数学建模期末大作业

合集下载

数学建模期末考查作业

数学建模期末考查作业

数学建模期末考查作业一、某化工厂生产A,B,C,D 四种化工产品,每种产品生产1吨消耗的工时,能该厂明年的总利润最高的数学模型,并利用MATLAB 写出简单的求解程序。

解:设该厂明年生产1A ,2A ,3A ,四种产品的数量分别为1x ,2x ,3x ,4x (单位:t ),总利润为z 。

约束条件 :工时限额:18480753802501004321≤+++x x x x能耗限额:1001.05.03.02.04321≤+++x x x x确定目标函数:4321852x x x x Z +++=4321852m ax x x x x Z +++=()⎪⎩⎪⎨⎧=∈≥≤+++≤+++4,3,2,1,01001.05.03.02.01848075380250100..43214321i N x x x x x x x x x x t s i i 且 求解:model:max=2*x1+5*x2+8*x3+x4;100*x1+250*x2+380*x3+75*x4<=18480; 0.2*x1+0.3*x2+0.5*x3+0.1*x4<=100; @gin(x1); @gin(x2); @gin(x3); @gin(x4); endGlobal optimal solution found.Objective value: 388.0000 Objective bound: 388.0000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0Variable Value Reduced Cost X1 2.000000 -2.000000 X2 0.000000 -5.000000 X3 48.00000 -8.000000 X4 0.000000 -1.000000Row Slack or Surplus Dual Price 1 388.0000 1.000000 2 40.00000 0.000000 3 75.60000 0.000000分析:由程序及结果可知,当四种化工产品生产数量分别为1x =2,2x =0,3x =48,4x =0时,该厂利润取最大值,最大值为388万元。

数学建模期末作业(嘉兴)

数学建模期末作业(嘉兴)

数学建模期末作业题一 河水污染问题如图是一个容量为32000m 的小湖,小河A 以310.1/m s -的速率向小湖注入河水,而小湖又以同样的速率通过小河B 流出,在上午9:20, 该地区发生交通事故,一个装有有毒化学物质的容器倾翻,在图中点X 处注入湖中,采取紧急措施后,于9:50分得到控制。

但数量不祥的有毒化学物质Z 流入湖中。

据估计Z 的量在35m 与320m 之间。

建立相应的模型来估计湖水受污染的程度随时间的变化函数关系并估计⑴湖水何时达到污染高峰;⑵何时污染可降至安全水平?(≤题二 选址问题考虑A,B,C 三地,每地都生产一定数量的原料,也消耗一定数量的产品(见下表),已知制成每吨产品需3吨原料,各地之间的距离为A —B :150,km B —C :200,km A —B :100.km 又每万吨原料运输1km 的运价是5000元,每万吨产品运输1km 的运价是6000元,由于地区条件的差异,在不同地点设厂的生产费用也不同,问怎样在何处设厂,规模多大,才能使总费用最小,由于其它条件限制,在B 处建厂的规模不能超过5万吨。

题三 雇员的聘用问题某服务部门一周中每天需要不同数目的雇员:周一到周四每天至少50人,周五和周日每天至少需要80人,周六至少需要90人,现规定应聘者每周需连续工作5天,试确定聘用方案,即周一到周日每天需要聘用多少人,使在满足需要的条件下,所聘用的总人数最少。

如果周日的需要量由80增至90人,方案应该怎样改变?若全时雇员(一天工作8小时)可以通过临时聘用的半时雇员(一天工作4小时,且无需连续工作)来代替,但规定半时雇员的工作量不得超过工作总量的四分之一,又设全时雇员和半时雇员每小时的酬金分别为5元和3元,试确定聘用方案,使在满足需要的前提下,所付的酬金为最小。

题四 肿瘤问题肿瘤大小V 生长的速率与V 的a 次方成正比,其中a 为形状参数,01;a ≤≤而其比例系数K 随时间减小,减小速率又与当时的K 值成正比,比例系数为环境系数.b 设某肿瘤参数1,0.1,a b ==K 的初始值为2,V 的初始值为1,问⑴此肿瘤生长不会超过多大?⑵过多长时间肿瘤大小翻一倍?⑶何时肿瘤生长速率由递增转为递减?⑷若参数2/3a =呢?题五 油气田的开发问题油气田开发试验表明:准确预测油气产量和可开采储量,对石油工作者来说,始终是一项既重要又困难的工作. 1995年,有人通过对国内外一些油气田的开发资料,得出结论:油气田的产量与累积产量之比()r t 与其开发时间存在着半指数关系:()lg .r t A Bt =-根据某气田1957~1976年总共20个年度的产气量数据(如下表),建立该气田的产量预测模型,并将预测与实际值进行比较.10m.注:产量单位83要求:每位学生在上面五题中可以任选一题,最迟于17周的周二前上交作业.。

