多氯联苯的生物降解探究
多氯联苯的环境毒理研究动态
多氯联苯的环境毒理研究动态多氯联苯(PCBs)是一类常见的有机污染物,是一种无色、无味、无臭的有机化合物。
它由苯环上连接了多个氯原子而形成,具有良好的耐热性和电气绝缘性,因此在过去被广泛应用于工业生产和农业领域,如电子电器制造业、油漆、农药等。
然而,由于其毒性和环境残留性,多氯联苯已被列为全球范围内的环境污染物,并受到国际社会的广泛关注。
多年来,科学家们对多氯联苯的环境毒理进行了大量研究。
研究发现,多氯联苯具有较强的毒性,对人体和动物的神经系统、免疫系统、内分泌系统和生殖系统等都产生影响。
它会干扰神经递质的正常发挥作用,导致神经传导异常,进而引发神经毒性症状,如头痛、头晕、肌肉颤动等。
多氯联苯还会抑制免疫系统的功能,使人体的免疫力下降,易受感染和疾病的侵袭。
此外,多氯联苯还与内分泌系统密切相关,它具有内分泌干扰物质的特性,可能导致生殖细胞的发育异常,影响发情周期和生殖能力。
这些研究结果表明,多氯联苯对生物体具有广泛的毒性作用,对生态环境和人类健康带来了潜在危害。
随着对多氯联苯环境毒理的研究深入开展,人们对其在环境中的分布和归趋也有了进一步了解。
研究发现,多氯联苯在大气、水体、土壤和生物体中广泛存在,且具有较高的残留性和生物富集性。
在工业生产过程中,多氯联苯可能通过排放进入大气,然后通过大气沉降的方式沉入水体和土壤。
同时,多氯联苯还可以通过沉积和生物富集的方式进入水生生物和陆生生物体内。
由于其生物富集性,多氯联苯在食物链中逐渐积累,并最终进入人体。
这说明了多氯联苯对于生物系统和食物安全的潜在威胁。
鉴于多氯联苯的环境毒理特性和对生态环境的危害,国际社会已经采取了一系列措施来减少和控制多氯联苯的排放和使用。
其中包括禁止和限制多氯联苯的生产和使用、加强环境监测和管理、加强科学研究和国际合作等。
这些措施的实施对于减少多氯联苯在环境中的分布和降低其对生态环境和人类健康的潜在危害具有重要意义。
此外,近年来,人们还开始关注多氯联苯的降解和修复技术研究。
微生物降解多氯联苯的研究进展
微生物降解多氯联苯的研究进展
微生物降解多氯联苯的研究进展
摘要:多氯联苯是一种持续性有机污染物,在自然环境中很难降解.在目前研究的降解方法中,微生物降解最具潜力.本文对多氯联苯微生物降解的.研究进展进行了综述,包括厌氧还原脱氯,好氧氧化以及生物表面活性剂的作用,介绍了几种降解方法耦合应用的现状和前景,指出了应用中存在的问题和今后的发展方向.作者:孙红斌刘亚云陈桂珠 SUN Hongbin LIU Yayun CHEN Guizhu 作者单位:孙红斌,陈桂珠,SUN Hongbin,CHEN Guizhu(中山大学环境科学与工程学院,广州,510275)
刘亚云,LIU Yayun(中山大学环境科学与工程学院,广州,510275;广东海洋大学资源与环境系,湛江,524088)
期刊:生态学杂志ISTICPKU Journal:CHINESE JOURNAL OF ECOLOGY 年,卷(期):2006, 25(12) 分类号:X172 关键词:多氯联苯生物降解微生物种群。
多氯联苯的迁移转化和降解方法综述
多氯联苯的迁移转化和降解方法综述摘要:本文综述了多氯联苯(PCBs)在大气、水体、底泥环境以及土壤中的迁移转化;讨论了我国PCBs污染现状及现存的主要问题;概括了处理多氯联苯的传统方法以及新兴降解技术,并总结了表面活性剂中的直接光化学降解行为,以及PCBs在水相中的迁移转化。
关键词:有机化学多氯联苯迁移转化研究现状处理技术手段1.PCBs的结构及性质多氯联苯(PCBs)又称氯化联苯,是联苯苯环上的若干氢原子被氯取代而形成的一类有机氯化合物的总称[4] 。
PCBs具有亲脂性,难降解性和高富集性。
可溶于生物的脂肪组织中,并通过食物链浓缩富集。
多氯联苯经生物转化而成的羟基多氯联苯,在结构上与雌激素和甲状腺激素类似,能够在生物机体内产生类雌激素干扰和甲状腺干扰效应。
