2016-2017学年南京市联合体八上期末数学试卷
【秦淮区】2016-2017学年第一学期初二数学期末试卷及答案
2016-2017学年度第一学期第二阶段学业质量监测试卷八年级数学一、选择题(本大题共8小题,每小题2分.共16分) 1.以下四家银行的行标图中,是轴对称图形的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】图中的①③④为轴对称图形,故选C .2.点(2,3)P -关于x 轴的对称点是( ). A .(2,3)- B .(2,3) C .(2,3)-- D .(2,3)-【答案】B【解析】(2,3)P -关于x 轴的对称点为(2,3),选B .3.如图,在平面直角坐标系中,点B 在x 轴上,AOB △是等边三角形,2AB =,则点A 的坐标为( ).xy OAB A .3) B .(1,2)C .3)D .(3,1)【答案】C【解析】作AC OB ⊥于C ,∵OAB △是等边三角形,AC OB ⊥, ∴60AOB ∠=︒,2OB AB ==,112OC OB ==,33AC OC == ∴A 点坐标为3), 故选C .C B AO y x4.如图矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的敢是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,点E 表示的实数是( ).E C BA D -3-2-1123A .51+B .51-C .5D .15-【解析】∵矩形ABCD ,2AD =,1AB =, ∴2BC AD ==,90B ∠=︒, ∴22125AC =+, ∴5AE AC =,∴点E 51-,选B .5.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km ,则M 、C 两点间的距离为( ).ABCMA .0.5kmB .0.6kmC .0.9kmD .1.2km【答案】D【解析】∵AC 、BC 互相垂直, ∴90ACB ∠=︒, ∵M 是AB 的中点, ∴11.2km 2CM AB AM ===.(直角三角形斜边上中线等于斜边的一半). 故选D .6.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( ).CBAODD'C'B'A'O'A .SASB .SSSC .AASD .ASA【答案】B【解析】在OCD △和O C D '''△中,OC O C OD O D CD C D ⎧''=⎪⎪''=⎨⎪''=⎪⎩, ∴OCD △≌(SSS)O C D '''△, ∴O O '∠=∠,故选B .7.在平面直角坐标系中,若直线y kx b =+经过第一、三、四象限,则直线y bx k =+不经过的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵直线y kx b =+经过一、三、四象限, ∴0k >,0b <,∴y bx k =+经过一、二、四象限,不经过第三象限,选C .8.在ABC △中,30ABC ∠=︒,AB 边长为4,AC 边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是( ).A .3个B .4个C .5个D .6个【答案】C【解析】如图,AC BC ⊥时, ∵30ABC ∠=︒,4AB =, ∴114222AC AB ==⨯=, ∵垂线段最短, ∴2AC ≥,∴1、2、3、4、5中可取的值为2、3、4、5, 当2AC =时可作1个三角形, 当3AC =时可作2个, 当4AC =时可作1个, 当5AC =时可作1个.所以三角形个数为12115+++=,选C .CBA二、填空题(本大题共10小题,每小题2分,共20)9.16的平方根是__________.【答案】4±【解析】16的平方根为4±.10.已知一个函数,当0x >时,函数值随着x 的增大而减小,请写出这个函数关系式__________(写出一个即可).【答案】y x =-(答案不唯一)【解析】只要0x >时函数值y 随x 增大而减小的函数即可.11.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为__________2cm .【答案】120【解析】由题意可得三角形三边长分别为10,24,26,又222102426+=,所以这个三角形是直角三角形,所以面积110241202S =⨯⨯=.12.如图,在ABC △和EDB △中,90C EBD ∠=∠=︒,点E 在AB 上,若ABC △≌EDB △,4AC =,3BC =,则AE =__________.ECBAD【答案】1【解析】∵90C ∠=︒,∴2222345AB AC BC +=+=, ∵ABC △≌EDB △, ∴4EB AC ==,∴541AE AB EB =-=-=.13.如图,在ABC △中,AB AC =,36A ∠=︒,BD 是的ABC △角平分线,则ABD ∠=__________.CBAD【答案】36︒【解析】∵AB AC =,∴11(180)(18036)7222ABC C A ∠=∠=︒-∠=︒-︒=︒,∵BD 平分ABC ∠,∴11723622ABD ABC ∠=∠=⨯︒=︒.14.如图,90C ∠=︒,BAD CAD ∠=∠,若11cm BC =,7cm BD =,则点D 到AB 的距离为__________cm .C BAD【答案】4 【解析】如图,作DE AB ⊥于E ,DE 长度即为D 到AB 距离,∵BAD CAD ∠=∠, ∴AD 为BAC ∠的角平分线, ∵90C ∠=︒,DE AB ⊥, ∴DE DC =,∵11cm BC =,7cm BD =, ∴1174cm CD BC BD =-=-=, ∴4cm DE CD ==.EDABC15.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③34a <<;④a 是18的算术平方根,其中,所有正确的说法的序号是__________. 【答案】①②④【解析】∵边长为3的正方形对角线长为a , ∴223332a =+=, ①32a =是无理数,正确,②a 可以用数轴上一个点来表示,正确,③3218,41618255=<=,所以45a <<,③错误,④3218a ==,正确.16.在同一直角坐标系中,点A 、B 分别是函数1y x =-与35y x =-+的图像上的点,且点A 、B 关于原点对称,则点A 的坐标为__________. 【答案】(1,2)-- 【解析】设(,)A a b , ∵A ,B 关于原点对称, ∴(,)B a b --,又A 在1y x =-上,B 在35y x =-+上, ∴13()5b a b a =-⎧⎨-=--+⎩,解得:12a b =-⎧⎨=-⎩.17.如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的关系式是__________.211234xy O【答案】21y x =+【解析】原图函数经过(0,0),(2,4), ∴2y x =,向上平移1个单位后函数解析式为21y x =+.18.如图,矩形纸片ABCD 中,已知8AD =,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且3EF =,则的AB 长为__________.FCBAD【答案】6 【解析】∵四边形ABCD 是矩形,8AD =, ∴8BC AD ==,∵AEF △由AEB △翻折而成,∴3BE EF ==,AB AF =,CEF △为直角三角形, ∴835CE =-=,2222534CF EC EF =--=.设AB x =,则AF x =,4AC x =+, 在Rt ACB △中,222AB BC AC +=, 2228(4)x x +=+,解得:6x =. ∴6AB =.FECBAD三、解答题(本大题共8小题,共64分) 19.(8分)(1)求出式子中x 的值:2916x =. (2303(2)4(3)--+.【答案】(1)43x =±(2)3-【解析】(1)2916x =,解得:43x =±.(2)原式2213=--+=-. 20.(8分)阅读下面材料:在数学课上,老师提出如下问题: 已知:直线l 和l 外一点P .求作:直线l 的垂线.使它经过点P .lP小芸的作法如下:(1)在直线上任取两点A ,B .(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧线相交于点Q . (3)作直线PQ .所以直线PQ 就是所求的垂线.PlAB请将小芸的作图补充完整(保留作图痕迹),小芸的作法是否正确?请说明理由. 【答案】见解析 【解析】QBAlP作法如图所示, 小芸的作法正确, ∵AP AQ =,BP BQ =,∴A 、B 在线段PQ 的垂直平分线上, ∴PQ l ⊥.21.(8分)如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?ECB AD【答案】0.8m【解析】∵AC BC ⊥, ∴90ACB ∠=︒,∵0.7m BC =, 2.5m AB =,∴22222.50.7 2.4m AC AB BC a =-=-=, ∵0.4m AE =, ∴2m CE AC AE =-=, 在CDE △中,22222.52 1.5m CD DE CE =-=-=,∴ 1.50.70.8m BD DC BC =-=-=, ∴梯足向外移动了0.8m .A E22.(8分)在ABC △中,AB AC =,点D 是BC 的中点,点E 在AD 上. (1)求证:BE CE =.(2)如图,若BE 的延长线交AC 于点F ,且BF AC ⊥,垂足为F ,45BAC ∠=︒,原题设其它条件不变,求证:AEF △≌BCF △.ECBA DF DABCE【答案】见解析【解析】(1)∵AB AC =,D 是BC 中点, ∴AD 为BC 的垂直平分线, 又点E 在AD 上, ∴EB EC =.ECBA(2)∵45BAC ∠=︒,BF AC ⊥,∴90AFB CFB ∠=∠=︒,45ABF BAC ∠=∠=︒, ∴AF BF =,∵AB AC =,D 为BC 中点, ∴AD BC ⊥, 90EAF AEF ∠+∠=︒,90EAF C ∠+∠=︒, ∴AEF C ∠=∠. 在AEF △和BCF △中,90AFE BFC AEF CAF BF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴AEF △≌(AAS)BCF △.F DABCE23.(8分)一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连接CF ,AB a =,BC b =,AC c =. (1)请你结合图1用文字和符号语言分别叙述勾股定理. (2)请利用直角梯形BCFG 的面积证明勾股定理:222a b c +=.图1CBAab c F EC BGD图2【答案】见解析【解析】(1)直角三角形两直角边的平方和等于斜边的平方.Rt ABC △中,90C ∠=︒,AC c =,BC a =,AC b =,则有222a b c +=.(2)2211112222AFG ABC ACF BCFG S S S S ab ab c ab c =++=++=+梯形△△△.【注意有文字】221111()()()2222BCFG S FG BC GB a b a b a ab b =+⋅=++=++梯形.【注意有文字】∴222111222ab c a ab b +=++,整理得:222a b c +=.24.(6分)已知y 是x 的函数,自变量x 的取值范围是0x >,下表是y 与x 的几组对应值.x⋅⋅⋅ 1 2 3 5 7 9 ⋅⋅⋅ y⋅⋅⋅ 1.98 3.952.631.581.130.88⋅⋅⋅小腾根据学习一次函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图像与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图像.-11211123456789101234567x yO(2)根据画出的函数图象,写出:①4x =对应的函数值y 约为__________.②该函数的一条性质:__________.【答案】见解析【解析】(1) O yx7654321109876543211112-1-1(2)①由图象找出4x =时对应的y 值,y 约为2.②函数先随x 增大而增大,后随x 增大而减小.25.(9分)某水电站兴建了一个最大蓄水容量为312万米的蓄水池,并配有2个流量相同的进水口和1个出水口.某天0时至12时,进行机组试运行,其中,0时至2时打开2个进水口进水;2时,关闭1个进水口减缓进水速度,至蓄水池中水量达到最大蓄水容量后,随即关闭另一个进水口,并打开出水口,直至12时蓄水池中的水放完为止.若这3个水口的水流都是匀速的,且2个进水口的水流速度一样,水池中的蓄水量3()y 万米与时间t (时)之间的关系如图所示,请根据图像解决下列问题:(1)蓄水池中原有蓄水__________3万米.蓄水池达最大蓄水量312万米的时间a 的值为__________. (2)求线段BC 、CD 所表示的y 与t 之间的函数关系式.(3)蓄水池中蓄水量维持在3m 万米以上(含3m 万米)的时间有3小时,求m 的值.1224812C B Ay 万米3())【答案】见解析【解析】(1)由图象可知,原有蓄水为34万米,由AB 段可知,2个进水口的进水速度为38422-=万米, 所以1个进水口速度为31/万米时, ∴128261a -=+=. (2)∵(2,8)B ,(6,12)C ,(12,0)D ,设11:BC y k x b =+,22:CD y k x b =+,111128612k b k b +=⎧⎨+=⎩,2222612120k b k b +=⎧⎨+=⎩, 解得:1116k b =⎧⎨=⎩,22224k b =-⎧⎨=⎩. ∴BC 段:6y t =+,CD 段:224y t =-+.(3)设BC 上达到3m 万米的时间为t ,则CD 上达到3m 万米时间为(3)t +时,由题意得:62(3)24t t +=-++,解得:4t =.∴当4t =时,4610m =+=.26.(9分)如图,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A ,点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF .连接BP 、BH .(友情提醒:正方形的四条边都相等.即AB BC CD DA ===;四个内角都是90︒;即90A B C D ∠=∠=∠=∠=︒)(1)求证:APB BPH ∠=∠.(2)当点P 在边AD 上移动时,PDH △的周长是否发生变化?并证明你的结论.(3)设AP 为x ,求出的BE 长.(用含x 的代数式表示)FE CBAP HGD 【答案】见解析【解析】(1)∵正方形ABCD 折叠,B 落在P 处,C 落在G 处,折痕为EF ,∴EB EP =,90EPH EBC ∠=∠=︒,EBP EPB ∠=∠,∵AD BC ∥,∴APB PBC ∠=∠,∵90PBC EBP ∠+∠=︒,90BPH EPB ∠+∠=︒,∴PBC BPH ∠=∠,∴APB BPH ∠=∠.(2)如图,作BQ PH ⊥于Q ,由(1)知APB BPH ∠=∠,在ABP △和QBP △中,APB BPH A BQPBP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABP △≌(AAS)QBP △,∴AP QP =,AB QB =,又∵AB BC =,∴BC BQ =,又∵90C BQH ∠=∠=︒,BH BH =,∴Rt BCH △≌Rt (HL)BQH △,∴CH QH =,∴PHD △的周长为:8PD DH PH AP PD DH HC AD CD ++=+++=+=.所以PDH △周长不变.(3)设BE y =,则PE BE y ==,4AE y =-,在Rt AEP △中,222AE AP PE +=,222(4)y x y -+=,解得:21(16)8y x =+. G D GHP ABCE F。
江苏省南京市联合体八年级(上)期末数学试卷
.
