行程问题之相遇问题和追及问题
一元一次方程应用题-相遇及追击问题
一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
顺水速度=船速+水速 逆水速度=船速-水速
A码头
B码头
水流方向
从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
甲
乙
A
B
A车路程+B车路程=相距路程
解:设B车行了x小时后与A车相遇,根据题意列方程得 50x+30x=240 解得 x=3 答:设B车行了3小时后与A车相遇。
练 一
例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
1、画出示意图:
3km/h甲
乙2km/h
A
B
2、甲乙相遇时,两人所走的路程与AB两地的距离有什么关系?
时间角度:甲行走的时间=乙行走的时间
3、甲行走的时间与乙行走的时间有什么关系?
甲行走的速度×时间+乙行走的速度×时间=AB的距离
练习1
西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
慢车先行路程
快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程
慢车后行路程
相遇问题
慢车后行的时间=快车行驶的时间
例2:甲、乙从一点出发,同向而行,甲每小时走3km,乙每小时走2km,乙先出发3小时,甲再出发追赶乙,问甲要多久才能追上乙?
一般行程问题(相遇与追击问题)-含答案
一.一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km ,骑自行车的人的速度是每小时10.8km 。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
奥数.行程.相遇和追及公式
相遇和追及问题一.行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。
基本公式: 路程=速度×时间 速度=路程÷时间时间=路程÷速度关键问题:确定行程过程中的位置二.相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.相向运动相遇问题的 速度和×相遇时间=总路程,即=t S V 和和数量关系 总路程÷速度和=相遇时间总路程÷相遇时间=速度和三.追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地追击问题的 追及路程=速度差×追及时间,即=t S V 差差数量关系 速度差=追及路程÷追及时间追及时间=追及路程÷速度差【分段提速 】 环路周长(路程差)÷速度差=相遇时间环路上【同向运动】追击问题 环路周长÷相遇时间=速度差数量关系 速度差×相遇时间=环路周长速度和×相遇时间=环路周长 路程差÷速度差=相同走过的时间往返平均速度=往返总路程÷往返总时间 平均速度=总路程÷总时间1、“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。
(完整版)相遇问题与追及问题
相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
相遇、追及问题
相遇、追及问题1.行程问题是研究物体相背、相向和同向运动的问题。
按其类型可分为简单行程问题、相遇问题和追及问题。
2.行程问题的主要数量关系式是:距离=速度x时间。
大致分为:①相向而行:相遇时间=距离÷速度和。
②相背而行:相音距离=速度和x时间。
③同向而行:速度慢的在前、快的在后、及时间=追及距离÷速度差。
3.解决行程问题常用的方法有:分解法,图示法,简化法,迁移法,找规律等。
难题点拨①东、西两城相距75千米,小东步行从东城向西城走,每小时6.5千米小希步行从西城向东城走,每小时走6千米:小辉骑自行车从东城向西城走,每小时走15千米。
三人同时动身,途中小辉遇见小希又折回向东城走,遇见小东又折回向西城走,再遇见小希又折回向东城走……一直到三人在途中相遇为止,小辉共走了多少千米东、西两城相距30千米,冬冬从东城向西城走,每小时走4千米;欣欣从西城向东城走,每小时走6千米;红红骑自行车从东城向西城走,每小时走15千米。
三人同时动身,途中红红遇见欣欣折回向东城走,遇见了冬冬又折回向西城走,再遇见欣欣又折回向东城........直到三人在途中相遇为止,红红一共走了多少千米?2.两地相距36千米,红红和兰兰分别从两地同时出发相向而行红红每小时行4千米。
兰兰每小时行5千米。
一只小狗和红红同时同地同向出发去找兰兰。
每小时行千米,遇到兰兰后折回去找红红遇到红红后再折回去找兰兰……直到红红和兰兰相遇为止,这只小狗共行了多少千米?3.冬冬和欣欣分别从东、西两地相向而行,冬冬从东向西走,每小时行5千米,欣欣从西向东走,每小时行6千米,红红骑自行车从东向西走,每小时行15千米,三人同时动身。
途中红红遇到欣欣折回可东走,遇见冬冬又折回向西走……直到三人在途中相遇为止。
已知红红一共行了105千米。
