2015-2016学年江苏省南通市海门市八年级(下)期末数学试卷

合集下载

2015-2016学年南通市海门市八下期末数学试卷

2015-2016学年南通市海门市八下期末数学试卷

2015-2016学年南通市海门市八下期末数学试卷一、选择题(共10小题;共50分)1. 下列实数中,为无理数的是A. B. C. D.2. 如图,一把矩形直尺沿直线断开并错位,点,,,在同一条直线上,若,则的度数为A. B. C. D.3. 已知点在第一象限,则的取值范围在数轴上表示正确的是A. B.C. D.4. 如果通过平移直线得到的图象,那么直线必须A. 向左平移个单位B. 向右平移个单位C. 向上平移个单位D. 向下平移个单位5. 已知一组数据,,,,,,有唯一的众数,则这组数据的平均数、中位数分别是A. ,B. ,C. ,D. ,6. 某种品牌运动服经过两次降价,每件零售价由元降为元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为,下面所列的方程中正确的是A. B.C. D.7. 如图,在中,,将在平面内绕点旋转到的位置,使,则旋转角的度数为A. B. C. D.8. 已知,那么函数的最大值是A. B. C. D.9. 小刚以米/分的速度匀速骑车分,在原地休息了分,然后以米/分的速度骑回出发地.下列函数图象能表达这一过程的是(其中为小刚距出发地的距离)A. B.C. D.10. 若二次函数的图象与轴有两个交点,坐标分别为,,且,图象上有一点,在轴下方,则下列判断正确的是A. B.C. D.二、填空题(共6小题;共30分)11. 函数中,自变量的取值范围是.12. 在平面直角坐标系中,点关于原点的对称点的坐标是.13. 甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选同学.甲乙丙丁平均数方差14. 如果,那么的值为.15. 如图,经过点的直线与直线相交于点,则不等式的解集为.16. 如图,在等边内有一点,,,,将绕点逆时针旋转,使与重合,点旋转至点,过点作于,则的长为.三、解答题(共8小题;共104分)17. 计算:(1);(2)先化简,再求值:,其中.18. 已知:与成正比例,且当时,的值为.(1)求与之间的函数关系式;(2)若点、点是该函数图象上的两点,试比较,的大小,并说明理由.19. 已知关于的一元二次方程,为实数.(1)求证:方程有两个不相等的实数根.(2)为何值时,方程有整数解.(直接写出三个,不需说明理由)20. 如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.21. 为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区户家庭用水情况进行了抽样调查,他在户家庭中,随机调查了户家庭月份的用水量情况,结果如图所示.(1)试估计该小区月份用水量不高于的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如的中间值为)来替代,估计该小区月份的用水量.22. 已知平行四边形中,直线绕点旋转,直线不经过,,点,过,,分别作于,于,于.(1)当直线旋转到如图1位置时,线段,,之间的数量关系是;(2)当直线旋转到如图 2位置时,线段,,之间的数量关系是;(3)当直线旋转到如图 3 的位置时,线段,,之间有怎样的数量关系?请直接写出你的猜想,并加以证明.23. 新农村社区改造中,有一部分楼盘要对外销售,某楼盘共层,销售价格如下:第八层楼房售价为元米,从第八层起每上升一层,每平方米的售价提高元;反之,楼层每下降一层,每平方米的售价降低元,已知该楼盘每套楼房面积均为米.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价,另外每套楼房赠送元装修基金;方案二:降价,没有其他赠送.(1)请写出售价元米与楼层(,取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.24. 如图,已知抛物线的对称轴为直线,且抛物线经过,两点,与轴交于点.若直线经过、两点,求直线和抛物线的解析式.(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标.(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.四、填空题(共2小题;共10分)25. 如图,抛物线过点和点,且顶点在第四象限.设,则的取值范围是.26. 关于的一元二次方程的一个根为,则.五、解答题(共2小题;共26分)27. 已知,,且,求的值.28. 如果抛物线过定点,则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.答案第一部分1. C2. A3. C 【解析】根据点在第一象限,知横、纵坐标都是正数,可得到关于的不等式组求得的取值范围是.4. C5. D6. B7. C8. C9. C 10. A第二部分11.12.13. 乙14.15.16.第三部分17. (1)原式;原式(2)当时,原式18. (1)根据题意设.将,代入,得,解得:.所以,,所以.(2).理由如下:由()知,与的函数关系式为.该函数图象是直线,且随的增大而增大,,.19. (1)化简方程,得,.为实数,,方程有两个不相等的实数根.(2)当为,,时,方程有整数解.【解析】提示:.当是一个奇数的平方时,方程有整数解.20. (1)旋转中心点位置如图所示,点的坐标为.(2)旋转后的三角形如(1)中图所示.21. (1)根据题意得:.答:该小区月份用水量不高于的户数占小区总户数的百分比是.(2)根据题意得:(吨),答:该小区月份的用水量是吨.22. (1)(2)(3)猜想:.过作于,又因为,,所以四边形是矩形.所以.因为,,所以.所以.所以.因为平行四边形,所以,.所以.所以.因为,所以.所以.所以.所以.23. (1)当时,每平方米的售价应为:元平方米,当时,每平方米的售价应为:元平方米..(2)第十六层楼房的每平方米的价格为:元平方米,按照方案一所交房款为:(元),按照方案二所交房款为:(元),当时,即,解得:,当时,即,解得:,当时,即,解得:,当时,方案二合算;当时,方案一合算;当时,方案一与方案二一样.24. (1)依题意,得解得抛物线解析式为 .对称轴为,且抛物线经过,.把,代入,得解得直线的解析式为 .(2)设直线与对称轴的交点为,则此时的值最小.把代入得,,,即当点到点的距离与到点的距离之和最小时的坐标为.(3)设 .又,,,, .①若点为直角顶点,则,即 .解得;②若点为直角顶点,则,即 .解得;若点为直角定点,则,即 .解得,;综上所述的坐标为或或或 .第四部分25.【解析】二次函数的图象与坐标轴分别交于点,,,,即,顶点在第四象限,,,又,,,即,,,,,,,..26.第五部分27. ,,两边除以得:,,,又,把和看成关于的方程的两根,,,,28. (1)依题意,选择点作为抛物线的顶点,二次项系数是,根据顶点式得:.(2)定点抛物线的顶点坐标为,且,,顶点纵坐标,当时,最小,抛物线顶点纵坐标的值最小,此时,抛物线的解析式为.第11页(共11 页)。

2015-2016学年江苏省南通市田家炳中学八年级(下)期末数学试卷(解析版)

2015-2016学年江苏省南通市田家炳中学八年级(下)期末数学试卷(解析版)

2015-2016学年江苏省南通市田家炳中学八年级(下)期末数学试卷一、选择题(3分×10=30分)1.(3分)直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.(3分)如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.(3分)二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.(3分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.(3分)某篮球队12名队员的年龄如表:则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.(3分)运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.(3分)若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.(3分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个 B.2个 C.3个 D.4个10.(3分)如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形A2016B2016C2016D2016的边长是()A.()2015B.()2016C.()2016D.()2015二、填空题(3分×8=24分)11.(3分)一元二次方程x2=x的解是.12.(3分)数据﹣2、﹣1、0、1、2的方差是.13.(3分)将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.(3分)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.(3分)已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.(3分)若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0﹣x1)(x0﹣x2)<0.其中正确的是.三、解答题(共96分)19.(10分)解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.(8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.(8分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.(8分)关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.(10分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.(10分)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B 市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.(14分)如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.(14分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.(14分)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2015-2016学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题(3分×10=30分)1.(3分)直线y=2x+3不经过第()象限.A.一B.二C.三D.四【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选:D.2.(3分)如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S=AC×BD=BC×DE,菱形ABCD∴×8×6=5×DE,∴DE==4.8,故选:C.3.(3分)二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.4.(3分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选:C.5.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.6.(3分)某篮球队12名队员的年龄如表:则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.7.(3分)运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.8.(3分)若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选:B.9.(3分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y=250;甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选:B.10.(3分)如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形A2016B2016C2016D2016的边长是()A.()2015B.()2016C.()2016D.()2015【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2016B2016C2016D2016的边长是:()2015.故选:D.二、填空题(3分×8=24分)11.(3分)一元二次方程x2=x的解是x=0或x=.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.12.(3分)数据﹣2、﹣1、0、1、2的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是:=2,故答案为:2.13.(3分)将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+114.(3分)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.15.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.16.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.17.(3分)已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y2<y3<y1.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.18.(3分)若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0﹣x1)(x0﹣x2)<0.其中正确的是①②④.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y0)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y0的解,故本选项正确;③若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;④若a>0,则x0﹣x1>0,x0﹣x2<0,所以,(x0﹣x1)(x0﹣x2)<0,∴a(x0﹣x1)(x0﹣x2)<0,若a<0,则(x0﹣x1)与(x0﹣x2)同号,∴a(x0﹣x1)(x0﹣x2)<0,综上所述,a(x0﹣x1)(x0﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④三、解答题(共96分)19.(10分)解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==.20.(8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.21.(8分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.22.(8分)关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.23.(10分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.24.(10分)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B 市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120千米,甲到B市后5小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间:=6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.25.(14分)如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.(3分)理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.(8分)判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)26.(14分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【分析】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,=475(元);①0≤x≤5时,w=(6﹣4.1)×50x=95x,当x=5时,w最大②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,=741(元);∴当x=9时,w最大③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,=768(元);∴当x=﹣=12时,w最大综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.27.(14分)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【分析】(1)设出抛物线的顶点式y=a(x﹣2)2+4,将原点的坐标代入解析式就可以求出a的值,从而求出函数的解析式.(2)①由(1)中抛物线的解析式可以求出E点的坐标,从而可以求出ME的解析式,再将P点的坐标代入直线的解析式就可以判断P点是否在直线ME上.②设出点N(t,﹣(t﹣2)2+4),可以表示出PN的值,根据梯形的面积公式可以表示出S与t的函数关系式,从而可以求出结论.【解答】解:(1)设抛物线的解析式为:y=a(x﹣2)2+4,则有0=4a+4,∴a=﹣1,∴抛物线的解析式为:y=﹣(x﹣2)2+4;(2)①∵y=﹣(x﹣2)2+4,∴当y=0时,﹣(x﹣2)2+4=0,∴x1=0,x2=4,∴E(4,0),设直线ME的解析式为:y=kx+b,则,解得:,∴直线ME的解析式为:y=﹣2x+8,∴当t=2时,P(2,2),∴当x=2时,y=4=4,∴当t=2时,点P不在直线ME上.②S存在最大值.理由如下:∵点A在x轴的非负半轴上,且N在抛物线上,∴OA=AP=t.∴点P,N的坐标分别为(t,t)、(t,﹣t2+4t)∴AN=﹣t2+4t(0≤t≤3),∴AN﹣AP=(﹣t2+4t)﹣t=﹣t2+3t=t(3﹣t)≥0,∴PN=﹣t2+3t(10分)(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴S=DC•AD=×3×2=3.(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵PN∥CD,AD⊥CD,∴S=(CD+PN)•AD=[3+(﹣t2+3t)]×2=﹣t2+3t+3=﹣(t﹣)2+=.其中(0<t<3),由a=﹣1,0<<3,此时S最大综上所述,当t=时,以点P,N,C,D为顶点的多边形面积有最大值,这个最大值为.说明:(ⅱ)中的关系式,当t=0和t=3时也适合.。

