高一数学函数的周期性PPT优秀课件
《函数的周期性》课件
![《函数的周期性》课件](https://img.taocdn.com/s3/m/4c5956af9a89680203d8ce2f0066f5335b816759.png)
对于一些基本的周期函数,如正弦函数、余弦函数等,可以直接使 用其周期公式来求解。
计算法
通过计算函数在两个不同点上的值,然后比较这两个值是否相等来 确定函数的周期。
函数周期性的进一步研究
特征,如振幅、相位等。
周期函数的性质
02
研究周期函数的性质,如对称性、奇偶性等。
周期性理解
周期性是函数的一种特性,它描述了函数值重复出现的规律。周期函数在一个 周期内的变化规律与整个函数的变化规律相同。
周期性的分类
最小正周期
如果存在一个最小的正数$T$,使得 对于函数$f(x)$的定义域内的每一个 $x$,都有$f(x+T)=f(x)$,则称$T$ 为函数$f(x)$的最小正周期。
函数周期性的扩展知识
最小正周期的概念
最小正周期
对于函数$f(x)$,如果存在一个正数 $T$,使得当$x$取值在$T$的长度 内重复出现时,函数$f(x)$的值也重 复出现,则称$T$为函数$f(x)$的最 小正周期。
周期性
函数在某个固定周期内重复出现的性 质。
函数的最小正周期的求法
观察法
通过观察函数图像或性质,直接判断出函数的周期。
《函数的周期性》 ppt课件
xx年xx月xx日
• 函数的周期性概述 • 三角函数的周期性 • 函数周期性的判定 • 函数周期性的应用 • 函数周期性的扩展知识
目录
01
函数的周期性概述
周期性的定义
周期性定义
如果存在一个非零常数$T$,使得对于函数$f(x)$的定义域内的每一个$x$,都 有$f(x+T)=f(x)$,则称函数$f(x)$为周期函数,非零常数$T$称为这个函数的 周期。
常见周期函数
函数的周期性ppt课件(自制)
![函数的周期性ppt课件(自制)](https://img.taocdn.com/s3/m/e825d96a77232f60ddcca18d.png)
人教版高中数学课件-函数的周期性
![人教版高中数学课件-函数的周期性](https://img.taocdn.com/s3/m/9215fce3a216147916112818.png)
f(x+2)+f(x)=0,試判斷f(x)是否為週 期函數?
例3 已知定義在R上的函數f(x)滿足 f(x+1)=f(x-1),且當x∈[
1.函數的週期性是函數的一個基本性質, 判斷一個函數是否為週期函數,一般以 定義為依據,即存在非零常數T,使f(x +T)=f(x)恒成立.
. sin(x 2k ) sin x (k Z )
思考2:設f(x)=sinx,則sin(x 2k ) sin x 可以怎樣表示?其數學意義如何?
思考3:為了突出函數的這個特性,我們 把函數f(x)=sinx稱為週期函數,2kπ為 這個函數的週期.一般地,如何定義週期 函數?
對 於 函 數 f(x) , 如 果 存 在 一 個 非 零常數T,使得當x取定義域內的每一 個值時,都有f(x+T)=f(x), 那麼函數 f(x)就叫做週期函數,非零常數T就叫 做這個函數的週期.
2.週期函數的週期與函數的定義域有關, 週期函數不一定存在最小正週期.
3.週期函數的週期有許多個,若T為週期 函數f(x)的週期,則T的整數倍也是f(x) 的週期.
4.函數 y = A sin(wx + j) 和 y = Acos(wx + j)
2p
(A ? 0, w 0)的最小正週期都是 w ,這 是正、余弦函數的週期公式,解題時可 以直接應用.
1.4.2 正弦函數、余弦函數的性質 第一課時
問題提出
t
p
1 2
5730
1.正弦函數和余弦函數的圖象分別是什
麼?二者有何相互聯繫?
y 1
y=sinx
-6π -4π -2π -5π -3π
-π
O
π
高一数学函数的周期性PPT课件
![高一数学函数的周期性PPT课件](https://img.taocdn.com/s3/m/51bfd811e518964bcf847cbc.png)
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
思考5:如果在周期函数f(x)的所有周期 中存在一个最小的正数, 则这个最小正 数叫做f(x)的最小正周期.那么, 正弦函 数的最小正周期是多少?为什么?