求东、西两地相距多少千米难题点拨②从时针指向6开始,再经过多少分钟时针正好与分针第一次重合?1. 8时几分时,时针与分针重合在一起?2. 从时针指向4时开始,再经过多少分钟,时针与分针正好第次重合?3.从时针指向10开始,经过多少分钟,钟面上的时针与分针次重合?再经过多长时间,钟面上的时针与分针再次重合?难题点按③一支长12千米的队伍正在行进,在队尾的王涛要送信给队首的首长,结果他跑步用6分钟赶到队首将信送到。
行程问题之相遇问题和追及问题
行程问题之相遇问题和追及问题知识简析:行程问题是反映物体匀速运动状况的应用题,它研究的是物体运动速度、时间和路程三者之间的关系。
基本数量关系式为:路程=速度×时间;路程÷时间=速度;路程÷速度=时间行程问题根据运动物体的个数可分为:一个物体的运动、两个物体的运动或三个物体的运动。
这里主要研究两个物体的运动,根据两个物体运动的方向,可分为:相遇问题(相向运动)、追及问题(同向运动)、相离问题(相背运动)三种情况。
两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体相向运动或相背运动时,以两个运动物体速度的和作为运动速度(简称速度和),当两个物体同向运动时,追击的速度就变为了两个运动物体速度的差(简称速度差)。
一、相遇问题。
两个物体在同一直线或环形路线上,同时或不同时由两地出发相向而行,在途中相遇,此类行程问题被称为相遇问题。
两个物体同时或不同时从同一地点出发,相背而行,此类行程问题被称为相离问题。
相离问题就相当于相遇问题的逆过程,这两类问题解题方法相同。
常用数量关系式为:甲的路程+乙的路程=相遇(或相离)路程速度和×相遇(或相离)时间=相遇(或相离)路程相遇(或相离)路程÷速度和=相遇(或相离)时间相遇(或相离)路程÷相遇(或相离)时间=速度和二、追及问题。
两物体在同一直线或环形路线上运动,速度慢的在前,速度快的在后,经过一段时间,速度快的追上速度慢的,此类问题通常被称为追及问题。
常用数量关系式为:路程差=追及者所行路程-被追者所行路程追及时间×速度差=路程差追及时间=路程差÷速度差速度差=路程差÷追及时间相遇问题例1、甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。
相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。
问第一次相遇点距B地多少千米?练习一:1、甲、乙两人分别从两地同时相向而行,8小时后可以相遇。
行程问题典型例题
行程问题典型例题
行程问题是一个经典的数学问题,它涉及到物体在一定时间内移动的距离和速度。
这类问题可以通过数学模型进行求解,包括公式、代数和几何等。
以下是一些典型的行程问题例题:
相遇问题:两个物体在同一时间从不同的地点出发,沿着同一直线相向而行,求它们相遇的时间和地点。
追及问题:一个物体在另一个物体的后面,在同一时间出发,沿着同一直线同向而行,求追及的时间和地点。
环形跑道问题:两个物体在同一起点沿着同一个圆形跑道相反方向而行,求再次相遇的时间和地点。
行船问题:一个船在水面上航行,水流的速度会影响船的航行速度,求船的航行时间和距离。
火车过桥问题:一列火车通过一座桥,桥的长度和火车的长度相同,求火车完全通过桥的时间。
飞行问题:一个飞机在空中飞行,受到风速的影响,求飞机的航行时间和距离。
这些例题都是行程问题的典型代表,可以通过它们来理解和掌握行程问题的基本概念和解决方法。
小升初行程问题 相遇问题 追及问题
行程问题(一)相遇问题追及问题【基本公式】1、路程=速度X时间2、相遇问题:相遇路程=速度和X相遇时间3、追及问题:相差路程=速度差X追及时间行程问题(一)相遇问题1、甲、乙两辆车同时从相距675千米的两地对开,经过5小时相遇。
甲车每小时行70千米,求乙车每小时行多少千米?2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。
已知快车每小时行70千米,问慢车每小时行多千米?3、甲、乙两车同时从相距1313千米的两地相向开出,3小时后还相距707千米,再经过几小时两车相遇?4、两城相距564千米,两列火车同时从两城相对开出,6小时相遇,已知第一列火车的速度比第二列火车的速度每小时快2千米,两列火车的速度各是多少?5、小斌骑自行车每小时行15千米,小明步行每小时行5千米。
两人同时在某地沿同一条线路到30千米外的学校去上课。
小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。
问相遇时小明共行了多少千米?6、A、B两地相距380千米。
甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。
这样相遇时乙车比原计划少走了多少千米?7、东、西两地相距90千米,甲、乙两人分别从两地同时出发,相向而行。
甲每小时行的路程是乙的2倍。
