五年级举一反三行程问题相遇问题

合集下载

行程问题之相遇问题

行程问题之相遇问题

行程问题之相遇问题
方法解析:有关行程问题,总的思路是路程=速度×时间
相关变式:速度=路程÷时间
时间=路程÷速度
路程之差=速度差×共同时间
路程之和=速度和×共同时间
另外,要学会通过画线段图来分析路程、速度、时间的关系
例题一:(相遇问题)A、B两地相距700千米,慢车行完全程需要10小时,快车行完全程需要8小时,慢车从A地出发1小时后,快车才从B地开出,快车开出几小时后与慢车相遇?
练习1、客货两车同时从A、B两地相对开出,4.5小时相遇,相遇时
4,求A、B两地相客车比货车多行了27千米,货车的速度是客车的
5
距多少千米?
练习2、甲、乙两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?
练习3、兄妹二人同时离家去学校,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,那么他们家离学校有多少米?
9,两车分别从甲、乙两地同时相向而行,练习4、货车速度是客车的
10
在离两地中点3千米处相遇,相遇后,两车分别用原速继续前进,问当客车到达甲站时,货车还离乙站多远?
练习5、甲、乙两车同时从A、B两站相对开出,5小时后甲到达中点,
2,求A、B两站乙车离中点还有60千米,已知乙车速度是甲车的
3
的距离。

练习6、客车由甲地到乙地需行10小时,货车从乙地到甲地需15小时,两车同时相向开出,相遇时客车距乙地还有192千米,两地的距离是多少千米?。

五年级举一反三164页 相遇问题

五年级举一反三164页 相遇问题

在离B地3.2千米处与甲相遇,所以相遇时甲比乙多行了 3.2+3.2=6.4km, 甲每分钟比乙多走250-90=160m,多行6.4km需要的时 间为6.4X1000÷160=40分钟。 所以AB两地的距离=40 X90+3200=40X90+3200=6800米
2.小红和小平同时从学校出发步行去 小平家,小平比小红每分多走20米, 30分钟后小平到家,小平到家后立即 按原路返回,在离小平家350米处于 遇到小红,求小红每分钟走多少米?
例3:甲乙二人上午8点同时从东村骑车到西 村,甲每小时比乙多骑6千米,中午 12点甲 到达西村后,立即返回东村,在距西村15千 米处遇到乙。东西两村距离多远? 甲比乙多行:15X2=30 甲行时间:30 ÷6=5 甲的速度:15 ÷(5-4)=15 两地距离:15X(12-8)=60
练习
1.甲乙二人同时从A地到B地,甲每分钟走250米, 乙每分钟走90米。甲到达B地后立即返回A地,在离 B地3.2千米处与乙相遇,问AB相隔多远?
练习
2.汽车从甲地开往乙地,每小时行32千米,4小 时后,剩下的路比全程的一半少8千米,如果 改用每小时56千米的速度行驶,再行几小时到 乙地? 全程一半:32X4-8=120 剩下路程:120-8=112
再行时间:112 ÷56=2
练习
3. 学校运来一批树苗,5(1)班的40个同学都 去参加植树活动,如果每人植3棵树,全班同学 能植这批树苗的一半还多20棵。如果这批树苗全 部给五(1)班的同学去植,平均每人植多少棵? 一半的棵数:40X3-20=100 人平数:100X2 ÷40=5
相遇问题
举一反三 P164
例2 . 快车和慢车同时从甲乙丙地相对开出, 快车第小时行40千米,以过3小时快车已驶 过中点25千米,这时快车与慢车还相距7千 米,慢车每小时行多少千米?

