高一数学函数课件.ppt
合集下载
3.1.1函数的概念课件(一)高一上学期数学人教A版必修一
√B.A={1,2,3,4},B={0,1},对应关系如图:
C.A=R,B=R,f:x→y=x-1 2
D.A=Z,B=Z,f:x→y= 2x-1
2.函数y=f(x)的图象与直线x=2 023的公共点有
A.0个
B.1个
√C.0个或1个
D.以上答案都不对
3.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为_{_-__2_,0_,_4_}_.
问题3 通过对课本中的4个问题的分析,你能说出它们有什么不同点和 共同点吗? 不同点:课本中的问题1,2是用解析式刻画两个变量之间的对应关系,问 题3是用图象刻画两个变量之间的对应关系,问题4是用表格刻画两个变 量之间的对应关系. 共同点:①都包含两个非空数集,分别用A,B来表示; ②都有一个对应关系; ③对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确 定的数y和它对应. 函数的本质特征
知识梳理
注意点: (1)A,B是非空的实数集. (2)定义域是非空的实数集A,但函数的值域不一定是非空实数集B,而是 集合B的子集. (3)函数定义中强调“三性”:任意性、存在性、唯一性. (4)函数符号“y=f(x)”是数学符号之一,不表示y等于f与x的乘积,f(x)也 不一定是解析式,还可以是图象或表格,或其他的对应关系(venn…). (5)除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号表示函数.
由图象和表格呈现出来的变量间的对应关系比解析式更直观、形象.
年份y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔
系数 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
C.A=R,B=R,f:x→y=x-1 2
D.A=Z,B=Z,f:x→y= 2x-1
2.函数y=f(x)的图象与直线x=2 023的公共点有
A.0个
B.1个
√C.0个或1个
D.以上答案都不对
3.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为_{_-__2_,0_,_4_}_.
问题3 通过对课本中的4个问题的分析,你能说出它们有什么不同点和 共同点吗? 不同点:课本中的问题1,2是用解析式刻画两个变量之间的对应关系,问 题3是用图象刻画两个变量之间的对应关系,问题4是用表格刻画两个变 量之间的对应关系. 共同点:①都包含两个非空数集,分别用A,B来表示; ②都有一个对应关系; ③对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确 定的数y和它对应. 函数的本质特征
知识梳理
注意点: (1)A,B是非空的实数集. (2)定义域是非空的实数集A,但函数的值域不一定是非空实数集B,而是 集合B的子集. (3)函数定义中强调“三性”:任意性、存在性、唯一性. (4)函数符号“y=f(x)”是数学符号之一,不表示y等于f与x的乘积,f(x)也 不一定是解析式,还可以是图象或表格,或其他的对应关系(venn…). (5)除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号表示函数.
由图象和表格呈现出来的变量间的对应关系比解析式更直观、形象.
年份y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔
系数 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
3.1.1函数的概念(第一课时)课件 高一上学期数学人教A版(2019)必修一
2.如图所示,不可能表示函数的是( )
3.能否称f为集合A到集合B的一个函数?
f
f
18
6
二.函数的三要素
1. 定义域、对应关系、值域 为函数的三要素.
2.两函数相同,当且仅当
.
定义域和对应关系完全相同
练习:下列函数中,与y=x是同一函数的是(C )
例2 函数
的定义域是
.
练习:P97 A组第五题
一.函数的概念
设A、B是非空的数集,如果按照某种确定的对应关
系f,使对于集合A中的 任意一个数,x在集合B中都有
的唯数一f(确x)定和它对应,那么就称f:A→B为从集合A到集合B的
一叫函个数函定义的数域值,其域中,x{的值f(x取域)|x值∈是范A}围A叫函数的
,
集合B 的子集.
概念深化:
1.看电影的观众构成集合A,电影院的位置看作集合B,能否称f为集 合A到集合B的一个函数?
3.1.1 函数的概念
影院对以上三部电影票价五折优惠,则现在三部电影票价是:
志愿军:31元 熊猫计划:24 爆款好人:25
问题:我们对哪些数进行了运算,如何运算,运算结 果是什么?你能将运算过程抽象成一个函数模型吗?