2.PCBs在环境中的迁移转化世界上的PCBs自生产以来估计有一半已进人垃圾堆放场或被填埋,它们相当稳定,而且释放很慢,其余的大部分则通过下列途径进入环境中,在不同的环境介质间发生一系列的迁移转化,最终的贮存所主要是土壤、河流和沿岸水体的底泥。
2.1 PCBs在大气中的迁移转化大气沉降是很多大水体中PCBs的主要来源。
PCBs在大气中的损失途径主要有两种,一是直接光解和与羟基自由基等作用从而从大气中消失,其中与反应最为明显估计每年约有0.6%的PCBs由于与基反应而消失。
另一途径是经过雨水冲洗和干、湿沉降实现污染物从大气向水体或土壤转移,而由于PCBs的亨利常数比较低,湿沉降成为主要的途径。
2.2 PCBs在土壤中的迁移自近年来欧盟开展全球环境中POPs监测项目以来,土壤中PCBs污染才开始受到广泛关注。
由于PCBs是一类亲脂性化合物,所以一旦进入土壤,即被土壤有机质牢固吸附,很难消失,从而造成土壤PCBs污染[8]。
因此,土壤是PCBs 的重要场所,由于不易溶于水,水底沉积物中的浓度常常会高于水溶液的浓度,因此沉积物是水中PCBs的最终储存库。
土层中多氯联苯(PCBs)的生物降解机制
土层中多氯联苯(PCBs)的生物降解机制陆玉梅(环境科学与工程系,北京,2010220151)摘要:本文详细论述了PCBs的厌氧和好氧降解机制,并对表面活化剂在生物降解中的作用进行了总结。
关键词:多氯联苯;生物降解;降解机制。
BIODEGRADATION MECHANISM OF POLYCHLORPBIPHENYL IN SOILLU Yu-mei(Environmental Science and Engineering Department, Beijing,2010220151) Abstract:In this paper, the anaerobic and aerobic biodegradation mechanism of PCBs was discussed in detail. In addition, effects of surfactant inbiodegradation were summarized.Key words:polychlorp biphenyl, biodegradation, biodegradation mechanism.1 引言多氯联苯(polychlorp biphenyl,简称PCBs)是一类以苯为原料,在金属催化作用下,高温氯化成的氯代芳烃,分子式为(C10H10)Cln,根据氯原子取代数和取代位置的不同,理论上共有209种同类物,结构式可表示为:PCBs是一种无色或淡黄色的油状物质,难溶于水,因其具有良好的化学惰性、抗热性、不可燃性、低蒸汽压和高介电常数等优点,被用于作为热交换剂、润滑剂、变压器和电容器内的绝缘截止、增塑剂、石蜡扩充剂、粘合剂、有机稀释剂等重要的化工产品,广泛应用于电力工业、塑料加工业、化工和印刷领域[1]。
PCBs并非自然存在的物质,而是由人工合成的化合物。
人类从1930年开始商业性生产PCBs,主要生产和销售国是美国和日本,我国也有小量生产。
土壤中多氯联苯(PCBs)的检测与被PCBs污染土壤的修复技术
土壤中多氯联苯(PCBs)的检测与被PCBs污染土壤的修复技术摘要:多氯联苯( PCBs)系一组化学性质极其稳定的氯代芳烃类化合物,也是重要的内分泌干扰物,已成为全球性的重要污染物之一.而土壤是多氯联苯的最主要的归趋之一,土壤中的多氯联苯会通过植物富集和生物放大作用进入食物链,更大程度的影响到人类的健康,所以对土壤中PCBs的含量有效实用的测定方法以及被污染土壤的修复的研究就变得非常重要。
本文主要介绍了几种PCBs 的实用检测技术与土壤修复技术。
本文主要从三个部分进行介绍:第一部分的介绍了多氯联苯(PCBs)的危害和污染现状;第二部分主要讲了目前常用的土壤中PCBs的检测技术;第三部分介绍了多种被PCBs污染的土壤的修复技术。