第 1 页,共 15 页
12. 在平面直角坐标系中,已知一次函数 y=-2x+1 的图象经过 P1(x1,y1)、P2(x2,
y2)两点,若 x1<x2,则 y1
y2.(填“>”“<”“=”)
13. 函数 y=kx 与 y=6-x 的图象如图所示,则 k=
.
14. 如图,五边形 ABCDE 中有一等边三角形 ACD.若
D. ∠A:∠B:∠C=3:4:5
二、填空题(本大题共 10 小题,共 20.0 分)
9. 若 x2-9=0,则 x=
.
10. 代数式 x−1 在实数范围内有意义,则 x 的取值范围是
.
11. 地球上七大洲的总面积约为 149 480 000km2(精确到 10 000 000km2).用科学记数
法表示这个近似数为
A. PQ≤5
B. PQ<5
C. PQ≥5
D. PQ>5
6. 在平面直角坐标系中,点 A 的坐标是(-1,2),作点 A 关于 y 轴的对称点,得到
点 A',再将点 A'向下平移 4 个单位,得到点 A″,则点 A″的坐标是( )
A. (−1,−2)
B. (1,2)
C. (1,−2)
D. (−2,1)
第 4 页,共 15 页
25. 某景区在同一线路上顺次有三个景点 A,B,C,甲、乙两名游客从景点 A 出发, 甲步行到景点 C;乙花 20 分钟时间排队后乘观光车先到景点 B,在 B 处停留一段
时间后,再步行到景点 C.甲、乙两人离景点 A 的路程 s(米)关于时间 t(分钟)
的函数图象如图所示.
第 8 页,共 15 页
9.【答案】±3
南京市八年级上第一学期期末数学试卷
南京市八年级上第一学期期末数学试卷 一、选择题 1.下列四组线段中,可以构成直角三角形的是 ( ) A .4,5,6 B .2,3,4 C .7 ,3 ,4 D .1,2,32.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 3.下列各式从左到右变形正确的是( )A .0.220.22a b a b a b a b++=++ B .231843214332x y x y x yx y ++=-- C .n n a m m a-=- D .221a b a b a b +=++ 4.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .105.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:506.下列四组线段中,可以构成直角三角形的是( ) A .4,5,6 B .1.5,2,2.5 C .2,3,4 D .1,2, 37.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 8.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +129.2的算术平方根是()A .4B .±4C .2D .2±10.在△ABC 中,∠C =90°,∠B =60°,下列说法中,不一定正确的是( )A .BC 2+AC 2=AB 2B .2BC =ABC .若△DEF 的边长分别为1,2,3,则△DEF 和△ABC 全等D .若AB 中点为M ,连接CM ,则△BCM 为等边三角形二、填空题11.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.12.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.13.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.14.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.15.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 16.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)17.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.18.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.19.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.20.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .三、解答题21.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x 之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h ,小明的速度是_________km/h ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若两人相距20km ,试求小丽的行驶时间?22.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.23.在Rt △ABC 中,∠ACB =90°,AC =15,AB =25,点D 为斜边AB 上动点.(1)如图1,当CD ⊥AB 时,求CD 的长度;(2)如图2,当AD =AC 时,过点D 作DE ⊥AB 交BC 于点E ,求CE 的长度;(3)如图3,在点D 的运动过程中,连接CD ,当△ACD 为等腰三角形时,直接写出AD 的长度.24.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长x 与等边△ABC 的周长y 的关系.(1)如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时x y= ; (2)如图2,点M 、N 在边AB 、AC 上,且当DM≠DN 时,猜想( I )问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M 、N 分别在边AB 、CA 的延长线上时,探索BM 、NC 、MN 之间的数量关系如何?并给出证明.25.某工厂计划生产A 、B 两种产品共50件,已知A 产品成本2000元/件,售价2300元/件;B 种产品成本3000元/件,售价3500元/件,设该厂每天生产A 种产品x 件,两种产品全部售出后共可获利y 元.(1)求出y 与x 的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?四、压轴题26.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.27.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).28.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.29.如图,直线l 1的表达式为:y=-3x+3,且直线l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C .(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C)2+2≠42,可以构成直角三角形,故C选项错误.D.12+)22,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.3.B解析:B【解析】【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可.【详解】A.分式的分子和分母同时乘以10,应得210102a ba b++,即A不正确,B . 26(3)184321436()32x y x y x y x y ⨯++=-⨯-,故选项B 正确, C .分式的分子和分母同时减去一个数,与原分式不相等,即C 项不合题意,D .22a b a b++不能化简,故选项D 不正确. 故选:B .【点睛】 此题考察分式的基本性质,分式的分子和分母需同时乘以(或除以)同一个不为0的整式,分式的值不变.不能在分子和分母中加减同一个整式,这是错误的.4.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.5.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h ,从而可得走后一半路程的速度为60km/h ,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h ,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40,故选B .【点睛】本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.6.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.7.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.8.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.9.C解析:C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:2故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.10.C解析:C【解析】【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【详解】A、由勾股定理可知BC2+AC2=AB2,故A正确;B、∵∠C=90︒,∠B=60︒,∴∠A=30︒,∴AB=2BC,故B正确;C、若△DEF的边长分别为1,2DEF和△ABC不一定全等,故C错误;D、∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及相似三角形的判定,本题属于基础题型.二、填空题11.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.12.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.13.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】 用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.14.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:3【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得23AC =故答案为23 15.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y 随x 的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.16.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).17.65°或25°【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.18.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,BC =AD ,∠A =∠B =∠C =∠D =90°,由折叠得:AD =AD ′,CD =CD ′,∠DAC =∠D ′AC ,∵∠DAC =∠BCA ,∴∠D ′AC =∠BCA ,∴EA =EC =5,在Rt △ABE 中,由勾股定理得,AB 4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形是解此题的关键.19.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.20.【解析】作DF⊥BC 于F ,如图,根据角平分线的性质得到DE=DF ,再利用三角形面积公式得到×10×DE+×14×DF=42,则5DE+7DE=42,从而可求出DE 的长.【详解】作D解析:72【解析】【分析】作DF ⊥BC 于F ,如图,根据角平分线的性质得到DE =DF ,再利用三角形面积公式得到12×10×DE +12×14×DF =42,则5DE +7DE =42,从而可求出DE 的长. 【详解】作DF ⊥BC 于F ,如图所示:∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∵S △ADB +S △BCD =S △ABC ,∴12×10×DE +12×14×DF =42, ∴5DE +7DE =42, ∴DE =72(cm ). 故答案为72. 【点睛】 此题主要考查角平分线的性质,解题关键是利用三角形面积公式构建方程,即可解题.三、解答题21.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题(3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+,则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤(3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形, 根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理5(m)AC ===在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】 本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.23.(1)12CD =;(2)152CE =;(3)当△ACD 为等腰三角形时,AD 的长度为:15或18或252. 【解析】【分析】 (1)由勾股定理求出BC 的长度,再由面积法求出CD 的长度即可;(2)连接AE ,可证明△ACE ≌△ADE ,得到CE=DE ,设CE=DE=x ,则BE=20x -,由BD=10,则利用勾股定理,求出x ,即可得到CE 的长度;(3)当△ACD 为等腰三角形时,可分为三种情况进行分析:①AD=AC ;②AC=CD ;③AD=CD ;对三种情况进行计算,即可得到AD 的长度.【详解】解:(1)如图,在Rt △ABC 中,∠ACB=90°,AC=15,AB=25,∴2222251520AB AC --=,∴1122ABC S AB CD BC AC ∆=•=•, ∴1125201522CD ⨯•=⨯⨯, 解得:12CD =;(2)如图,连接AE ,∵DE ⊥AB ,∴∠ADE=∠C=90°,在Rt △ADE 和Rt △ACE 中,AD AC AE AE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ACE ,∴DE=CE ;设DE=CE=x ,则BE=20x -,又BD=251510-=,在Rt △BDE 中,由勾股定理,得22210(20)x x +=-,解得:152x =, ∴152CE =; (3)在Rt △ABC 中,有AB=25,AC=15,BC=20,点C 到AB 的距离为12; 当△ACD 为等腰三角形时,可分为三种情况:①当AD=AC 时,AD=15;②当AC=CD 时,如图,作CE ⊥AB 于点E ,则2AD AE =,∵CE=12,由勾股定理,得2215129AE =-=,∴218AD AE ==;③当AD=CD 时,如图,在Rt △ABC 中,∠ACB=90°,当点D 是AB 中点时,有AD=BD=CD ,∴112525222 AD AB==⨯=;综合上述,当△ACD为等腰三角形时,AD的长度为:15或18或25 2.【点睛】本题考查了等腰三角形的定义,全等三角形的判定和性质,直角三角形的性质,勾股定理,解题的关键是熟练掌握所学性质进行求解,注意等腰三角形时要进行分类讨论.24.(1)BM+NC=MN;23xy=;(2)成立:BM+NC=MN;(3)BM+MN=NC.证明见解析.【解析】【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时2 =3xy;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.【详解】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.此时2 =3 xy.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.25.(1)y =﹣200x +25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【解析】【分析】(1)根据题意,可以写出y 与x 的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y =(2300﹣2000)x +(3500﹣3000)(50﹣x )=﹣200x +25000,即y 与x 的函数表达式为y =﹣200x +25000;(2)∵该厂每天最多投入成本140000元,∴2000x +3000(50﹣x )≤140000,解得:x ≥10.∵y =﹣200x +25000,∴当x =10时,y 取得最大值,此时y =23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.四、压轴题26.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:()3,1; ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,,把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.27.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键. 28.(1)90°;(2)证明见解析;(3)变化,234l+≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.29.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,。
南京市八年级上数学期末考试试卷有答案-精品
2017【建邺区】初二(上)数学期末试卷一、选择题(每小题2分,共12分) 1、二次根式中,字母的取值范围是( )。
A 、x > 1B 、x ≥1C 、x <1D 、 1 x2、在 △ABC 中 , 其两个内角如下 , 则能判定 △ABC 为等腰三角形的是 () A. ∠A=40°, ∠B=50 ° B. ∠A=40°, ∠B=60° C. ∠A=40°, ∠B=70 ° D. ∠A=40°, ∠B=80°3、如图,在阴影区域的点是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(1 ,-2) 4、按如图所示的程序计算,若开始输入的值为,则最后输出的结果是( )。
ABCD 14+5. 如图,有四个三角形,各有一边长为6,一边长为8,若第三边为6,8,10,12,则面积最大的三角形是( )6.直线 y=kx+b 过 A( -19,92),B(0.1,23)两点,则( ) A .k>0,b>0 B .k >0,b <0 C .k <0,b >0 D .k <0,b < 0二、填空题(每小题 2 分,共 20 分) 7.16 的平方根是__________.8.计算:2)2017(-= __________.9.等腰三角形的两边长分别是 3 和 5,则这个等腰三角形的周长为__________. 10.在平面直角坐标系中,点 A 的坐标为(2,-3),则点 A 到 x 轴的距离为__________ 11.若二次根式35+a 是最简二次根式,则最小的正整数为 . 12.若等边三角形的边长是xcm,周长为ycm,则y 与x 的函数表达式是 . 13.在平面直角坐标系中,点A (0,-2)向上平移2个单位后的坐标为 . 14.直线y=kx 过点(x 1,y 1),(x 2,y 2),若x 1-x 2=1,y 1-y 2=-2,则k 的值为 . 15.正方形纸片ABCD 和BEFG 的边长分别为5和2,按如图所示的方式减下2个阴影部分的直角三角形,并摆放成正方形DHFI ,则正方形DHFI 的面积为 .16.在△ABC 中,∠A=90°,AB=AC= 2 +1,P 是△ABC 内一个动点,PD ⊥AB 、PE ⊥AC 、PF ⊥BC ,垂足分别为 D 、E 、F ,且 PD+PE=PF .则点 P 运动所形成的图形的长度是__________.三、解答题(共 10 小题,共 68 分)17.(5 分)计算:9)1()3(033+-∏+-18.(8 分)化简: (1)2612⨯ (2)5155-202+19.(5 分)在如图所示的33 的正方形网格中画出一个△ABC ,使AB= 13 ,BC= 10 ,AC=3,并求出△ABC 的面积.20. (6分)如图,点F 、C 在BE 上,BF=CE ,AB=DE ,∠B=∠E . 求证:AC=DF.21.(6分)已知一次函数y=(2m+2)x+2+m,y随x增大而减小,且其图像与y轴交点在x 轴上方,求m的取值范围。
南京市八年级上学期期末数学试卷 (解析版)
18.若分式
x2 2x2 3
的值为零,则
x
的值等于___.