7
思考6:就周期性而言,对正弦函数有 什么结论?对余弦函数呢?
正、余弦函数是周期函数,2kπ (k∈Z, k≠0)都是它的周期,最小 正周期是2π.
例1 求下列函数的周期: (1)y=3cosx; x∈R (2)y=sin2x,x∈R; ( (34) )yy==|s2isninx(|x2 -x∈p6 )R., x∈R ;
例2 已知定义在R上的函数f(x)满足
f(x+2)+f(x)=0,试判断f(x)是否为周
期函数?
11
例3 已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
8
知识探究(二):周期概念的拓展
思考1:函数f(x)=sinx(x≥0)是否为 周 期 函 数 ? 函 数 f(x)=sinx ( x≤0 ) 是 否为周期函数?
思考2:函数f(x)=sinx(x>0)是否为 周期函数?函数f(x)=sinx(x≠3kπ) 是否为周期函数?
思考3:函数f(x)=sinx,x∈[0,10π]
的周期.
13
4.函数 y = A sin(wx + j) 和 y = A cos(wx + j)
2p
(A ? 0, w 0)的最小正周期都是 w ,这 是正、余弦函数的周期公式,解题时可 以直接应用.
作业:P36练习:1,2,3.
14
12
小结作业
1.函数的周期性是函数的一个基本性质, 判断一个函数是否为周期函数,一般以 定义为依据,即存在非零常数T,使f(x +T)=f(x)恒成立.
高一数学142-1函数的周期性课件新人教版必修
![高一数学142-1函数的周期性课件新人教版必修](https://img.taocdn.com/s3/m/fb4684cded3a87c24028915f804d2b160b4e86c5.png)
周期函数的判定方法二
利用特殊值法判断一个函数是否为周期函数。具体来说,就是取定义域内的某些 特殊值,例如0、1、2等,看这些特殊值是否满足f(x+T)=f(x)。如果满足,则可 以初步判断该函数是周期函数。
选项A:$pi$ B:$2pi$ C:$frac{pi}{2}$ D: $frac{3pi}{2}$
在此添加您的文本16字
答案:B
在此添加您的文本16字
题目:函数$f(x) = cosfrac{1}{x}$的周期为( )
在此添加您的文本16字
选项A:$pi$ B:$2pi$ C:$frac{pi}{2}$ D: $frac{3pi}{2}$
高一数学142-1函数的 周期性课件新人教版必 修
CONTENTS
目录
• 函数的周期性定义 • 常见周期函数类型 • 周期函数的应用 • 周期函数的习题及解析
CHAPTER
01
函数的周期性定义
周期函数的定义
周期函数的定义
如果存在一个非零常数T,对于定义域内的每一个x,函数f(x)满足f(x+T)=f(x) ,那么就把函数f(x)叫做周期函数,T叫做这个函数的一个周期。
三角函数的周期计算
三角函数的周期可以通过公式 T=2π/ω来计算,其中ω是角频率。 对于正弦函数和余弦函数,ω=1, 因此它们的周期T=2π。
除了正弦函数和余弦函数,还有其他 形式的三角函数,如tan(x)、cot(x)等 。这些函数的周期也可以通过公式 T=π/ω来计算。
其他周期函数类型
01
函数的周期ppt 下载
![函数的周期ppt 下载](https://img.taocdn.com/s3/m/6beac6d4866fb84ae55c8d67.png)
kgh0Байду номын сангаасneg
夜晚。唐 白居易 《游悟真寺诗一百三十韵》:“黑夜玩家自光明,不待灯烛燃。”《水浒传》第八四回:“黑夜玩家怎地厮杀,待天明
决一死战。” 柳青《铜墙铁壁》第四章:“金树旺 见 石得富 难为情的样子,就替他解释今黑夜玩家的确有事。”