问题:
能否体感温度看作是关于时间的函数?
以上三个函数例子的有什么共同点?请说出函数的概念.
例3. 已知函数 (1)求函数的定义域.
(2)求
的值.
(3)当 时,求 ,
的值.
例4.
小结: 1.函数概念 2.判断是否是同一函数 3.求函数定义域、函数值及值域
作业:
1.课后练习 2.教材P93 练习A
教材P98 练习B
3.能否称f为集合A到集合B的一个函数?
f
f
18
6
二.函数的三要素
1. 定义域、对应关系、值域 为函数的三要素.
2.两函数相同,当且仅当
.
定义域和对应关系完全相同
练习:下列函数中,与y=x是同一函数的是(C )
例2 函数
的定义域是
.
练习:P97 A组第五题
一.函数的概念
设A、B是非空的数集,如果按照某种确定的对应关
系f,使对于集合A中的 任意一个数,x在集合B中都有
的唯数一f(确x)定和它对应,那么就称f:A→B为从集合A到集合B的
一叫函个数函定义的数域值,其域中,x{的值f(x取域)|x值∈是范A}围A叫函数的
,
集合B 的子集.
概念深化:
1.看电影的观众构成集合A,电影院的位置看作集合B,能否称f为集 合A到集合B的一个函数?
3.1.1 函数的概念
影院对以上三部电影票价五折优惠,则现在三部电影票价是:
志愿军:31元 熊猫计划:24 爆款好人:25
问题:我们对哪些数进行了运算,如何运算,运算结 果是什么?你能将运算过程抽象成一个函数模型吗?
问题:
能否体感温度看作是关于时间的函数?
以上三个函数例子的有什么共同点?请说出函数的概念.
例3. 已知函数 (1)求函数的定义域.
(2)求
的值.
(3)当 时,求 ,
的值.
例4.
小结: 1.函数概念 2.判断是否是同一函数 3.求函数定义域、函数值及值域
作业:
1.课后练习 2.教材P93 练习A
教材P98 练习B
高一数学《幂函数》PPT课件
根据n, m, p的取值不同,图像形状各 异。
03
幂函数运算规则与技巧
同底数幂相乘除法则
01
02
03
同底数幂相乘
底数不变,指数相加。公 式:a^m × a^n = a^(m+n)
同底数幂相除
底数不变,指数相减。公 式:a^m ÷ a^n = a^(m-n)
举例
2^3 × 2^4 = 2^(3+4) = 2^7;3^5 ÷ 3^2 = 3^(5-2) = 3^3
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
计算圆的面积
$S=pi r^2$,$r$为圆半 径,利用幂函数表示圆的 面积与半径关系。
增长率、衰减率问题中应用
细菌增长模型
假设细菌以固定比例增长,则细 菌数量与时间关系可用幂函数表
示。
放射性物质衰变
放射性物质衰变速度与剩余质量 之间的关系可用幂函数描述。
投资回报计算
投资回报率与时间关系可用幂函 数表达,用于预测未来收益。
利用积的乘方法则进行化简
如(ab)^n = a^n × b^n
举例
化简(x^2y)^3 ÷ (xy^2)^2,结果为x^4y
04
幂函数在生活中的应用举例
面积、体积计算中应用
计算正方形面积
$S=a^2$,其中$a$为正 方形边长,利用幂函数表 示面积与边长关系。
5.1函数的概念和图象(第1课时函数的概念)课件高一上学期数学(1)
苏教版 数学 必修第一册
【课标要求】1.会用集合语言和对应关系刻画函数.2.理解函数的概念,了解构成函数的要素.3.会求简单函数的定义域与值域.