5小时后两人相遇,两人的速度各是多少?8、甲、乙两车从相距360千米的两地相向而行,甲车时速70千米,乙车时速50千米,几小时后两车相距120千米?9、甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行54千米,问A、B两地相距多少千米?10、甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,问A、B两地相距多少千米?11、A大学的小李和B大学的小孙分别从自已的学校同时出发,不断往返于A、B两校之间。
行程问题相遇问题和追及问题的解题技巧
行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”;由此可以演变为相遇问题和追及问题;其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差;速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和差及相遇追及时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇追及任务时共同走的时间;第二:在甲乙同时走时,它们之间的距离才是相遇距离追及距离分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2甲︳→S1 →∣←S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→S1 ←∣乙→S2 ︳A B C在相同时间内S甲=AC , S乙=BC 距离差AB =S甲- S 乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何走的距离是多少都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减;简单的有以下几种情况:三、例题:一相遇问题1A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米;若两车从A、B两地同时开出,相向而行,T小时相遇,则可列方程为T=1000/120+80;甲︳→S1 →∣←S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000/120+80解析二:甲乙相距的距离是由甲乙在相同的时间内共同走完的;相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120T+80T2A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米;若甲车先从A地向B开出30分钟后,甲乙两车再相向而行,T小时相遇,则可列方程为1000-12030/60=120+80T甲︳→S1 →∣→︳←︳乙A C D B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③由于甲车先向乙走30分钟,使甲乙间的实际距离变短,甲乙在同时走时实际相距1000-12030/60千米,也就是说甲乙相遇的距离实为940千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000-12030/60/120+80解析二:甲车先走20分钟到C点,这时甲乙两车实际相距距离CB为1000-12030/60千米,CB间的距离是由甲乙在相同的时间内共同走完的;相遇距离=开始两车相距的距离-甲车先走的距离,相遇距离=甲车的速度+乙车的速度T1000-12030/60=120+80T3A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米;若乙车先从B地向A开出20分钟后,甲乙两车再相向而行,T小时相遇,则可列方程为1000-12020/60=120+80T甲︳→∣相遇←乙︳→乙先走←︳乙A D C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距AC1000-12020/60千米,也就是说甲乙相遇的距离实为960千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000-12020/60/120+804A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米;若甲车先从A地背向B 开出10分钟后到C或乙车先从B地背向A开出10分钟后到D,甲乙两车再相向而行,T小时相遇,则可列方程为T=1000+12010/60/120+80︳←︳甲乙︳︳C A B D解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③由于甲车先背向乙走了10分钟,使甲乙间的实际距离变长,甲乙在同时向相而行时实际相距1000+12010/60千米,也就是说甲乙相遇的距离实为1020千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000+12010/60/120+80解析二:乙车先背向甲而行同甲5A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米;若甲车先从A背向乙走10分钟到C,乙车也从B背向甲走30分钟到D后,甲乙两车再相向而行,T小时相遇,则可列方程为T=1000+12010/60+8030/60/120+80C