2015~2016年苏科版八年级下数学期末复习综合试卷(2)及答案

2015~2016年苏科版八年级下数学期末复习综合试卷(2)及答案

2015~2016年苏科版八年级下数学期末复习综合试卷(2)及答案2015~2016学年第二学期初二数学期末复习综合试卷(2)一、选择题(本题共10小题,每小题3分,共30分)1.(2015•通辽)下列调查适合抽样调查的是…………………………………………( )A .审核书稿中的错别字;B .对某社区的卫生死角进行调查;C .对八名同学的身高情况进行调查;D .对中学生目前的睡眠情况进行调查;2. 已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为…………………………………………………( )A .0.1;B .0.2;C .0.3;D .0.4;3.下列根式中,最简二次根式是………………………………………………………( )A; BC; D 4.如图,函数()3y a x =-与a y x =,在同一坐标系中的大致图象是………………( )5.若把分式2xy x y+(x ,y 为正数)中的x ,y 分别扩大为原来的3倍,则分式的值是……( ) A .扩大为原来的3倍; B .缩小为原来的3倍;C .扩大为原来的9倍 ;D .不变;6. (2014•吉林)如图,四边形ABCD ,AEFG 都是正方形,点E ,G 分别在AB ,AD 上,连接FC ,过点E 作EH ∥FC 交BC 于点H .若AB=4,AE=1,则BH 的长为………………………( )A .1;B .2;C .3; D .;A. B. C. D.第6题图 第7题图 第8题图7.如图,D ,E 分别为△ABC 的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE=48°,则∠APD 等于……………………………………………( )A .42°;B .48°;C .52°;D .58°;8. 如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合)且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是……………………( )A .52B .2;C .3D .53; 9. 已知四边形ABCD ,则下列说法中正确的是…………………………………( )A .若AB ∥CD ,AB=CD ,则四边形ABCD 是平行四边形;B .若AC ⊥BD ,AC=BD ,则四边形ABCD 是矩形;C .若AC ⊥BD ,AB=AD ,CB=CD 则四边形ABCD 是菱形;D .若AB=BC=CD=AD ,则四边形ABCD 是正方形;10.(2013•东营模拟)如图,已知点A 在反比例函数2y x =的图象上,点B ,C 分别在反比例函数4y x =的图象上,且AB ∥x 轴,AC ∥y 轴,若AB=2AC ,则点A 的坐标为……( )A .(1,2);B .(2,1); C.; D .23,3⎛⎫ ⎪⎝⎭;二、填空题:(本题共8小题,每小题3分,共24分)11.事件A 发生的概率为120,大量重复做这种试验,事件A 平均每100次发生的次数是 . 12.如图,平行四边形ABCD 的对角线相交于点O ,两条对角线的和为18,AD 的长为5,则△OBC 的周长为 .13.当m = 时,关于x 的方程213x m x +=--有增根. 14.如图,在菱形ABCD 中,对角线AC=6,BD=8,若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为 .15.若220x x --=21x x --+的值等于 .第12题图 第14题图第18题图 第16题图 第10题图16.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .17.(2015•泰州)点(a-1,1y )、(a+1,2y )在反比例函数k y x=(k >0)的图象上,若1y <2y ,则a 的范围是 .18.如图,在菱形ABCD 中,对角线AC=6,BD=8,点E 、F 分别是边AB 、BC 的中点,点P 在AC 上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是 .三、解答题:(本题共10大题,共76分)19.计算或化简:(本题满分15分)(123+; (2(22++;(3)1122x y x y x x y x +⎛⎫--- ⎪+⎝⎭;20. (本题满分5分)化简求值:22a b a ba b a b a b+⎛⎫-÷ ⎪-+-⎝⎭,其中1a =,1b =21. (本题满分5分)解方程:11322x x x-=---;22. (本题满分6分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ;(2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?23. (本题满分8分)(1)已知1x =1y =2222x y xy x y +--+的值.(2)已知113x y -=,求2322x xy y x xy y----的值.24. (本题满分6分)(2015•扬州)扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?25(本题满分6分)如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE=AF .(1)求证:BE=DF(2)连接AC 交EF 于点D ,延长OC 至点M ,使OM=OA ,连结EM 、FM ,试证明四边形AEMF 是菱形.26.(本题满分7分)(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA B,判断四边形OABC的形状并证明你的结论.27.(本题满分8分)如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(-4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数kyx的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.28.(本题满分10分)如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .参考答案一、选择题:1.D;2.D;3.B;4.D;5.A;6.C;7.B;8.A;9.A;10.B;二、填空题:11.5;12.14;13.-6;14.4.8;15.;16.52;17.11a-<<;18.5;三、解答题:19.(1)21;(3)1;20.112a b=+;21. 2x=;22.(1)20;(2)1150;(3)223;23.(1)7+2)95;24.100;25.略;26.(1)2yx=;(2)10x-<<或1x>;(3)四边形OABC是菱形.证明:∵A(-1,-2),∴CB∥OA且CB=OA,∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴n=1,∴C(2,1),OC=OA,∴四边形OABC是菱形.27.(1)(-6,4);(2)∵△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,∴D(-4+m),E(m,2),F(-6+m,4),∵点E、F都在反比例函数kyx=的图象上,∴2•m=4(-6+m),解得m=12,∴E点坐标为(12,2),F点的坐标为(6,4),∴k=12×2=24,∴反比例函数的解析式为24yx =,设直线EF的解析式为y=px+q,把E(12,2),F(6,4)代入得12264p qp q+=⎧⎨+=⎩,解得136pq⎧=-⎪⎨⎪=⎩,∴直线EF的解析式为163y x=-+;(3)∵当x=0时,163y x=-+=6,∴G点坐标为(0,6),∵四边形PGMF为平行四边形,∴N点为GF为中点,∴N点坐标为(3,5),设M点坐标为(x,0),∵N点为MP为中点,∴P点坐标为(6-x,10),∵P(6-x,10)在反比例函数24yx=图象上,∴10(6-x)=24,解得x=185,∴M点坐标为(185,0),P12,105⎛⎫⎪⎝⎭;28.(1)82t-;2t+;(2)(2)∵四边形ANCP为平行四边形时,CN=AP,∴6-t=8-(6-t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=。

【好卷】最新苏教版2015-2016学年八年级下数学期末考试试卷(有答案)

【好卷】最新苏教版2015-2016学年八年级下数学期末考试试卷(有答案)

2015-2016学年第二学期期终教学质量调研测试初二 数学(试卷满分130分,考试时间120分钟)一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的是量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1) 3.下列计算正确的是A.2= B.0-= C.4= D. 3=-4.下列各分式不能再化简的是A. 22x - B. 11m m -- C. 2xy y xy - D. 22a b a b -- 5.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A << D .()()()P B P A P C <<6.如图,点P 在直线外,以点P 为圆心,大于点P 到直线的举例为半径画圆弧,交直线于点A 、B ;保持半径不变,分别以点A 、B 为圆心画弧,两弧交于点Q ,则PQ ⊥.上述尺规作图的依据是 A .平行四边形的对边互相平行B .垂直平分线上的点到线段两个端点的举例相等C .矩形的领边互相垂直D .菱形的对角线互相垂直7.若1,1()A x y ,2,2()B x y 是函数1y x=-图像上的两个点,且12x x <,则12y y 与的大小关系是A .12y >yB .12y =yC .12y <yD .不能确定8. 如图,点小明在做选择题“如图,四边形ABCD 中, ∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC 的长为 多少”时遇到了困难.小明通过测量发现,试题给出的 图形中,AD=3cm,BC ≈1.05cm,且各角度符合条件,因 此小明猜想下列选项中最可能正确的是A .2B 1CD 19.如图,已知一次函数的图像与两坐标轴分别交于A 、B ,点C在x 轴上,AC=4,第一象限内有一个点P ,且PC ⊥x 轴于点C ,若以点P 、A 、C 为顶点的三角形与△OAB 相似,则点P 的坐标为 A .(4,8) B .(4,8)或(4,2) C .(6,8) D .(6,8)和(6,-2)10.如图,直线l 为正比例函数y 3x =的图像,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ,过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ……;按此作法继续下去,则点n B 的坐标是A .4,4)n nB .-1-14,4)n nC .-14,4)n nD .14,4)n n -二.填空题(本大题共8小题,每小题3分,共24分)11.函数y =x 的取值范围是____________ 12. 如图,将一个正方形地面等分成9块,其中标有1、2、3、4四 个小方格是空地,另外五个小方格是草坪。