《数学建模》期末试卷A

《数学建模》期末试卷A

《数学建模》期末试卷A一、填空题(每题2分,共20分)1、在数学建模中,我们将所要研究的问题________化。

2、在解决实际问题时,我们常常需要收集大量的数据,这些数据通常是不________的。

3、在建立数学模型时,我们通常需要对变量进行假设,这些假设通常是对________的描述。

4、在解决实际问题时,我们通常需要对多个因素进行________,以确定哪些因素对所要研究的问题有显著影响。

5、在建立数学模型时,我们通常需要对数据进行________,以发现数据之间的规律和关系。

6、在解决实际问题时,我们通常需要将复杂的问题________化,以方便我们更好地理解和解决它们。

7、在建立数学模型时,我们通常需要将实际问题________化,以将其转化为数学问题。

8、在解决实际问题时,我们通常需要考虑实际情况的________性,以避免我们的解决方案过于理想化。

9、在建立数学模型时,我们通常需要使用数学语言来________模型,以方便我们更好地描述和解决它。

10、在解决实际问题时,我们通常需要使用计算机来帮助我们进行________和计算。

二、选择题(每题3分,共30分)11、在下列选项中,不属于数学建模步骤的是()。

A.确定变量和参数B.建立模型C.进行实验D.验证模型12、在下列选项中,不属于数学建模方法的是()。

A.归纳法B.演绎法C.类比法D.反证法13、在下列选项中,不属于数学建模应用领域的是()。

A.物理学B.工程学C.经济学D.政治学14、在下列选项中,不属于数学建模语言的是()。

A.文字语言B.符号语言C.图形语言D.自然语言15、在下列选项中,不属于数学建模原则的是()。

A.简洁性原则B.一致性原则C.可行性原则D.可重复性原则16、在下列选项中,不属于数学建模步骤的是()。

A.对数据进行分析和处理B.对模型进行假设和定义C.对模型进行检验和修正D.对结果进行解释和应用17、在下列选项中,不属于数学建模应用领域的是()。

数学建模期末大作业

数学建模期末大作业

数学建模承诺书
我们仔细阅读了数学建模作业的对应规则。

我们完全明白,在开始做题后不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反规则的。

如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守规则,以保证公正、公平性。

如有违反规则的行为,我们将受到严肃处理。

我们选择的题号是(A/B/C/D题): D
参赛队员:
1. 专业年级软件工程姓名段永春学号201410413112 成绩
2. 专业年级软件工程姓名殷福贵学号201410413113 成绩
3. 专业年级软件工程姓名高培富学号201410413107 成绩
日期: 2015 年 6 月 15 日。

数学建模期末作业题

数学建模期末作业题

数学建模期末作业题1、数学规划有三种物品:A、B和C。

它们的重量、体积和价值如下表所示:A、B和C重量(单位:公斤)体积(单位:l)123213价值(单位:100元)357当有人旅行时,选择10件物品陪伴他。

根据情况,个人物品的总重量不得超过18kg,体积不得超过100L。

在这三件物品中,你能选择多少件来最大限度地提高你物品的价值?2、谣言的传播假设一个城市有n+1个人。

其中一人出于某种目的编造了一个谣言,所以他利用他认识的人来传播谣言。

该市初中及以上文化程度的人口比例为p。

只有1%的人相信这个谣言,而其他人中约有B%会相信。

还假设单位时间内每个人相信谣言的平均人数与当时没有听到谣言的人数成正比,而不相信谣言的人不会传播谣言。

试图建立一个数学模型来反映谣言的传播,并简单分析其规律。

假设1第一个人仍将参与第二次谣言传播。

也就是说,第一个人和相信谣言的人会继续传播谣言。

假设2相信此谣言的人每人在单位时间内传播的平均人数正比于当时尚未听说此谣言的人数这个比恒定不变假设3在传播的同时,它也会传播给那些传播谣言和听到谣言的人设第i个单位时间开始时相信谣言总人数xyz(i)没有听说过MT(I)的人数受传播人数中没听过的人数占总人数比例(共有n+1个人,出去自己就有n个人)t(i)=mt(i)/n;受传播人数如果k为定植scb(i)=k*mt(i)*xyz(i);没有听到谣言的人数(考虑到他们也会传播给那些传播谣言和听到谣言的人)sch_mt(i)=scb(i)*t(i);其中相信的有scb_uumt_uxx(i)=sch_mt(i)*p*a/100+sch_mt(i)*(1-p)*b/100;有些人不相信scb_mt_bxx(i)=sch_mt(i)-scb_xx(i);在时间I+1的单位时间开始时相信谣言的总人数xyz(i+1)=xyz(i)+scb_mt_xx(i);没听过人数mt(i+1)=mt(i)-sch_umt(i);受传播人数中没听过的人数占总人数比例t(i+1)=mt(i+1)/n;如果K为定殖,则SCB(I+1)=K*MT(I+1)*XYZ(I+1);受传播人数中没听过谣言的人数(考虑到传播的时候也会传给传播谣和听过谣言的人)sch_mt(i+1)=scb(i+1)*t(i+1);其中包括scb_mt_xx(i+1)=sch_mt(i+1)*p*a/100+sch_mt(i+1)*(1-p)*b/100;其中不相信的有scb_umt_bxx(i+1)=sch_mt(i+1)-scb_xx(i+1);可以看到各种数构成了一个循环,这样就可以无限迭代下去根据由1单位时刻相信谣言总人数xyz(1)=1没听过人数mt(1)=n然后重复。

数学建模期末大作业

数学建模期末大作业

数学建模期末大作业论文题目:A题美好的一天组长:何曦(2014112739)组员:李颖(2014112747)张楚良(2014112740)班级:交通工程三班指导老师:陈崇双美好的一天摘要关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS1 问题的重述Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。