来她不能保证,但是找,那是必须的。不但奴才们全部放下手头的事情,连她也是亲力亲为,投入到寻找板指的事项中。真是壹通好找! 雅思琦连午膳都没有正经吃,也是因为心事重重,没有心思吃饭。寻思着爷也差不多用过午膳,这板指也找了壹个多时辰,眼看着时候不 早,她和李淑清还要为参加晚上的宫宴做准备,于是打算还是先去给爷去回个话吧。其实从壹开始找,她就大概估计是这么壹个结局。也 不是她有多护着她院子里的奴才,而是连她自己都没有印象的东西,根本不可能指着奴才们能找出什么惊喜来。但是,不管找得到还是找 不到,还得硬着头皮去给爷回话。无奈,只好差红莲去给书院递话,她有事禀告爷。不壹会儿,红莲就回来了,同时传了爷的回话,同意 了。“福晋有什么事情?”王爷用壹贯不苟言笑的表情望着雅思琦。爷从来都是这么规规矩矩地称呼自己,从来没有唤过自己的闺名,可 是,府里的其它诸人,爷从来都是直呼其名。自从他们大婚的那壹天开始,爷和自己从来都是这么相敬如宾,爷总说自己是他最敬重的诸 人,可是,自己并不需要爷的敬重,作为壹个诸人,需要的是爷的宠爱。可是,就是因为自己是嫡福晋,就需要端庄、需要大家风范,为 什么,如果是这样的话,自己宁可不要当这个嫡福晋!“回爷,奴才们找了许久,也没有找到爷的板指,只有红莲能出入妾身的房间,妾 身也是仔仔细细地盘问过了……”“噢,那爷可是记错了,落在其它的地方?秦顺儿!”“奴才在。”秦顺壹听屋里爷叫他,赶快进来, 即刻就跪在了屋子中间。“你今天早上怎么弄的?这么重要的物件都忘记了?”“奴才早上惦记着今天晚上的宫宴,心里壹走神儿,就忘 记了这档子事儿!”“你忘记了不要紧,爷这四处找了半天了,急得不行,福晋那里也是弄得人仰马翻,连见客都匆匆忙忙地,让年家人 看了笑话。”“爷教训得是,奴才该死,奴才该死!”“该死有什么用,赶快想,到底是落在哪儿了?想不出来,你就自己领板子 去!”“奴才这就想,这就想。”雅思琦眼看着秦顺儿有要吃板子的危险,就着急忙慌地要避出去。毕竟秦顺儿可是爷眼跟前儿的红人, 这奴才对她还是挺重要的,万壹吃了板子,再牵扯到她这里,犯不上,要吃板子,也是爷赏的,跟她不要有任何牵连,如果再呆下去,可 就真要壹只脚趟进这个混水里去了!于是,她假装想起来什么似的:“唉呀,瞧妾身这个记性,刚刚淑清妹妹还说要跟我商量晚上宫宴的 事情呢,怕是已经到了妾身的院子,要不……”“噢,你先去吧,这里也没什么事情了。”雅思琦壹听,正中下怀,忙起身告辞。听着福 晋的脚步声出了院子,秦顺儿抬起头来,还不待爷说话呢,就径自站了起来,壹脸媚笑:“爷,没
函数的周期性ppt课件
![函数的周期性ppt课件](https://img.taocdn.com/s3/m/59ac770ca0116c175f0e48fd.png)
当x∈[2,3]时,f(x)=x,则x∈[-2,0]时,f(x)的解析式
为( )
(A)f(x)=2+|x+1|
(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7) =…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0, ∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=0+1=1.
【创新体验】分段函数的性质判断
【典例】(2012·福建高考)设函数 Dx 10,,xx为为有无理理数数,,则下列
结论错误的是( )
(A)D(x)的值域为{0,1}
(B)D(x)是偶函数
(C)D(x)不是周期函数
(D)D(x)不是单调函数
3.(2013·福州模拟)设f(x)是定义在R上以2为周期的偶函数,
∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=…=f(2 005)+ f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1 2 010 335.
6
而f(2 011)+f(2 012)=f(1)+f(2)=3, ∴f(1)+f(2)+…+f(2 012)=335+3=338.