19.对某班组织的一次考试成绩进行统计,已知 80.5~90.5 分这一组的频数是 10,频率
是 0.2,那么该班级的人数是_____人.
20.函数 y 1 =x+1 与 y 2 =ax+b 的图象如图所示,那么,使 y 1 、y 2 的值都大于 0 的 x 的取值范 围是______.
在边 OC 上,则 OE 的长为____.
14.如图,在 ABC 中, AB AC , AB 的垂直平分线交 AB 于点 D ,交 AC 于点 E , 且 A 50 ,则 EBC 的度数是__________.
15.将一次函数 y x 2 的图象平移,使其经过点(2,3),则所得直线的函数解析式是
(1)求点 A 的坐标. (2)求△BOC 的面积. (3)点 D 为直线 AB 上的一个动点,过点 D 作 y 轴的平行线 DE,DE 与直线 OC 交于点 E (点 D 与点 E 不重合).设点 D 的横坐标为 t,线段 DE 长度为 d. ①求 d 与 t 的函数解析式(写出自变量的取值范围). ②当动点 D 在线段 AC 上运动时,以 DE 为边在 DE 的左侧作正方形 DEPQ,若以点 H ( 1 ,t)、G(1,t)为端点的线段与正方形 DEPQ 的边只有一个交点时,请直接写出 t
南京市八年级上学期期末数学试卷 (解析版)
一、选择题 1.如图,直线 y x b(b 0) 分别交 x 轴、 y 轴于点 A 、 B ,直线 y kx(k 0) 与直线 y x b(b 0) 交于点 C ,点 C 在第二象限,过 A 、 B 两点分别作 AD OC 于 D , BE OC 于 E ,且 BE BO 8 , AD 4 ,则 ED 的长为( )
江苏省南京市六校2016-2017学年度第一学期八年级期末联合模拟数学试卷
南京市六校2016-2017学年度第一学期八年级期末联合模拟数学试卷一、 选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( )A . 0.6B . 0.7C . 0.67D . 0.70 4. 一次函数y =2x +1的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y >> B .321y y y << C .231y y y << D .132y y y >>7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( )A .4个B .8个C .10个D .12个二.填空题(每小题2分,共20分)9. 计算:3-64 = .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 . 11. 若032=++-y x ,则()2013y x +的值为 _ ___.(第7题图)12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 .14. 将一次函数y =2x +1的图像向上平移3个单位长度后,其对应的函数关系式为 .15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =28°,则∠ADE = °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为 cm. 18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平 移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐 标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 .三.解答题(本大题共9小题,共64分)19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0.(2)(4分)232)3(8)2(+---(第13题图)(第16题图)(第18题图)(第15题图)20. (本题满分5分) 如图,△ABC 中, AB =AC ,点D 求证:∠ADE =∠AED .21. (本题满分6分)已知关于x 的一次函数y =mx +2的图像经过点(-2,6). (1)求m 的值; (2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4, 请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C 、D . 求证:(1)∠EDC =∠ECD(2)OC =OD(3)OE 是线段CD 的垂直平分线第22题图EDB CAO23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和 点B 在小正方形的顶点上.(1) 在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个 即可);(2) 在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形 (画一个即可);25. (本题满分7分)如图,Rt △ABC 中,∠ACB =90°.(1)作∠BAC 的平分线,交BC 于点D ;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若BD =5,CD =3,求AC 的长.A(第23题图)ABC(第25题)26.(本题满分10分)如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图像.(1)甲、丙两地间的路程为千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.27.(本题满分8分)在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.试探索以下问题:(1)当点E为AB的中点时,如图1,请判断线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”“<”或“=”).(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系会改变吗?请说明理由.第27题图图2图1ED CBAED CBA八年级数学参考答案一、选择题(每小题2分,共16分)二.填空题(每小题2分,共20分)9. -4 10. 20 11. -1 12. -6 或4 13. ⎩⎨⎧x =-1y =-114. y =2x +416. 2.1 16. 34 17. 7 18. (11,1) 三.解答题(本大题共9小题,共64分)19.(1) (4分) x 2=169 …………………………………………………………2分x =±43…………………………………………………………………4分(1) 原式=2-(-2)+3………………………………………………………………3分 =7…………………………………………………………………………4分 20. 证明:在△ABC 中,∵AB =AC ,∴∠B =∠C .····························································· 1分∵AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE . ············································································································· 3分 ∴∠ADB =∠AEC ·················································································································· 4分 ∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°. ∴∠ADE =∠AED . ············································································································· 5分21.(6分)(1)将x =-2,y =6代入y =mx +2得 6=-2m +2, ………………………1分 解得m =-2……………………………………………………2分(2)画圈正确…………………………………………………4分(3) y =-2x +4,y =-2x -4…………………………………………6分22.(8分) (1)证DE =CE ,则∠EDC =∠E CD .(只要证法对就得分)……………2分(2)全等或等角对等边…………………………………………………5分 (3)用“三线合一”或“垂直平分线”的判断………………………7分23.(7分) A 1B 1=102+(8+6)2 =296 …………………………………………2分 A 2B 2=62+(8+10)2 =360 …………………………………………4分 A 3B 3=82+(6+10)2 =320 …………………………………………6分 ∵296 <320 <360∴小蚂蚁爬行的最短路线为296 cm ………………………………………7分 24.(7分)25. (1)画图正确. ················································································································· 2分 (2)过点D 作DE ⊥AB ,垂足为E .则∠AED =∠BED =90°. ∵AD 平分∠BAC ,∴∠CAD =∠EAD .在△ACD 和△AED 中,∵∠CAD =∠EAD ,∠ACD =∠AED =90°,AD =AD∴△ACD ≌△AED . ∴AC =AE ,CD =DE =3. ·································································· 4分 在Rt △BDE 中,由勾股定理得:DE 2+BE 2=BD 2.∴BE 2=BD 2-DE 2=52-32=16 . ∴BE =4. ··································································· 5分 在Rt △ABC 中,设AC =x ,则AB =AE +BE =x +4.由勾股定理得:AC 2+BC 2=AB 2,∴x 2+82=(x +4)2.················································· 6分 解得:x =6,即AC =6. ······································································································ 7分 26.(10分) (1)1050. ····································································································· 2分 (2)当0≤x ≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为: y =kx +b ,把(0,900),(3,0)代入得:∴ y =-300x +900. ·········································································································· 4分 ∵高速列车的速度为:900÷3=300(千米/小时), ∴150÷300=0.5(小时),3+0.5=3.5(小时),∴点A 的坐标为(3.5,150)···························································································· 5分 当3≤x ≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为:y =k 1x +b 1,把(3,0),(3.5,150∴y=300x-900. ··············································································································· 7分(3) 当0≤x≤3时, 由-300x+900≤100,解得x≥83.∴83≤x≤3.······························· 8分当3≤x≤3.5时,由300x-900≤100,解得x≤103.∴3≤x≤103.··························· 9分综上所述,当83≤x≤103时,高速列车离乙地的路程不超过100千米. ··················· 10分27.(1)“=”…………………………………………2分(2)AE与DB的大小关系不变…………………………………………3分理由:过E作EF//BC交AC于F,因为△ABC是等边三角形所以∠ABC=∠ACB=∠BAC=60°所以∠AEF=∠ABC=60°, ∠AFE=∠ACB=60°所以△AEF是等边三角形……………………………4分所以AE=EF=AF,又因为AB=AC, 所以BE=CF……………………5分所以∠DBE=∠EFC=180°-60°=120°………………6分在△DBE和△EFC中因为⎪⎭⎪⎬⎫==∠=FCBEEFCDBEAEDB所以△DBE≌△EFC………………………………………7分所以DB=EF=AE……………………………………………………………………8分F图2ED CBA。
江苏省南京市2016-2017学年八年级上学期期末模拟数学试卷
江苏省南京市2016-2017学年八年级上学期期末模拟数学试卷(考试时间100分钟 试卷满分100分)一、选择题(每小题2分,共16分) 124,39,27,3.14中,无理数的个数有( ) A .1B .2C .3D .43.在平面直角坐标系中,点A (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.函数y=kx 的图象经过点(1,2),则k 的值为( )A .21B .-2C . 2D .215.已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,则第三小组的频数和频率分别为( )6.四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定...成立的是( ) A .AB=AD B .AC 平分∠BCD C .AB=BD D .△BEC ≌△DEC7.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( ) A .甲、乙两人的速度相同 B .甲先到达终点 C .乙用的时间短D .乙比甲跑的路程多A . 12、0.3B . 9、0.3C .9、0.4D .1 2、0.4A .B .C .D .E A B D第6题图 第7题图8.在平面直角坐标系内,直线343+-=x y 与两坐标轴交于A 、B 两点,点O 为坐标原点,若P 为该坐标平面内一点(不与点A 、B 、O 重合),以点P 为顶点与Rt △ABO 有一条公共边的直角三角形与Rt △ABO 全等,则所有符合条件的P 点个数有( )A .9个B .7个C .5个D .3个二、填空题(每小题2分,共20分) 9.计算:=25 .10.比较大小:- 1.5.(填<、=、>) 11.点P (3,-2)关于y 轴对称的点P′ 的坐标是 .12.如图,若△ABC ≌△A 1B 1C 1,且∠A =110°,∠B =40°,则∠C 1= 度.13.太阳的半径约是696000千米,用科学计数法表示(精确到千位)约是____________. 14.如图,△ABC 中,AB+AC =6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周 长为 cm .15.一个一次函数具有下列性质:①它的图象经过点(-1,-2);②函数值y 随自变量x 的增大而增大.则这个函数的关系式可以为16.一次函数y =k 1x +b 与y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x 的解集为 .17.在△ABC 中,∠A =40°,当∠B = 时,△ABC 是等腰三角形.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 2013的坐标为.第12题图 第14题图 第16题图三、解答题 (共64分) 19.(本题8分)(1)计算:3893+--;(2)求x 的值:9)1(313=--x20.(本题8分)如图,平面直角坐标系中,一次函数y =-2x +1的图像与y 轴交于点A .(1)若点A 关于x 轴的对称点B 在一次函数y =12x +b 的图像上,求b 的值,并在同一 坐标系中画出该一次函数的图像;(2)求这两个一次函数的图像与y21.(本题6分)如图,一架云梯AB 的长25 m ,斜靠在一面墙上,梯子靠墙的一端A 距地面BC 有24 m.(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也滑动了4 m 吗?为什么?22.(本题6分)如图,在平面直角坐标系中,函数y x =的图象是第一、三象限的角平分线. (1)实验与探究:由图观察易知A (0,2)关于直线的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线的对称点B '、C '的位置,并写出它们的坐标:B ' 、C ' ;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (m ,n )关于第一、三象限的角平分线的对称点P '的坐标为 .ABC23.(本题6分)如图,在△ABC 中,AB=AC ,AD 是高,AM 是△ABC 外角∠CAE 的平分线. (1)用尺规作图的方法,作∠ADC 的平分线DN ;(保留作图痕迹,不写作法和证明) (2)设DN 与AM 交于点F ,判断△ADF 的形状,并证明你的结论.24.