小学奥数知识∶行程问题之相遇问题(五年级)

小学奥数知识∶行程问题之相遇问题(五年级)

行程问题之相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解: “两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

例2:甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。

相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。

问第一次相遇点距B地多少千米?【解析】:甲、乙两辆汽车同时从A、B两地相对而行,行驶情况如下图:蓝色线条表示甲车行驶路线,红色线条表示乙车行驶路线;细线条是第一次相遇前两车行驶路程,粗线条表示两车从第一次相遇到第二次相遇之间行使的路程。

从图中可以看出,从出发到第一次相遇,两车合走了1个全程(细线条);从第一次相遇到第二次相遇,两车合走了2个全程(粗线条);两车总共合走了3个全程。

每辆汽车的速度是一定的,所以它们各自行驶的路程与时间成正比例。

解法一:如上图,第一次相遇时,即两车合走1个全程的时间里,甲走了60千米。

两车总共合走了3个全程,则甲车从A地出发,经过B地到达第二次相遇地点,总共行驶了3个60千米(蓝色线条全长),加上第二次相遇地点到A地40千米,共2个全程。

所以A、B两地的距离为:(60×3+40)÷2=110(千米)。

行程问题(一)相遇问题

行程问题(一)相遇问题

行程问题(一)基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间平均速度=总路程÷总时间相遇问题:速度和×相遇时间=相遇路程追及问题:追及时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。

往返两地的平均速度是每小时多少千米?1.有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上、下山的平均速度。

2.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。

求汽船从甲码头顺流行驶几小时到达乙码头?3,甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。

东村到西村的路程是多少米?例3 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?1,兄弟二人同时从学校和家中出发,相向而行。

(完整)五年级奥数行程问题五大专题

(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

小学奥数知识∶行程问题之相遇问题(五年级)

小学奥数知识∶行程问题之相遇问题(五年级)

行程问题之相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解: “两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

例2:甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。

相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。

问第一次相遇点距B地多少千米?【解析】:甲、乙两辆汽车同时从A、B两地相对而行,行驶情况如下图:蓝色线条表示甲车行驶路线,红色线条表示乙车行驶路线;细线条是第一次相遇前两车行驶路程,粗线条表示两车从第一次相遇到第二次相遇之间行使的路程。

从图中可以看出,从出发到第一次相遇,两车合走了1个全程(细线条);从第一次相遇到第二次相遇,两车合走了2个全程(粗线条);两车总共合走了3个全程。

每辆汽车的速度是一定的,所以它们各自行驶的路程与时间成正比例。

解法一:如上图,第一次相遇时,即两车合走1个全程的时间里,甲走了60千米。

两车总共合走了3个全程,则甲车从A地出发,经过B地到达第二次相遇地点,总共行驶了3个60千米(蓝色线条全长),加上第二次相遇地点到A地40千米,共2个全程。

所以A、B两地的距离为:(60×3+40)÷2=110(千米)。

小学数学五年级数学奥数举一反三行程问题四31

小学数学五年级数学奥数举一反三行程问题四31

五年级奥数举一反三
【练习4】 1,小强再走2小时到达乙地,小东再走45千米到达甲地。 小东每小时行多少千米?
2,甲、乙二车同时从A、B两地出发相向而行,甲车每小时行45千米。 两车相遇后,乙车再行135千米到A地,甲车再行2小时到B地。求乙车行 全程共用了几小时? 3,乙、慢两车同时从甲、乙两地相向而行,4小时相遇。已知快车每小 时行65千米,慢车每小时行25千米。求慢车行完全程共用了多少小时?
五年级奥数举一反三
五年级奥数举一反三
通过前面对行程应用题的学习,同学们可以发现,行 程问题大致分为以下三种情况: (1)相向而行:相遇时间=距离÷速度和(2)相背 而行:相背距离=速度×时间 (3)同向而行:追及时间=追及距离÷速度差 如果上述的几种情况交织在一起,组成的应用题将会 丰富多彩、千变万化。解答这些问题时,我们还是要 理清题中已知条件与所求问题之间的关系,同时采用 “转化”、“假设”等方法,把复杂的数量关系转化 为简单的数量关系,把一复杂的问题转化为几个简单 的问题逐一进行解决。
五年级奥数举一反三
【例题2】 客、货两车同时从甲、乙两站相对开出,客车每 小时行54千米,货车每小时行48千米。两车相遇后又以原速 前进,到达对方站后立即返回,两车再次相遇时客车比货车 多行21.6千米。甲、乙两站间的路程是多少千米? 【思路导航】 客货两车从出发到第二次相遇,一共行了三个全程。而第二 次相遇时客车比货车多行了21.6千米,说明两车已行了 21.6÷(54-48)=3.6小时。用速度和乘所行时间就得到三 个路程的和,再除以3就得到甲、乙两站间的路程。
五年级奥数举一反三
【练习2】 1,乙、慢两车同时从甲、乙两地相对开出并往返行驶。快车每小时行 80千米,慢车每小时行45千米。两车第二次相遇时,快车比慢车多行了 210千米。求甲、乙两地间的路程。