个周期.
3.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)的值 为( ) (A)-1 (B)0 (C)1 (D)2 【解析】选B.∵f(x+4)=f(x), ∴f(x)是以4为周期的周期函数, ∴f(8)=f(0). 又函数f(x)是定义在R上的奇函数, ∴f(8)=f(0)=0,故选B.
函数的周期性PPT优秀课件
![函数的周期性PPT优秀课件](https://img.taocdn.com/s3/m/8d673fc1941ea76e58fa04d2.png)
3.周期函数的周期有许多个,若T为周期 函数f(x)的周期,则T的整数倍也是f(x) 的周期.
4.函数 y=Asin(wx+j)和 y=Acos(wx+j)
2p
(A? 0,w 0)的最小正周期都是 w ,这 是正、余弦函数的周期公式,解题时可 以直接应用.
例2 已知定义在R上的函数f(x)满足
f(x+2)+f(x)=0,试判断f(x)是否为周 期函数?
例3 已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
小结作业
1.函数的周期性是函数的一个基本性质, 判断一个函数是否为周期函数,一般以 定义为依据,即存在非零常数T,使f(x +T)=f(x)恒成立.
知识探究(二):周期概念的拓展
思考1:函数f(x)=sinx(x≥0)是否为 周 期 函 数 ? 函 数 f(x)=sinx ( x≤0 ) 是 否为周期函数?
思考2:函数f(x)=sinx(x>0)是否为 周期函数?函数f(x)=sinx(x≠3kπ) 是否为周期函数?
思考3:函数f(x)=sinx,x∈[0,10π] 是否为周期函数?周期函数的定义域有 什么特点?
作业:P36练习:1,2,3.
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
函数讲函数的奇偶性与周期性课件
![函数讲函数的奇偶性与周期性课件](https://img.taocdn.com/s3/m/544d584fbfd5b9f3f90f76c66137ee06eff94ef7.png)
函数讲函数的奇偶性与周期性课件pptxxx年xx月xx日CATALOGUE目录•函数奇偶性及周期性概述•奇函数与偶函数•周期函数的定义和性质•奇函数与偶函数举例•周期函数的举例及变式•奇偶性与周期性的扩展知识01函数奇偶性及周期性概述函数奇偶性的定义与性质奇函数对于函数f(x),如果对于任意的x属于D,都有f(-x)=-f(x),那么f(x)是奇函数。
要点一要点二偶函数对于函数f(x),如果对于任意的x属于D,都有f(-x)=f(x),那么f(x)是偶函数。
恒等于0的函数对于函数f(x),如果对于任意的x属于D,都有f(x)=0,那么f(x)是恒等于0的函数。
要点三对于函数f(x),如果存在一个非零常数T,使得对于任意的x属于D,都有f(x+T)=f(x),那么f(x)是周期函数。
周期函数对于周期函数f(x),如果存在一个非零常数T,使得对于任意的x属于D,都有f(x+T)=f(x),那么T是f(x)的最小正周期。
最小正周期函数周期性的定义与性质奇偶性与周期性的应用用奇偶性和周期性判断函数的图像对于一个函数f(x),如果知道它的奇偶性和周期性,就可以根据这些性质大致判断出它的图像。
用奇偶性和周期性简化计算对于具有特定奇偶性和周期性的函数,我们可以利用这些性质来简化计算。
用奇偶性和周期性解决实际问题有时在解决实际问题时,需要用到函数的奇偶性和周期性。
02奇函数与偶函数奇函数定义与性质奇函数定义:对于函数f(x),如果对于任意的x∈D,都奇函数性质有f(-x)=-f(x),那么称f(x)为奇函数。
奇函数的图象关于原点对称;奇函数的定义域一定关于原点对称;奇函数的相反数函数是自身;如果奇函数f(x)在x=0有定义,那么f(0)=0。
偶函数定义:对于函数f(x),如果对于任意的x∈D,都有f(-x)=f(x),那么称f(x)为偶函数。
偶函数性质偶函数的图象关于y轴对称;偶函数的定义域一定关于原点对称;偶函数的相反数函数是自身;如果偶函数f(x)在x=0有定义,那么f(0)=0。