关键词:多氯联苯( PCBs)土壤检测修复0 前言多氯联苯是十九世纪八十年代首先从煤焦油萃取物中分离出的,并于二十世纪二十年代开始商业合成。
这种化合物在二十世纪被广泛运用于工业变压器和电容器。
然而,早在1933年人们就发现了多氯联苯具有毒性。
动物实验表明,PCBs对皮肤、肝脏、胃肠系统、神经系统、生殖系统、免疫系统的病变甚至癌变都有诱导效应。
PCBs的急性毒性很低,但是人类如果长时间暴露在低剂量环境中就可能导致氯痤疮、其它缺乏或增生反应、内分泌紊乱、肝中毒、生殖系统中毒以及致癌作用。
最典型的PCBs公害事件就是19世纪六七十年代发生在日本九州、四国等地区的―米糠油事件‖,总计患病者5000多人,其中死亡人数达百余人,很多人患上不同程度的恶性肿瘤,实际受害者超过1万人。
PCBs可以通过工业废物排放、密封存放点渗漏、垃圾堆放场沥滤液渗漏、含PCBs 的城市垃圾焚烧和工业焚烧及大气的干湿沉降等途径,进入土壤沉积物环境[7],约占环境PCBs 总量的97 %。
PCBs越来越多的进入土壤,土壤中的多氯联苯通过植物富集和生物放大作用进入食物链,更大程度的影响到人类的健康,具有潜在的致癌生物效应。
多氯联苯光化学降解研究的最新进展
P B 的光化 学行为 ,光催化降解有机 污染物是一种很有发展 前景的有机 污染物治理技 术。 Cs 关 键 词 :多氯 联苯 ;光 化学 降解 ;表 面活性剂 ;光敏剂 ;光催化
中图分类 号 . 12 X 2
文献标识码 : A
文章编号 :0 134 2 1 )30 7 - 10 .64(00 0 -070 5
由 于 多 氯 联 苯 ( o cliae ihnl, pl ho nt bp ey y r d s P B )具 有 良好 的 化 学 惰 性 、抗 热 性 、绝 缘 性 等 Cs 特 点 ,曾经作 为一 种工业 产 品大量 生产 并广 泛应用 于 电力 工业 、塑 料加 工业 、化 工 和 印刷 等领 域 。当 研 究者 们发 现 多氯 联苯具 有 免疫毒 性 、神经 和发育 毒 性 、肝 脏 毒 性 及 致 畸 、致 突 变 、致 癌 性 等 ¨ J , 就 已停 止其 生产 和使 用 。但 由于在 过去几 十 年 中的
摘 要 :综述 了近 1 以来 多氯联苯 ( C s 0年 P B )在 有机相 、表 面活性 剂中的直接光化 学降解行为 ,以及 P B 在 水相 中的 Cs
光敏 化反 应 和 光 催 化 反 应 等 间接 光 化 学 降解 行 为 。 从 光 解 动 力 学 、光 解 途 径 、光 解 机 理 以 及 光 解产 物 等 几 方 面 阐述 了
K e wo d y r s: P lc lr ae ih nl ;p oo h m c e rd t n;sratn ;p ooe st e ;p oo aay i oy hoi tdbp e ys h tc e a d ga ai n i l o ufca t h tsn izr h t tlss i c
多氯联苯污染及其生物降解途径
用金属、无机盐等介质代替普通焚烧中的空气作为传热及反应介 质来焚烧废物的方法,由于反应在还原条件下进行,不产生二恶 英等物质,排出气体比简单焚烧好。
缺点:大量尾气或废渣需处理,费用较高,难推广使用。
精选2021版课件
8
(3)等离子体降解 利用等离子体作为热源在高达5000~15000℃的高
精选2021版课件
参考文献
[1] 刘明阳,刘建华,张馥.我国有机氯污染物污染现状及监控对策[J].环境科学 与技术,2004,27(3):108-110.
[2] 高军,骆永明.多氯联苯(PCBs)污染土壤生物修复的研究进展[J].科学, 2005,11-21,19-03.
[3] 艾尼瓦儿,王栋,周集体.降解多氯联苯的微生物特定研究进展[J].上海环境 科学,2000,19:519-522.