(本题6分) 某学校举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例.当x =20时,y =1600,当x =30时,y =2000. (1)求y 与x 之间的函数关系式;(2)如果有50名运动员参加比赛,那么每名运动员平均需要多少元费用?A BDCEM25.(本题8分)在数学活动课上,老师请同学们在一张长为25cm ,宽为18cm 的长方形纸上剪下一个腰长为13cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).小明同学按老师要求画出了如图(1)的设计方案示意图,请你画出与小明的设计方案不同(即与小明所画的三角形不全等)的所有满足老师要求的示意图,并通过计算说明哪种情况下剪下的等腰三角形的面积最小(含小明的设计方案示意图).DCBAF EDCBA DCBA图(1) 备用图 备用图26.(本题8分)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是()A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7、【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.27.(本题8分) 某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图像解答下列问题:(1)洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升;(2)已知洗衣机的排水速度为每分钟19升.① 求排水时y与x之间的表达式;② 洗衣机中的水量到达某一水位后13.9分钟又到达该水位,求洗衣机在该水位时洗衣机中的水量为多少升?(第28题)八年级数学答案二、填空题(每小题2分,共20分)9. 5 10. < 11.( -3,,-2) 12. 30 13. 6.96×105 14. 6 15. y=2x (答案不唯一) 16. x >-1 17. 40° 或70°或 100° 18. (1006,1) 三、解答题 (共64分)19. ①计算:3893+--解:原式=3-3+2 ………………………… 2分 =2……………………………………4分②求x 的值:9)1(313=--x 解: ()2713-=-x …………………… 1分31-=-x ………………………3分 2-=x ………………………… 4分 20. 解:(1)把x =0代入y =-2x +1,得y =1.∴点A 坐标为(0,1),则点B 坐标为(0,-1). ··························································· 1分 ∵点B 在一次函数y =12x +b 的图像上,∴-1=12×0+b ,∴ b =-1(2 由则点C 坐标为(45,-35). ………………………… 7分 ∴S △ABC =12×2×45=45. ………………………… 8分22.(1)由题意,设云梯为AB ,墙根为C ,则AB =25 m ,AC =24 m ,于是BC 7 m故梯子底端离墙有7 m. ……………………………… 2分 (2)设下滑后云梯为A ′B ′,则A ′C =24-4=20(m).……… 3分 在Rt △A ′CB ′中,B ′C =15(m).………… 4分∵15-7=8 m ,∴梯子不是向后滑动4 m ,而是向后滑动了8 m. ………… 5分 23.(1)找点正确各1分…………………………………………2分B ' (3,5) 、C ' (5,-2) ;………………… 4分 (2)P '(n,m )………………………………………………5分 24.(1)如图所示:………………………… 2分(2)△ADF 的形状是等腰直角三角形.理由是 ∵AB=AC ,AD 是高∴∠BAD=∠CAD ………………………………………… 3分 ∵AF 平分∠EAC ∴∠EAF=∠CAF∴∠FAD=21∠EAB=90°…………………………………4分 ∵DF 平分∠ADC ,AD 是高 ∴∠ADF=45° ∴∠AFD=45° ∴AD=AF∴△ADF 的形状是等腰直角三角形…………………… 6分 24. 解:(1)设y = kx +b .…………………………………………1分根据题意,得201600,302000.k b k b +=⎧⎨+=⎩ ………………………………2分解得k =40,b =800 …………………………………………3分∴y 与x 之间的函数关系式是y =40x +800. ………………………………………………4分(2)当x =50时,y =40×50+800=2800……………………………5分 ∴502800=56(元). ∴每名运动员需要支付56元……………………………………6分25.(1) (2) (3)每画对一个图1分.……………………………………………2分如图(1)S △BEF =21×13×13=2169 ………………………3分 如图(2)在△AEF 中,AE=5,EF=13,由勾股定理得AF=12 …………4分 ∴S △BEF=21×13×12=78………………………………………5分 如图(3)在△CEF 中,CE=25-13=12,EF=13,由勾股定理得AF=5………………6分 ∴S △BEF =21×13×5=265 ………………………………………7分 ∴第3种情况剪下的面积最小。
【南京】2016-2017南京金陵河西初二上期末数学(无解析)
2016-2017学年度第一学期期末学期分析样卷八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上.2.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项.......中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2叫做2的( ).A .平方B .平方根C .算术平方根D .立方根2.在下列实数中:4, 3.14-,227,π,无理数有( ). A .1个 B .2个 C .3个 D .4个3.如图,点()3,1A -到y 轴的距离为( ).A .3-B .1C .3D .104.如图,ABC △中,,AB AC BE EC ==,直接使用SSS “”可判断( ).A .C ABD A D △≌△B .C BED ED ≌△△C .E ABE DC ≌△△D .A ABE CE ≌△△5.正比例函数()0y kx k =≠的函数值y 随x 的增大而减小,则一次函数y kx k =+的图像大致是( ).6.如图,在平面直角坐标系中,点P 为x 轴上一点,且到()0,2A 和点()5,5B 的距离相等,则线段OP 的长度为( ).A .3B .4C .4.6D .25二、填空题(本大题共....10..小题..,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡和相向位置上)7.已知点()1,2A a a -+在第二象限,那么a 的取值范围是__________.8.在实数5和5.1之间存在着无数个实数,其中整数有__________个.9.如图,A ABC DE ≌△△,若100AED ∠=︒,25B ∠=︒,则A ∠= _________.10.如图,在ABC △中,90ABC ∠=︒,D 是AC 上的一点,1AB BD DC ===,则BC =__________.11.如图,点,E F 在□ABCD 的对角线BD 上,BE DF =,若□ABCD 的面积是220cm ,ABE △的面积是23cm ,则□AECF 的面积是__________2cm .12.如图,□ABCD 的对角线相交于点O ,过点O 作OM AC ⊥交AD 于M ,如果CDM △的周长为12cm ,那么平行四边形的周长为__________cm .13.如图,在平面直角坐标系中,三角形的顶点都在格点上,每个小方格都是边长为1的正方形.DEF △是由ABC △旋转得到的,则旋转中心的坐标为__________.14.网上购鞋常常看到下面这样一张表,第一行可以理解为脚的长度,第二行是我们习惯称呼的“鞋号”. 中国鞋码实际标注(mm )220 225 230 235 240 245 250 255 260 265 中国鞋码习惯叫法34 35 36 3738 39 40 41 42 43(号)习惯称为“30号”的童鞋,对应的脚实际尺寸是__________mm .15.如果一次函数y kx b =+的自变量x 的取值范围是14x ≤≤,相应函数值范围是03y <≤,则该函数表达式为__________.16.如图,在ABC △中,点P 从点A 出发向点C 运动,在运动过程中,设x 表示线段AP 的长,y 表示线段BP 的长,y 与x 之间的关系如图2所示,线段BC 的长为_______.三、解答题(本大题共10小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)计算:325168-++-.18.(8分)求下面各式中的x :(1)249x = (2)()3180x -+=19.(6分)如图,ABC △是等边三角形,DE BC ∥,分别交AB AC 、于点D 、E .求证:ADE △是等边三角形.20.(6分)如图,线段AC 与BD 相交于点O ,点O 是AC 的中点,12AB DC AC ==.求证:四边形ABCD 是平行四边形.21.(6分)如图,四边形ABCD 中,20AB =,15AD =,7CD =,24BC =,90A ∠=.求证:180B D ∠+∠=︒.22.(8分)已知一次函数24y x =-,完成下列问题:(1)求此函数图像与x 轴的交点坐标;(2)画出此函数的图像:观察图像,当04x ≤≤时,y 的取值范围是__________; (3)平移一次函数24y x =-的图像后经过点()3,1-,求平移后的函数表达式.23.(6分)如图,已知CAB ∠,用直尺和圆规作ABD ∠,使12ABD A ∠=∠,射线BD 与射线AC 相交于点D .(不写画法,保留作图痕迹)24.(6分)如图1,点P 是AOB ∠的内部任意一点,PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,D 是OP 的中点.求证:2MDN MON ∠=∠.小尧同学思路如下:因为PM OA⊥,垂足是M,D是OP的中点.由“直角三角形斜边上的中线等于斜边的一半”,得到MD OD=,……课后,小尧同学发现上题中,当“点P是AOB∠的外部任意一点”结论也成立,请你证明其正确.如图2,点点P是AOB⊥,垂足分别是M、N,D是OP的中⊥,PN OB∠的外部任意一点,PM OA点.求证:2∠=∠.MDN MON25.(8分)如图1,在□ABCD中,E、F为对角线BD上的两点.(1)若BE DF=.=,证明AE CF(2)若AE CF=,能否说明BE DF=?若能,请说明理由;若不能,请画出反例.26.(10分)甲、乙两人共同加工一批零件,从工作开始到加工完这批零件两人恰好同时工作6小时,二人各自加工零件的个数y(个)与加工时间x(小时)之间的函数图象如图所示,根据信息回答下列问题:(1)请解释图中点C的实际意义;(2)这批零件的总个数是__________个.(3)如果甲、乙两人完成同样数量的零件时,甲比乙少用1h,那么此时甲、乙两人各自完成多少个零件?11 / 11。
江苏省南京市联合体学校八年级上学期期末模拟数学试题
江苏省南京市联合体学校八年级上学期期末模拟数学试题一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .53.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .24.3329a b a b a b a(a >0,b >0)的结果是( )A .53abB .23abC .179abD .89ab 5.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对7.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)12.3-的绝对值是 .13.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.14.计算112242⨯+=__________. 15.等腰三角形中有一个角的度数为40°,则底角为_____________.16.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.17. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.18.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x、y的二元一次方程组2x y ax y b-=⎧⎨+=⎩的解是________.19.若直角三角形斜边上的中线是6cm,则它的斜边是 ___ cm.20.如图,在△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于点E,EC=1,则三角形ACE的面积为__.三、解答题21.已知一次函数5y kx=+的图象经过点(2,1)A-.(1)求k的值;(2)在图中画出这个函数的图象;(3)若该图象与x轴交于点B,与y轴交于点C,试确定OBC∆的面积..22.用函数方法研究动点到定点的距离问题.在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:S与x的函数关系为S=1,1,10,1,1,1,x xx xx x-<⎧⎪-==⎨⎪->⎩并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.①随着x 增大,y 怎样变化?②当x 取何值时,y 取最小值,y 的最小值是多少?③当x <1时,证明y 随着x 增大而变化的规律.23.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.24.某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象,以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10),请你结合表格和图象:付款金额ya 7.5 10 12b 购买量x (千克) 1 1.5 2 2.5 3(1)a = ,b = ;(2)求出当2x >时,y 关于x 的函数解析式;25.如图,AO BO ⊥,DO EO ⊥,AO BO =,DO EO =.求证:AE BD =.四、压轴题26.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?27.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.28.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为:(不写证明过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 3.A解析:A【解析】【分析】根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF ,∠CFE=∠BCF,即BD=DF,FE=CE ,然后利用等量代换即可求出线段CE 的长.【详解】解:∵∠ABC 和∠ACB 的平分线相交于点F,∴∠DBF=∠FBC ,∠ECF=∠BCF,∵DF//BC,交AB 于点D,交AC 于点E.∴∠DFB=∠DBF ,∠CFE=∠BCF ,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.4.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.5.C解析:C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像6.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.7.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A 、(1,2)在第一象限,故本选项错误;B 、(﹣1,2)在第二象限,故本选项错误;C 、(1,﹣2)在第四象限,故本选项正确;D 、(﹣1,﹣2)在第三象限,故本选项错误.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE 是AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.B解析:B【解析】【分析】根据平面直角坐标系中关于x 轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P (-2,3)关于x 轴的对称点坐标为(-2,-3).故选:B .【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD,再根据对顶角相等得到∠E=∠APE,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y =20-x .【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E =∠CPD .12..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以13.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.14.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.15.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.16.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.18.