高一数学必修四课件第章三角函数的周期性
![高一数学必修四课件第章三角函数的周期性](https://img.taocdn.com/s3/m/79b693a7f9c75fbfc77da26925c52cc58bd690a5.png)
研究三角函数周期性的意义
理解周期性现象
三角函数是描述周期性现象的重要数 学模型,研究其周期性有助于深入理 解这类现象的本质。
简化计算过程
拓展数学知识体系
三角函数周期性是数学分析、复变函 数等后续课程的基础内容之一,掌握 好这部分内容有助于后续课程的学习 。
利用三角函数的周期性,可以将复杂 的问题转化为简单的问题进行处理, 从而简化计算过程。
高一数学必修四课件第章三 角函数的周期性
汇报人:XX 2024-01-20
contents
目录
• 三角函数周期性概述 • 正弦函数与余弦函数的周期性 • 正切函数与余切函数的周期性 • 三角函数周期性的应用 • 三角函数周期性的拓展与延伸
01 三角函数周期性 概述
周期函数定义
周期函数的定义
对于函数$y = f(x)$,如果存在一个正数$T$,使得对于任意$x$都有$f(x + T) = f(x)$,则称$y = f(x)$为周期函数,$T$为它的周期。
相位差
正切函数和余切函数的图像之间存在相位差,即cot(x) = tan(π/2 - x)。这表明在相同的周期内,正切函数和余切 函数的图像可以通过平移相互转换。
周期性应用
由于正切函数和余切函数具有周期性,因此在实际应用中 可以利用这一性质解决一些与周期性相关的问题,如波动 、振动等。
04 三角函数周期性 的应用
期性的关系。
利用三角函数周期性建立振动和 波动问题的数学模型,进行定量
计算。
在信号处理中的应用
将信号分解为不同频 率的正弦波或余弦波 ,实现信号的频谱分 析。
通过三角函数周期性 对信号进行滤波、降 噪等处理,提高信号 质量。
函数的奇偶性与周期性 课件(44张)
![函数的奇偶性与周期性 课件(44张)](https://img.taocdn.com/s3/m/03ab5b036d85ec3a87c24028915f804d2b1687f8.png)
(1)定义法
判断函数奇偶性的方法
(4)若函数 y=f(x+a)是偶函数,则函数 y=f(x)关于直线 x=a 对
称.( )
(5)若函数 y=f(x+b)是奇函数,则函数 y=f(x)关于点(b,0)中心对 称.
(6)函数 f(x)为 R 上的奇函数,且 f(x+2)=f(x),则 f(2 020)= 0.( )
答案:(1)× (2)× (3)√ (4)√ (5)√ (6)√
(2)由1|x--x22|>≠0, 2, 得定义域为(-1,0)∪(0,1),关于原点对称.∴ x-2<0,∴|x-2|-2=-x,∴f(x)=lg1--xx2.
又∵f(-x)=lg[1-x-x2]=-lg1-x x2=-f(x), ∴函数 f(x)为奇函数.
(3)显然函数 f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对 称.
解析:D [因为函数 y= x的定义域为[0,+∞),不关于原点对
称,所以函数 y= x为非奇非偶函数,排除 A 项;因为 y=|sin x|为偶
函数,所以排除 B 项;因为 y=cos x 为偶函数,所以排除 C 项;因
为 y=f(x)=ex-e-x,f(-x)=e-x-ex=-(ex-e-x)=-f(x),所以函数
(2)图象法
(3)性质法 ①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇” 是偶; ②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶” 是偶; ③“奇·偶”是奇,“奇÷偶”是奇.
高中数学 第二章2.3 函数的奇偶性与周期性(共78张PPT)
![高中数学 第二章2.3 函数的奇偶性与周期性(共78张PPT)](https://img.taocdn.com/s3/m/7f1d6ea1d1f34693daef3efb.png)
∴f(0)+f(1)+f(2)+„+f(2 013) =f(0)+f(1)=1.
