数学建模2.4节作业
2.4用尺规作图(教案)
在今天的课堂中,我发现学生们对尺规作图的基本概念和方法掌握得还不错,但在实际操作中,部分学生仍然存在一些问题。首先,有些学生在使用尺子和圆规时,精确度不够高,导致作图结果与预期有较大偏差。这一点让我意识到,在今后的教学中,需要加强学生基本技能的训练,提高他们的作图精确度。
其次,我发现学生们在解决实际问题时,对于尺规作图的应用还不够熟练。他们往往能够理解课堂上的例题,但在遇到新的问题时,却不知道如何运用所学知识。这说明我们在教学中,不仅要注重知识的传授,还要培养学生的迁移能力和解决问题的能力。
-确定作图顺序:在复杂的作图问题中,如何确定正确的作图顺序,以避免无效劳动。
(3)几何知识的灵活运用:学生需要能够将所学的几何知识灵活运用到尺规作图中,难点在于:
-知识迁移:如何将课堂上学到的几何知识应用到具体的作图问题中。
-解决实际问题的能力:如何将现实生活中的问题转化为尺规作图问题,并运用所学的几何知识解决。
2.提高学生的逻辑推理与问题解决能力:在尺规作图过程中,引导学生运用几何知识进行逻辑推理,培养他们分析问题和解决问题的能力。
3.增强学生的数学抽象与数学建模素养:通过将现实问题转化为几何作图问题,让学生体会数学抽象的过程,并学会运用数学知识建立模型,提高数学建模素养。
本节课将围绕这三个核心素养目标,设计教学活动,使学生在掌握尺规作图技能的同时,全面提升数学学科核心素养。
2.4用尺规作图(教案)
一、教学内容
本节课选自教材第2章第4节“用尺规作图”。教学内容主要包括以下三个方面:
1.尺规作图的基本方法:掌握尺规作图的基本步骤,如画线段、画角、复制线段和角等。
2.常见尺规作图问题:学习并掌握以下常见尺规作图问题:(1)两点之间的线段;(2)角的平分线;(3)线段的垂直平分线;(4)圆的切线与割线。
(完整word版)数学建模作业
结果:
Untitled2
j =
80.1000
b =
9.7106
p =
-0.4682
f =
3.1529
极差:
用z表示极差。
编写M文件:Untitled1.m
x1=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91];
x2=[88 86 83 96 81 79 97 78 75 67 69 68 84 83 81];
93
75
83
93
91
85
84
82
77
76
77
95
94
89
91
88
86
83
96
81
79
97
78
75
67
69
68
84
83
81
75
66
85
70
94
84
83
82
80
78
74
73
76
70
86
76
90
89
71
66
86
73
80
94
79
78
77
63
53
55
(1)计算均值,标准差,极差,偏度,峰度,画出直方图;
(2)检验分布的正态性;
检验结果
(1)布尔变量h=0,表示不拒绝零假设,说明提出的假设学生成绩均值80是合理的。
(2)95%的置信区间为[77.6,82.6],它完全包括80,且精度很高。
(3)sig的值为0.9367,远超过0.5,不能拒绝零假设。
数学建模作业及答案
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
数学建模刹车距离所有资料
一:实验内容矩阵的基本操作矩阵的输入、加、减、乘、除、求逆、求特征值、特征向量、对角化、上三角化、Jordan标准型、合同变换等求解线性方程组齐次线性方程组非齐次线性方程组理解左除和右除操作绘制点和函数曲线坐标原点、坐标轴刻度的设定在坐标平面上绘制点在坐标平面上绘制函数曲线表达建模结果(以汽车刹车距离的数学模型为例,教材第 2.4节) 假设已经建立了带有未知参数的数学模型,并有一些实际数据。
根据实际数据估算模型中的参数。
然后将数学模型表达的曲线和实际数据绘制在同一个坐标平面内,并据此对数学模型做出分析。
二:问题分析1 刹车距离与车速有关;2 刹车距离由反应距离和制动距离两部分组成,前者指从司机决定刹车到制动器开始起作用汽车行驶距离,后者指从制动器开始起作用到汽车完全停止行驶距离。
3 反应距离又反应时间和成酥决定,反应时间取决于司机个人状况和制动系统的灵敏性,对于一般规则可使反应时间为常数,且在这段时间内车速尚未改变。
4 制动力在一般规则下又可看作是固定的。
三:模型假设1 刹车距离d等于反应距离d1与制动距离d2之和;2 反应距离d1与车速v成正比,比例系数为反应时间t1;3 刹车时间用最大制动力F,F作的功等于汽车动能的改变,且F与车的质量m成正比。
四:模型建立由假设 2 d1=t1v 由假设3 在F作用行驶距离d2作的功Fd2时车速从v变成0,动能的变化为mv^2/2,如图所示,汽车的刹车距离有反应距离和刹车距离两部分组成,反应距离指的是司机看到需要刹车的情况到汽车制动器开始起作用汽车行使的距离,刹车距离指的是制动器开始起作用到汽车完全停止的距离。
反应距离有反应时间和车速决定,反应时间取决于司机个人状况(灵敏、机警等)和制动系统的灵敏性,由于很难对反应时间进行区别,因此,通常认为反应时间为常数,而且在这段时间内车速不不变。
刹车距离与制动作用力、车重、车速以及路面状况等因素有关系。
有能量守恒制动力所做的功被汽车动能的改变所抵消。
数学建模课后习题作业
选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
数学建模作业完整版
数学建模作业HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学建模》作业学号姓名工作量 100 %专业所属学院指导教师二〇一七年六月数学建模作业第一部分:请在以下两题中任选一题完成(20 分)。
1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于 1972 年 8 月发掘出土,其时测得出土的木炭标本中碳-14 平均原子蜕变数为次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为次/分钟. 又知碳-14 的半衰期为 5730 年,试推断该一号墓入葬的大致年代。
问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由:(1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的;(2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的;(3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。
模型建立设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型⎪⎩⎪⎨⎧=-=,)(,00x t x x dtdx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在死亡时刻t 0时的碳—14含量。