明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。

我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。

目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。

交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。

另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。

电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。

我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。

哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。

我主要是想请教一下各位大神:1)明天我应该怎么安排路线才能够让花在坐车上的时间最少?2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。

尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。

我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢?3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。

帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~2 问题的分析2.1 对问题一的分析问题一要求安排路线使得坐车花费的时间最少。

对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。

数学建模期末作业

数学建模期末作业

数学建模期末作业按数学建模竞赛格式书写一篇论文——抄袭者两份同时记0分。

1、某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。

若10个井位的代号为1A 、……10A ,相应的钻探费用为1C 、……10C ,并且井位选择要满足下列限制条件:(1)1A 、5A 、6A 只能选其中之一; (2)选2A 或3A 就不能选4A ,反之亦然; (3)在7A 、8A 、9A 、10A 中最多只能选两个。

试建立其数学模型,并给出一组[1C 、……10C ]值,用软件求解,建立你的钻井方案。

2、下面是中国人口增长情况数据:试建立一个数学模型预测2012年中国的人口数。

如果你的模型与实际不符,应怎样修正?《数学建模》(选修)期中测验1、有三台打印机同时工作,一分钟共打印1580行字,如果第一台打印机工作2分钟,第二台打印机工作3分钟,共打印2740行字,如果第一台打印机工作1分钟,第二台打印机工作2分钟,第三台打印机工作3分钟,共可打印3280行字.问:每台打印机每分钟可打印多少行字?(1)建立方程组: (2)MATLAB 求解程序 (3)结果2、432112.008.01.015.0m ax x x x x f +++= ⎪⎪⎩⎪⎪⎨⎧≥=---≥-+≤---0,,,100..432143214324321x x x x x x x x x x x x x x x t s(1)MA TLAB 程序或Lingo 程序或QSB 操作过程 (2)结果3、解微分方程:⎩⎨⎧='==+'-''0)0(,1)0(442y y xe y y y x(1)MATLAB 程序:(2)结果:整数规划建模及求解【例1】某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。

若10个井位的代号为s1,s2, …,s10,相应的钻探费用为c1,c2, …,c10,并且井位选择上要满足下列限制条件: 1. 或选择s1和s7,或选择s8; 2. 选择了s3 或s4 就不能选择s5,或反过来也一样; 3. 在s5,s6,s7,s8中最多只能选两个。

数学建模期末试题及答案

数学建模期末试题及答案

数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。

以下是试题的具体描述及答案解析。

2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。

请回答以下问题:a) 请解释一下该函数的含义。

b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。

通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。

函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。

基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。

b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。

c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。

3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。

- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。

请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。

b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。

学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。

b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。

因此,学生续借次数为10年÷30天= 121次。

数学建模期末练习题

数学建模期末练习题

数学建模期末练习题射线扫描成像在医学领域有着广泛的应用。

对于一台射线扫描成像设备,我们将设扫描区域的平面模型为D,该模型区域内有若干个感兴趣的物体O。

设扫描仪的扫描平面为P,我们需要确定物体O的边界曲线在扫描平面P上的投影。

为了简化问题,我们假设扫描区域的边界曲线可以近似为N条不相交的曲线段的集合。

请你通过使用数学建模的方法,给出一种算法来求解物体O在扫描平面P上的投影。

一、问题描述在一台射线扫描成像设备中,我们需要求解物体O在扫描平面P上的投影。

设物体O的边界曲线为C,P的方程为f(x, y) = 0。

我们需要求解物体O的边界曲线在扫描平面P上的参数方程。

二、问题分析1. 对于物体O的边界曲线C,可以通过采集扫描数据得到。

我们可以将C计算为一系列离散的点集。

2. 我们可以通过计算点集C中的每个点在扫描平面P上的投影点,来确定物体O在扫描平面P上的投影。

三、算法设计1. 输入:物体O的边界曲线C,扫描平面P的方程f(x, y) = 0。

2. 遍历曲线C中的每个点(x, y),计算其在平面P上的投影点(x', y'):- 将点(x, y)代入平面P的方程,解得点(x', y'),即为该点在平面P上的投影点。