A B D解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③由于甲乙两车先分别背向而行走了10分钟和30分钟,使甲乙间的实际距离变长,甲乙在同时走时实际相距1000+12010/60+8030/60千米,也就是说甲乙相遇的距离实为CD=1060千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000+12010/60+8030/60/120+80归纳总结:不管甲乙两车在同时走之前谁先行或同时行,只要是相向而行,就会造成实际相遇距离变短,在确定相遇距离时,需用原始相距距离减去某车先行距离;只要是相背而行,就会造成实际相遇距离变长,在确定相遇距离时,需用原始相距距离加上某车先行距离;二追及问题1A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米;若甲乙两车同时开出,同向而行,甲快车在乙慢车后面,T小时后快车追上乙车, 可列方程为T=1000/120-80解析一:甲︳→S1 ∣乙→︳A B C①此题为追及问题;②甲乙共同走的时间为T小时;③在甲乙同时走时相距1000千米,也就是说甲乙追及的距离为1000千米;④利用公式:追及时间=追及距离÷速度差;根据等量关系列等式T=1000/120-80解析二:①甲乙在同时出发前相距1000千米为甲追上乙多走的距离,应确定为追及距离②甲每小时比乙多走了120-80千米,③求追及时间,实际上是求1000千米中有T个120-802若甲乙两车同时从A地出发,甲车的速度为每小时行120千米,乙车的速度为每小时走80千米;乙慢车在甲快车后面,同向而行,T小时后甲与乙相距900千米,则可列方程为T=900/120-80解析一:①此题为追及问题;②甲乙共同走的时间为T小时;③由于甲乙速度不同,造成甲乙经T小时后相距900千米,也就是说甲乙追及的距离为900千米;④利用公式:追及时间=追及距离÷速度差;根据等量关系列等式T=900/120-803若甲乙两车在长方形的跑道上同时从A地同向而行,甲车的速度为每小时行120千米,乙车的速度为每小时走80千米;已知长方形跑道的周长为500千米,T小时后甲与乙相遇,则可列方程为T=500/120-80解析一:①此题为追及问题;②甲乙共同走的时间为T小时;③由于甲乙速度不同,只有甲经T小时多走一圈后才能追上乙,也就是说甲乙追及的距离为长方形的周长500千米;④利用公式:追及时间=追及距离÷速度差;根据等量关系列等式T=500/120-804甲乙同时从A地以40千米/小时速度同向出发,15分钟后,甲车因油量不足以90千米/小时需返回到A地加油,乙车继续原速前行,甲车在A地加油用了10分钟,随后甲车又以90千米/小时速度用了T小时追上乙车,可列方程为:甲乙︳→S1 ∣乙→S2 ︳A B C解析一:①此题为追及问题;②甲追乙共同走的时间为T小时;③由于甲乙同行15分钟产生距离AB=4015/60,甲在返回A 地所用时间4015/60/90小时和加油时间10/60小时乙车在依然前行,前行的距离为BC=404015/60/90+10/60千米;则甲车追乙车实际距离为AC=4015/60+404015/60/90+10/60④甲乙两车的速度差为90-40千米/小时⑤利用公式:追及时间=追及距离÷速度差;根据等量关系列等式T={4015/60+404015/60/90+10/60}/90-40归纳总结:解追及问题的关键也在于确定追及时间和追及距离,具体同相遇问题;。
小学四年级奥数行程问题之相遇与追及
一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识框架相遇与追及三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。
例题精讲【例 1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例 2】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
行程问题、相遇问题和追及问题的解题技巧
行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。
由此可以演变为相遇问题和追及问题。
其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。
速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。
第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2甲︳→S1→∣←S2←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→S1←∣乙→ S2 ︳A B C在相同时间内S甲=AC, S乙=BC距离差AB=S 甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。