模型求解对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ??由于T t t =-0时,有 0021)()(x T t x t x =+=??代入上式,有 T e T 2ln ,212==-λ????? 所以得 ? T t t e x t x )(2ln 00)(--= ②这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 )()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以T=5730,37.380=x (新木炭标准中碳—14原子蜕变数),X(1972)=(出土的木炭标本中碳—14原子蜕变数) 代入到③式,得 ?209578.2937.38ln 2ln 57300≈=-t t 年 于是得??1232095197220950-=-=-≈t t 年结果表明,马王堆墓入葬年代大约在公元前123年左右的西汉中期,该结论与马王堆出土文物的考证结果相一致。
2016数学建模作业
说明:本电子版题目与教材原题不符者以教材为准,教材上没有的做了会适当加分。
教材上有而本电子版题目没有原题的,请同学们自行录入原题。
所有基本题目解答过程均须不少于姜启源先生《数学模型第三版习题参考解答》之答案长度!第1章 数学模型引论1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)(小型题目模版)解:模型分析(黑体五号字):……宋体五号字 模型假设与符号说明(黑体五号字):……宋体五号字 模型建立:……宋体五号字 模型求解:……宋体五号字 程序源代码(如果需要编程):……宋体五号字 程序运行结果(如果有图形或数据):……宋体五号字 模型讨论:……宋体五号字1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n 名商人带n 名随从过河,船每次能渡k 人过河,试讨论商人们能安全过河时,n 与k 应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?1.4 有3对阿拉伯夫妻过河,船至多载两人,条件是根据阿拉伯法典,任一女子不能在其丈夫不在的情况下与其他的男子在一起。
问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ⨯-=,如果不考虑该市的流动人口的影响以及非正常死亡。
设该市1990年人口总数为8000000人,试求该市在未来的人口总数。
当∞→t 时发生什么情况。
1.7 假设人口增长服从这样规律:时刻t 的人口为)(t x ,最大允许人口为m x ,t 到t t ∆+时间内人口数量与)(t x x m -成正比。
2012年福师大网络教育数学建模作业2
《数学建模》作业2一、根据下表给出的数据资料,确定该国人口增长规律,预测该国2010年的人口数。
(人口数单位:百万)二、问题:四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?一、 模型假设对椅子和地面都要作一些必要的假设:1. 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形.2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面.3. 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地.二、模型建立中心问题是数学语言表示四只脚同时着地的条件、结论.首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置.其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位置说明这个距离是位置变量的函数.由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0.当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题:命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g .三、模型求解将椅子旋转90︒,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g .令()()()θθθf g h -=,则()()02,00<>πh h ,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()000g f θθ⨯=,所以()()000==θθf g .三、问题:建立模型说明同样多的面粉,多包几个饺子能多包馅,还是少包几个饺子能多包馅?解:在饺子皮相对与饺子馅比较薄的情况下,忽略饺子皮厚度对饺子体积的影响。
2.4用因式分解法求解一元二次方程根(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与因式分解法求解一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示因式分解法的基本原理。
-举例:x^2 - 5x + 6 = 0的因式分解过程:x^2 - 5x + 6 = (x - 2)(x - 3)。
-重点二:一元二次方程求解后的验根方法。
-强调验根的重要性,确保解的正确性。
-介绍将解代入原方程检验的步骤和方法。
-举例:将求得的解x1 = 2, x2 = 3代入原方程x^2 - 5x + 6 = 0进行验证。
5.激发学生的自主学习与合作交流能力:鼓励学生在课堂上积极思考、主动探索,与同伴进行交流与合作,共同解决问题,提高自主学习能力。
三、教学难点与重点
1.教学重点
-重点一:因式分解法求解一元二次方程的基本原理和步骤。
-明确因式分解的目的是将一元二次方程转化为两个一次因式的积,从而求解。
-强调在因式分解过程中,正确寻找公因式和恰当的分解方法的重要性。
其次,学生在进行因式分解时,有时会忽略掉一些细节,导致最终解得的结果并不正确。这一点提醒我,在讲解过程中,要特别强调每个步骤的重要性,让学生们明白每一步都不能马虎。同时,我也计划在后续的练习中,加入更多的验算环节,让学生们养成自我检查的好习惯。
此外,我发现学生们在小组讨论中,能够主动提出问题、分享解题思路,这是一个非常好的现象。但也有一些学生在讨论中较为沉默,可能是因为他们对自己的观点不够自信。针对这个问题,我打算在以后的课堂中,多给予鼓励和支持,让每个学生都能勇敢地表达自己的看法。
数学建模经典习题
(5)
其中 A ( H L) / C B( H / L 1), B L / C
2.4:节水洗衣机
分析与求解
第k轮的洗净效果为
I. 最少洗衣轮数
xk 1 Qvk 1 Qvk xk Avk B 0 vk 1 k 0,1, 2,, n 1
uk L vk 为离散的变量! H L
f1 ( x) c1B(t2 ), f 2 ( x) c2 x(t2 t1 ) c3 x
C( x) f1 ( x) f 2 ( x)
目标函数——总费用
模型建立
2
目标函数——总费用
2 2
c1 t1 c1 t1 c2 t1 x C ( x) c3 x 2 2(x ) x
5 6
6 8
8 10
10 14
104
2.4:节水洗衣机
分析与求解
II. 算法
选用一种非线性规划算法,
对 n N0 , N0 1, N0 2,, N 分别求解;
N 0 是满足(6)式或(7)式的最小整数.
选出最好的结果.