要点深化·核心知识提炼
知识点1. 函数的概念
概念
给定两个非空实数集合 和 ,如果按照某种对应关系 ,对于集合 中的每一个实数 ,在集合 中都有唯一的实数 和它对应,那么就称 为从集合 到集合 的一个函数
跟踪训练1(1) 下列图形中不是函数图象的是( )
A
A. B. C. D.
(2)下列各组函数表示同一个函数的是( )
BCD
D
C
4
5
6
7
7
6
4
5
3
4
5
6
4
6
5
4
C
A.3 B.4 C.5 D.7
BCD
1
2
3
4
5
2
3
4
2
3
BCD
A.2 B.3 C.4 D.5
(1)函数的表示:与用哪个字母表示无关;
(2)解析式的化简:在化简解析式时,必须是等价变形.
题型分析·能力素养提升
【题型一】函数的概念
例1(1) 下列各组函数是同一个函数的是( )
C
规律方法 1.判断一个对应关系是否为函数的方法
2.判断两个函数是否为同一个函数的注意点 (1)先求定义域,定义域不同则不是同一个函数; (2)若定义域相同,再看对应关系是否相同.
0
2
B
4.(多选题)下列四个对应关系,构成函数的是( )
AD
A. B. C. D.
4
(1)求函数的定义域;
B层 能力提升练
【课标要求】1.会用集合语言和对应关系刻画函数.2.理解函数的概念,了解构成函数的要素.3.会求简单函数的定义域与值域.
要点深化·核心知识提炼
知识点1. 函数的概念
概念
给定两个非空实数集合 和 ,如果按照某种对应关系 ,对于集合 中的每一个实数 ,在集合 中都有唯一的实数 和它对应,那么就称 为从集合 到集合 的一个函数
跟踪训练1(1) 下列图形中不是函数图象的是( )
A
A. B. C. D.
(2)下列各组函数表示同一个函数的是( )
BCD
D
C
4
5
6
7
7
6
4
5
3
4
5
6
4
6
5
4
C
A.3 B.4 C.5 D.7
BCD
1
2
3
4
5
2
3
4
2
3
BCD
A.2 B.3 C.4 D.5
(1)函数的表示:与用哪个字母表示无关;
(2)解析式的化简:在化简解析式时,必须是等价变形.
题型分析·能力素养提升
【题型一】函数的概念
例1(1) 下列各组函数是同一个函数的是( )
C
规律方法 1.判断一个对应关系是否为函数的方法
2.判断两个函数是否为同一个函数的注意点 (1)先求定义域,定义域不同则不是同一个函数; (2)若定义域相同,再看对应关系是否相同.
0
2
B
4.(多选题)下列四个对应关系,构成函数的是( )
AD
A. B. C. D.
4
(1)求函数的定义域;
B层 能力提升练
高一数学指数函数ppt课件
与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
3.1.1函数的概念课件-高一上学期数学人教A版必修第一册
即时训练 1-1:函数 y=
+
-
-
的定义域为
解析:要使函数解析式有意义,需满足
.(用区间表示)
+
-
≥ ,
≥ , ⇒
≥- ,
≤ , ⇒-2≤x≤3,
-
≠
≠
且 x≠ .所以函数的定义域为[-2, )∪( ,3].
答案:[-2, )∪( ,3]
小试身手
1.函数 f(x)=
A.(-∞,3)
-
的定义域是(
探究点四
一次函数、二次函数、反比例函数的定义域、值域
[例4] (1)已知函数f(x)=-2x+3的值域为[-5,5],则它的定义域为(
A.[-5,5]
B.[-7,13]
C.[-4,1]
D.[-1,4]
(1)解析:由函数f(x)=-2x+3的值域为[-5,5]可知-5≤3-2x≤5,
解得-1≤x≤4.故选D.
解析:对于A,A中取0,在B中没有0对应,故A错误;
对于B,C,根据函数的定义,B,C正确;
对于D,A不是数集,故D错误.故选BC.
函数y=f(x),x∈A
如果自变量取值a,则由对应法则f确定的值y称为函数
在a处的函数值,记作y=f(a)
例如:y=3x+1可以写成f(x)= 3x+1
当x=2时y=7可以写成f(2)=7
)
A.A=N,B=N*,对应关系 f:对集合 A 中的元素取绝对值与 B 中元素对应
B.A={-1,1,2,-2},B={1,4},对应关系 f:x→y=x2,x∈A,y∈B
C.A={-1,1,
,-2},B={1,2,4},对应关系 f:x→y=x 2,x∈A,y∈B
高一数学函数的基本性质习题课PPT课件.ppt
何?并说明理由.