海门市2015~2016学年八年级下期末考试数学试卷含答案

海门市2015~2016学年八年级下期末考试数学试卷含答案

2015~2016学年度第二学期期末测试八 年 级 数 学第一部分 必做题(满分100分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.下列实数中,为无理数的是【▲】A .0.2B .12C D .5-2.如图,一把矩形直尺沿直线断开并错位,点E 、D 、 B 、F 在同一条直线上,若∠ADE =128°,则∠DBC 的度数为【▲】 A .52° B .62°C .72°D .128° 3.已知点P (12-a ,a -1)在第一象限,则a 的取值范围在数轴上表示正确的是【▲】A .B .C. D .4.如果通过平移直线3x y =得到353+=x y 的图象,那么直线3xy =必须【▲】A .向左平移53个单位B .向右平移53个单位C .向上平移53个单位D .向下平移53个单位5.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数分别是【▲】A .3B .3.5C .4D .4.56.某运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相 同.设每次降价的百分率为x ,则下面所列的方程中正确的是【▲】 A .()25601+315x = B .()25601315x -= C .()256012315x -=D .()25601+315x =(第2题)7.如图,在△ABC 中,∠CAB =65°,将△ABC 在平 面内绕点A 旋转到△AB ′C′的位置,使CC ′∥AB , 则旋转角的度数为【▲】 A .35° B .40° C .50° D .65° 8.已知0≤x ≤12,那么函数y =-2x 2+8x -6的最大值是【▲】 A .-10.5 B .2 C .-2.5 D .-6 9.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度 骑回出发地.下列函数图象能表达这-过程的是【▲】10.若二次函数y =ax 2+bx +c (a >0)图象与x 轴的两交点坐标为(x 1,0)、(x 2,0),且0<x 1<x 2,且图象上有一点M (x 0,y 0)在x 轴下方,则下列判断错误的是【▲】A .a (x 0-x 1)(x 0-x 2)>0B .c >0C .b 2-4ac >0D .x 1<x 0<x 2 二、填空题(本大题共8小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.函数31-=x y 中自变量x 的取值范围是 ▲ . 12.在平面直角坐标系中,点A (-2,1)与点B 关于原点对称,则点B 的坐标为 ▲ . 13.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选 ▲ .14.如果x 2-x -1=(x +1)0,那么x 的值为 ▲ .15.如图,经过点B (-2,0)的直线y =kx +b 与直线y =4x +2相交于点A(-1,-2),则不等式4x +2<kx +b <0的解集为 ▲ .(第15题)A DB C (第7题)C ′B ′A CB16.如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋 转至点E ,过E 点作EH ⊥CD 于H ,则EH 的长为 ▲ . 三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题8分)(1)计算:()3201488113+--+-;(2)先化简,再求值:)(xx x x 11-÷-,其中13-=x .18.(本题6分)已知:y +2与3x 成正比例,且当x =1时,y 的值为4.(1)求y 与x 之间的函数关系式;(2)若点(1,a )、点(2,b )是该函数图象上的两点, 试比较a 、b 的大小,并说明理由.19.(本题6分)已知关于x 的一元二次方程2)4)(1(p x x =--,p 为实数.(1)求证:方程有两个不相等的实数根.(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)20.(本题6分)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形. (1)在图中标出旋转中心P 的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.(第16题)(第20题)21.(本题6分)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t 的户数占小区总户数的百分比; (2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计改小区5月份的用水量.22.(本题6分)已知□ABCD 中,直线m 绕点A 旋转,直线m 不经过B 、C 、D 点,过B 、C 、D 分别作BE ⊥m 于E , CF ⊥m 于F , DG ⊥m 于G .(1)当直线m 旋转到如图1位置时,线段BE 、CF 、DG 之间的数量关系是 ▲ _; (2)当直线m 旋转到如图2位置时,线段BE 、CF 、DG 之间的数量关系是 ▲ _; (3)当直线m 旋转到如图3的位置时,线段BE 、CF 、DG 之间有怎样的数量关系?请直接写出你的猜想,并加以证明.A CD E FGm图(1)ABCDE FG m图(3)(第22题)BCm图(2) ADE F G (第21题)23.(本题6分)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案: 方案一:降价8%,另外每套楼房赠送10000元装修基金; 方案二:降价10%,没有其他赠送.(1)请写出售价y (元/米2)与楼层x (1≤x ≤23,x 取整数)之间的函数关系式; (2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.24.(本题8分)如图,己知抛物线y =2ax bx c ++(a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)求抛物线的解析式;(2)在抛物线的对称轴x =-1上找-点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的-个动点,求使△BPC 为直角三角形的点P 的坐标.第二部分 附加题(满分20分)25.(本题4分)如图,抛物线y =ax 2+bx +c (a ≠0),过点(-1,0)和点(0,-3),且顶点在第四象限,设P = a +b +c ,则P 的取值范围是 ▲ .26.(本题4分)关于x 的一元二次方程02722=--x m mx 的一个根为2,则22-+m m= ▲ _.27.(本题6分)已知242210,210a a b b +-=--=,且1-ab 2 ≠0,求322)13(aa b ab +-+的值.28.(本题6分)如果抛物线y =ax 2+bx +c 过定点M (1,1),则称次抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y =2x 2+3x -4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y =-x 2+2bx +c +1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.(第25题)2015~2016学年度第二学期期末测试八年级数学参考答案与评分标准 第一部分 必做题(满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.A 3.D 4.C 5.A 6. B 7. C 8. C 9. B 10. A 二、填空题(本大题共6小题,每小题3分,共18分)11.x ≠3 12.( 2,-1) 13.乙 14.2 15.-2<x <-1 16.8715 三、解答题(本大题共10小题,共64分) 17.(本题8分)解:(1)原式=3+1-9+2…………(3分)(对2个1分,3个2分,4个3分)=-3……………………(4分)(2)原式=xx x x 112-÷-………………(1分) =)1)(1(1+-⋅-x x x x x …………(2分) =11+x ……………………………(3分) 当13-=x 时,原式=1131+-=31 (4分) =33(4分) 18.(本题6分)解:(1)∵y +2与3x 成正比例∴设y +2=k ×3x∵当x =1时,y =4∴4+2=k ×3∴k =2………………………………(3分) ∴y =6x -2;………………………(4分) (2)当x =1时,a =4;当x =2时,b =10∴a <b .……………………………(6分)19.(本题6分)解:(1)化简方程,得:225(4)0x x p -+-=△=()()22254494pp---=+ ……………………(2分)P 为实数,2p ≥0,∴294p +>0即△>0,∴方程有两个不相等的实数根………………(3分) (2)当p 为0,2,-2时,方程有整数解。

南通海门市东洲中学八年级下期末模拟考试试卷(1)

南通海门市东洲中学八年级下期末模拟考试试卷(1)

初二数学期末试卷姓名一.选择题(共10小题,每小题2分,满分20分)1.方程x2﹣2=0的解为 ( )A.2 B.C.2与﹣2 D.与﹣2.下列图形中,是中心对称图形的是( )A.B.C.D.3.若在实数范围内有意义,则x的取值范围是()A.x≥ B.x≥﹣ C.x> D.x≠.4.在下列二次函数中,其图象对称轴为x=﹣2的是( )A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)25.方程(m+2)x|m|+mx﹣8=0是关于x的一元二次方程,则( )A.m=±2B.m=2 C.m=﹣2 D.m≠±26.将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( ) A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x﹣2)2﹣37.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A.平行四边形B.矩形 C.正方形D.菱形8.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B. 5 C.D. 3 9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()(第9题图)(第10题图)A.x≤3B.x≥3C.x≤ D.x≥10.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )A.①②④ B.③④ C.①③④ D.①②二.填空题(共8小题,每小题2分,满分16分)11.△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是__________ 三角形.12.将二次函数y=x2﹣4x+5化为y=(x﹣h)2+k的形式,那么h+k=__________.13.某班有一人患了流感,经过两轮传染后,班上有49人被传染患上了流感,按这样的传染速度,若4人患了流感,则第一轮传染后患上流感的人数是__________.14.已知一次函数y=kx﹣k,若y随x的增大而减小,则该函数的图象不经过第象限.15.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是__________.16.根据图中的抛物线可以判断:当x__________时,y随x的增大而减小;当x=__________时,y有最小值.(第16题图)(第18题图)17.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是__________.18.如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A.O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b的值为__________.三.解答题(共10小题,满分64分)19.解下列方程:(本题6分)①x2﹣4x﹣6=0;②3x(x+2)=5(x+2).20.(本题6分)如图所示,在平面直角坐标系中,点A.B的坐标分别为(4,2)和(3,0),将△OAB绕原点O按逆时针方向旋转90°得到△OA′B′.①画出△OA′C;②点A′的坐标为__________;③求BB′的长.(第20题图)(第22题图)21.(本题6分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.22.(本题6分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A 骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?23.(本题6分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.24.(本题6分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.25.(本题6分)甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6(1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.26.(本题6分)某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?27.(本题8分)如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在l2上存在异于点C的另一点P,使得△ADP与△ADC面积相等,求点P的坐标.28.(本题8分)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x 刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O.A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.。

【最新】2015~2016学年苏科版第二学期初二数学期末试卷有答案

【最新】2015~2016学年苏科版第二学期初二数学期末试卷有答案


x1
14. 当 x
2 时,分式
x
b 无意义;当
x= 4 时,此分式的值为
0,则 a+ b= _______.
xa
Байду номын сангаас
15. 如图,在菱形 ABCD中,对角线 AC 与 BD 相交于点 O,OE⊥ AB,垂足为 E,若∠ ADC=140°,则∠ AOE
的大小为

第 15 题图
16. 若关于 x 的分式方程 m 1 2 的解为正数,则 m的取值范围是
2015~ 2016 学年第二学期初二数学期末试卷
一、选择题 ( 本题共 10 小题,每小题 3 分,共 30 分) 1. 下列约分中, 正确的是 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
x6 A . x2
x3 ;
x B.
y
0;
xy
xy 1
C
. x 2 xy
; x
2xy2 1

x1
14. 当 x
2 时,分式
x
b 无意义;当
x= 4 时,此分式的值为
0,则 a+ b= _______.
xa
15. 如图,在菱形 ABCD中,对角线 AC 与 BD 相交于点 O,OE⊥ AB,垂足为 E,若∠ ADC=140°,则∠ AOE
的大小为

第 15 题图
16. 若关于 x 的分式方程 m 1 2 的解为正数,则 m的取值范围是
“不确定” )
12. 若反比例函数 y m 1 x 2 m2 的图像在第二、四象限,则 m 的值为

1
13. 若代数式
在实数内范围有意义,则 x 的取值范围为

南通市八年级下学期数学期末考试试卷

南通市八年级下学期数学期末考试试卷

南通市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2015八下·苏州期中) 下列图形中既是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 平行四边形C . 菱形D . 等腰梯形2. (2分)不等式的解集是()A .B .C .D .3. (2分) (2020七下·鼎城期中) 下列从左到右的变形,属于因式分解的是().A .B .C .D .4. (2分) (2019九下·象山月考) 如果n边形的内角和是它外角和的4倍,则n等于()A . 7B . 8C . 10D . 95. (2分) (2017八下·林甸期末) 若分式中的a、b的值同时扩大到原来的3倍,则分式的值()A . 不变B . 是原来的3倍C . 是原来的6倍D . 是原来的9倍6. (2分)下列四个条件,能够证明两个直角三角形全等的是()A . 两条边分别对应相等B . 一条边、一个锐角分别对应相等C . 两个锐角分别对应相等D . 两条直角边分别对应相等7. (2分) (2020九上·玉环期末) 如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为 .若,求动点运动路径的长为()A .B .C .D .8. (2分)已知不等式:①x>1,②x>4,③x<2,④2-x>-1,从这四个不等式中取两个,构成正整数解是2的不等式组是()A . ①与②B . ②与③C . ③与④D . ①与④9. (2分)如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C 的度数为()A . 50°B . 60°C . 70°D . 80°10. (2分)(2016·定州模拟) 下列结论正确的是()A . x2﹣2是二次二项式B . 单项式﹣x2的系数是1C . 使式子有意义的x的取值范围是x>﹣2D . 若分式的值等于0,则a=±111. (2分) (2020九下·丹江口月考) 观察下面一列数:−1,2,−3,4,−5,6,−7…将这列数排成下列形式:记为第i行第列的数,如 =4,那么是()A . 56B . 72C . 88D . 9812. (2分)如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF=b,则a、b满足()A . a=2b+1B . a=2b+2C . a=2bD . a=2b+3二、填空题 (共4题;共8分)13. (1分)(2020·攀枝花) 因式分解:a-ab2=________.14. (5分)(2019·朝阳模拟) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣ x上,则点B与其对应点B′间的距离为________.15. (1分)若关于x的分式方程 + =2有增根,则m的值为________.16. (1分) (2016八上·自贡期中) 等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为________.三、解答题 (共7题;共60分)17. (5分)解不等式组:并求它的整数解.18. (5分)(2018·武进模拟) 解方程和不等式组:(1)(2)19. (5分)(2019·葫芦岛) 先化简,再求值:÷(),其中a=()﹣1﹣(﹣2)0.20. (10分)(2020·河南) 如图,抛物线与x轴正半轴,y轴正半轴分别交于点,且点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点为抛物线上两点(点M在点N的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点之间(含点 )的一个动点,求点Q的纵坐标的取值范围.21. (10分)(2017·黑龙江模拟) 某商品经销店欲购进A、B两种纪念品,用160元购进的A种纪念品与用240元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.(1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价24元,B种纪念品每件售价35元,这两种纪念品共购进1 000件,这两种纪念品全部售出后总获利不低于4 900元,求A种纪念品最多购进多少件.22. (15分)如图,方格纸中每个小正方形的边长均为1,正方形ABCD和△EFG的顶点都在小正方形的顶点上.(1)在图中画出△EFG关于直线AC对称的△EMN(点F的对称点M,点G的对称点为N)(2)请直接写出正方形ABCD与△EMN重叠部分的面积.23. (10分)(2019·河南模拟) 如图,已知二次函数y= +bx+c的图象交x轴于点A,B,交y轴于点C(0,﹣2),一次函数y= x+n的图象经过A,C两点,点P为直线AC下方二次函数图象上的一个动点,直线BP交线段AC于点E,PF⊥AC于点F.(1)求二次函数的解析式;(2)求的最大值及此时点P的坐标;(3)连接CP,是否存在点P,使得Rt△CPF中的一个锐角恰好等于2∠BAC?若存在,请直接写出点P的坐标;否则,说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共60分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