五年级奥数行程问题(追及相遇+火车过桥)

五年级奥数行程问题(追及相遇+火车过桥)

(一)行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

①追击及相遇问题一、例题与方法指导例1. 甲、乙、两人同时同地出发,绕一个花圃行走,甲与乙背向而行。

甲每分钟走40米,乙每分钟走38米。

在途中,甲和乙行走5分钟之后相遇。

问:这个花圃的周长是多少米?例2. 东、西两地间有一条公路长230千米,甲车以每小时25千米的速度从东到西地,2小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

哥哥刚到学校就立即返回来在途中与妹妹相遇。

从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?二、巩固训练1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?2. 两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,乙车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?三、拓展提升1. 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,行驶5小时后两车相遇。

求甲乙两地相距多少千米?3.甲、乙、丙三辆车同时从A地出发到B地去,丙第一个出发,乙第二,甲最后出发。

小学数学行程问题相遇问题最全版

小学数学行程问题相遇问题最全版

实用文案行程问题---相遇问题1、甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走 6.2千米,乙每小时走 4.3千米。

两人几小时后相遇?2、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?3、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?4、一列快车和一列慢车分别从甲乙两地同时相向而行。

快车10小时可以到达乙地,慢车15小时可以到达甲地。

已知快车每小时比慢车多行20千米,两车出发后几小时相遇?5、甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。

两车在距中点42.9千米处相遇,东、西两地相距多少千米?6、.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。

求两地之间的路程是多少千米?7、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。

求A、B两城之间的距离?8、甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?标准文档9、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?10、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?11.汽车从甲地开往乙地,每小时行32千米。

4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?12、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。

举一反三-相遇问题

举一反三-相遇问题

1、甲乙两人同时从A、B两地出发相向而行,甲每分钟行120米,比乙每分钟快50米,出发50分钟后两人离相遇还有30米。

AB两地相距多少米?2、客、货两车从相距840千米的两城市同时出发相向而行,客车每小时72千米,货车每小时68千米,相遇时谁行的路程多?多多少千米?3、东、西两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时两人相遇。

两人的速度各是多少?4、王明回家,距家门360米,妹妹和小狗一起向他奔来。

王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米。

小狗遇到王明后又返回,用同样的速度往返于王明和妹妹之间,当王明和妹妹相距10米时,小狗一共跑了多少米?5、甲、乙两列火车同时从两地相对开出,经过5小时后两车在距离中点30千米处相遇,若快车每小时行60千米,那么慢车每小时行多少千米?6、甲、乙两车同时从A、B两站相对开出,4小时后乙车到达中点,甲车距离中点还有50千米,已知甲车每小时行55千米,求A、B两站之间的距离?7、小明和小华两人分别从东、西两地同时出发,相向而行。