(3)判断函数 f(x) 2x2 6x 7,x - 4,5 的单调性,
并求出它的单调区间.
(4)画出函数 f(x) x x 3 1的图象,并写出函数的 单调区间.
**导学与测试(P78) 单元综合练习3.4: 3,4,5,10. (5)已知函数 f(x) ax2 2x 3在[1,+∞)上为减函数, 在(-∞,1]为增函数,求实数a的值.
(6)已知定义域为R的偶函数f(x)在[0,4]内单调递增, 试比较f(-π)与f(3.14)的大小.
(7)已知函数y=f(x)是R上的偶函数,且f(x)在(-∞,0] 上是增函数,若f(a)≥f(2),求实数a的取值范围. (8)已知奇函数f(x)的定义域为(-1,1),且在定义域上 是单调递减函数,若 f(1- a) f(1- a2 ) 0 ,求实数a的 取值范围.
1
5
典例解析
(综合问题) **例题5:若定义在R上的偶函数f(x)在(-∞,0)上是 单调递增的,若满足 f(2a2 a 1) f(3a2 2a 1). 试求出实数a的取值范围.
*说明: (1)根据题意,作出函数的大致图象解决问题;
(2)应注意本题中的自变量的特殊性.
(2a2 a 1)(,3a2 2a 1)恒大于零.
问题探究
**例题7:已知函数 f(x1) x2 2x1 的定义域为 [-2,0].试求出函数f(x)的单调区间.
*说明: (1)可以利用代换法先求得函数f(x)的解析 式及其定义域,然后作图解之. (2)在进行代换的同时应注意变量的允许范 围也应随之而同步变化.
课堂小结
**请你谈谈本节课的体会与收获**
函数的单调性.
作图演示
y
4
3.1.1函数的概念及其表示课件高一上学期数学人教A版(2019)必修一
【对点练清】 1.下列对应或关系式中是 A 到 B 的函数的是
A.A=R ,B=R ,x2+y2=1 B.A={1,2,3,4},B={0,1},对应关系如图: C.A=R ,B=R ,f:x→y=x-1 2
()
D.A=Z ,B=Z ,f:x→y= 2x-1
解析: A 错误,x2+y2=1 可化为 y=± 1-x2,显然对任意 x∈A,y 值不 唯一.B 正确,符合函数的定义.C 错误,2∈A,在 B 中找不到与之相对 应的数.D 错误,-1∈A,在 B 中找不到与之相对应的数. 答案:B
区间可以用数轴表示,在数轴表示时,用实心点表示包括在区间内的端点, 用空心点表示不包括在区间内的端点.
定义
名称
区间
数轴表示
{x|a≤x≤b}
闭区间
_[a_,___b_]
{x|a<x<b}
开区间
(a,_b_)_
{x|a≤x<b} 半开半闭区间 [a,_b_)_
续表
{x|a<x≤b} 半开半闭区间 (a,b]
函数的定义域. 推理素养.
4.能够正确使用区间表示数集.
பைடு நூலகம்
知识点一 函数的有关概念 (一)教材梳理填空 1.函数的概念:
定义
一般地,设A,B是 非空的实数集 ,如果对于集合A中的 任意一个数x ,按照某种确定的对应关系f,在集合B中都有 _唯__一__确__定__的__数__y_和它对应,那么就称 f:A→B 为从集合A到集 合B的一个函数
(2)f(x)与f(a)有何区别与联系?
提示:(1)这种看法不对. 符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加 的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以 是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变 量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研 究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.
人教版高中数学必修1《函数的单调性》PPT课件
k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
人教版高中数学必修一(1.2.1-1函数的概念)ppt课件
定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)
x
2
2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。
高中数学必修第一册3.1函数的概念及其表示课件
那么你认为该怎样确定一个工人每周的工资?一个工人的工资w
(单位:元)是他工作天数d的函数吗?