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2, 1),所以解析:21 xy=⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2, 1),所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.19.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm ,∴则它的斜边是:cm ;故答案为:12.【点睛】本题考查了直解析:12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm ,∴则它的斜边是:2612⨯=cm ;故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.20..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解解析:12. 【解析】【分析】 由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题21.(1)3k =-;(2)画图见解析;(3)256OBC S =△ 【解析】【分析】(1)把点(2,1)A -代入解析式5y kx =+即可求出k 的值;(2)用两点法画出函数图像即可;(3)利用三角形面积公式进行计算.【详解】解:(1)将2,1x y ==-代入5y kx =+得:251k +=-,解得3k =-;(2)∵3k =-,∴35y x =-+,当x=0时,y=5;当y=0时,-3x+5=0,53x =, 如图:(3)由(2)知,53OB =,OC=5, 则55•253226OBC OC OB S ⨯===. 【点睛】 本题主要考查了满足函数解析式的点一定在函数的图象上,一次函数与坐标轴的交点,以及图形与坐标的性质,求出一次函数解析式是解答本题的关键.22.(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩,当x =-2时,S 的最小值为0;(2)①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大,②当1≤x ≤5时,y 取最小值,y 的最小值是4,③当x <1时,y 随x 增大而减小.【解析】【分析】(1)根据x 轴上两点之间的距离等于它们差的绝对值,以及绝对值的意义可直接写出结论; (2)根据x 轴上两点之间的距离等于它们差的绝对值,得出PM 和PN 的距离,它们之和即为y.①分情况讨论,根据一次函数的性质可得y 的变化情况;②根据y 的变化情况可求;③当x <1时,62y x =-,根据函数的增减性可得.【详解】(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩;∵当x <2时y 随x 增大而减小,当x >2时y 随x 的增大而增大,∴当x =-2时,S 的最小值为0.(2)由题意得y =|1|x -+|5|x -,根据绝对值的意义,可转化为y =62,14,1526,5x x x x x -<⎧⎪⎨⎪->⎩①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大.②当1≤x ≤5时,y 取最小值,y 的最小值是4.③当x <1时,62y x =-,∵-2<0∴当x <1时,y 随x 增大而减小.【点睛】本题考查一次函数的应用,一次函数的性质,化简绝对值.掌握x 轴上两点之间的距离公式,能分段讨论化简绝对值是解决此题的关键.23.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.24.(1)5,14a b ==;(2)42y x =+【解析】【分析】(1)根据函数图象可得:购买量是函数的自变量x ,也可看出2千克的金额为10元,从而可求1千克的价格,即a 的值,由表格可得出:当购买量大于等于2千克时,购买量每增加0.5千克,价格增加2元,进而可求b 的值;(2)先设关系式为y=px+q ,然后将(2,10),且x=3时,y=14,代入关系式即可求出p ,q 的值,从而确定关系式;【详解】解:(1)购买量是函数中的自变量x ,设射线OA 解析式为:y=mx ,把A (2,10)代入得:10=2m ,即m=5,∴射线OA 解析式为y=5x ,把x=1代入得:y=5,即a=5;根据题意得:b=2×5+(3-2)×5×80%=10+4=14;故答案为:5;14.(2)当x >2时,设y 与x 的函数关系式为:y=px+q ,∵y=px+q 经过点(2,10),又x=3时,y=14,∴210314p q p q +=⎧⎨+=⎩, 解得:42p q =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y=4x+2;【点睛】此题主要考查了一次函数的应用和待定系数法求一次函数解析式等知识,根据已知得出图表中点的坐标是解题关键.25.见解析【解析】【分析】利用SAS 证出△AOE ≌△BOD ,然后根据全等三角形的性质即可得出结论.【详解】解:∵AO BO ⊥,DO EO ⊥,∴∠DOE =∠AOB =90°∴∠DOE +∠AOD =∠AOB +∠AOD∴∠AOE=∠BOD在△AOE 和△BOD 中AO BO AOE BOD EO DO =⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△BOD (SAS )∴AE BD =【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等是解决此题的关键.四、压轴题26.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.27.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.28.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ; (3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.29.90︒,45︒;20︒,30︒;2aγβ+=,2aγβ-=.【解析】【分析】(1)①如图①知1112EMC BMC∠=∠,1112C MF C MC∠=∠得()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)见解析;(2)CD 2AD +BD ,理由见解析;(3)CD 3+BD【解析】【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE 2AD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH =32AD ,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BD 3AD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CD 2AD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.。
南京市八年级期上册末数学试卷
南京市八年级期上册末数学试卷一、选择题1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)2.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m3.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( ) A .10B .8或10C .8D .以上都不对4.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1B .x=-1C .x=3D .x=-35.下列各数中,是无理数的是( ) A .38B .39C .4-D .2276.把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的127.由四舍五入得到的近似数48.0110⨯,精确到( ) A .万位B .百位C .百分位D .个位8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD 9.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限10.下列各式成立的是( ) A .93=±B .235+=C .()233-=± D .()233-=二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.9的平方根是_________.13.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.14.点A (3,-2)关于x 轴对称的点的坐标是________.15.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.16.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .17.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.18.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.19.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.20.如图,等腰直角三角形ABC 中, AB=4 cm.点 是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.三、解答题21.如图,点D 、B 、C 在一直线上,ABC ∆和ADE ∆都是等边三角形.试找出图中的一对全等三角形,并证明.22.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形. 23.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ; (3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .24.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -. (1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点). 25.解方程:21142x xx x --=-+四、压轴题26.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).27.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n 的取值范围.③当m<−1 式,连接AD,若线段AD 沿直线AB 方向平移得到线段BE,连接DE 与直线y=−2 交于点F,则点F 坐标为.(用含m 的式子表达)28.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE . (材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.29.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据点(1,1)A ,点(3,2)C 建立平面直角坐标系,再结合图形即可确定出点B 的坐标. 【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2), ∴点B 的坐标是:(2,0). 故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.D解析:D 【解析】 【分析】作BD ⊥OC 于点D ,首先由题意得:AO=BD=3m ,AB=OD=2m ,然后根据OC=6米,得到DC=4 m ,最后利用勾股定理得BC 的长度即可. 【详解】解:如图,作BD ⊥OC 于点D ,由题意得:AO=BD=3m ,AB=OD=5-3=2m , ∵OC=6m , ∴DC=6-2=4m ,∴由勾股定理得:2234+, ∴旗杆的高度为5+5=10m , 故选:D . 【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.A解析:A 【解析】 【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可. 【详解】∵2|2|(4)0a b -+-=, ∴a-2=0,b-4=0, ∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去; 当b 为腰时,2+4>4,符合题意, ∴周长=4+4+2=10. 故选A. 【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.A解析:A 【解析】当x =1时,分母为零,没有意义,所以是增根.故选A .5.B解析:B【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得. 【详解】2=,为有理数,故该选项错误;D.2-,为有理数,故该选项错误;D.227,为有理数,故该选项错误. 故选B. 【点睛】本题考查无理数的定义,立方根,算术平方根. 初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A 【解析】 把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xyx y x y x y ⋅==---,由此可得分式的值不变,故选A.7.B解析:B 【解析】 【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案. 【详解】解:∵48.0110⨯=80100,数字1在百位上, ∴ 近似数48.0110⨯精确到百位, 故选 B. 【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.8.D解析:D 【解析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意; B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意; C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意.9.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.10.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是解析:±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1.考点:一次函数与一元一次不等式.14.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.15.【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为2.【点睛】本题主要考查了解析:【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<2,则(2﹣a)=2.故答案为2.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.16.y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2解析:y=32x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=6x=3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.17.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y1>0,当x<2时,y2>0,∴使y1、y2的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0 18.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.19.8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作解析:8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用.20.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形, ∴AC=AB ,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】 试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3, ∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .三、解答题21.ABE ACD ∆≅∆,证明详见解析.【解析】【分析】根据等边三角形的性质证明ΔABE ≅ΔACD 即可.【详解】ΔABE ≅ΔACD .证明如下:∵ΔABC 、ΔADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAC+∠BAD=∠DAE+∠BAD,即∠CAD=∠BAE.在ΔABE和ΔCAD.∵AB=AC,∠BAE=∠CAD,AE=AD,∴ΔABE≅ΔACD.【点睛】本题考查了等边三角形的性质和全等三角形的判定.掌握等边三角形的性质是解答本题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.23.(1)详见解析;1A的坐标(-1,3);(2)3)1<m≤1.25【解析】【分析】(1)根据轴对称定义画图,写出坐标; (2)作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小. (3)证AE//x 轴,再求线段AE 中点的横坐标,根据轴对称性质可得.