3. 输出:物体O在扫描平面P上的投影的参数方程。

四、实现步骤1. 遍历物体O的边界曲线C,对于每个点(x, y),计算其在扫描平面P上的投影点(x', y')。

2. 将计算得到的投影点集合按照顺序连接,得到物体O的投影曲线。

3. 输出物体O的投影曲线的参数方程。

五、实例演示假设物体O的边界曲线C为抛物线 y = x^2,扫描平面P的方程为 y = 0。

1. 对于曲线C上的点(1, 1),其在平面P上的投影点为(1, 0)。

2. 对于曲线C上的点(2, 4),其在平面P上的投影点为(2, 0)。

3. 连接投影点(1, 0)和(2, 0),得到物体O在扫描平面P上的投影曲线为线段(x, 0),x ∈ [1, 2]。

青岛理工大学数学建模期末考试题目及答案详解

青岛理工大学数学建模期末考试题目及答案详解

青岛理工大学数学建模期末考试题目及答案详解1、30、等腰三角形ABC中,AB=2BC,且BC=12,则△ABC的周长为( ). [单选题]A. 48B. 60(正确答案)C. 48或60D. 362、11.11点40分,时钟的时针与分针的夹角为()[单选题] *A.140°B.130°C.120°D.110°(正确答案)3、33、点P(-5,-7)关于原点对称的点的坐标是()[单选题] *A. (-5,-7)B. (5,7)(正确答案)C. (5,-7)D. (7,-5)4、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4B. x+y=5C. x2=6(正确答案)D. 2x+3=05、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案)B.-13℃C.+10℃D.+13℃6、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限7、函数f(x)=-2x+5在(-∞,+∞)上是()[单选题] *A、增函数B、增函数(正确答案)C、不增不减D、既增又减8、24.下列各数中,绝对值最大的数是()[单选题] *A.0B.2C.﹣3(正确答案)D.19、8、下列判断中:1.在平面内有公共原点而且互相垂直的两条数轴,就构成了平面直角坐标系;2.坐标平面内所有的点与所有实数之间是一一对应的;3.在直角坐标平面内点(x,y)与点(y,x)表示不同的两点;4.原点O的坐标是(0,0),它既在x轴上,又在x轴上。

其中错误的个数是()[单选题] *A.1B.2(正确答案)C.3D.410、的单调递减区间为()[单选题] *A、(-1,1)(正确答案)B、(-1,2)C、(-∞,-1)D、(-∞,+∞)11、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B、33C、16D、412、4.在﹣,,0,﹣1,4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n 个,分数有k个,则m﹣n﹣k的值为()[单选题] *A.3(正确答案)B.2C.1D.413、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数14、-2/5角α终边上一点P(-3,-4),则cosα=()[单选题] *-3/5(正确答案)2月3日-0.333333333-2/5角α终边上一点P(-3,-4),则tanα=()[单选题] *15、17.已知的x∈R那么x2(x平方)>1是x>1的()[单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充分必要条件D.既不充分也不必要条件16、1.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()[单选题] *A.(0,-2)B.(2,0)(正确答案)C.(4,0)D.(0,-4)17、下列说法正确的是[单选题] *A.一个数前面加上“-”号,这个数就是负数B.零既不是正数也不是负数(正确答案)C.零既是正数也是负数D.若a是正数,则-a不一定是负数18、19.如图,共有线段()[单选题] *A.3条B.4条C.5条D.6条(正确答案)19、y=kx+b(k是不为0的常数)是()。

数学建模期末试卷

数学建模期末试卷

《数学建模》期末考查卷一、简答题1. 谈谈你学习数学建模课程的一些感受。

2. Matlab 编写M 文件,计算:∑==+++++64643222...2221i i 。

3. 生成一个55⨯的均匀随机矩阵B ,并将其中大于0.5的赋值为1,小于0.5的赋值-1,再将其记为C 。

4. 什么是中国邮递员问题,简述及其算法。

5. 简述插值与拟合的联系和区别。

二、程序解读题与编程题1.设有线性规划模型的LINGO 程序如下:灵敏度分析输出如下:则 (1)该问题的最优解(自变量和因变量)是多少?(2)为使最优解存在(最优基保持不变),目标函数中的系数1x ,2x ,3x ,4x ,5x 允许的变化范围分别是多少?(3)影子价格有意义时约束条件(四个)中右端系数允许的变化范围分别是多少?(4)若目标函数中的约束条件(四个)代表4种资源,则这4种资源是否有剩余,分别剩余多少?(5)你还能从结果中得到其它哪些信息?2.在研究身高h (单位:cm )和腿长t (单位:cm )的关系时,收集了16个人的观测数据,然后在Matlab 中执行下列命令:h=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; H=[ones(16,1) h];t=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(t,H);已知b=[-16.0730,0.7194],stats=[0.9282,180.9531,0.0000,1.7437]. (1)请写出t 关于h 的回归方程。

并讨论若身高为170cm 时腿长的情况。

(2)请问t 和h 的回归关系是否显著,为什么? (3)stats 中0.9282,1.7437的含义分别是什么?(4)计算身高h 的均值、标准差、极差、偏度、峰度,画出直方图(只写命令)。

数学建模期末考试试题

数学建模期末考试试题

数学建模期末考试试题# 数学建模期末考试试题## 第一部分:选择题### 题目1在数学建模中,以下哪个选项不是模型的组成部分?A) 假设B) 目标C) 约束条件D) 计算工具### 题目2以下哪个是线性规划问题的一个特征?A) 目标函数和约束条件都是非线性的B) 目标函数和约束条件都是线性的C) 目标函数是线性的,约束条件是非线性的D) 目标函数是非线性的,约束条件是线性的### 题目3在数学建模中,敏感性分析的主要目的是什么?A) 确定模型的最优解B) 评估模型参数变化对结果的影响C) 简化模型结构D) 确定模型的稳定性## 第二部分:简答题简述数学建模中模型的校验过程。