10小时后可以相遇。

如果两人每小时都少行2千米,那么12小时后才能相遇。

两地相距多少千米?8、甲、乙两辆汽车同时从A、B两地相对开出,甲车每小时行56千米,乙车每小时行48千米,两车在距离中点32千米处相遇。

求A、B两地间的距离。

9、小军和小明两人骑车从相距180千米的两地同时出发,相向而行,小军每小时行16千米,小明每小时行14千米。

相遇时小军行了多少千米?10、甲、乙两船同时从相距550千米的两地相向开出,佳船每小时比乙船少行6千米,相遇时甲船比乙船一共少行了30千米,甲船每小时行多少千米?11、两个游泳队同时从相距2040米的A、B两地相向出发,甲队从A地下水,每分钟游40米;乙队从B地下水,每分钟游45米,一只汽艇负责两队的安全,同时从B地出发,每分钟行驶1200米,遇到甲队立即返回,遇到乙队又向甲队开去,这样不断往返,两队相遇时汽艇行驶了多少千米?12、甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米,两人相遇时距离全程中点3千米。

小学数学行程问题相遇问题最全版

小学数学行程问题相遇问题最全版

小学数学行程问题相遇问题最全版行程问题---相遇问题1、甲乙双方同时从27.3公里外的两地出发。

甲方每小时步行6.2公里,乙方每小时步行4.3公里。

他们会见面多少小时?2、甲乙两艘轮船分别从a、b两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?3.a车和B车同时从480公里外的a市和B市出发。

据了解,a车从a市到B市需要6小时,B车从B市到a市需要12小时。

两辆车在出发后相会了多少小时?4、一列快车和一列慢车分别从甲乙两地同时相向而行。

快车10小时可以到达乙地,慢车15小时可以到达甲地。

已知快车每小时比慢车多行20千米,两车出发后几小时相遇?5.a车和B车从东向西同时出发。

a车每小时行驶56.4公里,B车每小时行驶48.6公里。

两辆车在距离中点42.9公里处相遇。

东西之间有多少公里?6、.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。

求两地之间的路程是多少千米?7.一辆汽车和一辆摩托车同时从A市和B市出发。

汽车每小时行驶62.5公里,摩托车每小时行驶70公里。

当摩托车到达两地的中点时,距离汽车仍有30公里。

找到a城市和B城市之间的距离?8、甲乙两地相距60千米,甲乙两人都骑自行车从a城同时出发,甲比乙每小时慢4千米,乙到b城当即折返,于距b城12千米处与甲相遇,那么甲的速度是多少?快车和慢车同时从a和B出发。

这列快车时速40公里。

3个小时后,快车已经通过了25公里的中点。

此时,快车和慢车之间的距离仍为7公里。

当地火车每小时行驶多少公里?10、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?11.汽车从a地行驶到B地,每小时行驶32公里。

4个小时后,剩下的8公里不到整个行程的一半。

五年级奥数举一反三专题 第36讲 火车行程问题

五年级奥数举一反三专题 第36讲 火车行程问题

第36讲火车行程问题一、专题简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

二、精讲精练例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。

乙火车在前,两火车在双轨车道上行驶。

甲火车从后面追上到完全超过乙火车要用多少秒?练习一1、一列快车长150米,每秒行22米;一列慢车长100米,每秒行14米。

快车从后面追上慢车到超过慢车,共需几秒钟?2、小明以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长188米的火车,火车每秒行18米。

问:火车追上小明到完全超过小明共用了多少秒钟?例2 一列火车长180米,每秒钟行25米。

全车通过一条120米的山洞,需要多长时间?练习二1、一列火车长360米,每秒行18米。

全车通过一座长90米的大桥,需要多长时间?2、一座大桥长2100米。

一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。

这列火车长多少米?例3 有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。

现在两车相向而行,从相遇到离开需要几秒钟?练习三1、有两列火车,一列长260米,每秒行18米;另一列长220米,每秒行30米。

现两列车相向而行,从相遇到相离需要几秒钟?2、一列火车长500米,要穿过一个长150米的山洞,如果火车每秒钟行26米,那么,从车头进洞到车长全部离开山洞一共要用几秒钟?例4 一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。

五年级奥数举一反三专题 第29周 行程问题(二)

五年级奥数举一反三专题 第29周  行程问题(二)

第二十九周行程问题(二)专题简析:本周的主要问题是“追及问题”。

追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。

追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。

抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。

例1中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。

60÷24=2.5小时,所以2.5小时后小轿车能追上中巴车。

练习一(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上?(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟?(3)甲骑自行车从A地到B地,每小时行16千米。