【详解】解:(1)如图,111A B C ∆为所求,1A 的坐标(-1,3);(2)如图,作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小.即PA+PB=A B '=22224225AD DB '+=+=(3)由已知可得,BC 的中点坐标是(3415,22++),即(3.5,3) 所以AE//x 轴,所以线段AE 中点的横坐标是:3.51 1.252-= 所以根据轴对称性质可得,m 的取值范围是1<m≤1.25【点睛】考核知识点:轴对称,勾股定理.数形结合分析问题,理解轴对称关系是关键.24.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积.【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩,∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键. 25.3x =【解析】【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21142x x x x --=-+, 方程两边同时乘以(2)(2)x x +-,得2(1)(2)4x x x x ---=-,解这个方程,得3x =.验证:当3x =时,(2)(2)0x x +-≠ ∴原方程的解为:3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.四、压轴题26.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE ≌△CBD 得到∠ACE=∠CBD ,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF ;②先证明△ACE ≌△CBD 得∠ACE=∠CBD=∠DCF ,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA ;(2)证明△AEC ≌△CDB 得到∠E=∠D ,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O 是AC 边的垂直平分线与BC 的交点,∴OC=OA ,∴∠EAC=∠DCB=α,∵AC=BC ,AE=CD ,∴△AEC ≌△CDB ,∴∠E=∠D ,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =, 综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.28.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.29.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828 ,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数; (2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)27 2【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。
南京市联合体2017-2018学年八年级(上)期末数学试卷(解析版)(2021年整理)
(完整)南京市联合体2017-2018学年八年级(上)期末数学试卷(解析版)(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)南京市联合体2017-2018学年八年级(上)期末数学试卷(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)南京市联合体2017-2018学年八年级(上)期末数学试卷(解析版)(word版可编辑修改)的全部内容。
南京市联合体2017-2018学年八年级(上)期末数学试卷一、选择题(每小题2分,计16分.将正确答案的序号填写在下面的表格中)1.在下列各数中,无理数是()A.B.C.3πD.2.计算的结果是( )A.﹣2B.2C.﹣4D.43.在平面直角坐标系中,点A(2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=3x﹣2的图象上有两点A(﹣1,y1),B(﹣2,y2),则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定5.如图,在平面直角坐标系中,点B在x轴上,△AOB是等腰三角形,AB=AO=5,BO=6,则点A的坐标为()A.(3,4)B.(4,3)C.(3,5)D.(5,3)6.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有( )A.1组B.2组C.3组D.4组7.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x 之间的函数解析式和自变量取值范围分别是()A.y=0。
[精品]南京市八年级上数学期末考试试卷有答案
2017【建邺区】初二(上)数学期末试卷一、选择题(每小题2分,共12分) 1、二次根式中,字母的取值范围是( )。
A 、x > 1B 、x ≥1C 、x <1D 、 1 x2、在 △ABC 中 , 其两个内角如下 , 则能判定 △ABC 为等腰三角形的是 () A. ∠A=40°, ∠B=50 ° B. ∠A=40°, ∠B=60° C. ∠A=40°, ∠B=70 ° D. ∠A=40°, ∠B=80°3、如图,在阴影区域的点是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(1 ,-2) 4、按如图所示的程序计算,若开始输入的值为,则最后输出的结果是( )。
ABCD 14+5. 如图,有四个三角形,各有一边长为6,一边长为8,若第三边为6,8,10,12,则面积最大的三角形是( )6.直线 y=kx+b 过 A( -19,92),B(0.1,23)两点,则( ) A .k>0,b>0 B .k >0,b <0 C .k <0,b >0 D .k <0,b < 0二、填空题(每小题 2 分,共 20 分) 7.16 的平方根是__________.8.计算:2)2017(-= __________.9.等腰三角形的两边长分别是 3 和 5,则这个等腰三角形的周长为__________. 10.在平面直角坐标系中,点 A 的坐标为(2,-3),则点 A 到 x 轴的距离为__________ 11.若二次根式35+a 是最简二次根式,则最小的正整数为 . 12.若等边三角形的边长是xcm,周长为ycm,则y 与x 的函数表达式是 . 13.在平面直角坐标系中,点A (0,-2)向上平移2个单位后的坐标为 . 14.直线y=kx 过点(x 1,y 1),(x 2,y 2),若x 1-x 2=1,y 1-y 2=-2,则k 的值为 . 15.正方形纸片ABCD 和BEFG 的边长分别为5和2,按如图所示的方式减下2个阴影部分的直角三角形,并摆放成正方形DHFI ,则正方形DHFI 的面积为 .16.在△ABC 中,∠A=90°,AB=AC= 2 +1,P 是△ABC 内一个动点,PD ⊥AB 、PE ⊥AC 、PF ⊥BC ,垂足分别为 D 、E 、F ,且 PD+PE=PF .则点 P 运动所形成的图形的长度是__________.三、解答题(共 10 小题,共 68 分)17.(5 分)计算:9)1()3(033+-∏+-18.(8 分)化简: (1)2612⨯ (2)5155-202+19.(5 分)在如图所示的33 的正方形网格中画出一个△ABC ,使AB= 13 ,BC= 10 ,AC=3,并求出△ABC 的面积.20. (6分)如图,点F 、C 在BE 上,BF=CE ,AB=DE ,∠B=∠E . 求证:AC=DF.21.(6分)已知一次函数y=(2m+2)x+2+m,y随x增大而减小,且其图像与y轴交点在x 轴上方,求m的取值范围。
江苏省南京秦淮区2016-2017学年八年级上期末数学试题(含解析)
2016-2017学年度第一学期第二阶段学业质量监测试卷八年级数学一、选择题(本大题共8小题,每小题2分.共16分) 1.以下四家银行的行标图中,是轴对称图形的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】图中的①③④为轴对称图形,故选C .2.点(2,3)P -关于x 轴的对称点是( ).A .(2,3)-B .(2,3)C .(2,3)--D .(2,3)-【答案】B【解析】(2,3)P -关于x 轴的对称点为(2,3),选B .3.如图,在平面直角坐标系中,点B 在x 轴上,AOB △是等边三角形,2AB =,则点A 的坐标为( ).xy OABA .(2,3)B .(1,2)C .(1,3)D .(3,1)【答案】C【解析】作AC OB ⊥于C ,∵OAB △是等边三角形,AC OB ⊥, ∴60AOB ∠=︒,2OB AB ==,112OC OB ==,33AC OC =⋅=,∴A 点坐标为(1,3), 故选C .C B AO y x4.如图矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的敢是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,点E 表示的实数是( ).E C BA D -3-2-10123A .51+B .51-C .5D .15-【答案】B【解析】∵矩形ABCD ,2AD =,1AB =, ∴2BC AD ==,90B ∠=︒, ∴22125AC =+=, ∴5AE AC ==,∴点E 表示的数为51-,选B .5.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km ,则M 、C 两点间的距离为( ).ABCMA .0.5kmB .0.6kmC .0.9kmD .1.2km【答案】D【解析】∵AC 、BC 互相垂直, ∴90ACB ∠=︒, ∵M 是AB 的中点,∴11.2km 2CM AB AM ===.(直角三角形斜边上中线等于斜边的一半). 故选D .6.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( ).C BAODD'C'B'A'O'A .SASB .SSSC .AASD .ASA【答案】B【解析】在OCD △和O C D '''△中,OC O C OD O D CD C D ⎧''=⎪⎪''=⎨⎪''=⎪⎩, ∴OCD △≌(SSS)O C D '''△, ∴O O '∠=∠,故选B .7.在平面直角坐标系中,若直线y kx b =+经过第一、三、四象限,则直线y bx k =+不经过的象限是( ). A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】∵直线y kx b =+经过一、三、四象限, ∴0k >,0b <,∴y bx k =+经过一、二、四象限,不经过第三象限,选C .8.在ABC △中,30ABC ∠=︒,AB 边长为4,AC 边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是( ). A .3个B .4个C .5个D .6个【答案】C【解析】如图,AC BC ⊥时, ∵30ABC ∠=︒,4AB =,∴114222AC AB ==⨯=, ∵垂线段最短, ∴2AC ≥,∴1、2、3、4、5中可取的值为2、3、4、5, 当2AC =时可作1个三角形, 当3AC =时可作2个, 当4AC =时可作1个, 当5AC =时可作1个.所以三角形个数为12115+++=,选C .CBA二、填空题(本大题共10小题,每小题2分,共20) 9.16的平方根是__________. 【答案】4±【解析】16的平方根为4±.10.已知一个函数,当0x >时,函数值随着x 的增大而减小,请写出这个函数关系式__________(写出一个即可).【答案】y x =-(答案不唯一)【解析】只要0x >时函数值y 随x 增大而减小的函数即可.11.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为__________2cm . 【答案】120【解析】由题意可得三角形三边长分别为10,24,26,又222102426+=,所以这个三角形是直角三角形,所以面积110241202S =⨯⨯=.12.如图,在ABC △和EDB △中,90C EBD ∠=∠=︒,点E 在AB 上,若ABC △≌EDB △,4AC =,3BC =,则AE =__________.ECBAD【答案】1【解析】∵90C ∠=︒,∴2222345AB AC BC =+=+=, ∵ABC △≌EDB △, ∴4EB AC ==,∴541AE AB EB =-=-=.13.如图,在ABC △中,AB AC =,36A ∠=︒,BD 是的ABC △角平分线,则ABD ∠=__________.CBAD【答案】36︒【解析】∵AB AC =,∴11(180)(18036)7222ABC C A ∠=∠=︒-∠=︒-︒=︒,∵BD 平分ABC ∠,∴11723622ABD ABC ∠=∠=⨯︒=︒.14.如图,90C ∠=︒,BAD CAD ∠=∠,若1c m BC =,7cm BD =,则点D 到AB 的距离为__________cm .C BAD【答案】4 【解析】如图,作DE AB ⊥于E ,DE 长度即为D 到AB 距离,∵BAD CAD ∠=∠, ∴AD 为BAC ∠的角平分线, ∵90C ∠=︒,DE AB ⊥, ∴DE DC =,∵11cm BC =,7cm BD =, ∴1174cm CD BC BD =-=-=, ∴4cm DE CD ==.EDABC15.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③34a <<;④a 是18的算术平方根,其中,所有正确的说法的序号是__________. 【答案】①②④【解析】∵边长为3的正方形对角线长为a , ∴223332a =+=, ①32a =是无理数,正确,②a 可以用数轴上一个点来表示,正确,③3218=,41618255=<<=,所以45a <<,③错误,④3218a ==,正确.16.在同一直角坐标系中,点A 、B 分别是函数1y x =-与35y x =-+的图像上的点,且点A 、B 关于原点对称,则点A 的坐标为__________. 【答案】(1,2)-- 【解析】设(,)A a b , ∵A ,B 关于原点对称, ∴(,)B a b --,又A 在1y x =-上,B 在35y x =-+上, ∴13()5b a b a =-⎧⎨-=--+⎩, 解得:12a b =-⎧⎨=-⎩.17.如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的关系式是__________.211234xy O【答案】21y x =+【解析】原图函数经过(0,0),(2,4), ∴2y x =,向上平移1个单位后函数解析式为21y x =+.18.如图,矩形纸片ABCD 中,已知8AD =,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且3EF =,则的AB 长为__________.FECBAD【答案】6 【解析】∵四边形ABCD 是矩形,8AD =, ∴8BC AD ==,∵AEF △由AEB △翻折而成,∴3BE EF ==,AB AF =,CEF △为直角三角形, ∴835CE =-=,2222534CF EC EF =-=-=.设AB x =,则AF x =,4AC x =+, 在Rt ACB △中,222AB BC AC +=, 2228(4)x x +=+,解得:6x =. ∴6AB =.FE CBA D三、解答题(本大题共8小题,共64分)19.(8分)(1)求出式子中x的值:2916x=.(2)计算:303(2)4(3)--+.【答案】(1)43 x=±(2)3-【解析】(1)2916x=,解得:43x=±.(2)原式2213=--+=-.20.(8分)阅读下面材料:在数学课上,老师提出如下问题:已知:直线l和l外一点P.求作:直线l的垂线.使它经过点P.lP小芸的作法如下:(1)在直线上任取两点A,B.(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧线相交于点Q.(3)作直线PQ.所以直线PQ就是所求的垂线.PlA B请将小芸的作图补充完整(保留作图痕迹),小芸的作法是否正确?请说明理由.【答案】见解析【解析】QBAlP作法如图所示, 小芸的作法正确, ∵AP AQ =,BP BQ =,∴A 、B 在线段PQ 的垂直平分线上, ∴PQ l ⊥.21.(8分)如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?ECB AD【答案】0.8m【解析】∵AC BC ⊥, ∴90ACB ∠=︒,∵0.7m BC =, 2.5m AB =,∴22222.50.7 2.4m AC AB BC a =-=-=, ∵0.4m AE =, ∴2m CE AC AE =-=, 在CDE △中,22222.52 1.5m CD DE CE =-=-=,∴ 1.50.70.8m BD DC BC =-=-=, ∴梯足向外移动了0.8m .DA B CE22.(8分)在ABC △中,AB AC =,点D 是BC 的中点,点E 在AD 上. (1)求证:BE CE =.(2)如图,若BE 的延长线交AC 于点F ,且BF AC ⊥,垂足为F ,45BAC ∠=︒,原题设其它条件不变,求证:AEF △≌BCF △.ECBA DF DABCE【答案】见解析【解析】(1)∵AB AC =,D 是BC 中点, ∴AD 为BC 的垂直平分线, 又点E 在AD 上, ∴EB EC =.ECBAD(2)∵45BAC ∠=︒,BF AC ⊥,∴90AFB CFB ∠=∠=︒,45ABF BAC ∠=∠=︒, ∴AF BF =,∵AB AC =,D 为BC 中点, ∴AD BC ⊥,90EAF AEF ∠+∠=︒, 90EAF C ∠+∠=︒,∴AEF C ∠=∠. 在AEF △和BCF △中, 90AFE BFC AEF CAF BF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴AEF △≌(AAS)BCF △.F DABCE23.