思想方法 练出高分
题型分类·深度剖析
题型二 函数的奇偶性与周期性Biblioteka 思维启迪解析探究提高
【例 2】 设 f(x)是定义在 R 上的奇函 判断函数的周期只需证明 f(x+T)= 数,且对任意实数 x,恒有 f(x+ f(x) (T≠0) 便 可 证 明 函 数 是 周 期 函 2)=-f(x).当 x∈[0,2]时,f(x)= 2x-x . (1)求证:f(x)是周期函数;
∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+
f(6)+f(7) (2)当 x∈[2,4]时,求 f(x)的解析式; =„=f(2 008)+f(2 009)+f(2 010)+
(3)计算 f(0)+f(1)+f(2)+„+ f(2 013).
基础知识 题型分类
f(2 011)=0.
=f(x) , 那么就称函数 y=f(x)为周期
函数,称 T 为这个函数的周期. (2)最小正周期:如果在周期函数 f(x) 的所有周期中 存在一个最小 的正 数,那么这个最小正数就叫做 f(x)的 最小正周期.
基础知识 题型分类
思想方法
练出高分
基础知识·自主学习
基础自测
题号
1
答案
1 3
解析
2
3 4 5
2
数,且周期为 T,函数的周期性常与 函数的其他性质综合命题,是高考考
(2)当 x∈[2,4]时,求 f(x)的解析式;查的重点问题. (3)计算 f(0)+f(1)+f(2)+„+ f(2 013).
基础知识 题型分类 思想方法 练出高分
题型分类·深度剖析
函数的周期性和对称性PPT课件
![函数的周期性和对称性PPT课件](https://img.taocdn.com/s3/m/a69688b484868762cbaed529.png)
2、常见的判断周期的恒等式(可用递推法证明)
1 f ( x a) f ( x a)(, a R且a 0) T 2a
(2) f ( x a) f ( x)(3) f ( x a) 1
f (x)
T 2a
T 2a
为保守起见,我加了一个绝对值
X=a X=b
15
性质2.若函数 f (x)以 a,0, b,0 为对称点,那么
此函数是周期函数,周期T= 2 a b
假定 b a f (x) f (2a x)
f (2b (2a x))
f (x 2b 2a)
的图象,并指出两者的关系。 关于x=0对称
y f x 1 y f 1 x
(-1,0)
(1,0)
y f x
若函数 y f x上任意一点关于某直线(或某点) 的对称点在 y g x 上,就称 y f x和 y g x
关于某直线(或某点)对称,这种对称性称为互 对称。
例3:设 f x 1 x2的图象与 g x 的图象关 于直线 x 1 对称,求 g x的解析式。
g x 1 x 22
9
(二)、自对称问题常联系恒等式进行x的变换
例4:设 f x图象关于直线 x 1对称,在,1
上,f x 1 x2, 求当 x 1, 时 , f x的
为周期函数,T是函数的一个周期。若所有周期 中存在一个最小正数,则称它是函数的最小正周 期。
理解(1).是否所有周期函数都有最小正周期?
(2).若T是y f x的一个周期,则kT(k是非
零整数)均是 y f x的周期吗?
12
高三数学总复习PPT课件-函数的周期性
![高三数学总复习PPT课件-函数的周期性](https://img.taocdn.com/s3/m/74f2adb34afe04a1b171de1b.png)
A. 常函数
B.
C. 周期为2的周期函数 D. 周期为1
【答案】 C
【解析】 ∵f (-x+2)=-f (x)=f (-x), ∴f (x+2)=f (x),∴选C.
考点 1 函数周期性的判断及其应用
【名师示范1】函数 f(x)的定义域为 R ,
且 f (x)与f (x+1)都是奇函数,则 f(x +T)= f (x)的T值.