两种策略:直接植物修复与体外植物修复。
直接植物修复——通过植物对土壤中PCBs进行直接吸收;
体外植物修复——植物可释放一些酶等物质到土壤中降解PCBs。
(2)好氧微生物降解法
1973年自Ahmed和Foeht于首先发现了可以降解单氯
和双氯联苯的菌株以来,至今已筛选到上百种多氯联苯
的降解菌。绝大部分的好氧细菌都以共代谢过程降解
位加氧,有时也在3,4位加氧; ②2,3-二氢二羟基联苯脱氢酶(BphB):催化为2,3-二羟基联苯; ③2,3-二羟基联苯1,2-双加氧酶(BphC):通过间位断裂生成黄色的开环
化合物2-羟基-6-酮基-6-苯基-2,4-己二烯酸(HOPDA); ④水解酶(BphD):降解成只有一个苯环的苯甲酸,再降解为中心代谢物。
[4] 贾凌云,付彦,杨凤林.生物降解多氯联苯的研究进展[J] .现代化工,
多氯联苯降解菌的筛选、菌株性质研究及其活性酶的性质分析的开题报告
多氯联苯降解菌的筛选、菌株性质研究及其活性酶
的性质分析的开题报告
【选题背景】
多氯联苯(PCBs)是一类高毒性、难降解的有机污染物,具有强烈
的环境毒性和对人体健康的危害。
其主要来源为工业化生产工艺中产生
的废弃物、废水和废气,还包括电子产品、润滑油和塑料等。
PCBs几乎
无法通过常规的物理和化学方法完全分解,因此寻找高效降解PCBs的微生物具有重要的意义。
目前,已经发现了一些能够降解PCBs的微生物菌株,但是这些菌株的降解效率低,不能满足实际应用的需要。
【选题目的】
本研究旨在筛选出能够高效降解PCBs的菌株,并对其降解机制、生长条件以及活性酶的性质进行研究,以期开发出一种高效、经济、环保
的降解技术。
【选题内容】
1.筛选PCBs降解菌株:选取土壤、水样等环境样品,通过PCBs的
富集、分离和纯化技术,筛选出能够降解PCBs的菌株。
2.菌株性质研究:对筛选出的菌株进行生物学、生理学和遗传学等
方面的研究,包括菌株的鉴定、形态学特征、生长条件、生长动力学、
代谢产物等方面的分析。
3.降解机制研究:通过对PCBs降解过程和代谢产物的分析,探讨降解机理。
4.活性酶的性质分析:从目标菌株中提取和纯化PCBs降解相关的酶,分析其催化机理、底物特异性、催化能力、稳定性等方面的性质。
【研究意义】
1.寻找高效降解PCBs的微生物菌株,为PCBs的治理提供一种新的途径。
2.深入探究PCBs的降解机理和降解酶的特性,对开发高效的PCBs 降解技术具有重要的理论和应用价值。
3.为建立环境友好型、高效的PCBs降解技术奠定基础。
多氯联苯污染及其处理方法研究进展
山西大学研究生学位课程论文(2016----2017学年第一学期)学院(中心、所):环境与资源学院专业名称:环境工程课程名称:高等环境化学论文题目:多氯联苯污染及其处理方法研究进展授课教师:李伟研究生姓名:赵原年级:2016级学号:201623903010成绩:评阅日期:山西大学研究生学院2016年1月摘要:本文简要介绍了多氯联苯命名、对环境的污染和对人体健康的危害, 综述了国内外有关多氯联苯的各种物理、化学、生物处理方法。
文章认为借助于催化剂技术使用零价金属还原降解多氯联苯的方法在今后应该具有比较好的发展前景。
关键词: 多氯联苯环境污染还原降解处理方法1 多氯联苯混合物的命名 (4)2 多氯联苯性质及危害 (4)3 多氯联苯处理方法 (5)3.1 物理法 (5)3.1.1 封存、填埋法 (5)3.1.2 原位玻化法 (5)3.1.3 吸附和萃取 (6)3.2 化学法 (6)3.2.1 高温焚烧法 (6)3.2 生物降解处理法 (9)3.2.1 好氧生物降解 (9)3.2.3 连续厌氧-好氧生物降解 (9)4 总结 (9)多氯联苯(Polychlorinated Biphenyls, 即PCBs ),是一类性质稳定、具有急慢性毒性的有机污染物,被广泛用于电容器和变压器的绝缘油、蓄电池、复写纸、油墨、涂料、溶剂、润滑剂、增塑剂、热载体、防火剂、粘结剂、石蜡扩充剂、燃料分散剂及农药延效剂等,对人体有很大的潜在性危害。