凭常识洗衣的 轮数不应太多 比如可取N 10
注意不必使用混合整数非线性规划算法, 那将使问题复杂化。
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
b b t1 , t 2 t1 x
b
假设1)
dB dt
假设2)
t 2 t1
B(t2 )
假设3)4)
t2
x
t1
0
x
t1
t2 t
0
bt2 t12 2t12 B(t )dt 2 2 2(x )
2.4 常微分方程数值解(数学建模)
>>simplify(s) %以最简形式显示s
结果为
s
=(-1/6*cos(3*x)-1/2*cos(x))*sin(x)+
(-1/2*sin(x)+1/6*sin(3*x))*cos(x)+5/3*sin(x)
ans =-2/3*sin(x)*cos(x)+5/3*sin(x)
缺省值:off
疏Jacobi矩阵
Mass
有效值:none、 M、 M(t)、M(t,y) 缺省值:none
M:不随时间变化的常数矩阵 M(t):随时间变化的矩阵 M(t,y):随时间、地点变化的矩阵
MaxStep
有效值:正实数 缺省值:tspans/10
最大积分步长
例2-45 求解描ห้องสมุดไป่ตู้振荡器的经典的Ver der Pol微分
[tout,yout]=ode45(‘yprime’,[t0,tf],y0) 采用变步长四 阶Runge-Kutta法和五阶Runge-Kutta-Felhberg法求数值 解,yprime是用以表示f(t,y)的M文件名,t0表示自变 量的初始值,tf表示自变量的终值,y0表示初始向量 值。输出向量tout表示节点(t0,t1, …,tn)T,输出矩阵yout 表示数值解,每一列对应y的一个分量。若无输出参 数,则自动作出图形。 ode45是最常用的求解微分方程数值解的命令,对于刚性方 程组不宜采用。ode23与ode45类似,只是精度低一些。ode12s 用来求解刚性方程组,是用格式同ode45。可以用help dsolve, help ode45查阅有关这些命令的详细信息. 例1 求下列微分方程的解析解 (1)
使用于精度较低的 情形
数学建模2.4节作业
2.用2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下雇员和雇主之间的协议关系:(1)以雇员一天的工作时间t 和工资w 分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图。
解释曲线为什么是你画的形状。
(2)如果雇主付计时工资,对不同的工资率(单位时间的工资)画出计时工资线族。
根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议。
(3)雇员和雇主已经达成了一个协议(工作时间t 1和工资w 1)。
如果雇主想使雇员的工作时间增加到t 2,他有俩种办法:一是提高计时工资率,在协议线的另一点(t 2,w 2)达成新的协议;二是实行超时工资制,即对工时t 1仍付原计时工资,对工时t 2-t 1付给更高的超时工资。
试用作图方法分析哪种方法对雇主更有利,指出这个结果的条件。
答:(1)因为工作时间越长,则雇员的工资应该越高,故曲线是递增的,而雇员总是希望工资的增长率,故雇员的无差别曲线族f (w,t )=c 是下凸的。
(2)雇主的计时工资族是w=at ,a 表示工资率,这族直线与f (w,t)=c 的切点p 1,p 2....的连线PQ 为雇员与雇主的协议线,通常PQ 是上开的,根据等价交换准则及不同的工作率,可以确定最终协议为p1(p2)点。
(3)设双方在P 1(t 1,w 1)点达成协议,当雇主想使雇员工作时间增至t 2时,用提高计时工资率a 的办法,应在协议线PQ 上找出横坐标为t 0的P 2点,工资额为w 2,用起时工资的办法,应从P 1点作某一条无差别曲线的切线,使切点P 2’ 的横坐标刚好是t 2,若P 2’ 在P 2下方,则工资额w 2’ <w 2 。
即第二方法对雇主有利,得到这个结果的条件是,在雇主没有工作时和已经工作了t 时,其无差别曲线族f (w ,t )=c 无变化。
1.在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量,证明在不允许缺货模型和允许缺货模型中结果都与原来的一样。
2019年春七年级数学下册 第2章 二元一次方程 2.4 第1课时 应用二元一次方程组解决简单的实际问题练习 (新
2.4 二元一次方程组的应用第1课时 应用二元一次方程组解决简单的实际问题知识点 应用二元一次方程组解决实际问题当问题中所求的未知数有两个时,用两个字母来表示未知数往往比较容易列出方程.要注意的是必须寻找两个等量关系,列出两个不同的方程,组成二元一次方程组.[归纳] 应用二元一次方程组解决实际问题的一般步骤: (1)理解问题:审题,搞清已知和未知,分析数量关系. (2)制订计划:考虑如何根据等量关系设元,列出方程组. (3)执行计划:列出方程组并求解,得到答案.(4)回顾:检查和反思解题过程,检验答案的正确性以及是否符合题意. [注意] (1)题目中给出的量的单位不统一时,解题时应将单位统一. (2)解二元一次方程组的过程可以省略.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少.设到井冈山的人数为x ,到瑞金的人数为y ,下面所列的方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =34,x +1=2y B .⎩⎪⎨⎪⎧x +y =34,x =2y +1C .⎩⎪⎨⎪⎧x +y =34,2x =y +1D .⎩⎪⎨⎪⎧x +2y =34,x =2y +1用二元一次方程组解决较简单的实际问题教材补充题甲、乙二人在一环形场地上从点A 同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟后两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.[归纳总结] 对环形跑道中相遇问题的理解是解决本题的关键.在环形跑道中同时、同向而行首次相遇时两者的路程差正好是环形跑道的周长.[反思] 一张方桌由一个桌面和四条桌腿组成,已知1立方米木料可做50个桌面或300条桌腿,现在有5立方米木料,恰好能做几张桌子?解:设在这5立方米木料中,用x 立方米做桌面,用y 立方米做桌腿.根据题意得⎩⎪⎨⎪⎧x +y =5,50x =300y ,解得⎩⎪⎨⎪⎧x =307,y =57.因为307×50≈214,所以能做214张桌子.上述解法是否正确?如果不正确,请改正.一、选择题 1.小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元,每盒笔芯y 元,根据题意,下面所列方程组正确的是( )A .⎩⎪⎨⎪⎧2x +20y =56,2x +3y =28B .⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28C .⎩⎪⎨⎪⎧20x +2y =28,2x +3y =56D .⎩⎪⎨⎪⎧2x +2y =28,20x +3y =562.2015·内江植树节这天有20名同学共种了52棵树,其中男生每人种树3棵,女生每人种树2棵,设男生有x 人,女生有y 人,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =52,3x +2y =20B .⎩⎪⎨⎪⎧x +y =52,2x +3y =20C .⎩⎪⎨⎪⎧x +y =20,2x +3y =52D .⎩⎪⎨⎪⎧x +y =20,3x +2y =52 3.