(8分)一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连接CF ,AB a =,BC b =,AC c =. (1)请你结合图1用文字和符号语言分别叙述勾股定理. (2)请利用直角梯形BCFG 的面积证明勾股定理:222a b c +=.图1CBAab c F EC BAGD图2【答案】见解析【解析】(1)直角三角形两直角边的平方和等于斜边的平方.Rt ABC △中,90C ∠=︒,AC c =,BC a =,AC b =,则有222a b c +=.(2)2211112222AFG ABC ACF BCFG S S S S ab ab c ab c =++=++=+梯形△△△.【注意有文字】221111()()()2222BCFG S FG BC GB a b a b a ab b =+⋅=++=++梯形.【注意有文字】 ∴222111222ab c a ab b +=++,整理得:222a b c +=.24.(6分)已知y 是x 的函数,自变量x 的取值范围是0x >,下表是y 与x 的几组对应值.x ⋅⋅⋅ 1 23 5 7 9 ⋅⋅⋅ y ⋅⋅⋅ 1.98 3.95 2.63 1.58 1.13 0.88 ⋅⋅⋅小腾根据学习一次函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图像与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图像.-1-11211123456789101234567x yO(2)根据画出的函数图象,写出:①4x =对应的函数值y 约为__________.②该函数的一条性质:__________.【答案】见解析【解析】(1) O yx7654321109876543211112-1-1(2)①由图象找出4x =时对应的y 值,y 约为2.②函数先随x 增大而增大,后随x 增大而减小.25.(9分)某水电站兴建了一个最大蓄水容量为312万米的蓄水池,并配有2个流量相同的进水口和1个出水口.某天0时至12时,进行机组试运行,其中,0时至2时打开2个进水口进水;2时,关闭1个进水口减缓进水速度,至蓄水池中水量达到最大蓄水容量后,随即关闭另一个进水口,并打开出水口,直至12时蓄水池中的水放完为止.若这3个水口的水流都是匀速的,且2个进水口的水流速度一样,水池中的蓄水量3()y 万米与时间t (时)之间的关系如图所示,请根据图像解决下列问题:(1)蓄水池中原有蓄水__________3万米.蓄水池达最大蓄水量312万米的时间a 的值为__________. (2)求线段BC 、CD 所表示的y 与t 之间的函数关系式.(3)蓄水池中蓄水量维持在3m 万米以上(含3m 万米)的时间有3小时,求m 的值.1224812C B AD y 万米3()O t 时() 【答案】见解析【解析】(1)由图象可知,原有蓄水为34万米,由AB 段可知,2个进水口的进水速度为38422-=万米, 所以1个进水口速度为31/万米时, ∴128261a -=+=. (2)∵(2,8)B ,(6,12)C ,(12,0)D ,设11:BC y k xb =+,22:CD y k x b =+, 111128612k b k b +=⎧⎨+=⎩,2222612120k b k b +=⎧⎨+=⎩, 解得:1116k b =⎧⎨=⎩,22224k b =-⎧⎨=⎩. ∴BC 段:6y t =+,CD 段:224y t =-+.(3)设BC 上达到3m 万米的时间为t ,则CD 上达到3m 万米时间为(3)t +时, 由题意得:62(3)24t t +=-++,解得:4t =.∴当4t =时,4610m =+=.26.(9分)如图,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A ,点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF .连接BP 、BH .(友情提醒:正方形的四条边都相等.即AB BC CD DA ===;四个内角都是90︒;即90A B C D ∠=∠=∠=∠=︒)(1)求证:APB BPH ∠=∠.(2)当点P 在边AD 上移动时,PDH △的周长是否发生变化?并证明你的结论. (3)设AP 为x ,求出的BE 长.(用含x 的代数式表示)FE CBAP HGD 【答案】见解析【解析】(1)∵正方形ABCD 折叠,B 落在P 处,C 落在G 处,折痕为EF , ∴EB EP =,90EPH EBC ∠=∠=︒,EBP EPB ∠=∠, ∵AD BC ∥,∴APB PBC ∠=∠,∵90PBC EBP ∠+∠=︒,90BPH EPB ∠+∠=︒,∴PBC BPH ∠=∠,∴APB BPH ∠=∠.(2)如图,作BQ PH ⊥于Q ,由(1)知APB BPH ∠=∠,在ABP △和QBP △中,APB BPH A BQPBP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABP △≌(AAS)QBP △,∴AP QP =,AB QB =,又∵AB BC =,∴BC BQ =,又∵90C BQH ∠=∠=︒,BH BH =, ∴Rt BCH △≌Rt (HL)BQH △,∴CH QH =,∴PHD △的周长为:8PD DH PH AP PD DH HC AD CD ++=+++=+=. 所以PDH △周长不变.(3)设BE y =,则PE BE y ==,4AE y =-, 在Rt AEP △中,222AE AP PE +=,222(4)y x y -+=, 解得:21(16)8y x =+. G D GHP ABCE F。
南京市八年级(上)期末数学试卷(含答案)
南京市八年级(上)期末数学试卷(含答案)一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s 2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k > C .0k >D .k 0< 3.下列四组线段a ,b ,c ,能组成直角三角形的是( ) A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c =4.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定 5.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .7 6.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数7.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠8.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .129.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.比较大小:10_____3.(填“>”、“=”或“<”)14.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.15.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.16.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.17.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.18.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于_____.19.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.20.函数y1=x+1与y2=ax+b的图象如图所示,那么,使y1、y2的值都大于0的x的取值范围是______.三、解答题21.A,B两地相距200千米,甲车从A地出发匀速行驶到B地,乙车从B地出发匀速行驶到A地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x小时(0≤x≤5),甲、乙两车离A地的距离分别为y1,y2千米,y1,y2与x之间的函数关系图象如图1所示.根据图象解答下列问题:(1)求y1,y2与x的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s千米,在图2的直角坐标系中,已经画出了s与x之间的部分函数图象.①图中点P的坐标为(1,m),则m=;②求s与x的函数关系式,并在图2中补全整个过程中s与x之间的函数图象.22.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.23.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.24.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t =______时,两点停止运动;(2)当t 为何值时,BPQ ∆是等腰三角形?25.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.四、压轴题26.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?AB=,27.如图,已知四边形ABCO是矩形,点A,C分别在y轴,x轴上,4 3BC=.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t秒,则CP=12-3t,BQ=t,根据题意得到12-3t=t,解得:t=3,故选B.【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.B解析:B【解析】【分析】根据如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形进行分析即可.【详解】A .12+22≠32,不能组成直角三角形,故此选项错误;B .2221+,能组成直角三角形,故此选项正确;C .32+22≠42,不能组成直角三角形,故此选项错误;D .42+52≠62,不能组成直角三角形,故此选项错误.故选:B .【点睛】本题考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.4.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.5.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.6.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A2,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.7.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.9.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.D解析:D【解析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.y=-x【解析】【分析】根据题意可得y=kx ,再把x=8时,y=-12代入函数,可求k ,进而可得y 与x 的关系式.【详解】设y=kx ,∵当x=8时,y=-12,∴-12=8k ,解得k=解析:y=-32x 【解析】【分析】根据题意可得y=kx ,再把x=8时,y=-12代入函数,可求k ,进而可得y 与x 的关系式.【详解】设y=kx ,∵当x=8时,y=-12,∴-12=8k ,解得k=-32, ∴所求函数解析式是y=-32x ; 故答案为:y=-32x . 【点睛】 本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.12.【解析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.14.200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x50=-,解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.15.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.16.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.17.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1 2 52kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式. 18.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.19.(﹣4,3).【解析】试题分析:解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′解析:(﹣4,3).【解析】试题分析:解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为(﹣4,3).考点:坐标与图形变化-旋转20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y1>0,当x<2时,y2>0,∴使y1、y2的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题21.(1)y1=50x﹣50,y2=﹣40x+200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米;(3)①160;②当1≤x≤259时,s=250﹣90x;当259<x≤5时,s=90x﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P表达的意义可求m的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y1=kx+b,∴2005k bk b =+⎧⎨=+⎩解得:5050 kb=⎧⎨=-⎩∴甲的函数表达式为:y1=50x﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:505040200y xy x=-⎧⎨=-+⎩解得:2598009xy⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.22.(1)y=2x-4;(2)-6<y<0.【解析】【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),把x=1,y=-2代入y=k(x-2),得k(1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.23.(1)y=2x-2;(2)b=2或-2.【解析】【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.24.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ ∆是等腰三角形,则PQ=BQ,此时作PE ⊥DC,∵四边形ABCD 为矩形,∴∠C=∠ABC=90°,∴四边形BCEP 为矩形,∴EC=PB=6-t ,EP=BC ,∵PQ=BQ ,∴Rt △EPQ ≌Rt △CBQ (HL ),∴EQ=QC ,即6282t t -=-,解得225t =, ③当P 点在线段BC 上,Q 点在线段CD 上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP ,BPQ ∆不可能是等腰三角形,综上所述,当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【点睛】 本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.25.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC对应的函数表达式为(0)y kx b k=+≠,把(6,0),(0,3)A C代入,得603k bb+=⎧⎨=⎩,解得123kb⎧=-⎪⎨⎪=⎩,∴直线AC对应的函数关系是为132y x=-+,(2)AC垂直平分BB',DB DB='∴,BDB∆'∴是等腰直角三角形,90BDB∠'=∴°过点D作DE x⊥轴于点E,DF y⊥轴于点F.90DFO DFB DEB'︒∴∠=∠=∠=,360EDF DFB DEO EOF︒∠=-∠-∠-∠,90EOF︒∠=,90EDF︒∴∠=,EDF BDB'∴∠=∠,BDF EDB'∴∠=∠,FDB EDB∴∆∆'≌,DF DE∴=,∴设点D坐标为(,)a a,把点(,)D a a代入132y x=-+,得0.53a a=-+2a∴=,∴点D坐标为(2,2),(3)同(2)可得PDF QDE∠=∠又2,90DF DE PDF QDE︒==∠=∠=PDF QDE∴∆∆≌PF QE ∴= ①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为10202-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为11020-秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解. 四、压轴题26.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ; ②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm , ∴t =52, ∴点Q 的运动速度=612552=cm /s ,∴当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,。