对于任一个给定的天数d,都有唯一确
定的工资w与之对应;
= 350
变量w和d之间是否是函数关系?它们各自的变化范围是什么 ?
试用集合 A,B 表示?
= 350
集合A
集合B
一一对应
1
2
3
4
5
6
350
记作:y=f(x) , x∈A
注意:
(1)x 叫做自变量,x的取值范围构成的集合A叫做函
数的定义域;
(2)与x的值相对应的 y值 叫做函数值;函数值组成的
集合
叫做函数的值域。
C={y|y=f(x), x∈A}
深化概念
高中和初中函数概念的区分和联系
①
定义的扩大:初中强调变量之间的关系;高中是在映射概念和集合的概念的基础上进
∈ , , , , , , , . ,
∈ . , . , . , . , . , . , . , . , . , .
集合B
集合A
(3)对于集合A中的任意一个元素 x,在集合B
中都有唯一确定的元素 y 与之对应。
不同点
分别通过解析式、图象、表格刻画变量之间的对
应关系
函
数
的
概
念
设A、B是非空数集,如果按照某种确定的
对应关系 f,使对于集合A中的任意一个数 x,
在集合B中都有唯一确定的数 f(x) 和它对应,
就称f : A→B 为从集合A到集合B的一个函数,
700
1050
1400
1750
2100
解析法
实例2:
(单位:元)是他工作天数d的函数吗?
对于任一个给定的天数d,都有唯一确
定的工资w与之对应;
= 350
变量w和d之间是否是函数关系?它们各自的变化范围是什么 ?
试用集合 A,B 表示?
= 350
集合A
集合B
一一对应
1
2
3
4
5
6
350
记作:y=f(x) , x∈A
注意:
(1)x 叫做自变量,x的取值范围构成的集合A叫做函
数的定义域;
(2)与x的值相对应的 y值 叫做函数值;函数值组成的
集合
叫做函数的值域。
C={y|y=f(x), x∈A}
深化概念
高中和初中函数概念的区分和联系
①
定义的扩大:初中强调变量之间的关系;高中是在映射概念和集合的概念的基础上进
∈ , , , , , , , . ,
∈ . , . , . , . , . , . , . , . , . , .
集合B
集合A
(3)对于集合A中的任意一个元素 x,在集合B
中都有唯一确定的元素 y 与之对应。
不同点
分别通过解析式、图象、表格刻画变量之间的对
应关系
函
数
的
概
念
设A、B是非空数集,如果按照某种确定的
对应关系 f,使对于集合A中的任意一个数 x,
在集合B中都有唯一确定的数 f(x) 和它对应,
就称f : A→B 为从集合A到集合B的一个函数,
700
1050
1400
1750
2100
解析法
实例2:
4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册
函数零点的定义
函数零点、方程的根、函数的图象与x轴交点的关系
函数的零点存在定理
1.在二次函数 中,ac<0,则其零点的个 数为( ) A.1 B.2 C.3 D.不存在
2.若 不是常数函数且最小值为1,则 的零点个数( )
A.0
B.1
C.0或1
D.不确定
解:
x
1
2
3
4
5
6
7
8
9
f(x)
-4
-1.306 9
1.098 6
3.386 3
5.609 4
7.791 8
9.945 9
12.079 4
14.197 2
方法一
f(x)=lnx+2x-6
从而f(2)·f(3)<0,∴函数f(x)在区间(2,3)内有零点.
10
8
6
4
2
-2
-4
5
1
2
3
4
6
x
y
O
y=-2x+6
y=lnx
6
O
x
1
2
3
4
y
即求方程lnx+2x-6=0的根的个数,即求lnx=6-2x的根的个数,即判断函数y=lnx与函数y=6-2x的交点个数.
如图可知,只有一个交点,即方程只有一根,函数f(x)只有一个零点.