已知长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284米,设长江的长度为x 米,黄河的长度为y 米,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x -y =836,5x -6y =1284 B .⎩⎪⎨⎪⎧x -y =836,6y -5x =1284C .⎩⎪⎨⎪⎧y -x =836,6y -5x =1284D .⎩⎪⎨⎪⎧y -x =836,5x -6y =1284 4.甲、乙两个仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,则有( )A .⎩⎪⎨⎪⎧x +y =450,(1-60%)x -(1-40%)y =30B .⎩⎪⎨⎪⎧x +y =450,60%x -40%y =30 C .⎩⎪⎨⎪⎧x +y =450,(1-40%)y -(1-60%)x =30 D .⎩⎪⎨⎪⎧x +y =450,40%y -60%x =305.某学校举行运动会,七年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:“(1)班与(5)班的得分之比为6∶5.”乙同学说:“(1)班得分比(5)班得分的2倍少40分.”若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .⎩⎪⎨⎪⎧6x =5y ,x =2y -40B .⎩⎪⎨⎪⎧6x =5y ,x =2y +40C .⎩⎪⎨⎪⎧5x =6y ,x =2y +40D .⎩⎪⎨⎪⎧5x =6y ,x =2y -40 6.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =20,76x +76y =170 B .⎩⎪⎨⎪⎧x -y =20,76x +76y =170 C .⎩⎪⎨⎪⎧x +y =20,76x -76y =170 D .⎩⎪⎨⎪⎧76x +76y =170,76x -76y =20二、填空题7.某年级学生共有246人,男生人数比女生人数的2倍少3人,问男、女生各多少人?若设女生人数为x ,男生人数为y ,则可列方程组为______________.8.某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场得0分.某队踢了14场,其中负5场,共得19分,若设胜了x 场,平了y 场,则可列方程组为______________.9.我国古代数学名著《孙子算经》中有这样一题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.小敏将此题改编如下:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有________只,兔有________只.10.如图2-4-1,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是________cm .图2-4-1三、解答题11.2015·福州有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?12.2015·常德某物流公司承接A,B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13000元.该物流公司5月份运输两种货物各多少吨?为鼓励居民节约用电,某省实行阶梯电价收费制,具体执行方案如下:).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?详解详析【预习效果检测】[解析] B 这里有两个等量关系:到井冈山的人数+到瑞金的人数=34,到井冈山的人数=到瑞金的人数×2+1,所以所列方程组为⎩⎪⎨⎪⎧x +y =34,x =2y +1.【重难互动探究】例 [解析] 设乙的速度为x 米/分,则甲的速度为2.5x 米/分,环形场地的周长为y 米,根据题中的数量关系,同时、同地、同向而行首次相遇快者走的路程-慢者走的路程=环形场地的周长,建立方程组求出其解即可.解:设乙的速度为x 米/分,环形场地的周长为y 米,则甲的速度为2.5x 米/分.由题意,得⎩⎪⎨⎪⎧2.5x×4-4x =y ,4x +300=y ,即⎩⎪⎨⎪⎧6x -y =0,4x -y =-300, 解得⎩⎪⎨⎪⎧x =150,y =900.∴甲的速度为2.5×150=375(米/分).答:甲的速度为375米/分,乙的速度为150米/分,环形场地的周长为900米.【课堂总结反思】[反思] 上述解法不正确.改正如下:设在这5立方米木料中,用x 立方米做桌面,用y 立方米做桌腿.根据题意,得⎩⎪⎨⎪⎧x +y =5,4×50x =300y ,解得⎩⎪⎨⎪⎧x =3,y =2. 因为3×50=150,所以恰好能做150张桌子.【作业高效训练】 [课堂达标]1.[解析] B 这里有两个等量关系:20支中性笔的价格+2盒笔芯的价格=56元;2支中性笔的价格+3盒笔芯的价格=28元,所以所列方程组为⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28.2.D 3.B4.[解析] C 要求甲、乙仓库原来分别存粮多少,就要先设出未知数,找出题中的等量关系列方程组求解.题中的等量关系:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨;甲、乙仓库共存粮450吨.设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨.根据题意,得⎩⎪⎨⎪⎧x +y =450,(1-40%)y -(1-60%)x =30.故选C .5.[解析] D 根据(1)班与(5)班的得分之比为6∶5,有x∶y=6∶5,得5x =6y ;根据(1)班得分比(5)班得分的2倍少40分,得x =2y -40.可列方程组为⎩⎪⎨⎪⎧5x =6y ,x =2y -40.故选D .6.D7.[答案] ⎩⎪⎨⎪⎧x +y =246,y =2x -38.[答案] ⎩⎪⎨⎪⎧x +y =14-5,3x +y =19[解析] 本题的等量关系:①共踢了14场;②共得19分.9.[答案] 22 11[解析] 设鸡有x 只,兔有y 只,由题意,得⎩⎪⎨⎪⎧x +y =33,2x +4y =88, 解得⎩⎪⎨⎪⎧x =22,y =11.∴鸡有22只,兔有11只. 10.[答案] 20[解析] 解法一:设一根铁棒长为x cm ,另一根长为y cm .根据题意,得⎩⎪⎨⎪⎧x +y =55,23x =45y ,解得⎩⎪⎨⎪⎧x =30,y =25,30×23=20(cm ).解法二:设一根铁棒长为x cm ,另一根长为(55-x)cm . 根据题意,得23x =45(55-x),解得x =30,30×23=20(cm ).11.解:设有x 支篮球队和y 支排球队参赛. 由题意得⎩⎪⎨⎪⎧x +y =48,10x +12y =520, 解得⎩⎪⎨⎪⎧x =28,y =20.答:篮球、排球队各有28支与20支参赛.12.解:设该物流公司5月份运输A ,B 两种货物各x 吨,y 吨.依题意得⎩⎪⎨⎪⎧50x +30y =9500,70x +40y =13000, 解得⎩⎪⎨⎪⎧x =100,y =150.答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨. [数学活动]解:因为两个月的用电量为500度,所以每个月用电量不可能都在第一档,假设该用户五、六月份每月用电量均超过200度,此时的电费共计:500×0.6=300(元),而300>290.5,不符合题意.又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.设五月份用电x 度,六月份用电y 度.根据题意,得⎩⎪⎨⎪⎧0.55x +0.6y =290.5,x +y =500, 解得⎩⎪⎨⎪⎧x =190,y =310.答:该户居民五、六月份各用电190度、310度.。
