2015年数学建模作业题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型课程期末大作业题
要求:
1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。
2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。
3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。
1、生产安排问题
某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):
表
到6月底每种产品有存货50件。
工厂每周工作6天,每天2班,每班8小时。
不需要考虑排队等待加工的问题。
在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合
适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何?
注意,可假设每月仅有24个工作日。
5、生产计划
某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示:
台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示:
量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求:
(a)该厂如何安排计划,使总利润最大;
(b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。
34、瓶颈机器上的任务排序
在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。
此问题的目的是为在单台机器上的任务调度提供一个简单的模型,此模型可以结合多种不同的目标函数进行使用。在这里我们将看到如何最小化总处理时间,平均处理时间,以及总超时时间。
在一台机器上将要处理一组任务。任务的执行不具有抢先性(即一旦一个任务开始执行,就不允许被打断)。对于每个任务i ,都给出了它的发布时间和持续时间。
对于最后一个优化目标(总超时时间),也需要使用截止时间(规定的最后完成时间)来对系统的超时长度进行度量,即度量任务完成时间超出规定时间的长度。下表中列出了我们的问题要使用的各种数据。
我们希望求出下面这些目标的最优值:计划总需时(makespan)的最小值,平均处理时间的最小值,或总超时时间的最小值。
35、油画制造
有一家油画公司有一些大型客户,它们一直有稳定的需求,此公司每周需要为这些客户制造 5 批油画,每批油画都完全相同。每批油画都在同一个制造过程中完成,所有批油画都要使用同一支调和画笔,在绘制两批油画之间必须清洗此画笔。第1到5 批油画的绘制时间分别为40,35,45,32,和50 分钟。清洗时间取决于所使用的颜色和颜料类型。例如,如果在使用水性颜料使用油性颜料,或者在使用深色后使用浅色,则需要较长的清洗时间。下表中给出了清洗时间数组CLEAN ,其中CLEANij表示在第i 批油画之后绘制第j 批油画所需的清洗时间。
的时间(绘制时间和清洗时间)。那么应采取什么顺序绘制这些批次的油画?所指定的顺序将每周重复执行,因此总清洗时间中也应计入一周的最后一批油画与下周的第一批油画之间所需的清洗时间。
36、生产线平衡
有一家电子工厂有一条生产线生产一种放大器,此生产线由四个工作台组成。生产放大器要经过12 道工序,这些工序之间存在先决关系约束。下表列出了每道工序需要花费的时间(分钟),并列出了所有的直接先决关系(表格中PCB 是印刷电路板的简称)。
制造管理人员希望在满足先决关系的条件下将这些工序分配到四个工作台
上,以使生产线得到平衡,从而使生产周期尽可能缩短,即缩短组装一台放大器所需的总时间。每道工序都需要分配到一个工作台上,并且在进行此工序时不许打断。每个工作台在一个时刻都只能进行一道工序。由于每个工作台上的每个工序都对每个放大器重复执行一次,因此我们称一台放大器组装所需的总时间为一个生产周期。当一台放大器完成组装之后,则工作台1 到3 上的放大器都将移动到下一个工作台上,并且在第一个工作台上开始组装新一台放大器。
37、自行车生产规划
有一家公司生产儿童自行车。在下表中给出了明年预期的销售量(以千辆为单位计)。此公司的生产能力为每个月30,000 辆自行车。通过工人加班,可以将产量提高50%,但是会将每辆自行车的生产成本从30 欧元提高到40 欧元。
底都需要支出 5 欧元的存储费用。我们假定此公司的库存能力是无限的(即虽然此公司的实际库存能力是有限的,但不会给我们这个例子带来限制)。现在是一月一日,在下面的十二个月里面每个月应生产和存储多少辆自行车才能够满足此销售预期,并最小化总成本?
38、考试日程安排
有一所工程大学每个学期三年级学生都需要根据其希望在第四年内学习的内容(可以从“生产规划”和“质量和安全管理”中选择)从11 门课程中选择8 门。在学生选择了下一个学年内的学习方向后,则在此学期内有些课程即变为必修课。这些必修课程是统计学(S),图模型与算法(GMA),生产管理(PM),离散系统与事件(DSE)。其他可选的课程为:数据分析(DA),数值分析(NA),数学规划(MP),C++,Java(J),逻辑规划(LP),以及软件工程(SE)