方法二:
函数零点
方程的根
图象交点
转化
1.求方程2-x =x的根的个数,并确定根所在的区间[n,n+1](n∈Z).
x
y
如图,
若函数y=5x2-7x-1在区间[a,b]上的图象 是连续不断的曲线,且函数y=5x2-7x-1在(a, b)内有零点,则f(a)·f(b)的值( ) A.大于0 B.小于0 C.无法判断 D.等于0
函数零点、方程的根、函数的图象与x轴交点的关系
函数的零点存在定理
1.在二次函数 中,ac<0,则其零点的个 数为( ) A.1 B.2 C.3 D.不存在
2.若 不是常数函数且最小值为1,则 的零点个数( )
A.0
B.1
C.0或1
D.不确定
解:
x
1
2
3
4
5
6
7
8
9
f(x)
-4
-1.306 9
1.098 6
3.386 3
5.609 4
7.791 8
9.945 9
12.079 4
14.197 2
方法一
f(x)=lnx+2x-6
从而f(2)·f(3)<0,∴函数f(x)在区间(2,3)内有零点.
10
8
6
4
2
-2
-4
5
1
2
3
4
6
x
y
O
y=-2x+6
y=lnx
6
O
x
1
2
3
4
y
即求方程lnx+2x-6=0的根的个数,即求lnx=6-2x的根的个数,即判断函数y=lnx与函数y=6-2x的交点个数.
如图可知,只有一个交点,即方程只有一根,函数f(x)只有一个零点.
方法二:
函数零点
方程的根
图象交点
转化
1.求方程2-x =x的根的个数,并确定根所在的区间[n,n+1](n∈Z).
x
y
如图,
若函数y=5x2-7x-1在区间[a,b]上的图象 是连续不断的曲线,且函数y=5x2-7x-1在(a, b)内有零点,则f(a)·f(b)的值( ) A.大于0 B.小于0 C.无法判断 D.等于0
高一数学必修第一册正弦函数、余弦函数的性质课件
上都单调递减,其值从1减小到-1.
最大值与最小值
【整理】从上述对正弦函数、余弦函数的单调性的讨论中容易得到:
+ ( ∈ ) 时取得最大值1,
当且仅当 = − + ( ∈ ) 时取得最小值-1;
①正弦函数当且仅当 =
②余弦函数当且仅当 = ( ∈ ) 时取得最大值1,
【1】周期性:观察正弦函数的图像,可以发现,在图像上,横坐标每隔2π个单位
长度,就会出现纵坐标相同的点,这就是正弦函数值具有的“周而复始”的
变化规律.实际上,这一点既可以从定义中看出,也能从诱导公式中得到反映.即自
变量 的值加上2π的整数倍时所对应的函数值,与 所对应的函数值相等.数学
上用周期性来定量地刻画这种“周而复始”的规律.
如何用自变量的系数表示上述函数的周期呢?
事实上,令 = + ,那么由 ∈ 得 ∈ ,且函数 = , ∈ 及函数
= , ∈ 的周期都是.
因为 + = + + = +
+ ,所以自变量增加 ,函数值
+ ,
+ ( ∈ ) 上都单调递减,其值从1减小到-1.
单调性
−
−
−
同样的道理结合余弦函数的周期性我们可以知道:
余弦函数在每一个闭区间
在每一个闭区间
− + , ( ∈ ) 上都单调递增,其值从-1增大到1;
, + ( ∈ )
关于y轴对称.所以正弦函数是奇函数,余弦函数是偶函数.
3.2.2函数的奇偶性(课件)高一数学(湘教版2019必修第一册)
1
. ( , + ∞)
2
答案:.
1
. (−∞, )
2
).
1
. ( ,2)
2
1
. [−2, )
2
课堂小结&作业
小结:
1.偶函数、奇函数的定义及其几何意义;
2.判断奇偶函数的思路;
3.各题型的注意事项.
作业:
1.课本P83的1、2、3题;
2.课本P84的习题3.2的4、5、6、7、11、12、13题.
2
3
. (2) < (− ) < (−1)
2
3
. (2) < (−1) < (− )
2
3
. (−1) < (− ) < (2)
2
解:据题意得: () 为偶函数,且在区间 ( − ∞, − 1] 上是增函数.