### 题目2解释什么是多目标优化问题,并给出一个实际应用的例子。

### 题目3在进行数学建模时,为什么需要对模型进行敏感性分析?请说明其重要性。

## 第三部分:应用题### 题目1假设你被要求为一家工厂设计一个生产调度模型。

工厂有三种产品A、B和C,每种产品都需要经过三个不同的生产阶段:加工、装配和包装。

每个阶段的机器数量有限,且每种产品在每个阶段所需的时间不同。

请建立一个线性规划模型来最大化工厂的日利润。

### 题目2考虑一个城市交通流量的优化问题。

城市有多个交叉路口,每个交叉路口在不同时间段的交通流量是不同的。

如何建立一个数学模型来预测交通流量,并提出减少交通拥堵的策略?### 题目3一个公司想要评估其产品在市场上的竞争力。

公司有多个产品,每个产品都有不同的成本和利润率。

同时,公司需要考虑市场需求和竞争对手的情况。

请为该公司设计一个多目标优化模型,以确定最优的产品组合和市场策略。

## 第四部分:论文题选择一个你感兴趣的实际问题,建立一个数学模型来解决这个问题。

请详细描述你的建模过程,包括问题的定义、模型的假设、模型的建立、求解方法以及模型的验证。

### 题目2在数学建模中,模型的可解释性是一个重要的考虑因素。

请讨论模型可解释性的重要性,并给出一个例子来说明你的观点。

数学建模期末作业

数学建模期末作业

数学建模期末作业一.问题的提出某公共汽车站每隔30分钟到达一辆汽车,但可能有[0,3]分钟误差,此误差大小与前一辆汽车的运行无关。

汽车最多容纳50名旅客,到达该汽车站时车内旅客人数服从[20,50]的均匀分布,到站下车的旅客人数服从[3,7]的均匀分布,每名旅客下车的时间服从[1,7]秒的均匀分布。

旅客按照每30分钟到达12个人的泊松分布到达汽车站,单队排列等车,先到先上,如果某位旅客未能上车,他不再等候。

旅客上车时间服从[4,12]秒的均匀分布。

上下车的规则是:先下后上,逐个上车,逐个下车。

假设每天共发车25辆,现在要求模拟30天汽车的运行情况,了解平均一天中在站内等候汽车的总人数、能上车及不能上车的人数、旅客排队时间分布情况、不能上车人数的分布情况。

二.问题的分析本问题涉及到两种数据:一是汽车运行状况,包括汽车到站、旅客下车、上车及汽车离站;二是旅客活动情况,包括到站、排队、上车及未能上车而离站。

这里我们用下次事件法推进模拟时间,具体做法是:首先确定汽车到站时间,然后再按旅客到站的分布情况计算出上一辆汽车至现在所到的旅客数,根据上下车旅客数确定该汽车离站的时间。

由于上下车时间以秒计算,因此,模拟过程中的时间均以秒为单位。

另外,旅客到站的分布可以转换成为间隔时间以150秒的指数分布。

这里假定汽车到站后,在旅客上下车期间未有旅客到达,于是,要在该汽车离站后才开始统计等待下一辆汽车的旅客数。

三.问题的假设:1)候车队伍有良好的秩序;即要保证乘客先来后到的原则;2)忽略其他情况对公交车的影响,即不计公交车启动,加速,制动时间的情况;3)公交公司只对公交车进行调度,但是在允许的范围内不限制乘客上车,即只要该车乘客数不大于50则允许乘客上车,直到达到50人为止。

4)排队方式为单一队列的等待制,先到先服务。

5)每天的乘客数量都一样,不考虑高峰期等因素。

四.符号说明与概念引进下面是建立模拟模型时所用的符号的说明;t------当前模拟时间;上一辆汽车离开车站的时间;tl-----------------当天到达汽车站候车的乘客总人数;NqN------当天在汽车站下车额乘客的总人数;d------当天候车乘客中能上车的总人数;NuN------当天候车乘客中不能上车的总人数;o-----当天候车乘客队列的最大长度;Qmaxn------到站汽车到达时等候的乘客数;q------到达汽车车内的乘客数;nbn------到站汽车下车的乘客数;u------到站汽车能载走的候车乘客数;nut------到站汽车到达时,候车乘客的排队时间;qQ------当天候车乘客总的排队时间;tN[i]----当天候车时间在i*300 -i*300+300秒的乘客数;C[i]----当天有i个乘客不能上车的次数。

最新数学模型(数学建模)期末试卷及答案详解()

最新数学模型(数学建模)期末试卷及答案详解()

数学建模(数学模型)期末考试卷专业 级《数学模型与数学软件》考核命题卷(含答题卷)(编号1)闭卷)一、综合题(15分)为了研究同类车的刹车距离d (司机想刹车到车停下来所行驶的距离)与刹车时的车速v 之间存在什么样的函数关系,通过多组同条件实验测得一组数据如下表:(车速与距离都是多次实验的平均车速和平均距离)车速 (km/h) 29.3 44.0 58.7 62.2 73.3 88.0 102.7 110.2 117.3 刹车距离(m ) 39.0 76.6 126.2 135.8 187.8 261.4 347.1 388.9444.8 1.(6分)请简述数学建模一般步骤的基本方法。

2.(2分)为了研究刹车距离与车速的关系,需要做哪些资料数据的搜集?3.(7分)请给出合理的假设,建立合适的模型,来研究)(v fd 。

(注:模型不需要求解)二、综合题(16分)在研究存储模型中,设某产品日需求量为常数r ,每次生产为瞬间完成,每次生产的准备费为1c ,并与生产量无关, 每单位时间每件产品贮存费为2c 。

现需要制定最优的生产计划(即最佳的生产周期T 和每周期生产量Q 的确定)。

1.(6分)请简述数学建模的基本方法。

2.(10分)请在合适的假设下,建立不允许缺货的最优生产计划模型。

三、综合题(18分)研究奶制品深加工问题中,有80桶牛奶,共680小时的可利用工作时间,至多能加工80公斤A1产品,其他对于下列关系:1.(12化。

(注:不要求求解结果) 2.(6分)以此题为例,简述线性规划三个特征。

四、综合题(16分)研究治愈即免疫的传染病模型,设每个病人每天有效接触为a ,日治愈率为b ,初始状态下病人数和健康人数占总人数的比值分别为00,s i1(6分)做合适的假设,并建立传染病的SIR 模型;2(10分)写出利用ODE45函数求解此模型的MATLAB 程序代码。