简单的有以下几种情况:三、例题:(一)相遇问题(1)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
若两车从A、B两地同时开出,相向而行,T 小时相遇,则可列方程为 T =1000/(120+80)。
甲︳→ S1 →∣← S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T =1000/(120+80)解析二:甲乙相距的距离是由甲乙在相同的时间内共同走完的。
相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120*T+80*T(2)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
小升初行程问题 相遇问题 追及问题
行程问题(一)相遇问题追及问题【基本公式】1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间行程问题(一)-----相遇问题1、甲、乙两辆车同时从相距675千米的两地对开,经过5 小时相遇。
甲车每小时行70千米,求乙车每小时行多少千米?2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。
已知快车每小时行70千米,问慢车每小时行多千米?3、甲、乙两车同时从相距1313千米的两地相向开出,3小时后还相距707千米,再经过几小时两车相遇?4、两城相距564千米,两列火车同时从两城相对开出,6小时相遇,已知第一列火车的速度比第二列火车的速度每小时快2千米,两列火车的速度各是多少?5、小斌骑自行车每小时行15千米,小明步行每小时行5千米。
两人同时在某地沿同一条线路到30千米外的学校去上课。
小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。
问相遇时小明共行了多少千米?6、A、B两地相距380千米。
甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。
这样相遇时乙车比原计划少走了多少千米?7、东、西两地相距90千米,甲、乙两人分别从两地同时出发,相向而行。
甲每小时行的路程是乙的2倍。
5小时后两人相遇,两人的速度各是多少?8、甲、乙两车从相距360千米的两地相向而行,甲车时速70千米,乙车时速50千米,几小时后两车相距120千米?9、甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行54千米,问A、B两地相距多少千米?10、甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,问A、B两地相距多少千米?11、A大学的小李和B大学的小孙分别从自已的学校同时出发,不断往返于A、B两校之间。
行程问题二相遇问题和追及问题
因此,小张走的距离是 75× 20= 1500(米).
答:从家到公园的距离是 1500 米. 还有一种不少人采用的方法. 解二:小张加快速度后,每走 1 米,可节约时间(1/75-1/50)分钟,因此家到公园的 距离是
一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解 法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.
解:画一张简单的示意图:
图上可以看出,从爸爸第一次追上到第二次追上,小明走了 8-4=4(千米).
而爸爸骑的距离是 4+ 8= 12(千米). 这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数 计算,小明骑 8 千米,爸爸可以骑行 8×3=24(千米). 但事实上,爸爸少用了 8 分钟,骑行了 4+12=16(千米).
甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间 =(甲的速度-乙的速度)×时间.
通常,“追及问题”要考虑速度差. 追及问题公式:(快速-慢速)×追及时间=追及路程
(★★★)小轿车的速度比面包车速度每小时快 6 千米,小轿车和面包车同 时从学校开出,沿着同一路线行驶,小轿车比面包车早 10 分钟到达城门,当面包车到达城 门时,小轿车已离城门 9 千米,问学校到城门的距离是多少千米?
少骑行 24-16=8(千米). 摩托车的速度是 1 千米/分,爸爸骑行 16 千米需要 16 分钟.
8+8+16=32. 答:这时是 8 点 32 分.
我来试一试!
甲村、乙村相距 6 千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行 走(到达另一村后就马上返回).在出发后 40 分钟两人第一次相遇.小王到达甲村后返回, 在离甲村 2 千米的地方两人第二次相遇.问小张和小王的速度各是多少?