15-16学年第二学期八年级期末数学试卷及参考答案

15-16学年第二学期八年级期末数学试卷及参考答案

2015-2016学年度第二学期期末质量监测八 年 级 数 学 试 题(时间:100分钟 总分:100分)温馨提示:1.亲爱的同学,欢迎你参加本次考试,本次考试满分100分,时间100分钟,祝你答题成功!2.数学试卷共6页,共22题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题. 一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题意的,请把你认 为正确的选项前字母填写在该题后面的括号中.1. 在数﹣,0,1,中,最大的数是( )A .B .1C .0D . 2. 下列长度的三条线段能组成直角三角形的是( ) A .4,5,6 B .2,3,4 C .1,1, D .1,2,23.如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4B .3C .D .2第3题 第4题4. 如图,在 ABCD 中,对角线AC 、BD 相交于点O ,AC=10,BD=6,AD=4,则 ABCD 的面积是( ) A .12 B .12C .24D .30 5.函数y=2x ﹣1的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6. 若=b ﹣a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b7. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,C.中位数40 D.这10户家庭月用电量共205度8. 两个一次函数y=ax﹣b,y=bx﹣a(a,b为常数),它们在同一直角坐标系中的图象可能是()A.B.C.D.9. 如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm第9题第10题10. 甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法:①a=4.5;②甲的速度是60千米/时;③乙出发80分钟追上甲;④乙刚到达货站时,甲距B地180千米;其中正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6小题,每小题3分,共18分) 11. 若二次根式有意义,则x 的取值范围是 .12. 已知a 、b 、c 是的△ABC 三边长,且满足关系+|a ﹣b|=0,则△ABC 的形状为 .13. 如图,在线段AB 上取一点C ,分别以AC 、BC 为边长作菱形ACDE 和菱形BCFG ,使点D 在CF 上,连接EG ,H 是EG 的中点,EG=4,则CH 的长是 . 14. 在△ABC 中,∠ABC=30°,AB=8,AC=2,边AB 的垂直平分线与直线BC 相交于点F ,则线段CF 的长为 .第13题 第16题x 与方差S 2: 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 . 16.如图,已知正方形ABCD ,以AB 为边向外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD 的度数. 三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)计算:(1)﹣÷(2)(2﹣3)(3+2)18. (本小题满分8分)如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.19.(本小题满分8分)分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.20. (本小题满分8分)某校为了解八年级女生体能情况,抽取了50名八年级女学生进行“一分钟仰卧起坐”测试.测(1)通过计算得出这组数据的平均数是40,请你直接写出这组数据的众数和中位数,它们分别是、;(2)被抽取的八年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是39次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩;(3)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为38次,已知该校八年级有女生250名,试估计该校八年级女生“一分钟仰卧起坐”的合格人数是多少?21. (本小题满分9分)A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.(2)设总运费为W元,请写出W与x的函数关系式,并直接写出x的取值范围.(3)怎样调送荔枝才能使运费最少?如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其它不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.2015-2016学年度第二学期期末质量监测八年级数学参考答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)二、填空题:(本大题共6小题,每小题3分,共18分)11. x≥﹣1 12.等腰直角三角形 13. 214.或 15.甲 16. 60°三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)(1)解:原式=2﹣…………………………………………………3分=…………………………………………………………………4分(2)解:原式=(2)2﹣32…………………………………………2分=﹣1……………………………………………………………4分18.(本小题满分8分)解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:,解得:k=﹣1,b=﹣3.…………………………………………………………………5分(2)x>﹣3.……………………………………………………………………………8分19.(本小题满分8分)解:(每小题4分,满分8分)20.(本小题满分8分)解:(1)38 ;38 ………………………………………………………………………2分(2)尽管低于平均数,但高于众数和中位数,所以还有比较好的;………………4分(3)合格人数为:250×80%=200(人).………………………………………………8分21.(本小题满分9分)(1)如下表:………………3分(2)根据题意得,W=50x+30(13﹣x)+60(14﹣x)+45(x﹣1)=5x+1185,……5分由,解得:1≤x≤13.……………………………………………………………………………6分(3)在函数W=5x+1185中,k=5>0,∴W随x的增大而增大,当x=1时,W取得最小值,最小值为5×1+1185=1190.此时A调往甲地1吨,调往乙地12吨,B调往甲地13吨.…………………………9分22.(本小题满分11分)解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;………………………………………… 3分(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN…………………………………………………………………………… 6分(3)解:作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=1﹣x,……………………………………………………………… 10分x的取值范围为0≤x≤.………………………………………………………… 11分。

海门初二期末数学试卷

海门初二期末数学试卷

一、选择题(每题3分,共30分)1. 下列数中,是负数的是()A. -3.5B. 0.3C. 3.5D. -22. 下列代数式中,正确的是()A. 2a + 3b = 5B. 4x - 2y = 8C. 5m - n = 10D. 3p + 2q = 03. 若x = 2,则代数式2x - 3的值为()A. -1B. 1C. 3D. 54. 在下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 圆形5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 56. 若一个数的平方等于25,则这个数可能是()A. 5B. -5C. 5或-5D. 07. 在下列运算中,结果是正数的是()A. (-2) × (-3)B. (-2) × 3C. (-3) × (-2)D. 2 × (-3)8. 若一个三角形的两边长分别为3和4,那么这个三角形的第三边长可能是()A. 5B. 6C. 7D. 89. 下列方程中,x的值为-2的是()A. 2x + 5 = 1B. 3x - 7 = -10C. 4x + 2 = 0D. 5x - 3 = 710. 下列图形中,中心对称图形的是()A. 矩形B. 正方形C. 三角形D. 圆形二、填空题(每题5分,共25分)11. 0.5的倒数是__________。

12. 3a + 4b = 10,若a = 2,则b =__________。

13. 2x - 3 = 7,解得x =__________。

14. 4x + 5 = 0,解得x =__________。

15. 若x = 5,则代数式x^2 - 3x + 2的值为__________。

三、解答题(共50分)16. (10分)计算下列各式的值:(1)-2 × (-3) + 5 × (-1) - 4(2)(2/3) × (-9) + (-5/6) × 1217. (10分)解下列方程:(1)3x - 2 = 5(2)4y + 3 = 1118. (10分)已知:a + b = 7,ab = 12,求a^2 + b^2的值。

江苏省海门市八年级数学下学期期末考试试题新人教版

江苏省海门市八年级数学下学期期末考试试题新人教版

初中期末试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1 A .4B .±2C .2D .2-2.计算23x x -⋅的结果是【▲】A .5x B .5x - C .6x D .6x - 3.如图,一把矩形直尺沿直线断开并错位,点E 、D 、 B 、F 在同一条直线上,若∠ADE =128°,则∠DBC 的度数为【▲】A .52°B .62°C .72°D .128°4.下列计算中,正确的是【▲】 A .523=+ B .327=÷3 C .6)32(2=D .0)3()3(22=+-5.如图,在平面直角坐标系中,平行四边形OABC 的顶点为O (0,0)、A (1,2)、B (4,0), 则顶点C 的坐标是 【▲】A .(-3,2)B .(5,2)C .(-4,2)D .(3,-2)6.某小组7 他们捐书的册数分别是(单位:本): 10,12,10,13,10,15,17,这组数据的众数和中位数分别是【▲】A .10,12B .10,13C .10,10D .17,10 7.若矩形对角线相交所成钝角为120°,较短的边长为4cm ,则对角线的长为【▲】A .2cmB . 4cmC . 6cmD . 8cm 8.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为【▲】 A .1 B .2 C .-1 D .-2 9.下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是【▲】 A .菱形 B .矩形 C .等腰梯形10.如图,点P 在y 轴正半轴上运动,点C 在x 轴上运(第3题)动,过点P 且平行于x 轴的直线分别交函数4y x=-和2y x=于A 、B 两点,则△ABC 的面积等于【▲】A .3B .4C .5D .6二、填空题:本大题共8小题,每小题2分,共16分. 不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11有意义,x 的取值范围是 ▲ . 12.如图,在四边形ABCD 中,已知AB 不平行CD ,∠ABD =∠ACD ,请你添加一个条件: ▲ , 使得加上这个条件后能够推出AD ∥BC 且AB =CD .13.已知双曲线xky =经过点(2,3),如果A (a 1,b 1), B (a 2,b 2)两点在该双曲线上,且a 1<0<a 2, 那么b 1 ▲ b 2.14.若直角三角形的两条直角边的长分别为162+和1-62, 则斜边长为 ▲ .15.如图,在菱形ABCD 中,E 、F 分别是AC 、CD 的中点,若EF 的长是2cm ,则菱形ABCD 的周长是 ▲ _cm .16.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为 ▲ m .17.若将7个数按照从小到大的顺序排成一列,中间的数恰是这7个数的平均数,前4个 数的平均数是25,后4个数的平均数是35,则这7个数的和为 ▲ .18.在直角坐标系中,已知两点A (8,3)-、B (4,5)-以及动点C (0,)n 、D (,0)m ,则当以点A 、 B 、C 、D 为顶点的四边形的周长最小时,比值mn为 ▲ . 三、解答题:本大题共10小题,共64分. 请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 19.(本题9分)计算: (1))313212()2750(--+;(2)2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭.20.(本题6分) 解方程:(1)0142=+-x x ; (2)(2)20x x x -+-= . 21.(本题6分)(第15题) BCDAO(第12题)如图已知四边形ABCD 是平行四边形,AC 与BD 相交于O 点,且BC ⊥AC ,AB =8,∠ABC =30°,(1)求AD 和BD 的长;(2)求平行四边形ABCD 的面积.22.(本题6分)某中学组织全校3200名学生进行了“法律法规”相关知识竞赛.为了解本次知识竞赛的成绩情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图.请根据以上提供的信息,解答下列问题:(1)则a = ▲ ,b = ▲ ,并补全频数分布直方图; (2)上述学生成绩的中位数落在哪一组范围内?(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校3 200名学生中约有多少名获奖?23.(本题5分)某汽车油箱的容积为70升,小王把油箱注满油后准备驾驶汽车从县城到300千米外的省城接待客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满油后,汽车能够行使的总路程y (单位:千米)与平均耗油量x (单位: 升/千米)之间有怎样的函数关系? (2)如果小王以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返程时由于下雨, 小王降低了车速,此时每行驶1千米的耗油量增加了一倍,如果小王一直以此速 度行驶,邮箱里的油是否够回到县城?如果不够用,至少还需加多少油?24.(本题6分)如图,△ABC 中,AB =AC ,AD ,CD 分别是 △ABC 两个外角的平分线。