(∴f由即∴(∴f设即∴定((--f② ff换 ftff=义((xx((((--x--++得 元法xxx-xxt11)1))+))))法f=)====)1[=f--的的--∵-,)f(则ffff(2(周周((fx((-xxxx∵xxt-(+)=))1++x期期11f))11])及-(为为))=tx由-f)22f及(..②(xxf+-得(11x))+f=(1-t))f=(-xf+(12)-,t),
已知定义在R上的函数满足f(x)f(x3), 2
且f(2)f(1)1, f(0)2, 则f(1)f(2) f(2011)f(2012)______
-2
3.已知定义在R上的函数 f (x)是以2为周期的奇函数,则
方程 f (x)=0在[-2,2]上至少有
个实数根
【答案】 5
第四课时 函数的周期性
对于函数 f (x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有 f (x+T)=f (x) ,那 么 f (x)就叫做周期函数. T 叫做这个函数的周期.
kT(k∈ Z ,k≠0) 也是 f (x)的周期,即 有 f (x+k T)=f (x) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) y
2sin(x 2
) 6
,
x∈R
;
(4)y=|sinx| x∈R.
例2 已知定义在R上的函数f(x)满足
f(x+2)+f(x)=0,试判断f(x)是否为周 期函数?
例3 已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
思考4:函数y=3sin(2x+4)的最小正 周期是多少?
思考5:一般地,函数y A sin (x ) (A 0, 0)的最小正周期是多少?
思考6:如果函数y=f(x)的周期是T,那 么函数y=f(ωx+φ)的周期是多少?
理论迁移
例1 求下列函数的周期:
(1)y=3cosx; x∈R
(2)y=sin2x,x∈R;
知识探究(二):周期概念的拓展
思考1:函数f(x)=sinx(x≥0)是否为 周 期 函 数 ? 函 数 f(x)=sinx ( x≤0 ) 是 否为周期函数?
思考2:函数f(x)=sinx(x>0)是否为 周期函数?函数f(x)=sinx(x≠3kπ) 是否为周期函数?
思考3:函数f(x)=sinx,x∈[0,10π] 是否为周期函数?周期函数的定义域有 什么特点?
1.4.2 正弦函数、余弦函数的性质 第一课时
问题提出
1.正弦函数和余弦函数的图象分别是什
么?二者有何相互联系?
y 1
y=sinx
-6π -4π -2π -5π -3π
-π
O
π
3π 5π x
2π
4π
6π
-1
y y=cosx
2
2
1 22
2
2
x
2
O
2
2 -1
2
2
2上
有
思考2:设f(x)=sinx,则s in (x 2 k ) s in x
可以怎样表示?其数学意义如何?
思考3:为了突出函数的这个特性,我们 把函数f(x)=sinx称为周期函数,2kπ为 这个函数的周期.一般地,如何定义周期 函数?
对 于 函 数 f(x) , 如 果 存 在 一 个 非 零常数T,使得当x取定义域内的每一 个值时,都有f(x+T)=f(x), 那么函数 f(x)就叫做周期函数,非零常数T就叫 做这个函数的周期.
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
思考5:如果在周期函数f(x)的所有周期 中存在一个最小的正数, 则这个最小正 数叫做f(x)的最小正周期.那么, 正弦函 数的最小正周期是多少?为什么?
思考6:就周期性而言,对正弦函数有 什么结论?对余弦函数呢?
正、余弦函数是周期函数,2kπ (k∈Z, k≠0)都是它的周期,最小 正周期是2π.
许
多事 p
1 2
5730
物
都
呈
现
“
周
而
复
始
”
的变化规律,如年有四季更替,月有阴
晴圆缺.这种现象在数学上称为周期性,
在函数领域里,周期性是函数的一个重
要性质.
知识探究(一):周期函数的概念
思考1:由正弦函数的图象可知, 正弦曲 线每相隔2π个单位重复出现, 这一规 律的理论依据是什么?
. s i n ( x 2 k ) s i n x ( k Z )
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
小结作业
1.函数的周期性是函数的一个基本性质, 判断一个函数是否为周期函数,一般以 定义为依据,即存在非零常数T,使f(x +T)=f(x)恒成立.
2.周期函数的周期与函数的定义域有关, 周期函数不一定存在最小正周期.
3.周期函数的周期有许多个,若T为周期 函数f(x)的周期,则T的整数倍也是f(x) 的周期.