C 2的直角坐标方程,并求出 G 与C 2的交点坐标;(2 )设P 为G 的圆心,Q 为C 1与C 2交点连线的 中点.已知直 线PQ 的参数 方程为x t a b 3 (t 为参数,t R ),求a, b 的值. y t 12(1)由极直互化公式得:2 2G : x (y 2) 4C 2 :x y 4 0 (4)分联立方程解得交点坐标为 (0,4), (2,2) ..... 5分P(0,2), Q(1,3)所以直线 PQ : x(1 )求C 1的直角坐标方程和 C 2的普通方程;(2)若C 2与C 1有两个不同的公共点,求 m 的取值范围解:( 1)由极直互化公式得 C 1 : 2(cos 2分(2 )由(1)知: 化参数方程为普通方程:b ab x 2 2对比系数得: a 1,b 2 ....... 10 分2.极坐标系与直角坐标系 xoy 有相同的长度单位,以原点 O 为极点,以x 轴正半轴为极轴,曲2线C i 的极坐标方程为 cos 2数)3,曲线C 2的参数方程为x t m,(t 是参数,m 是常y 2t 12 2 2sin )3,所以 x y 3 ;消去参数t得C2的方程:y 2x 2m 1(2)由(1)知C i 是双曲线,C 2是直线,把直线方程代入双曲线方程消去y 得:故 P(-5, 94..在极坐标系 Ox 中,直线C 的极坐标方程为 p sin e = 2, M 是C 上任意一点,点 F 在射线 OM 上,且满足|OF • |OM = 4,记点F 的轨迹为C 2.(I)求曲线C 2的极坐标方程;(n)求曲线C 2上的点到直线 p cos(e + 亍)=,2的距离的最大值. 解:(I)设 F ( p , e ) , M ( p 1, e ),依题意有 p 1Sin e = 2, pp 1 = 4.消去 p 1 ,得曲线 G 的极坐标方程为 p = 2sin e . 5分 (n)将C 2, C 3的极坐标方程化为直角坐标方程,得C 2: x 2+ (y — 1)2= 1, G: x — y = 2.O 是以点(0 , 1)为圆心,以1为半径的圆,圆心到直线C 的距离d =牛22 23x 4(2m 1)x 4m 4m 4---------------- 7分若直线和双曲线有两个不同的公共点,解得:m 1或 m2 ------ 10则 16(2m 1)2 12(4m 24m 4)0,2X3.已知椭圆C:—3、、3t y2.3 tI 的普通方程;1,0,若椭圆C 上的点满足到点2—1,直线3(t 为参数).(I )写出椭圆C 的参数方程及直线 (II )设 坐标.的距离与其到直线I 的距离相等,求点 P 的解:(I) (n)设P 到直线 x = 2cos e , y =3sin e F (2cos e ,3sin |2cos I 的距离d =-C: (e 为为参数),1 : X — 3y + 9= 0.e ),则|AF = (2cos e — 1)2+ ( 3sin e — 3sin e + 9| 2cos e — 3sin e + 9 22e ) = 2— cos_ 2 2由 | AF = d 得 3sin e — 4cos e = 5,又 sin e + cos=1,得 sinA30 =-, cos5e =-5…10分所以 x 2y 24x 4y 0,即(x 2)2(y 直线l 的普通方程为.3x y 2.33 0。

极坐标与参数方程经典30题

极坐标与参数方程经典30题

专题14坐标系与参数方程一、解答题1.(2019·安徽高考模拟(文))在平面直角坐标系中,曲线的参数方程为(其中为参数).以坐标原点为原点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(I)写出曲线的普通方程和曲线的直角坐标方程;(II)设点,分别在曲线,上运动,若,两点间距离的最小值为,求实数的值.【答案】(I),;(II)或.【解析】(I)曲线;曲线的极坐标方程为,即,将,代入,得(II)因为曲线的半径,若点,分别在曲线,上运动,,两点间距离的最小值为,即圆的圆心到直线的距离,,解得或.2.(2019·江西高考模拟(文))已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,直线过点,且倾斜角为,圆C的极坐标方程为.(1)求圆C的普通方程和直线的参数方程;(2)设直线与圆C交于M、N两点,求的值.【答案】(1)圆的方程:,直线的参数方程为(为参数)(2)【解析】(1)圆的方程:,直线的参数方程为(为参数)(2)将直线的参数方程代入圆的方程,得:3.(2019·辽宁高考模拟(文))选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求圆的极坐标方程;(2)已知射线,若与圆交于点(异于点),与直线交于点,求的最大值.【答案】(1);(2)3【解析】(1)由圆的参数方程为消去参数,得到圆的普通方程为,即,所以其极坐标方程为,即;(2)由题意,将代入圆的极坐标方程得;将代入线的极坐标方程,得,所以,因为,所以,因此,当,即时,取得最大值3.4.(2019·湖北高考模拟(理))选修4-4:坐标系与参数方程在平面直角坐标系中,直线的普通方程是,曲线的参数方程是(为参数)。