江苏省南通市八年级下学期期末考数学试题

江苏省南通市八年级下学期期末考数学试题

江苏省南通市八年级下学期期末考数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016九上·九台期末) 若二次根式有意义,则x的取值范围是()A . x<2B . x≠2C . x≤2D . x≥22. (2分) (2018七上·抚州期末) 某校七年级学生总人数为800,其男女生所占比例如图所示,则该校七年级男生人数为()人.A . 500B . 400C . 384D . 4163. (2分)下列成语或词语所反映的事件中,可能性大小最小的是()A . 瓮中捉鳖B . 守株待兔C . 旭日东升D . 夕阳西下4. (2分)(2019·容县模拟) 某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的须数分布直方图.根据图示计算,仰卧起坐次数在15-20次之间的频率是()A . 0.1B . 0.175. (2分)(2019·东台模拟) 如图,正方形ABCD的顶点A、D分别在x轴、y轴的正半轴上,若反比例函数y= (x>0)的图象经过另外两个顶点B、C,且点B(6,n),(0<n<6),则k的值为()A . 18B . 12C . 6D . 26. (2分)如果分式中的x和y都扩大3倍,那么分式的值()A . 扩大3倍B . 不变C . 缩小3倍D . 缩小6倍7. (2分)若关于x的方程产生增根,则m是()A . -1B . 1C . -2D . 28. (2分)(2017·赤峰) 如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2 ,则∠A=()C . 60°D . 30°二、填空题 (共10题;共12分)9. (3分)某中学要了解八年级学生的视力情况,在全校八年级学生中抽取了100名进行检测,在这个问题中,总体是________,样本是________,样本容量是________.10. (1分)小红和小丽在操场上做游戏,她们]先在地上画出一个半径30cm的圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是________事件.(填“不确定”、“不可能”或“必然”)11. (1分) (2019八下·瑞安期中) 当时,二次根式的值是________.12. (1分) (2017八下·长泰期中) 化简: =________.13. (1分)已知点P(1,2)在反比例函数的图象上,根据图象判断,当x>1时,y的取值范围是________14. (1分)如图,A,B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若OD=2BD,△ADO的面积为1,则k的值为________.15. (1分)(2018·高安模拟) 如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为________.16. (1分)如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是________.17. (1分)如图,在平行四边形ABCD中AB的长为10厘米,对角线AC和BD的长分别是16厘米和12厘米,则平行四边形ABCD的面积为 ________.18. (1分)(2019·沈阳模拟) 如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM= HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为________.三、解答题 (共9题;共100分)19. (15分) (2019八下·广安期中) 计算题:(1)(2 )(2 )(2)(4 )(3)20. (10分)(2011·扬州) 计算:(1) |﹣ |﹣(﹣2011)0+4÷(﹣2)3(2).21. (10分) (2017八上·贵港期末) 解方程(1)解分式方程: =3+(2)解不等式组:.22. (5分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t 秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)请用含t的代数式表示出点D的坐标;(2)求t为何值时,△DPA的面积最大,最大为多少?(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;(4)请直接写出随着点P的运动,点D运动路线的长.23. (15分)(2020·台州) 新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种. 为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如下表(数据分组包含左端值不包含右端值)(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0. 8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0. 4以下的共有多少人?24. (10分)(2017·永康模拟) 探究:如图1,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数y= (k>0,x>0)的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x 轴于点F,CE与DF交于点G(a,b).(1)若,请用含n的代数式表示;(2)求证:AC=BD;应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数y= (k>0,x>0)的图象交于点C,D两点(点C在点D的左边),已知,△OBD的面积为1,试用含m的代数式表示k.25. (5分)(2017·罗平模拟) 罗平、昆明两地相距240千米,甲车从罗平出发匀速开往昆明,乙车同时从昆明出发匀速开往罗平,两车相遇时距罗平90千米,已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.26. (15分) (2017八下·海安期中) 如图,正方形ABCD中,对角线AC上有一点P,连接BP、DP,过点P 作PE⊥PB交CD于点E,连接BE.(1)求证:BP=EP;(2)若CE=3,BE=6,求∠CPE的度数;(3)探究AP、PC、BE之间的数量关系,并给予证明.27. (15分)(2017·中山模拟) 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共12分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共100分)19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、26-1、26-2、26-3、27-1、27-2、27-3、。

海门初二数学期末试卷答案

海门初二数学期末试卷答案

一、选择题(每题2分,共20分)1. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a - 2 < 2b答案:C2. 下列分数中,分子分母互质的是()A. $\frac{4}{9}$B. $\frac{6}{15}$C. $\frac{8}{12}$D. $\frac{10}{14}$答案:A3. 若一个长方形的周长为20厘米,面积为24平方厘米,则该长方形的长和宽分别是()A. 6厘米,4厘米B. 8厘米,3厘米C. 4厘米,6厘米D. 3厘米,8厘米答案:A4. 下列图形中,具有对称轴的是()A. 等腰三角形B. 正方形C. 等边三角形D. 梯形答案:B5. 若$\frac{a}{b} = \frac{c}{d}$,且a、b、c、d都不为0,则下列等式中错误的是()A. a = cB. b = dC. ad = bcD. $\frac{a}{c} = \frac{b}{d}$答案:D6. 下列数中,不是整数的是()A. -2B. 3.5C. 0D. 100答案:B7. 若直角三角形的两条直角边分别为3厘米和4厘米,则斜边的长度是()A. 5厘米B. 6厘米C. 7厘米D. 8厘米答案:A8. 下列方程中,x的值是2的是()A. 2x + 1 = 5B. 3x - 2 = 7C. 4x + 3 = 11D. 5x - 4 = 9答案:A9. 下列数中,是质数的是()A. 25B. 27C. 29D. 31答案:C10. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形答案:A二、填空题(每题2分,共20分)11. 1.5 × 0.25 = _______12. $\frac{1}{3} + \frac{2}{9} = \frac{______}{9}$13. 5 × 0.6 = _______14. $\frac{4}{5} - \frac{2}{5} = \frac{______}{5}$15. 7 + 3.14 = _______16. $\frac{3}{4} \times \frac{2}{3} = \frac{______}{4}$17. 9 ÷ 3 = _______18. $\frac{5}{6} \div \frac{1}{2} = \frac{______}{6}$19. 0.3 × 100 = _______20. $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{______}{4}$三、解答题(每题10分,共40分)21. 解方程:3x - 2 = 1122. 计算下列图形的面积:一个长方形的长为6厘米,宽为4厘米。