数学建模课后作业
数学建模实验P.172 实验二最短电缆长度问题设有九个节点,它们的坐标分别为a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0), i(10,3)任意两个节点之间的距离为:问:怎样连接电缆,使每个节点都连通,且所用的总电缆的长度为最短.问题分析:本题研究的是一个最优化问题。
问题中给出了9个节点坐标,需要从复杂的连接方案中选出最短的电缆连接路线。
要设计方案求最短电缆长度,可先求出任意两点间的距离,然后在构造边权矩阵,用prim算法求电缆线的最优连通方案。
符号说明:W:任意两点之间的距离矩阵X:节点的横坐标Y:节点的纵坐标解:先计算出任意两点间的距离;W=[];X = [0 5 16 20 33 23 35 25 10]; Y = [15 20 24 20 25 11 7 0 3]; N=length(X);for i=1:Nfor j=1:N W=[W;(abs(X(i)-X(j))+abs(Y(i)-Y( j)))]endendW'输出结果截图为:将结果整理列表如下:用prim算法求电缆线的最优连通方案;运行结果截图为:分析结果可知:最小生成树的边集合为{(1,2),(2,3),(3,4),(4,6),(6,8),(6,7),(3,5),(8,9)}即用prime算法求出的最优电缆连接方案为:{(a,b),(b,c),(c,d),(d,f),(f,h),(f,g),(c,e),(h,i)}。
P186实验一求最短路问题求图14.9所示有向网络中自点1到点6的最短有向路问题分析:用floyde 算法算出任意两点之间的最短的距离。
符号说明:D:任意两个点之间的最短距离n:迭代次数解:function [D,path]=floyd(a)n=size(a,1);%设置D和Path的初值D=a;path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j; %j是i的后继点endendend%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendend在MATLAB命令窗口键入:a=[0 5 inf 3 inf inf;inf 0 4 2 inf inf;inf inf 0 2 4 3;inf inf inf 0 5 inf;inf inf inf inf 0 2;inf inf inf inf inf 0];[D,path]=floyd(a)运行结果截图为:D =0 5 9 3 8 10 Inf 0 4 2 7 7 Inf Inf 0 2 4 3 Inf Inf Inf 0 5 7 Inf Inf Inf Inf 0 2 Inf Inf Inf Inf Inf 0 path =1 2 2 4 4 4 0 2 3 4 4 3 0 0 3 4 5 6 0 0 0 4 5 5 0 0 0 0 5 6 0 0 0 0 0 6由运行结果得:因为path(1,6)=4,意味着顶点1的后继点为4, path(4,6)=5,从而顶点4的后继点为5,同理,因path(5,6)=6,从而顶点5的后继点为6,故1→4→5→6便是顶点1到顶点6的最短路径。
北京工业大学数学建模作业汇总
第一次作业数学建模入门1.冷却定律与破案按照Newton冷却定律,温度为T的物体在温度为To (To<T)的环境中冷却的速度与温差T-To成正比。
你能用该定律确定张某是否是下面案件中的犯罪嫌疑人。
某公安局于晚上7时30分发现一具女尸,当晚8时20分法医测得尸体温度为32.6℃,一小时后,尸体被抬走时又测得尸体温度为31.4℃,,已知室温在几个小时内均为21.1℃,由案情分析得知张某是此案的主要犯罪嫌疑人,但张某矢口否认,并有证人说:“下午张某一直在办公室,下午5时打一个电话后才离开办公室”。
从办公室到案发现场步行需要5分钟,问张某是否能被排除在犯罪嫌疑人之外?解答:首先,牛顿冷却定律为温度为T(t)的物体在温度的环境中冷却的速度与温度差成正比。
所以,得出微分方程 ( ,K为比例常数。
任意时刻t,物体的温度为 ,C为常数根据已知条件,记晚上8时20分为t=0时刻,T(0)=32.6℃,T(1)=31.4℃,=21.1℃:求解函数得,k=-0.11,C=11.5,即假定人的正常体温为37℃,代入公式得t-2.95小时, 即遇害时间为8.33-2.95=5.38≈5时23分。
张某在5时离开办公室,步行需要5分钟到达案发地点,所以张某不能排除作案嫌疑。
2.锻炼想象力、洞察力和判断力的问题(1)某人早8时从山下旅店出发沿一条山路上山,下午5时到达山顶并留宿,次日8时沿同一条路径下山,下午5时回到旅店。
该人必在两天中的同一是可经过路径中的同一地点,为什么?解答:令:A(t)表示此人第一天上山时t时刻离山脚的路程;B(t)表示此人第二天下山时t时刻离山脚的路程。
假设山顶到山下的总路程为S,由已知条件可知:A(8)=0,A(17)= SB(8)= S,B(17)=0令:C(t)= A(t)- B(t);则C(8)=-S,C(17)= S;由于C(t)为连续函数,由零点定理推出结论:在t=[8,17]中间,至少存在一点 t 使C(t)= A(t)- B(t)=0;即A(t)= B(t),可证明这人必在两天中的同一时刻经过路径中的同一地点。
数学建模课作业范例
数学建模课作业范例范例题目:一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。
若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。
公司每月最多能生产200把椅子。
求完成以上合同的最佳生产安排。
家具公司最佳生产安排问题一问题的提出一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。
若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。
公司每月最多能生产200把椅子求成以上合同的最佳生产安排。
二假设与变量说明1.)模型假设1.椅子的成本和库存费没有变化2.该公司签定的合同并未发生变化3.该公司生产的椅子质量合格4.除了成本费和库存费并未产生其他额外的费用2)变量说明x1: 公司第一个月生产的椅子数x2: 公司第二个月生产的椅子数y1: 公司第一个月的成本费y2: 公司第二个月的成本费z: 库存费Y: 总的费用三模型分析和建立1. 模型分析:该家具公司需要每月制定一个最佳的椅子生产数(x1、x2),使该公司完成合同所需成本最小,而获得最大利润。
本模型的问题焦点就是确定最小成本,即使Y=y1+y2+z最小的数学问题。
2. 模型建立第一个月的生产成本:y1=50x1+0.2x12第二个月的生产成本:y2=50x2+0.2x22所需库存费: z=(x1-80)*8总成本: Y=y1+y2+z=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8其中:x1 +x2=200 80≤x1≤200综上所述,可建立如下数学模型:Min Y=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8 s.t 80≤x1≤200x 1 + x2=200四.求解用LINGO对模型直接求解,输入格式为:model:min=(50*x1+0.2*x1^2)+( 50*x2+0.2*x2^2)+8*(x1-80);x1>=80;x1<=200;x1+x2=200;end运行后结果为:Optimal solution found at step: 4Objective value: 14120.00Variable Value Reduced CostX1 90.00000 0.0000000X2 110.0000 0.0000000Row Slack or Surplus Dual Price1 14120.00 1.0000002 9.999998 0.2158310E-053 110.0000 0.00000004 0.0000000 -94.00000五.结果与分析由计算可知,当x1=90,x2=110时成本费最底,所以生产的最佳安排是第一月生产90把椅子,第二月生产110把椅子.。