∴(2) = (−2) .
3
又∵−2 < − < −1
2
∴(−2) <
∵()为上的偶函数
∴当 > 0时,() = (−) = ( + 1).
练习
方法技巧:
利用函数奇偶性求分段函数的解析式
(1)定义域:根据已知定义域(正或负)的解析式,写出另一边的解析式.
(2)写成分段函数的形式,通常不会出现 = 0,如果出现也需要特殊说明.
练习
变3.已知函数()是上的奇函数,且当 ∈ (0, + ∞)时,() =
同理可证:奇函数就是满足条件(−) = −()的函数.
上面的讨论概括如下:
(1)如果对一切使 () 有定义的 , (−) 也有定义,并且 (−) = ()成立,
则称()为偶函数;
. ( , + ∞)
2
答案:.
1
. (−∞, )
2
).
1
. ( ,2)
2
1
. [−2, )
2
课堂小结&作业
小结:
1.偶函数、奇函数的定义及其几何意义;
2.判断奇偶函数的思路;
3.各题型的注意事项.
作业:
1.课本P83的1、2、3题;
2.课本P84的习题3.2的4、5、6、7、11、12、13题.
2
3
. (2) < (− ) < (−1)
2
3
. (2) < (−1) < (− )
2
3
. (−1) < (− ) < (2)
2
解:据题意得: () 为偶函数,且在区间 ( − ∞, − 1] 上是增函数.
∴(2) = (−2) .
3
又∵−2 < − < −1
2
∴(−2) <
∵()为上的偶函数
∴当 > 0时,() = (−) = ( + 1).
练习
方法技巧:
利用函数奇偶性求分段函数的解析式
(1)定义域:根据已知定义域(正或负)的解析式,写出另一边的解析式.
(2)写成分段函数的形式,通常不会出现 = 0,如果出现也需要特殊说明.
练习
变3.已知函数()是上的奇函数,且当 ∈ (0, + ∞)时,() =
同理可证:奇函数就是满足条件(−) = −()的函数.
上面的讨论概括如下:
(1)如果对一切使 () 有定义的 , (−) 也有定义,并且 (−) = ()成立,
则称()为偶函数;
2024版高一数学指数函数及其性质PPT课件图文
学习方法建议
深入理解指数函数的概念
掌握指数函数的定义、图像和性质, 理解底数、指数和幂的含义。
多做练习题
通过大量的练习题,加深对指数函数 的理解和掌握,提高解题能力。
系统学习指数函数的运算
学习指数函数的四则运算,掌握运算 规则和技巧。
解题技巧分享
换元法
通过将指数函数中的变量 进行换元,简化问题,使 问题更容易解决。
指数函数在数学模 型中的应用举例
在经济学中,指数函数被用来描 述复利、折旧等问题;在物理学 中,指数函数被用来描述放射性 元素的衰变等问题;在工程学中, 指数函数被用来描述材料的疲劳 寿命等问题。
数学模型在解决实际问题中的价值
提高解决问题的效率
揭示问题的本质和规律
通过建立数学模型,可以将实际问题转化为 数学问题,利用数学方法和技术进行求解, 从而提高解决问题的效率。
05
指数函数与数学模型
数学模型简介
01
数学模型的定义
数学模型是描述客观事物或它的本质和本质的一系列数学形 式。它或能利用现有的数学形式如数学公式、数学方程、数 学图形等加以表述,或能抽象出数学的基本概念和基本结构。
02
数学模型的分类
根据研究目的,可以将数学模型分为描述性模型和预测性模 型。
03
数学模型的作用
指数方程求解
通过对方程两边取相同的底数的对数或者 利用换元法等方法求解指数方程。
指数函数性质应用
利用指数函数的单调性、奇偶性、周期性 等性质解决相关问题。
03
指数函数性质探究
单调性
01
指数函数的单调性取决于底数a的 大小
02
当a>1时,指数函数在整个定义 域上是增函数;