【精品】海门市八年级下期末考试数学试卷有答案

【精品】海门市八年级下期末考试数学试卷有答案

第二学期期末测试 八 年 级 数 学注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,分两部分,:必做题(满分100分),附加题(满分20分)考试时间为120分钟.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.下列实数中,为无理数的是【▲】A .0.2B .12C .2D .5-2.如图,一把矩形直尺沿直线断开并错位,点E 、D 、 B 、F 在同一条直线上,若∠ADE =128°,则∠DBC 的度数为【▲】 A .52° B .62°C .72°D .128°3.已知点P (12-a ,a -1)在第一象限,则a 的取值范围在数轴上表示正确的是【▲】A .B .C .D .4.如果通过平移直线3x y =得到353+=x y 的图象,那么直线3xy =必须【▲】 A .向左平移53个单位 B .向右平移53个单位C .向上平移53个单位D .向下平移53个单位5.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数分别是【▲】 A .3 B .3.5 C .4 D .4.56.某运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相 同.设每次降价的百分率为x ,则下面所列的方程中正确的是【▲】A .()25601+315x =B .()25601315x -=C .()256012315x -= D .()25601+315x =7.如图,在△ABC 中,∠CAB =65°,将△ABC 在平 面内绕点A 旋转到△AB ′C′的位置,使CC ′∥AB , 则旋转角的度数为【▲】 A .35° B .40°(第2题) 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 C ′B ′ACBC .50°D .65° 8.已知0≤x ≤12,那么函数y =-2x 2+8x -6的最大值是【▲】 A .-10.5 B .2 C .-2.5 D .-6 9.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度 骑回出发地.下列函数图象能表达这-过程的是【▲】10.若二次函数y =ax 2+bx +c (a >0)图象与x 轴的两交点坐标为(x 1,0)、(x 2,0),且0<x 1<x 2,且图象上有一点M (x 0,y 0)在x 轴下方,则下列判断错误的是【▲】 A .a (x 0-x 1)(x 0-x 2)>0 B .c >0 C .b 2-4ac >0 D .x 1<x 0<x 2二、填空题(本大题共8小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.函数31-=x y 中自变量x 的取值范围是 ▲ . 12.在平面直角坐标系中,点A (-2,1)与点B 关于原点对称,则点B 的坐标为 ▲ . 13.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选 ▲ . 甲 乙 丙 丁平均数 80 85 85 80 方差 42 42 54 5914的值为 ▲ .15.如图,经过点B (-2,0)的直线y =kx +b 与直线y =4x +2相交于点A (-1,-2),则不等式4x +2<kx +b <0的解集 为 ▲ .16.如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋 转至点E ,过E 点作EH ⊥CD 于H ,则EH 的长为 ▲ . 三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)(第16题) (第15题)50.411150.5Ot (分) v (千米/分)A 50.411150.5O t (分)v (千米/分)(千米)521115O t (分) 3D s (千米)521115O t (分)s B C (第7题)17.(本题8分)(1)计算:()3201488113+--+-;(2)先化简,再求值:)(xx x x 11-÷-,其中13-=x .18.(本题6分)已知:y +2与3x 成正比例,且当x =1时,y 的值为4.(1)求y 与x 之间的函数关系式;(2)若点(1,a )、点(2,b )是该函数图象上的两点, 试比较a 、b 的大小,并说明理由.19.(本题6分)已知关于x 的一元二次方程2)4)(1(p x x =--,p 为实数.(1)求证:方程有两个不相等的实数根.(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)20.(本题6分)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形. (1)在图中标出旋转中心P 的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.21.(本题6分)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t 的户数占小区总户数的百分比; (2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计改小区5月份的用水量.(第20题)22.(本题6分)已知□ABCD 中,直线m 绕点A 旋转,直线m 不经过B 、C 、D 点,过B 、C 、D 分别作BE ⊥m 于E , CF ⊥m 于F , DG ⊥m 于G .(1)当直线m 旋转到如图1位置时,线段BE 、CF 、DG 之间的数量关系是 ▲ _; (2)当直线m 旋转到如图2位置时,线段BE 、CF 、DG 之间的数量关系是 ▲ _; (3)当直线m 旋转到如图3的位置时,线段BE 、CF 、DG 之间有怎样的数量关系?请直接写出你的猜想,并加以证明.23.(本题6分)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案: 方案一:降价8%,另外每套楼房赠送10000元装修基金; 方案二:降价10%,没有其他赠送.(1)请写出售价y (元/米2)与楼层x (1≤x ≤23,x 取整数)之间的函数关系式; (2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.24.(本题8分)如图,己知抛物线y =2ax bx c ++(a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)求抛物线的解析式;(2)在抛物线的对称轴x =-1上找-点M ,使点M 到点A 的距离与到点C 的距离之和最ACDE F Gm图(1)ABCDE FG m 图(3)(第22题)BCm图(2) ADE F G (第21题)小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的-个动点,求使△BPC 为直角三角形的点P 的坐标.第二部分 附加题(满分20分)25.(本题4分)如图,抛物线y =ax 2+bx +c (a ≠0),过点(-1,0)和点(0,-3),且顶点在第四象限,设P = a +b +c ,则P 的取值范围是 ▲ .26.(本题4分)关于0222=--x m 的一个根为2,则22-+m m= ▲ _.27.(本题6分)已知242210,210a a b b +-=--=,且1-ab 2 ≠0,求322)13(aa b ab +-+的值.28.(本题6分)如果抛物线y =ax 2+bx +c 过定点M (1,1),则称次抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y =2x 2+3x -4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y =-x 2+2bx +c +1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.八年级数学参考答案与评分标准 第一部分 必做题(满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.A 3.D 4.C 5.A 6. B 7. C 8. C 9. B 10. A 二、填空题(本大题共6小题,每小题3分,共18分)11.x ≠3 12.( 2,-1) 13.乙 14.2 15.-2<x <-1 16.8715 三、解答题(本大题共10小题,共64分) 17.(本题8分)解:(1)原式=3+1-9+2…………(3分)(对2个1分,3个2分,4个3分)=-3……………………(4分)(2)原式=x x x x 112-÷-………………(1分) = )1)(1(1+-⋅-x x xx x …………(2分) =11+x ……………………………(3分)当13-=x 时,原式=1131+-=31(4分) =33 (4分)18.(本题6分)解:(1)∵y +2与3x 成正比例∴设y +2=k ×3x∵当x =1时,y =4∴4+2=k ×3∴k =2………………………………(3分) ∴y =6x -2;………………………(4分) (2)当x =1时,a =4;当x =2时,b =10∴a <b .……………………………(6分)19.(本题6分)解:(1)化简方程,得:225(4)0x x p -+-=△=()()22254494pp---=+ ……………………(2分)P 为实数,2p ≥0,∴294p +>0即△>0,∴方程有两个不相等的实数根………………(3分) (2)当p 为0,2,-2时,方程有整数解。

海门初二期末数学试卷

海门初二期末数学试卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.3B. -2/5C. √4D. π2. 已知a、b是方程2x^2 - 3x + 1 = 0的两根,则a+b的值为()A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 如果a+b=5,ab=4,那么a^2 + b^2的值为()A. 25B. 24C. 23D. 225. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x6. 下列各数中,能被3整除的是()A. 123B. 456C. 789D. 10117. 在三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°8. 已知等腰三角形ABC中,AB=AC,且AB=10cm,则底边BC的长度为()A. 5cmB. 10cmC. 15cmD. 20cm9. 下列各数中,不是质数的是()A. 11B. 15C. 17D. 1910. 若函数f(x) = 2x + 1在x=3时的值为7,则函数f(x)在x=1时的值为()A. 3B. 4C. 5D. 6二、填空题(每题5分,共20分)11. 计算:-3 - (-5) = _______12. 解方程:3x - 5 = 413. 简化表达式:3(a - b) + 2(a + b) = _______14. 若等腰三角形ABC中,AB=AC,且底边BC=8cm,则腰AB的长度为 _______cm。