1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。

A、B两地相距多少千米?例2一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?分析途中修车用了2小时,汽车就少行45×2=90千米;修车后,为了按时到达乙地,每小时必须多行30千米。

90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。

因此,修车后再行(45+30)×3=225千米就能到达乙地,汽车是在离甲地360-225=135千米处修车的。

五年级奥数举一反三专题 第30讲 行程问题(三)

五年级奥数举一反三专题 第30讲 行程问题(三)

第30讲行程问题(三)一、专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。

列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。

因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。

二、精讲精练:例1 A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。

乙车开出几小时后和甲车相遇?练习一1、甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。

1小时后,货车从乙地开出,每小时行62千米。

货车开出几小时后与客车相遇?2、小军和小明分别从相距1860米的两处相向出发,小军出发5分钟后小明才出发。

已知小军每分钟行120米,小明骑车每分钟行300米。

求小军出发几分钟后与小明相遇?例2一辆汽车从甲地开往乙地,平均每小时行20千米。

到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。

求甲、乙两地间的路程。

练习二1、汽车从甲地开往乙地送货。

去时每小时行30千米,返回时每小时行40千米,往返一次共用8小时45分。

求甲、乙两地间的路程。

2、一架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可飞1200千米。

这架飞机最多飞多少千米就要往回飞?例3 东、西两地相距5400米,甲、乙二人从东地、丙从西地同时出发,相向而行。

甲每分钟行55米,乙每分钟行60米,丙每分钟行70米。

多少分钟后乙正好走到甲、丙两人之间的中点处?练习三1、A、B、C三地在一条直线上,如图所示:A、B两地相距2千米,甲、乙两人分别从A、B两地同时向C地行走,甲每分钟走35米,乙每分钟走45米。

经过几分钟B地在甲、乙两人之间的中点处?2、东、西两镇相距60千米。

甲骑车行完全程要4小时,乙骑车行完全程要5小时。

五年级奥数举一反三第31周行程问题(四)

五年级奥数举一反三第31周行程问题(四)

五年级奥数举一反三第31周行程问题【四】专题简析;通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况;【1】相向而行;相遇时间=距离÷速度和【2】相背而行;相背距离=速度×时间【3】同向而行;追及时间=追及距离÷速度差如果上述的几种情况交织在一起,组成的应用题将会丰富多彩、千变万化。

解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。

例1 甲、乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米。

整修路面的一段路长多少千米?分析假如这8小时都是每小时行60千米,就比实际行的路程多出了60×8-420=60千米。

在8小时里,只要有1小时行驶在整修路面的公路上,汽车就少行60-20=40千米,60里面有1,5个40,因此,汽车在整修路面的公路上行驶了1,5小时,路长20×1,5=30千米。

练习一1,一辆汽车从甲城到乙城共行驶395千米,用了5小时。

途中一部分公路是高速公路,另一部分是普通公路。

已知汽车在高速公路上每小时行105千米,在普通公路上每小时行55千米。

汽车在高速公路上行驶了多少千米?2,小明家离体育馆2300米,有一天,他以每分钟100米的速度去体育馆看球赛。

出发几分钟后发现,如果以这样的速度走下去一定迟到,他马上改用每分钟180米的速度跑步前进,途中共用15分钟,准时到达了体育馆。

问;小明是在离体育馆多远的地方开始跑步的?3,老师和小英为班级剪五角星,教师每分钟剪10个,剪了几分钟后小英接着剪,小英每分钟剪6个,两人共用8分钟,共剪了60个。

小英剪了多少个五角星?例2 客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米。

行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。

由此可以演变为相遇问题和追及问题。

其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。

速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。

第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2甲︳→ S1 →∣← S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→ S1 ←∣乙→ S2 ︳A B C在相同时间内S甲=AC , S乙=BC 距离差 AB =S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。