获利44元/千克获利32元/千克五、综合题(20分)研究层次分析法模型,如下图:目标层准则层方案层如果现在已经得到五个准则的成对比较矩阵为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1135/13/11125/13/13/12/117/14/1557123342/11A 1.(8分)阐述层次分析法的基本步骤;2.(8分)使用和法演算A 矩阵的最大特征值,并求这五个准则对目标层的权向量; 3.(4分)求A 矩阵的一致性指标CI 和CR ,已知12.1)5(=RI 。

数学建模大作业题目

数学建模大作业题目

(1) 用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (10个数字自己选择,方法要一般)(2)有一个45⨯矩阵,编程求出其绝对值最大值及其所处的位置.(用abs 函数求绝对值)(3)编程求201!n n =∑ ( 分别用for 和while 循环)(4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高?(5)有一函数2(,)sin 2f x y x xy y =++ ,写一程序,输入自变量的值,输出函数值,并画出其图像,加上图例和注释. (区间自理)(6) 建立一个脚本M 文件将向量a,b 的值互换。

(7) 某商场对顾客所购买的商品实行打折销售,标准如下(商品价格用price 来表示): price<200 没有折扣; 200≤price<500 3%折扣; 500≤price<1000 5%折扣; 1000≤price<2500 8%折扣; 2500≤price<5000 10%折扣;5000≤price 14%折扣;输入所售商品的价格,求其实际销售价格。

(用input 函数)(9) 画出分段函数222 1y 1 122 1 2x x x x x x x ⎧<⎪=-≤<⎨⎪-+≥⎩的图像,并求分段函数在任意几点的函数值。

(用hold on 函数)(10) 给定5阶方阵,求方阵的行列式、特征值、迹、上三角元素的和。

(11) 输入40个数字,按照从小到大的顺序排列输出。

(12) 把当前窗口分成四个区域,在每个区域中分别用不同的颜色和线形画sin ;tan y x y x ==,x y e =和31y x x =++的图像。

(区间自理)(13) 对于,AX B YA B ==,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,,求解X,Y;(14) 如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,242679836B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1122,*,.*,,,,T A B A B A B AB A B A A ---。

作业四《数学建模》期末考试试卷四

作业四《数学建模》期末考试试卷四

《数学建模》期末考试试卷 班级 姓名 学号一、(15分)某厂利用甲、乙、丙三种原料生产A 、B 、C 、D 、E 五种产品,单位产品(万件)对原材料的消耗(吨)、原材料的限量(吨)以及单位产问五种产品各生产多少才能使总利润达到最大? (1)建立线性规划问题数学模型。

(2)写出用LINGO 软件求解的程序。

二、(15分)用单纯形方法求如下线性规划问题的最优解。

123123123123max 614134248..2460,,0S x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩三、(15分)某厂生产甲、乙、丙三种产品,消耗两种主要原材料A 与B 。

每单位产品生产过程中需要消耗两种资源A 与B 的数量、可供使用的原材料数设生产甲、乙、丙产品的数量分别为123,,x x x 单位,可以建立线性规划问题的数学模型:123123123123max 4003005006030504500..3040503000,,0S x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩利用LINGO10.0软件进行求解,得求解结果如下:Objective value: 35000.00Total solver iterations: 2Variable Value Reduced CostX1 50.00000 0.000000X2 0.000000 66.66667X3 30.00000 0.000000Row Slack or Surplus Dual Price1 35000.00 1.0000002 0.000000 3.3333333 0.000000 6.666667(1)指出问题的最优解并给出原应用问题的答案;(2)写出该线性规划问题的对偶线性规划问题,并指出对偶问题的最优解;(3)灵敏度分析结果如下:Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase DecreaseX1 400.0000 200.0000 100.0000X2 300.0000 66.66667 INFINITYX3 500.0000 166.6667 66.66667Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 4500.000 1500.000 1500.0003 3000.000 1500.000 750.0000对灵敏度分析结果进行分析四、(10分)一个公司要分派4个推销员去4个地区推销某种产品,4个推销员在各个地区推销这种产品的预期利润(万元)如下表。

数学建模期末大作业

数学建模期末大作业

宁波大学考核答题纸(2012—2013学年第2学期)课号:084J01B03课程名称:数学建模改卷教师:学号:106030042姓名:肖雨晴得分:数学建模课期末大作业F题:电话销售中心的设置问题(NBUMCM2013b)2000年,某国大约有180000家电话推销中心,从业人员达200万人。