课时作业10:2.4 正态分布
§2.4 正态分布1.某市教学质量检测,甲、乙、丙三科考试成绩的正态曲线如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则下列说法中正确的是( )A .甲科总体的标准差最小B .丙科总体的平均数最小C .乙科总体的标准差及平均数都居中D .甲、乙、丙总体的平均数不相同 考点 正态分布密度函数的概念 题点 正态曲线 答案 A解析 由正态曲线的性质知,曲线的形状由参数σ确定,σ越大,曲线越矮胖;σ越小,曲线越瘦高,且σ是标准差,故选A.2.设随机变量ξ服从正态分布N (μ,σ2),且二次方程x 2+4x +ξ=0无实数根的概率为12,则μ等于( ) A .1 B .2 C .4D .不能确定考点 正态分布的概念及性质 题点 求正态分布的数学期望或方差 答案 C解析 因为方程x 2+4x +ξ=0无实数根的概率为12,由Δ=16-4ξ<0,得ξ>4,即P (ξ>4)=12=1-P (ξ<4),故P (ξ<4)=12,所以μ=4.3.已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.若某校高一年级1 000名学生的某次考试成绩X 服从正态分布N (90,152),则此次考试成绩在区间(60,120)内的学生大约有( ) A .997人 B .972人 C .954人D .683人考点 正态分布的应用 题点 正态分布的实际应用 答案 C解析 依题意可知μ=90,σ=15,故P (60<X <120)=P (90-2×15<X <90+2×15)=0.954,1 000×0.954=954,故大约有学生954人.4.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1)内取值的概率为0.4,则X 在(0,2)内取值的概率为________. 考点 正态分布的概念及性质 题点 正态分布下的概率计算 答案 0.8解析 如图,易得P (0<X <1)=P (1<X <2),故P (0<X <2)=2P (0<X <1)=2×0.4=0.8.5.设随机变量X ~N (0,1),求P (X <0),P (-2<X <2). 考点 正态分布的概念及性质 题点 正态分布下的概率计算 解 对称轴为X =0,故P (X <0)=0.5, P (-2<X <2)=P (0-2×1<X <0+2×1)=0.954.1.理解正态分布的概念和正态曲线的性质. 2.正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X <μ+σ),P (μ-2σ<X <μ+2σ),P (μ-3σ<X <μ+3σ)的值. (2)充分利用正态曲线的对称性和曲线与x 轴之间的面积为1这两个特点. ①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等; ②P (X <a )=1-P (X >a ),P (X <μ-a )=P (X >μ+a ), 若b <μ,则P (X <μ-b )=1-P (μ-b <X <μ+b )2.一、选择题1.若随机变量X的概率密度函数是f(x)=2(1)81e2x--⋅2π,x∈(-∞,+∞),则E(2X+1)的值是()A.5 B.9 C.3 D.2考点正态分布密度函数的概念题点正态曲线性质的应用答案 C解析由f(x)=2(1)81e2x--⋅2π知,μ=1,∴E(X)=1,∴E(2X+1)=2E(X)+1=3.2.若随机变量ξ~N(μ,σ2),且P(ξ<c)=P(ξ>c),则c的值为()A.0 B.μC.-μD.σ考点正态分布密度函数的概念题点正态曲线性质的应用答案 B解析由正态分布密度曲线的性质知,曲线是单峰的,它关于直线x=μ对称,且曲线与横轴之间的面积为1,则有c=μ.3.如图所示是当σ取三个不同值σ1,σ2,σ3的三种正态曲线N(0,σ2)的图象,那么σ1,σ2,σ3的大小关系是()A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3答案 D解析当μ=0,σ=1时,正态曲线f(x)22x-2π在x=0处取最大值12π,故σ2=1.由正态曲线的性质,当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,反之越“矮胖”.故选D.4.已知X~N(0,σ2),且P(-2<X<0)=0.4,则P(X>2)等于()A.0.1 B.0.2 C.0.3 D.0.4考点正态分布的概念及性质题点正态分布下的概率计算答案 A解析 ∵X ~N (0,σ2),∴μ=0.又∵P (-2<X <0)=0.4,∴P (X >2)=12(1-0.4×2)=0.1.5.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态曲线如图所示.则下列结论中正确的是( )A .P (Y >μ2)≥P (Y >μ1)B .P (X <σ2)≤P (X <σ1)C .对任意正数t ,P (X <t )>P (Y <t )D .对任意正数t ,P (X >t )>P (Y >t ) 考点 正态分布密度函数的概念 题点 正态曲线 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2, ∴P (Y >μ2)<P (Y >μ1),故A 错; P (X <σ2)>P (X <σ1),故B 错;当t 为任意正数时,由题图可知P (X <t )>P (Y <t ), 而P (X <t )=1-P (X >t ),P (Y <t )=1-P (Y >t ), ∴P (X >t )<P (Y >t ),故C 正确,D 错.6.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的正态曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.683, P (μ-2σ<X <μ+2σ)=0.954.A .2 386B .2 718C .3 415D .4 772 考点 正态分布的应用 题点 正态分布的综合应用 答案 C解析 由X ~N (0,1)知,P (-1<X <1)=0.683, ∴P (0<X <1)=12×0.683=0.341 5,故S ≈0.341 5.∴落在阴影部分中点的个数x 的估计值为x 10 000=S1,∴x =10 000×0.341 5=3 415,故选C.7.在某市2018年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约有9 450人,如果某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第( ) A .1 498名 B .1 700名 C .4 500名 D .8 000名考点 正态分布的应用 题点 正态分布的实际应用 答案 A解析 因为理科生的数学成绩X 服从正态分布N (98,100),所以P (X >108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12×(1-0.683)=0.158 5,所以0.158 5×9 450≈1 498,故该学生的数学成绩大约排在全市第1 498名.8.