简单的有以下几种情况:三、例题:(一)相遇问题(1)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。

若两车从A、B两地同时开出,相向而行,T小时相遇,则可列方程为T =1000/(120+80)。

甲︳→ S1 →∣← S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T =1000/(120+80)解析二:甲乙相距的距离是由甲乙在相同的时间内共同走完的。

相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120*T+80*T(2)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。

行程问题之相遇问题例题解析

行程问题之相遇问题例题解析

行程问题之相遇问题例题解析一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

小学数学教材中的行程问题,一般是指相遇问题。

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。

甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。

一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。

两车行驶路程之和,就是两地距离。

56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。

例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。

5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。

例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。

两车相遇时,第一列火车比第二列火车多行了20千米。

求甲、乙两地间的距离。

(适于五年级程度)解:两车相遇时,两车的路程差是20千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3:
快车和慢车同时从甲、乙两地相向开出,快车 每小时行40千米,经过3小时已驶过中点25千米, 这时快车还相距7千米。慢车每小时行多少千米?
练习:
兄弟二人同时从学校和家中出发,相向而行。 哥哥每分钟行120米,5分钟后哥哥已超过中点 50米, 这时兄弟二人还相距30米。弟弟每分钟行多少米?
例4:
例5:
大货车、小货车同时从甲城开往乙城。大货车 每小时行驶46千米,小货车每小时行驶32千米,大 货车到达乙城时,因装卸货物停留30分钟后立即返 回甲城 ,在返回的途中与小货车相遇。两车从出发 到相遇经过5小时30分钟,两车相遇时距离乙城多 少千米?
谢谢观赏
WPS Office
Make Presentation much more fun
练习: 1、甲、乙两辆汽车同时从东、西两地相向开出,
甲车每小时行56千米,乙车每小时行48千米。两地在 距中点32千米处相遇。东、西两地相距多少千米?
2、一辆汽车和一辆摩托车同时从A、B两城相对 开出,汽车每小时行60千米,摩托车每小时行70千米, 当摩托车行到两城中点处时,与汽车还相距30千米。 求A、B两城之间的距离?
甲、乙二人上午8时同时从东村骑车到西村去, 甲每小时比乙快6千米。中午12时甲到西村后立即 返回东村,在距西村15千米处遇到乙。求东西两村 相距多少千米?
练习:
甲、乙二人同时从A地到B地,甲每分钟走250 米,乙每分钟走90米。甲到达B地后立即放回A地, 在离B地3.2千米处与乙相遇。A、B两地间距离是多 少千米?
行程问题 ---相遇问题
相遇问题基本关系式: 速度和×相遇时间=相遇路程 相遇路程÷速度和=相遇时间 相遇路程÷相遇时间=速度和
牛刀小试:
佳佳、依依两人开车分别从相距480千米的A、B 两城同时出发,相向而行,已知佳佳从A 城到B城需6 小时,依依从B城到A城需12小时,两人出发后多少小 时相遇?
例1:
甲、乙两队学生从相距18千米的两地同时出发, 相向而行。一个同学骑自行车以每小时14千米的速度, 在两队之间不停的往返联络。甲队每小时行5千米, 乙队每小时行4千米。两队相遇时,骑自行车的同学 共行多少千米?
练习: 1、两支队伍从相距55千米的两地相向而行。通
讯员骑马以每小时16千米的速度在两支队伍之间不断 往返联络。已知一支队伍每小时行5千米,另一支队伍 每小时行6千米,两队相遇时,通讯员共行多少千米?
@WPS官方微博 @kingsoftwps
2、甲、乙两人同时从两地出发,相向而行,距离 是100千米,甲每小时行6千,乙每小时行4千米。甲 带着一只狗,狗每小时行10千米。这只狗同甲一道出 发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时 又往乙那边走,直到两人相遇时。这只狗一共走了多 少千米?
例2:
小芳、丽丽两人同时从A、B两地骑自行车相向 而行,小芳的速度是20千米/时,丽丽的速度是18千 米/时,两人相遇时距中点3千米。A、B两地相距多 少米?
相关文档
最新文档