在以为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程是。

(1)求直线及曲线的极坐标方程;(2)已知直线与曲线交于两点,直线与曲线交于两点,求的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 ( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和2.[2014·江西卷] (2)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4二、填空题3.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = ______.4.(2013年高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________ 5.(2013年高考北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________. 6.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.若极坐标方程为的直线与曲线(为参数)相交于两点,则7.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(坐标系与参数方程选讲选做题)已知曲线C的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.8 .(2013年高考陕西卷(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .9 .(2013年高考江西卷(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________10 .(2013年高考湖南卷(理))在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________.11.(2013年高考湖北卷(理))在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O的极坐标方程分别为2sin 42m πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.[来源:学+科+网]12.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.13.[2014·陕西卷] C .(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离是________.14.[2014·湖南卷] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.15.[2014·湖北卷] 已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.16.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.17.(15年广东理科)已知直线的极坐标方程为,点的极坐标为,则点到直线的距离为xOy O x cos 4ρθ=23x ty t⎧=⎪⎨=⎪⎩t ,A B ______AB =l 24sin(2=-)πθρA 74A π⎛⎫ ⎪⎝⎭A l x18.(15北京理科)在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ+=的距离为.三.解答题19.(15年福建理科)在平面直角坐标系中,圆C 的参数方程为.在极坐标系(与平面直角坐标系取相同的长度单位,且以原点O 为极点,以轴非负半轴为极轴)中,直线l 的方程为(Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值.20.(15年新课标2理科)在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。

(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求||AB 的最大值。

21.(15年陕西理科)在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为. (I )写出的直角坐标方程;(II )为直线上一动点,当到圆心的距离最小时,求的直角坐标.22. [2014·福建卷](Ⅱ)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.23.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.xoy 13cos (t )23sin x t y t ì=+ïí=-+ïî为参数xoyx sin()m,(m R).4pq -=?x y Ol 1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩t x Cρθ=C P l P C P24.[2014·新课标全国卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.25.[2014·新课标全国卷Ⅱ] 选修4-4:坐标系与参数方程 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈⎣⎡⎦⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.26.[2014·浙江卷] (1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎨⎧x =-4+t cos π4,y =t sinπ4(t 为参数),曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围.27.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—4;坐标系与参数方程已知动点都在曲线为参数上,对应参数分别为与,为的中点.(Ⅰ)求的轨迹的参数方程;(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭.(I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.29.(2013年高考新课标1(理))选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).1.B2.A3.5.16.167.sin 4πρθ⎛⎫+= ⎪⎝⎭ 8.R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 2 9.2cos sin 0ρθθ-=10.3 11.312.5 13.1 14.ρcos θ-ρsin θ=1 15.()3,1 16.(1,1) 17. 18.119.试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为,,得,所以直线l 的直角坐标方程为.(Ⅱ)依题意,圆心C 到直线l 的距离等于2解得考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式. 20.21.【解析】试题分析:(I )先将两边同乘以可得,再利用,可得的直角坐标方程;(II )先设的坐标,则,再利用二次函数的性质可得的最小值,进而可得的直角坐标.试题解析:(I )由, 从而有.(II)设,则故当t=0时,|PC|取最小值,此时P 点的直角坐标为(3,0).考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.22:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =≤4,解得-25≤a ≤2 5.23.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线的斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.24.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离()()22129x y -++=sin()m 4pq -=sin cos m 0r q r q --=0x y m --=|12m |2,--+=m=-3±ρθ=ρ2sin ρθ=222x y ρ=+sin x ρθ=C P C P =C P P 2,sin ρθρθ==得(2222+,+3x y x y ==所以1(3t,t),22P +又|PC |==d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.25.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为 ⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.26.解:(1)在ρ=cos θ两边同乘ρ,得ρ2=ρcos θ.化成直角坐标方程,得x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14.所以集合A 所表示的区域为:由射线y =x (x ≥0),y =0(x ≥0),圆⎝⎛⎭⎫x -122+y 2=14所围成的区域,如图所示的阴影部分,所求面积为π16+18.(2)由题意知,直线l 的普通方程为x -y +4=0.因为曲线C 上所有点均在直线l 的右下方,故对θ∈R ,有a cos θ-2sin θ+4>0恒成立,即a 2+4cos(θ+φ)>-4⎝⎛⎭⎫其中tan φ=2a 恒成立, 所以a 2+4<4.又a >0,得0<a <2 3. 27.【答案】 28.29【答案】将消去参数,化为普通方程,[来源:学科网]即:,将代入得,[来源:学*科*网Z*X*X*K],∴的极坐标方程为;(Ⅱ)的普通方程为,[来源:学科网]由解得或,∴与的交点的极坐标分别为(),.。

相关文档
最新文档