到2010年,共有700000多家公司雇佣了大约800万员工通过电话推销它们的产品,因此到底要设立多少电话销售中心以及把它们安排在哪里就成了一个非常重要的问题。

甲公司正在考虑设立电话销售中心的数量以及地点。

公司可以考虑在几个候选中心地点选择设立一个或多个中心,可以为一个或几个地区提供(部分或全部)服务。

甲公司的电话销售集中在8个地区:1区,2区,3区,4区,5区,6区,7区,8区。

表1给出了这些候选中心地点,它们的服务地区,以及建立电话销售中心的费用。

表2是候选中心地点与不同地区之间每小时的通话费用。

表1候选中心地点服务的地区费用(人民币:元)A市1区,2区,3区,4区500000B市5区,6区,7区,8区800000C市2区,3区,4区,5区,6区400000D市1区,7区,8区900000E市4区,5区,6区,7区300000F市8区,1区,3区,4区450000G市6区,7区,8区,5区550000表2通话费用(人民币:元)到从地区1区2区3区4区5区6区7区8区A市1435293225131420B市1818221826231215C市2225121930172625D市2430191412161830E市1920231623112812F市2321172120232010G市1718121019221622请解决以下问题:(1)在不考虑通话费用的情况下,请建立数学模型为甲公司确定这些具体的候选中心地点;(2)在考虑通话费用的情况下,也请建立数学模型为甲公司确定这些具体的候选中心地点并给出相应评价。

解答:(1)问题分析由题意可得,每个地区最多建立一个中心即可。

2020年数学建模作业题

2020年数学建模作业题

数学模型课程期末大作业题要求:1)选题方式:共49题,每个同学做一题,你要做的题目编号是你的学号mod49所得的值+1。

(例如:你的学号为189084157,则你要做的题为mod(189084157,49)+1=18)。

2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 编程,其它计算可用Matlab或Mathmatica编写,不得以其它语言编程,否则按不及格论处。

3)论文以电子文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。

1、生产安排问题某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。

工厂收益规定作产品售价减去原材料费用之余。

每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):表到6月底每种产品有存货50件。

工厂每周工作6天,每天2班,每班8小时。

不需要考虑排队等待加工的问题。

在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合适的月份维修。

除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。

扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。

停工时间的这种灵活性价值若何?注意,可假设每月仅有24个工作日。

2、电梯问题某办公大楼有十一层高,办公室都安排在7,8,9,10,11层上.假设办公人员都乘电梯上楼,每层有60人办公.现有三台电梯A、B、C可利用,每层楼之间电梯的运行时间是3秒,最底层(一层)停留时间是20秒,其他各层若停留,则停留时间为10秒.每台电梯的最大的容量是10人,在上班前电梯只在7,8,9,10,11层停靠.为简单起见,假设早晨8∶00以前办公人员已陆续到达一层,能保证每部电梯在底层的等待时间内(20秒)能达到电梯的最大容量,电梯在各层的相应的停留时间内办公人员能完成出入电梯.当无人使用电梯时,电梯应在底层待命.请问:把这些人都送到相应的办公楼层,要用多少时间?怎样调度电梯能使得办公人员到达相应楼层所需总的时间尽可能的少?请给出一种具体实用的电梯运行方案.3、食品加工问题一项食品加工工业,为将几种粗油精炼,然后加以混合成为成品油。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模期末大作业论文题目:A题美好的一天组长:何曦(2014112739)组员:李颖(2014112747)张楚良(2014112740)班级:交通工程三班指导老师:***美好的一天摘要关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS1 问题的重述Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。

明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。

我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。

目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。

交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。

另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。

电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。

我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。

哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。

我主要是想请教一下各位大神:1)明天我应该怎么安排路线才能够让花在坐车上的时间最少?2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。

尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。

我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢?3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。

帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~2 问题的分析2.1 对问题一的分析问题一要求安排路线使得坐车花费的时间最少。

对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。

求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。

2.2 对问题二的分析问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。

对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。

2.3 对问题三的分析问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。

对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

3 模型假设1、问题一开动中的公交车速度为一恒定值2、问题一公交车不会遇到拥堵情况3、不计公交车启动与制动时间4、不计公交车在站台的停留时间5、节点之间均为直线距离4符号说明5模型的建立与求解5.1 问题一模型的建立与求解公交车速度是恒定的,要使坐车时间最短,故使两点之间的路程最短。

根据题目,要去7个地点,且均乘坐公交车。

5.1.1 最短路径基本概念用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。

算法具体的形式包括:确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题。

确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。

在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。

确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。

全局最短路径问题 - 求图中所有的最短路径5.1.2 Dijkstra算法描述构造赋权图G=(V,E,W)。

其中,定点集V={v1,...,vn},这里v1,...,vn表示各个地点;E 为边的集合,邻接矩阵 ()ij n n W w ⨯=,这里ij w 表示顶点i v 和j v之间直通的距离,若顶点i v 和j v之间无连接,ij w =∞。

问题就是求赋权图G 中指定的两个顶点0u ,0v 间的具有最小权的路。

这条路叫做0u ,0v 间的最短路,它的权叫做0u ,0v 间的距离,亦记作00(,)d u v 。

迪克斯特拉算法的基本思想是按距0u从近到远为顺序,依次求得0u 到G 的各项点的最短路和距离,直至0v(或直至G 的所有顶点),算法结束。

为避免重复并保留每一步的计算信息,采用了标号算法。

下面是该算法。

(1)0000()0,(),{},0l u v u l v S u i =≠=∞==对,令。

(2)(\),i i i v S S V S --∈=对每个用min{(),()()}iu S l v l u w uv ∈+代替()l v ,这里()w uv 表示顶点u 和v 之间边的权值。