15. 已知函数f(x) = x^2 - 2x + 1,求f(2)的值。

三、解答题(每题10分,共40分)16. (10分)已知等腰三角形ABC中,AB=AC,且底边BC=8cm,求顶角A的度数。

江苏初二初中数学期末考试带答案解析

江苏初二初中数学期末考试带答案解析

江苏初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.(2015秋•海门市期末)已知∠α=32°,则∠α的余角为()A.58°B.68°C.148°D.168°3.(2015秋•海门市期末)使式子有意义的x的范围是()A.x≠2B.x≤﹣2C.x≥2D.x≤24.(2015秋•海门市期末)下列运算不正确的是()A.x6÷x3=x3B.(﹣x3)4=x12C.x2•x3=x5D.x3+x3=x65.(2015秋•海门市期末)化简+的结果是()A.x+2B.x﹣1C.﹣x D.x6.(2015秋•海门市期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.7.(2015秋•海门市期末)下列四组数据中,“不能”作为直角三角形的三边长的是()A.3,4,6B.5,12,13C.6,8,10D.,,28.(2015秋•海门市期末)如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A.30°B.36°C.45°D.20°9.(2015秋•海门市期末)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形10.(2015秋•海门市期末)已知a﹣b=3,b+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为()A.4B.﹣4C.3D.﹣3二、填空题1.(2015秋•海门市期末)数0.000001用科学记数法可表示为.2.(2013•泸州)分解因式:x2y﹣4y= .3.(2015秋•海门市期末)一次体检中,某班学生视力结果如下表:从表中看出全班视力数据的众数是.4.(2015秋•海门市期末)计算:(﹣2a﹣2b3)÷(a3b﹣1)3= .5.(2015秋•海门市期末)已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是.6.(2015秋•海门市期末)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,AC的长为12cm,则△BCE的周长等于 cm.7.(2015秋•海门市期末)若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是.8.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).9.(2015秋•海门市期末)如图,在3×3的正方形网格(每个小正方形的边长均为1)中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴(水平线为横轴),建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.(1)原点是(填字母A,B,C,D );(2)若点P在3×3的正方形网格内的坐标轴上,且与四个格点A,B,C,D,中的两点能构成面积为1的等腰直角三角形,则点P的坐标为(写出可能的所有点P的坐标)三、解答题1.(2015秋•海门市期末)计算:(1)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|(2)[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y.2.(2015秋•海门市期末)解方程组:.3.(2011•南漳县模拟)已知a﹦(+),b﹦(﹣),求a2﹣ab+b2的值.4.(2015秋•海门市期末)先化简,再求值:(﹣x+1),其中x为﹣1≤x≤2的整数.5.(2015秋•海门市期末)如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.6.(2015秋•海门市期末)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.7.(2015秋•海门市期末)如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.四、计算题1.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?2.(2015秋•海门市期末)如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.(1)求证:△ACD是等边三角形;(2)若△OAM是等腰三角形,求点M的坐标;(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.江苏初二初中数学期末考试答案及解析一、选择题1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【答案】A【解析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.【考点】有理数大小比较.2.(2015秋•海门市期末)已知∠α=32°,则∠α的余角为()A.58°B.68°C.148°D.168°【答案】A【解析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.解:∠α的余角是:90°﹣32°=58°.故选A.【考点】余角和补角.3.(2015秋•海门市期末)使式子有意义的x的范围是()A.x≠2B.x≤﹣2C.x≥2D.x≤2【答案】C【解析】根据二次根式的被开方数是非负数可得x﹣2≥0,再解即可.解:由题意得:x﹣2≥0,解得:x≥2,故选:C.【考点】二次根式有意义的条件.4.(2015秋•海门市期末)下列运算不正确的是()A.x6÷x3=x3B.(﹣x3)4=x12C.x2•x3=x5D.x3+x3=x6【答案】D【解析】根据同底数幂的除法底数不变指数相减;积的乘方等于乘方的积;同底数幂的乘法底数不变指数相加;合并同类项系数相加字母及指数不变,可得答案.解:A、同底数幂的除法底数不变指数相减,故A正确;B、积的乘方等于乘方的积,故B正确;C、同底数幂的乘法底数不变指数相加,故C正确;D、合并同类项系数相加字母及指数不变,故D错误;故选:D.【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.(2015秋•海门市期末)化简+的结果是()A.x+2B.x﹣1C.﹣x D.x【答案】D【解析】先把异分母转化成同分母,再把分子相减即可.解:+=﹣===x;故选D.【考点】分式的加减法.6.(2015秋•海门市期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【答案】B【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含能开得尽方的因数或因式,故D错误;故选:B.【考点】最简二次根式.7.(2015秋•海门市期末)下列四组数据中,“不能”作为直角三角形的三边长的是()A.3,4,6B.5,12,13C.6,8,10D.,,2【答案】A【解析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.解:A、42+32≠62,不是直角三角形,故此选项正确;B、122+52=132,是直角三角形,故此选项错误;C、62+82=102,是直角三角形,故此选项错误;D、()2+()2=22,是直角三角形,故此选项错误;故选:A.【考点】勾股定理的逆定理.8.(2015秋•海门市期末)如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A.30°B.36°C.45°D.20°【答案】B【解析】由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.故选B.【考点】等腰三角形的性质.9.(2015秋•海门市期末)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【答案】B【解析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.【考点】矩形的判定;三角形中位线定理.10.(2015秋•海门市期末)已知a﹣b=3,b+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为()A.4B.﹣4C.3D.﹣3【答案】C【解析】先利用已知条件计算出a+c=﹣2,然后利用分组分解的方法把ac﹣bc+a2﹣ab因式分解,再利用整体代入的方法计算.解:∵ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b)=(a﹣b)(c+a),∵a﹣b=3,b+c=﹣4,∴a+c=﹣1,∴ac﹣bc+a2﹣ab=3×(﹣1)=﹣3;故选:C.【考点】因式分解的应用.二、填空题1.(2015秋•海门市期末)数0.000001用科学记数法可表示为.【答案】1×10﹣6【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 001=1×10﹣6.故答案为:1×10﹣6.【考点】科学记数法—表示较小的数.2.(2013•泸州)分解因式:x2y﹣4y= .【答案】y(x+2)(x﹣2)【解析】先提取公因式y,然后再利用平方差公式进行二次分解.解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.3.(2015秋•海门市期末)一次体检中,某班学生视力结果如下表:从表中看出全班视力数据的众数是.【答案】1.0【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解:众数是一组数据中出现次数最多的数据,1.0占全班人数的40%,故1.0是众数.故答案为:1.0.【考点】众数.4.(2015秋•海门市期末)计算:(﹣2a﹣2b3)÷(a3b﹣1)3= .【答案】﹣.【解析】根据积的乘方等于乘方的积,可得单项式的除法,根据单项式的除法,可得负整数指数幂,根据负整数指数幂与正整数指数幂互为倒数,可得答案.解:原式=(﹣2a﹣2b3)÷(a9b﹣3)=﹣2a﹣2﹣9b3﹣(﹣3)=﹣2a﹣11b6=﹣.故答案为:﹣.【考点】负整数指数幂.5.(2015秋•海门市期末)已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是.【答案】5【解析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为 5.【考点】勾股定理;直角三角形斜边上的中线.6.(2015秋•海门市期末)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,AC 的长为12cm,则△BCE的周长等于 cm.【答案】20【解析】由AB的垂直平分线交AB于点D,交边AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可得△BCE的周长=BC+AC.解:∵DE是AB的垂直平分线,∴AE=BE,∵BC=8cm,AC的长为12cm,∴△BCE的周长=BC+CE+BE=BC+CE+AE=BC+AC=20cm.故答案为:20.【考点】线段垂直平分线的性质.7.(2015秋•海门市期末)若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是.【答案】m<﹣2.【解析】首先确定P点所在象限,再根据第四象限内点的坐标符号可得不等式组,再解不等式组即可.解:∵点P(1﹣m,2+m)关于x轴对称点在第一象限,∴点P在第四象限,∴,解得:m<﹣2.∴m的取值范围是:m<﹣2,故答案为m<﹣2.【考点】关于x轴、y轴对称的点的坐标.8.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).【答案】P=Q【解析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【考点】分式的加减法.9.(2015秋•海门市期末)如图,在3×3的正方形网格(每个小正方形的边长均为1)中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴(水平线为横轴),建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.(1)原点是(填字母A,B,C,D );(2)若点P在3×3的正方形网格内的坐标轴上,且与四个格点A,B,C,D,中的两点能构成面积为1的等腰直角三角形,则点P的坐标为(写出可能的所有点P的坐标)【答案】(1)B;(2)(﹣2,0)或(0,0)或(0,﹣2).【解析】(1)以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案;(2)根据等腰直角三角形的特点以及点P在坐标轴上即可作出判断.解:(1)当以点B为原点时,A(﹣1,﹣1),C(1,﹣1),则点A和点C关于y轴对称,故答案为:B.(2)符合题意的点P的位置如图所示.根据图形可知点P的坐标为(﹣2,0)或(0,0)或(0,﹣2).故答案为:(﹣2,0)或(0,0)或(0,﹣2).【考点】坐标与图形性质;等腰直角三角形.三、解答题1.(2015秋•海门市期末)计算:(1)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|(2)[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y.【答案】(1)﹣3;(2)﹣5y﹣2x.【解析】(1)原式第一项利用负整数指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式中括号中利用平方差公式及完全平方公式化简,去括号合并后利用多项式除以单项式法则计算即可得到结果.解:(1)原式=﹣2﹣+1﹣2+=﹣3;(2)原式=(x2﹣4y2﹣x2﹣8xy﹣16y2)÷4y=(﹣20y2﹣8xy)÷4y=﹣5y﹣2x.【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂.2.(2015秋•海门市期末)解方程组:.【答案】【解析】方程组利用加减消元法求出解即可.解:,②﹣①得:y=﹣2,把y=﹣2代入②得:x=﹣1,则方程组的解为.【考点】解二元一次方程组.3.(2011•南漳县模拟)已知a﹦(+),b﹦(﹣),求a2﹣ab+b2的值.【答案】3.5【解析】本题需先把a2﹣ab+b2进行整理,化成(a﹣b)2+ab的形式,再把得数代入即可求出结果.解:a2﹣ab+b2,=(a﹣b)2+ab,∵a﹦(+),b﹦(﹣),∴a2﹣ab+b2,=[﹣(﹣)]2+[×(﹣)],=3+,=3.5【考点】二次根式的化简求值.4.(2015秋•海门市期末)先化简,再求值:(﹣x+1),其中x为﹣1≤x≤2的整数.【答案】1【解析】首先计算括号内的分式,把除法转化为乘法,然后进行约分,然后找出适合分式的x值,代入化简后的式子求值即可.解:原式=•=•=∵x为﹣1≤x≤2的整数,∴x=0,∴原式=1.【考点】分式的化简求值.5.(2015秋•海门市期末)如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.【答案】6﹣.【解析】在△RtAOB中依据勾股定理可知AB2=40,在Rt△A′OB′中依据勾股定理可求得OB′的长,从而可求得BB′的长.解:在△RtAOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′,∴A′O2+OB′2=40.∴OB′==.∴BB′=6﹣.【考点】勾股定理的应用.6.(2015秋•海门市期末)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.【答案】见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,∴ED=BF,又∵AD∥BC,∴四边形BFDE是平行四边形.【考点】平行四边形的判定与性质.7.(2015秋•海门市期末)如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.【答案】(1)见解析;(2)∠EPC=90°;(3)∠ABC+∠EPC=180°.【解析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∵PA=PE,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°,∵∠ABC=90°,∴∠EPC=90°;(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵PA=PE,∴∠DAP=∠DCP,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°.【考点】全等三角形的判定与性质;正方形的性质.四、计算题1.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【答案】(1)120件;(2)150元【解析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【考点】分式方程的应用;一元一次不等式的应用.2.(2015秋•海门市期末)如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.(1)求证:△ACD是等边三角形;(2)若△OAM是等腰三角形,求点M的坐标;(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.【答案】(1)见解析;(2)M(,)、(,)、(,).(3)存在MA+MN存在最小值,最小值为.【解析】(1)利用点C坐标,即可求出相应角度,利用矩形性质,即可求出三角形CDA两个内角度数为60°,即可证明三角形是等边三角形.(2)由等腰三角形性质,对三角形OAM三边关系进行讨论,分别求出三种情况下点M的坐标即可;(3)做点A关于直线OC对称点,利用对称性可以求出最小值.解:(1)∵C(,1),∴AC=1,OA=,∴OC=2,∴∠COA=30°,∠OCA=60°,∵矩形AOBC,∴∠ABC=∠OCB=30°,∴∠ADC=60°,∴△ACD是等边三角形;(2)△OAM是等腰三角形,当OM=MA时,此时点M与点D重合,∵C(,1),点D为OC中点,∴M(,).当OM 1=OA 时,做M 1E ⊥OA ,垂足为E ,如下图: ∴OM 1=OA=,由(1)知∠M 1OA=30°,∴M 1E=,OE=,∴M 1(,). 当OA=OM 2时,做M 2F ⊥OA ,垂足为F ,如上图:AM 2=,由(1)知∠COA=∠AM 2O=30°,∴∠M 2AF=60°,∴AF=,M 2F=, M 2(,).综上所述:点M 坐标为M (,)、(,)、(,). (3)存在,做点A 关于直线OC 对称点为G ,如下图:则AG ⊥OC ,且∠GOA=60°OG=OA=,∴ON=,GN=, ∵点A 、G 关于直线OC 对称, ∴MG=MA , ∴MA+MN=MG+MN , ∵N 是OA 上的动点, ∴当GN ⊥x 轴时,MA+MN 最小,∴存在MA+MN 存在最小值,最小值为.【考点】一次函数综合题.。