若随机变量X 的密度为f (x )22x -,X 在区间(-2,-1)和(1,2)内取值的概率分别为p 1,p 2,则p 1,p 2的关系为( ) A .p 1>p 2 B .p 1<p 2 C .p 1=p 2 D .不确定答案 C解析 由正态曲线的对称性及题意知:μ=0,σ=1,所以曲线关于直线x =0对称,所以p 1=p 2. 二、填空题9.设随机变量ξ服从正态分布N (μ,σ2),若P (ξ>3)=P (ξ<-1),则E (ξ)=________. 考点 正态分布的概念及性质 题点 求正态分布的数学期望或方差 答案 1解析 根据题意ξ~N (μ,σ2),∴μ=3+(-1)2=1,∴E (ξ)=μ=1.10.已知某正态分布的概率密度函数为f (x )2(1)2x --,x ∈(-∞,+∞),则函数f (x )的极值点为________,X 落在区间(2,3)内的概率为________. 考点 正态分布密度函数的概念 题点 正态曲线性质的应用 答案 x =1 0.136解析 由正态分布的概率密度函数,知μ=1,σ=1, 所以正态曲线关于直线x =1对称, 且在x =1处取得最大值.根据正态曲线的特点可知x =1为f (x )的极大值点. 由X ~N (1,1)知,P (2<X <3) =12[P (-1<X <3)-P (0<X <2)] =12[P (1-2×1<X <1+2×1)-P (1-1<X <1+1)]=12×(0.954-0.683)≈0.136. 11.据抽样统计显示,在某市的公务员考试中,考生的综合评分X 服从正态分布N (60,102),考生共10 000人,若一考生的综合评分为80分,则该考生的综合成绩在所有考生中的名次是第________名. 考点 正态分布的应用 题点 正态分布的实际应用 答案 231解析 依题意,得P (60-20<x <60+20)=0.954, P (X >80)=12(1-0.954)=0.023,故成绩高于80分的考生人数为10 000×0.023=230. 所以该考生的综合成绩在所有考生中的名次是第231名. 三、解答题12.已知随机变量X ~N (μ,σ2),且其正态曲线在(-∞,80)上为增函数,在(80,+∞)上为减函数,且P (72<X <88)=0.683. (1)求参数μ,σ的值; (2)求P (64<X <72).考点 正态分布的概念及性质 题点 求正态分布的数学期望或方差解 (1)由于正态曲线在(-∞,80)上是增函数, 在(80,+∞)上是减函数,所以正态曲线关于直线x =80对称,即参数μ=80. 又P (72<X <88)=0.683.结合P (μ-σ<X <μ+σ)=0.683,可知σ=8. (2)因为P (μ-2σ<X <μ+2σ)=P (64<X <96)=0.954. 又因为P (X <64)=P (X >96), 所以P (X <64)=12(1-0.954)=0.023,所以P (X >64)=0.977.又P (X <72)=12[1-P (72<X <88)]=12×(1-0.683)≈0.159, 所以P (X >72)=0.841,P (64<X <72)=P (X >64)-P (X >72)≈0.136.13.在一次全国高中五省大联考中,有90万名学生参加考试,考后对所有学生的成绩统计发现,英语成绩服从正态分布N (μ,σ2).用如下茎叶图列举了20名学生的英语成绩,巧合的是这20个数据的平均数和方差恰好比所有90万个数据的平均数和方差都多0.9,且这20个数据的方差为49.9.(1)求μ,σ;(2)给出正态分布的数据:P (μ-σ<X <μ+σ)=0.683,P (μ-2σ<X <μ+2σ)=0.954.①若从这90万名学生成绩中随机抽取1名学生的成绩,求该学生英语成绩在(82.1,103.1)内的概率;②若从这90万名学生成绩中随机抽取1万名学生的成绩,记X 为这1万名学生中英语成绩在(82.1,103.1)的人数,求X 的数学期望. 解 (1)由茎叶图得这20个数据的平均数: x =120×(79+80+81+82+87+87+88+88+89+90×4+91+92+93+93+100+101+109)=90,∵这20个数据的平均数和方差恰比所有90万个数据的平均数和方差都多0.9,且这20个数据的方差为49.9,英语成绩服从正态分布N (μ,σ2), ∴μ=90-0.9=89.1,σ=49.9-0.9=7. (2)①∵英语成绩服从正态分布N (89.1,49),P (μ-σ<X <μ+σ)=0.683,P (μ-2σ<X <μ+2σ)=0.954,∴P (82.1<X <96.1)=0.683,P (75.1<X <103.1)=0.954,由题意知x 服从正态分布N (89.1,49),作出相应的正态曲线,如图,依题意P (82.1<X <96.1)=0.683,P (75.1<X <103.1)=0.954,即曲边梯形ABCD 的面积为0.954,曲边梯形EFGH 的面积为0.683,其中A ,E ,F ,B 的横坐标分别是75.1,82.1,96.1,103.1,由曲线关于直线x =89.1对称,可知曲边梯形EBCH 的面积为0.954-0.954-0.6832≈0.819,即该生英语成绩在(82.1,103.1)的概率约为0.819.②∵从这90万名学生中随机抽取1名,该生英语成绩在(82.1,103.1)的概率为0.819, 且从这90万名学生中随机抽取1万名,记X 为这1万名学生中英语成绩在(82.1,103.1)的人数,∵X ~B (10 000,0.819),∴X 的数学期望E (X )=0.819×10 000=8 190. 四、探究与拓展14.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (kg)服从正态分布N (μ,22),且正态分布密度曲线如图所示,若体重大于58.5 kg 小于62.5 kg 属于正常情况,则这1 000名男生中属于正常情况的人数约为________.考点 正态分布的应用 题点 正态分布的实际应用 答案 683解析 依题意可知,μ=60.5,σ=2,故P (58.5<X <62.5)=P (μ-σ<X <μ+σ)=0.683,从而属于正常情况的人数为1 000×0.683≈683.15.某市教育局为了了解高三学生的体育达标情况,对全市高三学生进行了体能测试(满分为100分),经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2),已知P (X <75)=0.3,P(X>95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间(80,85),(85,95),(95,100)内各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间(75,85)内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解(1)P(80<X<85)=0.5-P(X<75)=0.2,P(85<X<95)=0.5-0.2-0.1=0.2,故所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75<X<85)=1-2P(X<75)=0.4,故ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=C33×0.43=0.064.所以随机变量ξ的分布列为E(ξ)=3×0.4=1.2.。
语文版(2021)中职数学拓展模块二《等比数列模型》课件
典型例题
例1 请用所学的数学知识计算棋盘里一共有多少粒麦子.