行程问题七大经典问题公式
行程问题公式如下:
1、相遇问题:路程和=速度和×相遇时间。
2、追及问题:路程差=速度差×追及时间。
3、流水行船:顺水速度=船速+水速逆水速度=船速—水速。
船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2。
4、多次相遇:线型路程:甲乙共行全程数=相遇次数×2-1。
环型路程:甲乙共行全程数=相遇次数。
其中甲共行路程=甲在单个全程所行路程×共行全程数。
5、环形跑道。
6、行程问题:中正反比例关系的应用。
路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7、列车过桥问题:车长+桥长=速度×时间。
车长甲+车长乙=速度和×相遇时间。
车长甲+车长乙=速度差×追及时间。
列车与人或骑车人或另一列车上的司机的相遇及追及问题。
车长=速度和×相遇时间车长=速度差×追及时间。
应用题板块-行程问题之相遇追及(小学四年级奥数题)
应用题板块-行程问题之相遇追及(小学四年级奥数题)【一、题型要领】1. 相遇问题【基本概念】小王在A地要去B地,小张在B地要去A地(下图左侧部分),两人分别行走一段时间后,就会在途中相遇(下图右侧部分)。
【基本公式】(1)总路程= 小王行走的路程+ 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)总路程= 小王行走的速度* 小王行走的时间+ 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)总路程=(小王行走的速度 + 小张行走的速度)* 行走的时间【解题关键】两地相距的距离等于小王行走的路程加上小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可2. 追及问题【基本概念】小张在前方行走,小王在后方与小张同方向行走(下图左侧部分),如果小王行走的速度大于小张,则经过一段时间以后,小王就会追上小张(下图右侧部分)【基本公式】(1)小王和小张相距的路程= 小王行走的路程- 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)小王和小张相距的路程 = 小王行走的速度* 小王行走的时间- 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)小王和小张相距的路程 =(小王行走的速度 - 小张行走的速度)* 行走的时间【解题关键】小王和小张相距的距离等于小王行走的路程减去小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可【举一反三】有一类题目是为赶时间,题目描述“为了节省XX时间从原本的速度x变成了之后的速度y”,解题时可以假象成另一个人以原速度提前走了XX 时间,而自身以修改后的速度从原地出发,最终两人同时到达终点,即可用“追及”问题解答【二、重点例题】例题1【题目】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟,他们同时出发,几分钟后两人相遇?【分析】走同样长的距离,小张花费的时间是小王花费时间的36 ÷ 12 = 3(倍),因此自行车的速度是步行速度的3倍。
行程问题12多人相遇和追及问题
二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇;=⨯=⨯路程差速度差追及;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.板块一、多人从两端出发——相遇、追及【例1】(难度级别※※)有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【例2】(难度级别※※)(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】(难度等级※※)甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】(难度级别※※)小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】(难度级别※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【巩固】(难度级别※※)甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【巩固】(难度级别※※※※※)小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A地出发,向B地行时,丙从B地出发向A地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?【巩固】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题之相遇问题和追及问题
知识简析:
行程问题是反映物体匀速运动状况的应用题,它研究的是物体运动速度、时间和路程三者之间的关系。
基本数量关系式为:
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
行程问题根据运动物体的个数可分为:一个物体的运动、两个物体的运动或三个物体的运动。
这里主要研究两个物体的运动,根据两个物体运动的方向,可分为:相遇问题(相向运动)、追及问题(同向运动)、相离问题(相背运动)三种情况。
两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体相向运动或相背运动时,以两个运动物体速度的和作为运动速度(简称速度和),当两个物体同向运动时,追击的速度就变为了两个运动物体速度的差(简称速度差)。
一、相遇问题。
两个物体在同一直线或环形路线上,同时或不同时由两地出发相向而行,在途中相遇,此类行程问题被称为相遇问题。
两个物体同时或不同时从同一地点出发,相背而行,此类行程问题被称为相离问题。
相离问题就相当于相遇问题的逆过程,这两类问题解题方法相同。
常用数量关系式为:
甲的路程+乙的路程=相遇(或相离)路程
速度和×相遇(或相离)时间=相遇(或相离)路程
相遇(或相离)路程÷速度和=相遇(或相离)时间
相遇(或相离)路程÷相遇(或相离)时间=速度和
二、追及问题。
两物体在同一直线或环形路线上运动,速度慢的在前,速度快的在后,经过一段时间,速度快的追上速度慢的,此类问题通常被称为追及问题。
常用数量关系式为:
路程差=追及者所行路程-被追者所行路程
追及时间×速度差=路程差
追及时间=路程差÷速度差
速度差=路程差÷追及时间
相遇问题
例1、甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地6 0千米。
相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。
问第一次相遇点距B地多少千米?