计算min{()}iu S l v ∈,把达到这个最小值的一个顶点记为1i u +,令11{}i i i S S u ++=⋃。

(3)若||1i V =-,则停止;若||1i V <-,则用i+1代替i ,转(2)。

5.1.3 有向赋权图的定义 (1)邻接矩阵的建立将该道路视为一个有向权图,其领接矩阵可定义为:11121919119229191()A x x x B G x x x ⎛⎫ ⎪= ⎪⎪⎝⎭ 其中,A G表示该有向权图,其领接矩阵元素为0-1决策变量,定义为:1,1,2, (91)0,ij i j x i j i j ⎧==⎨⎩,、节点路口连通(、节点路口连通(2)权值(时间)矩阵的建立同样,根据题目时间最短的要求,本文将时间(,1,2, (91)ij t i j =作为该有向赋权图中第i 各节点和第j 个节点之间弧ij e的权值,即:11121919119229191()A t t t T G t t t ⎛⎫ ⎪= ⎪⎪⎝⎭ 其中,时间矩阵元素ij t是路口i 和j 连接道路长度与公交车行驶速度的比值, 即:,(,1,2, (91)ijij l t i j v ==其中,0v--公交车行驶速度,规定为40km/h ,ij l --i 路口与j 路口间道路长度,通过两个路口坐标(,)i i x y 和(,)j j x y 确定,即:ij l =当i 、j 路口不连通时,规定ij l等于+∞。

5.1.4 基于最短理论的模型建立 1、目标分析根据5.1.3中建立的有向赋权图,其中0-1决策变量ij x表示弧(i,j )是否在起点与终点的路上,在定义了ij t为边i 到j 的权的有向网络图后,可看出从出发点到终点有多条线路选择,但必有一条为时间最少的,因而可将这条时间最短的路径找出。

因而,根据所建立的网络领接矩阵和时间权值矩阵可以得到到达某一路口的时间的数学模型为:919111ij iji j T x t ===⨯∑∑从时间考虑,既要满足单个路径时间最短,所以目标函数应为:911min (,1,2, (91)ij ij i T x t i j ==⨯=∑2、约束分析(1)最短路起点约束由于G 为有向图,则其中顶点分为“起点”、“中间点”、“终点”三类,对于起点只有出的边而无入的边,对于中间点既有入的边也有出的边,对于中只有入的边而无出的边。

对有向图而言,若求顶点r 1到r 2的最短路径,以 表示进第j 顶点的边,以 表示出第j 顶点的边,则r 1到r 2的三类约束可表示为:19191211121,()1,2,...,91;1,(),1,2,...,7;21,22,...,910,(ij ji i i i r i x x i r r r i ====⎧⎛⎫⎪ ⎪-=-==⎨ ⎪⎪ ⎪==⎝⎭⎩∑∑其它) (2)0-1决策变量约束由于0-1决策变量 为有向道路网路图的领接矩阵元素,即表示i 、j 两路口是否连通,所以对其作下列约束:1,1,2, (91)0,ij i j x i j i j ⎧==⎨⎩,、节点路口连通(、节点路口连通3、模型确定综上目标和约束分析,可得从起始点到目的地的优化模型如下:911min (,1,2, (91)ij ij i T x t i j ==⨯=∑1919121112121,()1,2,...,91;1,(),1,2,...,7;21,22,...,910,(1,1,2,...,91)0,1,2,...,721,22,...,91ij ji i i ij i r i x x i r r r i i j x i j i j r r ==⎧==⎧⎛⎫⎪⎪ ⎪-=-==⎨⎪ ⎪⎪ ⎪⎪==⎝⎭⎩⎪⎪⎧⎨==⎨⎪⎩⎪⎪=⎪=⎪⎩∑∑其它),、节点路口连通(、节点路口连通5.1.5 基于Dijkstra 算法的“搜索算法”求解 该模型求解得到的是从起始点新校区(节点22)到目的地TASHIWODE 电影院(节点54)的乘坐公交车的最短时间。

所以将这7个最短时间相加即得整个过程的最短时间。

对于这个单目标规划模型,由于数据量较大且计算步骤繁琐,利用Lingo 优化软件求解困难,因此本文结合Dijkstra 算法通过Mtalab 编程进行遍历搜索求解。

算大步骤如下:Step1:取一路口节点j ;Step2:利用Dijkstra 算法求解最短时间;Step3:将 Step2中7个最短时间相加,并记录对应的路径和两端点; Step4:若求解未通过,转Step1,否则,转Step5; Step5:输出Step3的记录,根据断点确定最短时间。

根据以上算法,利用Matalb 软件编程(见附录I )求解得到两个指定顶点间的最短距离,具体的线路安排如下: 22(新校区)、21、14、10、15、16、38、40、43、72(大川博物院)、73、18、91(郫郫公园)、90、83、80、79、78、76(林湾步行街)、62、57、50(老校区财务处)、51、8、34(新东方)、46、55、63(开心面馆)、54(TASHIWODE 电影院)。

5.2 问题二模型的建立与求解路口越密,越容易发生拥堵情况,因而公交车的行驶速度越慢。

因此要建立在不同路段公交车行驶速度与路口密度的模型,从而找出最佳路线使全程乘车时间最短。

5.2.1 蚁群算法(1)蚁群算法的基本原理与其它模拟进化算法一样,蚁群算法通过多个可行解组成的种群不断进化, 并以最大概率逼近甚至达到问题的最优解。

相关文档
最新文档