典型例题
(2)分析数据:第1个小格内给1粒麦子,第2个小格给2粒,第3格给4 粒依此类推,每一小格的麦子都比前一小格增加一倍, 直到64格 。为寻找棋盘格数与麦粒之间的规律,把数据填写在表中.
显然,从表中看出,把格数当成项数,则对应的麦粒数是首项a1=1, 公比q=2的等比数列.
归纳小结
1.本节课你学习了哪些内容? 2.本节课学习的用途?
布置作业
阅读 教材章节2.5
作
业
书写 教材P32思考与练习
思考 其他等比数列案例
Thanks
爱因斯坦曾说过:“宇宙间最大的能量是复利,世界的第 八大奇迹还是复利.”
巩固练习
国王粮仓里没有那么多麦粒,但是他又不想成为说话不算数的 小人,就让管粮食的大臣想办法. 管粮食的大臣想到了一个法:打 开粮仓让宰相自己一粒一粒地数获奖励的麦粒.
问题:假设每秒钟能数2粒麦子,一小时能数多少粒小麦?一 年能数多少粒小麦?需要多长时间可以数完获得奖励的麦粒?
典型例题
(3)建立模型:计算总的麦粒数.
总麦粒数的计算公式如下:
20+21+22+23+...+263. 由于分别计算64格棋盘里麦粒数的工作量庞大,因此我们利 用等比数列前n项和公式建立总的麦粒数模型. 等比数列的前n项和公式如下:
典型例题
将首项a=1,公比q=2代入前n项和公式.此时,前n个棋盘 麦粒总数的模型为
第 二 讲 数学建模
2.4 等比数列模型
等比数列模型
1 情景引入
2 典型例题
等比数列 模型
3 巩固练习 4 归纳小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.用2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下雇员和雇主之间的协议关系:
(1)以雇员一天的工作时间t 和工资w 分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图。
解释曲线为什么是你画的形状。
(2)如果雇主付计时工资,对不同的工资率(单位时间的工资)画出计时工资线族。
根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议。
(3)雇员和雇主已经达成了一个协议(工作时间t 1和工资w 1)。
如果雇主想使雇员的工作时间增加到t 2,他有俩种办法:一是提高计时工资率,在协议线的另一点(t 2,w 2)达成新的协议;二是实行超时工资制,即对工时t 1仍付原计时工资,对工时t 2-t 1付给更高的超时工资。
试用作图方法分析哪种方法对雇主更有利,指出这个结果的条件。
答:(1)因为工作时间越长,则雇员的工资应该越高,故曲线是递增的,而雇员总是希望工资的增长率,故雇员的无差别曲线族f (w,t )=c 是下凸的。
(2)雇主的计时工资族是w=at ,a 表示工资率,这族直线与f (w,t)=c 的切点p 1,p 2....的连线PQ 为雇员与雇主的协议线,通常PQ 是上开的,根据等价交换准则及不同的工作率,可以确定最终协议为p1(p2)点。
(3)设双方在P 1(t 1,w 1)点达成协议,当雇主想使雇员工作时间增至t 2时,用提高计时工资率a 的办法,应在协议线PQ 上找出横坐标为t 0的P 2点,工资额为w 2,用起时工资的办法,应从P 1点作某一条无差别曲线的切线,使切点P 2’ 的横坐标刚好是t 2,若P 2’ 在P 2下方,则工资额w 2’ <w 2 。
即第二方法对雇主有利,得到这个结果的条件是,在雇主没有工作时和已经工作了t 时,其无差别曲线族f (w ,t )=c 无变化。
1.在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量,证明在不允许缺货模型和允许缺货模型中结果都与原来的一样。
答:设购买单位重量货物的费用为K ,对于不允许缺货模型,每天平均费用
T,Q 的最优结果不变,对于允许缺货模型,每天平
均费用为R=rT,可知T 、Q 最优结果也不变。
2.建立不允许缺货的生产销售存贮模型,设生产速率为常数k ,销售速率为常数r ,k >
r 。
在每个生产周期T 内,开始的一段时间(0<t<T 0)一边生产一边销售,
后来的一段时间(T 0<t<T )只销售不生产,画出贮存量q (t )的图形,设每次生产准备费为c 1,单位时间每件产品贮存费为c 2,以总费用最小为目标确定最优生产周期,讨论k>>r 和k ≈r 的情况。
答:储存量q(t)的图形,单位时间总费用,
,使C (T )
达到最小值的最优周期
】
【)(kR rTQ r
c r
Q
c c T Q T C ++
+
=2
3
2
21)
(221,zk
T r k r
c T
T C )(c 21-+=
)()
(k 221*
r k r c c T
-=
当k>>r 时,,相当于不考虑生产的情况,当k ≈r 时,*T →∞,因为产量被销量抵消,无法形成储存量。
r
c T
2
1*
c 2
=。