练习一:
1、甲、乙两人分别从两地同时相向而行,8小时后可以相遇。
如果每小时都少行1.5千米,那么10小时后相遇,问两地相距多少千米?
2、甲、乙两地相距260千米,客车和货车分别从甲、乙两地同时相向而行,在距乙地95千米处相遇,相遇后两车又继续前进,客车到乙地,货车到甲地后,都立即返回,两车又在距甲地多少千米处相遇?
例2、在一环形跑道上,甲从A点,乙从B点同时反向而行,6分钟后两人相遇,再过4分钟甲到达B地,又过8分钟两人再次相遇,甲、乙各行一周各需多少分钟?
例3、如下图,从A到B是1千米的下坡路,从B到C是3千米的平路,从C到D是2.5千米上坡路。
小张和小王步行,下坡的速度都是每小时6千米,平路的速度都是每小时4千米,上坡的速度都是每小时2千米。
小张和小王分别从A,D同时出发,相向而行,问多少时间后相遇?
练习二:
1、丁丁和玲玲同时从家里出发相向而行,丁丁每分钟走52米,玲玲每分钟走70米,两人在途中A点相遇。
若丁丁提前4分钟出发,且速度不变,玲玲每分钟走90米,则两人仍在A处相遇。
丁丁和玲玲家相距多少米?
追及问题
例1、从学校到家,步行要6小时,骑自行车要2小时。
已知骑自行车比步行每小时快12千米。
学校到家的距离是多少千米?
例2、甲厂有原料120吨,乙厂有原料96吨。
甲厂每天用15吨,乙厂每天用9吨,多少天后两厂剩的原料一样多?
练习一:
1、甲厂有原料120吨,乙厂有原料96吨。
甲厂每天用15吨,乙厂每天用9吨,多少天后两厂剩的原料一样多?
2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
两人在C处第一次相遇。
问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。
问CD之间距离是多少?
例3、甲、乙两人在环形跑道上赛跑,跑道全长400米。
如果甲的速度为16米/秒,乙的速度为12米/秒。
两人同时同地同向而行,那么多少秒后第一次相遇?
例4、甲、乙两人同时分别从两地骑车相向而行。
甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米。
问全程长多少米?
练习二:
1、姐姐从家上学校,每分钟走50米,妹妹从学校回家,每分钟走45米。
如果妹妹比姐姐先动身5分钟,那么姐妹两人同时到达目的地。
问从家到学校有多远?
2、两地相距900千米,甲走需15天,乙走需12天。
现在甲先出发2天,乙去追甲。
问要走多少千米才可追上?
3、甲、乙两人分别在相距240千米的A、B两地乘车出发,相向而行,5小时相遇。
如果甲、乙两人乘原来的车分别在两城同时同向出发,慢车在前,快车在后,15小时后,甲、乙两人相遇。
求各车的速度。
4、甲轮船以每小时平均16千米的速度由一码头出发,经过3小时,乙轮船也由同一码头按照同一方向出发,再经过12小时追上甲轮船。
求乙轮船的速度。
作业布置:
1、甲有120元钱,乙有96元钱。
甲每天用15元,乙每天用9元。
多少天之后,两人剩下的钱数相等?
2、小王骑摩托车由甲城到乙城要5小时。
小李骑自行车由乙城到甲城要10小时。
两人同时从两城相向开出,相遇时小王距离乙城还有192千米。
求两城距离?
3、小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒立即骑自行车以每分钟280米的速度去追小明。
爸爸出发几分钟后追上小明?
4、甲、乙、丙三人都从A城到B城,甲每小时行4千米,乙每小时行5千米,丙每小时行6千米,甲出发3小时后乙才出发,恰好三人同时到达B城。
乙出发几小时后丙才出发?。