江苏省南京市八年级(上)期末数学试卷
江苏省南京市八年级(上)期末数学试卷 一、选择题 1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面 2.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-33.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)4.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的125.若+1x 有意义,则x 的取值范围是( ). A .x >﹣1 B .x ≥0 C .x ≥﹣1D .任意实数 6.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .7.如图,∠AOB=60°,点P 是∠AOB 内的定点且3,若点M 、N 分别是射线OA 、OB上异于点O 的动点,则△PMN 周长的最小值是( )A .36B .33C .6D .38.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 9.下列以a 、b 、c 为边的三角形中,是直角三角形的是( )A .a =4,b =5,c =6B .a =5,b =6,c =8C .a =12,b =13,c =5D .a =1,b =1,c =3 10.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题11.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .12.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.13.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.14.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.15.若x ,y 都是实数,且338y x x =-+-+,则3x y +的立方根是______.16.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.17.点A (2,-3)关于x 轴对称的点的坐标是______.18.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,那么a 1+a 2+a 3+a 4=_____.19.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________20.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________三、解答题21.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.22.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值. 23.一次函数的图象经过点A (2,4)和B (﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)画出该一次函数的图象;(3)判断(﹣5,﹣4)是否在这个函数的图象上?(4)求出该函数图象与坐标轴围成的三角形面积.24.求下列各式中x 的值:(1)4x 2﹣12=0(2)48﹣3(x ﹣2)2=025.(1)计算:0(101)|32|4-+--(2)求x 的值:8(x +1)3=1四、压轴题26.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;(2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).27.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【详解】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故不选A;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故不选D.故选:B.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.A解析:A【解析】当x=1时,分母为零,没有意义,所以是增根.故选A.3.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.4.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 5.C解析:C【解析】【分析】根据二次根式的意义可得出x +1≥0,即可得到结果.【详解】解:由题意得:x +1≥0,解得:x ≥﹣1,故选:C .【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.6.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不合题意;D 、不是轴对称图形,不合题意;故选:B .【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,7.D解析:D【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=32,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.8.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.9.C解析:C【解析】【分析】根据直角三角形的判定,符合a2+b2=c2即可.【详解】解:A、因为42+52=41≠62,所以以a、b、c为边的三角形不是直角三角形;B、因为52+62≠82,所以以a、b、c为边的三角形不是直角三角形;C、因为122+52=132,所以以a、b、c为边的三角形是直角三角形;D、因为12+12≠)2,所以以a、b、c为边的三角形不是直角三角形;故选:C.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题11.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.12.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m,y=n代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m,y=n代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 13.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.14.k <1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k解析:k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k<1,故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.15.3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以解析:3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以x=3,y=8,x+3y=3+3×8=27,∴x+3y 的立方根为3.故答案为:3.【点睛】本题考查二次根式的被开方数是非负数,立方根的定义,根据x 的取值范围求出x 的值是解题的关键.16.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 17.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.18.0【解析】【分析】令求出的值,再令即可求出所求式子的值.【详解】解:令,得:,令,得:,则,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.解析:0【解析】【分析】令0x =求出0a 的值,再令1x =即可求出所求式子的值.解:令0x =,得:01a =,令1x =,得:012341a a a a a ++++=,则12340a a a a +++=,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.20.(3,4)【解析】分析:首先根据点A 和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A 的坐标为(-4,-1),A′的坐标为(-2,2), ∴平移法则为:先向 解析:(3,4)【解析】分析:首先根据点A 和点A ′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B ′的坐标.详解:∵A 的坐标为(-4,-1),A ′的坐标为(-2,2), ∴平移法则为:先向右平移2个单位,再向上平移3个单位, ∴点B ′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.三、解答题21.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上, ∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴AB == (2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大. 22.12m m --;当0m =时,原式12= 【解析】【分析】 根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:3212m m m 223121m m m m 243211m m m 11112m m m m21m m , ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.(1)y =3x ﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4)23. 【解析】(1)利用待定系数法即可求得;(2)利用两点法画出直线即可;(3)把x=﹣5代入解析式,即可判断;(4)求得直线与坐标轴的交点,即可求得.【详解】解:(1)设一次函数的解析式为y=kx+b∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点∴245 k bk b+=⎧⎨-+=-⎩,解得:k3 b2=⎧⎨=-⎩∴一次函数的表达式为y=3x﹣2;(2)描出A、B点,作出一次函数的图象如图:(3)由(1)知,一次函数的表达式为y=3x﹣2将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4∴(﹣5,﹣4)不在这个函数的图象上;(4)由(1)知,一次函数的表达式为y=3x﹣2令x=0,则y=﹣2,令y=0,则3x﹣2=0,∴x=23,∴该函数图象与坐标轴围成的三角形面积为:12×2×23=23.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.24.(1)x32)x=6或x=﹣2【分析】(1)根据平方根,即可解答;(2)根据平方根,即可解答.【详解】(1)4x 2﹣12=0,4x 2=12,x 2=3,x(2)48﹣3(x ﹣2)2=0,3(x ﹣2)2=48,(x ﹣2)2=16,x ﹣2=±4,x =6或x =﹣2.【点睛】此题主要考查利用开平方法求方程的解,熟练掌握,即可解题.25.(1)12)x =﹣12. 【解析】【分析】(1)首先计算0次幂、绝对值、开方,然后从左向右依次计算,求出算式的值是多少即可;(2)根据立方根的含义和求法,求出x 的值是多少即可.【详解】(1) 01)|2|+=1+22=1(2)∵8(x +1)3=1,∴(x +1)3=18, ∴x +1=12, 解得:x =﹣12. 【点睛】本题考查实数的混合运算和开立方的方法解方程,解决此类题目的关键是熟练掌握乘方、二次根式、绝对值等考点的运算.四、压轴题26.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.27.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.29.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒.②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=, ()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB 于F∵ABC ∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年南京市联合体八上期末数学试卷
一、选择题(共6小题;共30分)
1. 的算术平方根是
A. B. C. D.
2. 已知直角三角形的两边长分别为,,则第三边长可以为
A. B. C. D.
3. 如图,若,,则添加一个条件后,不能使的是
A. B. C. D.
4. 用直尺和圆规作一个角等于已知角,如图,要证,需证,依
据是
A. B. C. D.
5. 点,都在直线,则与的大小关系是
A. B. C. D. 不能比较
6. 一次函数的图象必过
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
二、填空题(共10小题;共50分)
7. 的立方根是.
8. 下列五个数,,,,其中无理数是.
9. 等腰三角形的一边长是,另一边长是,则这个等腰三角形的周长是.
10. 已知点在第四象限,到轴的距离为,到轴的距离为,则点的坐标为.
11. 将一次函数的图象沿轴向上平移个单位,所得函数表达式.
12. 如图,在的正方形网格中,.
13. 如图,在中,,的垂直平分线,相交于点,若,则
.
14. 写出同时具备下列两个条件的一次函数表达式.
①函数值随自变量增大而增大;
②图象经过点.
15. 如图,在中,,,,的垂直平分线交的延长线于
点,则的长度为.
16. 如图,在平面直角坐标系中,点,的坐标分别为,,以点为圆心,长为半
径画弧,交轴正半轴于点,则点的坐标为.
三、解答题(共9小题;共117分)
17. (1)求的值:;
(2)计算:.
18. 如图,在中,,,连接并延长交于点.
(1)求证:;
(2)求证:.
19. 操作与探究,已知一次函数.
(1)在直角坐标系中画出一次函数的图象;
(2)在直角坐标系中画出一次函数的图象关于轴对称的函数图象,并写出函数的表达式;
(3)一次函数的图象关于轴对称的函数图象的表达式为(用含,的函数表达式表示).
20. 已知等腰三角形的周长为.
(1)写出腰长关于底边长的函数表达式(为自变量);
(2)写出自变量的取值范围;
(3)在直角坐标系中,画出该函数的图象.
21. 如图,和都是等边三角形,与相交于点.
(1)求证:;
(2)求的度数.
22. 如图,直线:与直线:相交于点.
(1)求的值;
(2)关于,的方程组的解为;
(3)比较与的大小.
23. 如图,一张矩形纸片中,,将矩形纸片沿过点的直线折叠,使点落
到边上的点,折痕交于点.
(1)试用尺规在图中作出点和折痕(不写作法,保留作图痕迹);
(2)若,,求的长.
24. 如图所示,小明家与学校之间有一超市,早上小明由家匀速行驶去学校(不在超市停留),
放学后小明回家的速度比上学的速度每小时少.设早上小明出发小时后,到达离家千米的地方,图中的折线表示与的函数关系.
(1)小明上学的速度为,他在校时间为;
(2)求线段所表示的与之间的函数关系;
(3)如果小明两次经过超市的时间间隔为小时,那么超市离家多远?
(4)在()的条件下,设小明离超市的距离为千米,在图中画出关于的函数图象.(在坐标轴上注明必要的时间与距离)
25. 解决问题时需要思考:是否解决过与其类似的问题.小明从问题解题思路中获得启发从而解
决了问题.
(1)问题:在正方形中,,是,上两点,.
求证:.
小明给出的思路为:延长到,满足,连接.请完善小明的证明过程.
(2)问题:在等腰直角中,,,为中点,,是,边上两点,.猜想点到的距离为.证明你的猜想.
答案
第一部分
1. C
2. D
3. A
4. B
5. A
6. C
第二部分
7.
8. ,
9.
10.
11.
12.
13.
14. (答案不唯一)
15.
16.
第三部分
17. (1)
(2)原式
18. (1)在和中,
已知
已知
公共边
.
(2),
在线段的垂直平分线上,
,
在线段的垂直平分线上,
,,三点共线,
是线段的垂直平分线,
.
19. (1)如图所示,即为所求.
.
(2)如图所示,为所求函数图象.
取上两点,,,,关于轴对称的点为,,设对称图象为代入,,得
所以,关系式为.
(3)
20. (1)由题意得,
.
(2)由题意得:即解得.
(3),
如图所示,即为所求.
21. (1)和是等边三角形,
,,,,
,
即,
在和中,
.
(2)由()得,
,
(对顶角),
在中,,
在中,,
,
.
22. (1)由题意得在上.
,
.
(2)
(3)由图可知,
当时,;
当时,;
当时,.
23. (1)如图所示.
(2)四边形是长方形,
,,
.
在中,,,
.
.
设,
,
在中,,
,
即,
,故长为.
24. (1);
(2)由题知,小明回家时速度为.
因此小明回家需花.
.
设,经过,,
代入得解得
.
(3)设过,
,
,
.
设小明第一次经过超市时间为,则第二次经过超市时间为,则,
,
(即超市离家距离相同),
即,解得.
当时.
即超市离家.
(4)如图所示即为所求.
25. (1)延长到,使,连接.
正方形,
,,
在和中,
,
,,
,
,
,
,
在和中,
,
,
,
.
(2);
证明:在上取一点,使,连接,.
,,为的中点,
,,,在和中,
,
,,
,
,
,
,
在和中,
,
.
过点作于点,于点,
则,
,,
,
,
,
即点到的距离为.
第11页(共11 页)。