江苏初二初中数学期末考试带答案解析

江苏初二初中数学期末考试带答案解析

江苏初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列事件中最适合使用普查方式收集数据的是()A.为制作校服,了解某班同学的身高情况B.了解全市初三学生的视力情况C.了解一种节能灯的使用寿命D.了解我省农民的年人均收入情况2.某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为()A.640人B.480人C.400人D.40人3.下列各式中,不是二次根式的是()A.B.C.D.4.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形5.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.6.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.-12B.-27C.-32D.-367.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B. C.3 D.二、填空题1.如果分式有意义,那么x 的取值范围是 . 2. 如果分式 的值为0,则x 满足的条件是 . 3.一组数据共有200个,其中数据5的频率是0.16,则数据5的频数是 .4.若=3﹣x ,则x 的取值范围是 .5.计算的结果是 . 6.反比例函数y=的图象有一支位于第一象限,则常数a 的取值范围是 7.如果分式方程 + ="1" 有增根 ,则m=8.一个袋子中,装有除颜色外其余都相同的红、白、黑的3个乒乓球,则随机摸一个球,摸到红球的概率是9.如图,点P 、Q 是反比例函数y=图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB 、QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)三、计算题(共计8分)计算:(1)+(﹣2013)0﹣()﹣1+|﹣3| (2)÷﹣×+.四、解答题1.(6分)化简:(+)÷ .2.(6分)解方程: = ﹣1.3.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图. 根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m 的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.4.(10分)在我市开展“美丽扬州”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?5.(10分)已知:如图,在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE=CF ,DF ∥BE .求证:四边形ABCD 为平行四边形.6.(10分)如图,菱形ABCD 中,分别延长DC ,BC 至点E ,F ,使CE=CD ,CF=CB ,联结DB ,BE ,EF ,FD .求证:四边形DBEF 是矩形;7.(12分)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE=AF ,AC 和EF 交于点O ,延长AC 至点G ,使得AO=OG ,连接EG 、FG .(1)求证:BE=DF ,0E=0F(2)求证:四边形AEGF 是菱形.8.(12分)已知反比例函数y 1=的图象与一次函数y 2=ax+b 的图象交于点A (1,4)和点B (m ,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y 1>y 2成立的自变量x 的取值范围;(3)若P 为Y 轴上得一点,连接PA 、PB ,△PAB 的面积为6,求P 点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省南通市海门市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列实数中,为无理数的是()A.0.2 B.C.D.﹣52.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC的度数为()A.52°B.62°C.72°D.128°3.(3分)已知点P(2a﹣1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C. D.4.(3分)如果通过平移直线y=得到y=的图象,那么直线y=必须()A.向左平移个单位B.向右平移个单位C.向上平移个单位D.向下平移个单位5.(3分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4 B.3,4 C.4,3 D.3,36.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3157.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°8.(3分)已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2 C.﹣2.5 D.﹣69.(3分)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为s(千米),速度为v(千米/分),时间为t(分).下列函数图象能表达这一过程的是()A. B.C.D.10.(3分)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A.a(x0﹣x1)(x0﹣x2)<0 B.a>0C.b2﹣4ac≥0 D.x1<x0<x2二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)函数y=中自变量x的取值范围是.12.(3分)在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是.13.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选同学.14.(3分)如果x2﹣x﹣1=(x+1)0,那么x的值为.15.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.(3分)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为.三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)计算:;(2)先化简,再求值:,其中.18.(6分)已知:y+2与3x成正比例,且当x=1时,y的值为4.(1)求y与x之间的函数关系式;(2)若点(﹣1,a)、点(2,b)是该函数图象上的两点,试比较a、b的大小,并说明理由.19.(6分)已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)20.(6分)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.21.(6分)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.22.(6分)已知▱ABCD中,直线m绕点A旋转,直线m不经过B、C、D点,过B、C、D分别作BE⊥m于E,CF⊥m于F,DG⊥m于G.(1)当直线m旋转到如图1位置时,线段BE、CF、DG之间的数量关系是;(2)当直线m旋转到如图2位置时,线段BE、CF、DG之间的数量关系是;(3)当直线m旋转到如图3的位置时,线段BE、CF、DG之间有怎样的数量关系?请直接写出你的猜想,并加以证明.23.(6分)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.24.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.附加题(满分20分)25.(4分)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限.设m=a+b+c,则m的取值范围是.26.(4分)关于x的一元二次方程x﹣2=0的一个根为2,则m2+m﹣2=.27.(6分)已知a2+2a﹣1=0,b4﹣2b2﹣1=0,且1﹣ab2≠0,求的值.28.(6分)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.2015-2016学年江苏省南通市海门市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列实数中,为无理数的是()A.0.2 B.C.D.﹣5【解答】解:∵﹣5是整数,∴﹣5是有理数;∵0.2是有限小数,∴0.2是有理数;∵,0.5是有限小数,∴是有理数;∵是无限不循环小数,∴是无理数.故选:C.2.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC的度数为()A.52°B.62°C.72°D.128°【解答】解:∵∠ADE=128°,∴∠ADB=180°﹣∠ADE=52°,∵AD∥BC,∴∠DBC=∠ADB=52°.故选:A.3.(3分)已知点P(2a﹣1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C. D.【解答】解:根据题意得:,解得:0.5<a<1.故选:C.4.(3分)如果通过平移直线y=得到y=的图象,那么直线y=必须()A.向左平移个单位B.向右平移个单位C.向上平移个单位D.向下平移个单位【解答】解:直线y=向上平移个单位得到y=的图象,故选:C.5.(3分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4 B.3,4 C.4,3 D.3,3【解答】解:∵这组数据有唯一的众数4,∴x=4,将数据从小到大排列为:1,2,3,3,4,4,4,则平均数=(1+2+3+3+4+4+4)÷7=3,中位数为:3.故选:D.6.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.7.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.8.(3分)已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2 C.﹣2.5 D.﹣6【解答】解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y=﹣2(﹣2)2+2=﹣2.5.最大故选:C.9.(3分)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为s(千米),速度为v(千米/分),时间为t(分).下列函数图象能表达这一过程的是()A. B.C.D.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.10.(3分)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A.a(x0﹣x1)(x0﹣x2)<0 B.a>0C.b2﹣4ac≥0 D.x1<x0<x2【解答】解:A、当a>0时,∵点M(x0,y0),在x轴下方,∴x1<x0<x2,∴x0﹣x1>0,x0﹣x2<0,∴a(x0﹣x1)(x0﹣x2)<0;当a<0时,若点M在对称轴的左侧,则x0<x1<x2,∴x0﹣x1<0,x0﹣x2<0,∴a(x0﹣x1)(x0﹣x2)<0;若点M在对称轴的右侧,则x1<x2<x0,∴x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0;综上所述,a(x0﹣x1)(x0﹣x2)<0,故本选项正确;B、a的符号不能确定,故本选项错误;C、∵函数图象与x轴有两个交点,∴△>0,故本选项错误;D、x1、x0、x2的大小无法确定,故本选项错误.故选:A.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)函数y=中自变量x的取值范围是x≠3.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.12.(3分)在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).【解答】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为:(2,﹣1).13.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选乙同学.【解答】解:由于乙的方差较小、平均数较大,故选乙.故答案为:乙.14.(3分)如果x2﹣x﹣1=(x+1)0,那么x的值为2.【解答】解:x2﹣x﹣1=1,x2﹣x﹣2=0,(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,∵x+1≠0,∴x≠﹣1,∴x=2,故答案为:2.15.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.16.(3分)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,∴∠DAE=∠BAC=60°,AD=AE=5,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,在Rt△DHE中,EH2+x2=52,①在Rt△CHE中,EH2+(4﹣x)2=62,②②﹣①得16﹣8x=11,解得x=,∴EH==.故答案为.三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)计算:;(2)先化简,再求值:,其中.【解答】解:(1)原式=3+1﹣9+2=﹣3;(2)原式===,当时,原式===.18.(6分)已知:y+2与3x成正比例,且当x=1时,y的值为4.(1)求y与x之间的函数关系式;(2)若点(﹣1,a)、点(2,b)是该函数图象上的两点,试比较a、b的大小,并说明理由.【解答】解:(1)根据题意设y+2=3kx(k≠0).将x=1,y=4代入,得4+2=3k,解得:k=2.所以,y+2=6x,所以y=6x﹣2;(2)a<b.理由如下:由(1)知,y与x的函数关系式为y=6x﹣2.∴该函数图象是直线,且y随x的增大而增大,∵﹣1<2,∴a<b.19.(6分)已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)【解答】解:(1)原方程可化为x2﹣5x+4﹣p2=0,∵△=(﹣5)2﹣4×(4﹣p2)=4p2+9>0,∴不论p为任何实数,方程总有两个不相等的实数根;,(2)原方程可化为x2﹣5x+4﹣p2=0,∵方程有整数解,∴为整数即可,∴p可取0,2,﹣2时,方程有整数解.20.(6分)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.【解答】解:(1)旋转中心点P位置如图所示,(2分)点P的坐标为(0,1);(4分)(2)旋转后的三角形④如图所示.(8分)21.(6分)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.【解答】解:(1)根据题意得:×100%=52%;答:该小区5月份用水量不高于12t的户数占小区总户数的百分比是52%;(2)根据题意得:300×(3×6+9×20+15×12+21×7+27×5)÷50=3960(吨),答:该小区5月份的用水量是3960吨.22.(6分)已知▱ABCD中,直线m绕点A旋转,直线m不经过B、C、D点,过B、C、D分别作BE⊥m于E,CF⊥m于F,DG⊥m于G.(1)当直线m旋转到如图1位置时,线段BE、CF、DG之间的数量关系是BE=CF+DG;(2)当直线m旋转到如图2位置时,线段BE、CF、DG之间的数量关系是CF=BE+DG;(3)当直线m旋转到如图3的位置时,线段BE、CF、DG之间有怎样的数量关系?请直接写出你的猜想,并加以证明.【解答】解:(1)如图1,过C作CM⊥DG,交DG的延长线于点M,∵DM⊥CM,CF⊥AF,CM⊥DG,∴∠DMC=∠CFG=∠AEB=90°,∴四边形GFCM为矩形,∴FG∥CM,FC=GM,∵四边形ABCD为平行四边形,∴CD=AB,CD∥AB,∴∠DOG=∠BAE=∠DCM,在△CDM和△ABE中∴△CDM≌△ABE(AAS),∴DM=BE,∴BE=DG+GM=CF+DG,故答案为:BE=CF+DG;(2)如图2,过D作DN⊥CF,交CF于点N,延长CD交AF于点P,∵DG⊥AF,CF⊥AF,∴四边形DGFN为矩形,∴ND∥AF,且DG=NF,∵四边形ABCD为平行四边形,∴AB=CD,且AB∥CD,∴∠CDN=∠DPG=∠BAE,在△CDN和△BAE中∴△CDN≌△BAE(AAS),∴CN=BE,∴CF=CN+DF=BE+DG,故答案为:CF=BE+DG;(3)猜想:DG=BE+CF;证明:如图3,过C作CH⊥DG于H,又∵CF⊥m,DG⊥m,∴四边形CFGH是矩形,∴CF=HG,∵DG⊥m,BE⊥m,∴∠DGE=∠BEG=90°,∴DG∥BE,∴∠ABE=∠AMG∵□ABCD,∴AD∥BC,CD=AB,∴∠CDH=∠AMG,∴∠CDH=∠ABE,在△CDH和△ABE中∴△CDH≌△ABE(AAS),∴DH=BE,∴DG=DH+HG=BE+CF,∴DG=BE+CF.23.(6分)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.【解答】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30=30x+3760 (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴y=(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1=W2时,即485760﹣a=475200,解得:a=10560当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.当a=10560时,方案一与方案二一样.24.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).附加题(满分20分)25.(4分)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限.设m=a+b+c,则m的取值范围是﹣6<m<0.【解答】解:∵二次函数y=ax2+bx+c(a>0)的图象与坐标轴分别交于点(0,﹣3)、(﹣1,0),∴c=﹣3,a﹣b+c=0,即b=a﹣3,∵顶点在第四象限,∴﹣>0,<0,又∵a>0,∴b<0,∴b=a﹣3<0,即a<3,b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2>0∵a﹣b+c=0,∴a+b+c=2b<0,∴a+b+c=2b=2a﹣6,∵0<a<3,∴a+b+c=2b=2a﹣6>﹣6,∴﹣6<a+b+c<0.∴﹣6<m<0.故答案为:﹣6<m<0.26.(4分)关于x的一元二次方程x﹣2=0的一个根为2,则m2+m﹣2= 26.【解答】解:∵关于x的一元二次方程x﹣2=0的一个根为2,∴4m﹣2m2﹣2=0,∴m+=2,∴原式=m2+m﹣2=(m+)2﹣2=28﹣2=26.故答案为:26.27.(6分)已知a2+2a﹣1=0,b4﹣2b2﹣1=0,且1﹣ab2≠0,求的值.【解答】解:∵b4﹣2b2﹣1=0,∴b≠0∴两边除以(﹣b4)得:∵1﹣ab2≠0∴又∵a2+2a﹣1=0,∴把看成关于x的方程x2+2x﹣1=0的两根∴,b4=2b2+1,∴a=﹣b2∴====(﹣2)3=﹣8.28.(6分)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.【解答】解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x2﹣2x+2;(2)∵定点抛物线的顶点坐标为(b,c+b2+1),且﹣1+2b+c+1=1,∴c=1﹣2b,∵顶点纵坐标c+b2+1=2﹣2b+b2=(b﹣1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=﹣1,∴抛物线的解析式为y=﹣x2+2x.。

相关文档
最新文档