环境中的PCBs由于受气候、生物、水文地质等因素的影响,在不同的环境介质间发生一系列的迁移转化,最终的贮存所主要是土壤、河流和沿岸水体的底泥中。
因此PCBs 污染已成为全球性问题,多氯联苯对人类的生存和发展以及整个环境已经造成了巨大威胁。
1 多氯联苯混合物的命名多氯联苯( PCBs)家族包括 209 中理论上可能存在的同系物分子结构。
其中每一种同系物结构所包含的联苯分子上联结有 1-10 个数目不等的氯原子。
5750.8 -2006多氯联苯方法验证报告
5750.8 -2006多氯联苯方法验证报告(原创实用版3篇)目录(篇1)1.多氯联苯的背景介绍2.5750.8 -2006 方法验证的目的和意义3.验证过程和方法4.验证结果分析5.结论和建议正文(篇1)一、多氯联苯的背景介绍多氯联苯(Polychlorinated Biphenyls,简称 PCBs)是一类有机化合物,具有持久性、生物蓄积性和毒性。
由于其化学稳定性高、用途广泛,曾被大量生产和使用。
然而,多氯联苯对环境和人体健康的危害逐渐暴露,我国政府已将其列为禁止生产和使用的有毒化学物质。
二、5750.8 -2006 方法验证的目的和意义5750.8 -2006 是我国发布的关于多氯联苯检测的方法标准,其验证对于确保检测结果的准确性和可靠性具有重要意义。
方法验证旨在评估该方法在实际应用中的性能,包括精密度、准确度、检测限和定量限等指标。
通过验证,可以为多氯联苯的监测、管理和治理提供科学依据。
三、验证过程和方法验证过程主要包括以下几个步骤:1.样本准备:采集多氯联苯污染的土壤、水体等样本,并进行均匀混合。
2.方法操作:按照 5750.8 -2006 标准方法进行操作,包括样品处理、提取、净化和检测等步骤。
3.数据分析:对所得数据进行统计分析,计算各项性能指标。
四、验证结果分析通过验证,得出以下结论:1.该方法的精密度符合要求,表明在重复性条件下,检测结果具有较好的一致性。
2.该方法的准确度较高,表明在实际应用中,检测结果与真实值之间的偏差较小。
3.该方法的检测限和定量限均满足标准要求,表明能够有效地检测和定量多氯联苯。
五、结论和建议根据验证结果,5750.8 -2006 方法在多氯联苯检测方面具有较好的性能,可以为实际工作提供有效支持。
为进一步提高检测质量,建议在以下方面加强管理:1.严格遵循标准方法,确保操作规范。
2.加强人员培训,提高检测技能。
目录(篇2)1.概述2.多氯联苯的背景和环境问题3.5750.8 -2006 多氯联苯方法验证的目的和意义4.验证方法的具体步骤和过程5.验证结果及其分析6.结论和建议正文(篇2)1.概述多氯联苯(Polychlorinated Biphenyls, PCBs)是一类有机化合物,其具有持久性、生物蓄积性和毒性,被认为是环境污染物中的持久性有机污染物(POPs)。
多氯联苯对生物的毒性作用
查文献阐明多氯联苯对生物的毒性作用(包括半致死剂量、对生物在分子、组织、器官、群落水平上的影响)多氯联苯( PCBs)是目前国际上关注的12种可持续性有机污染物( POPs)的一种,又称为二噁英类似物[1]。
多氯联苯作为典型的持久性有机污染物具备:难降解性、生物毒性、生物蓄积性、远距离迁移性的特征,具有稳定的物理化学性质,较强的腐蚀性。
一、多氯联苯对生物在分子水平上的影响在水生植物毒性研究中,藻类其个体小、繁殖快、对毒物敏感,在较短时间内可得到的化学物质对许多世代及种群都有影响。
在多氯联苯的作用下,淀粉核小球藻,镰型纤维藻和四尾栅藻等线粒体结构明显变化,抑制其光合作用,表现为藻细胞体积增大,运动能力丧失。
例如对蛋白核小球藻和对斜生栅藻均表现为轻微的刺激生长作用,但在较高的浓度下却导致藻叶绿体解体,细胞结构不完整,破碎细胞残体增高。
多氯联苯对生物分子的影响与其在环境中的浓度有关,具体的表现如下[1,3]。
(1)多氯联苯在低浓度时(<5 μ g/L)能够抑制色素体恢复,阻止细胞分裂,破坏细胞团分散,畸变细胞形态,加速细胞衰亡,超氧化物歧化酶与过氧化物酶活性都略升高。
(2)多氯联苯干扰植物体内的蛋白质代谢,使蛋白质的合成受阻。
但低浓度(<5 μ g/L)多氯联苯的可以在短时间内促进坛紫菜叶状体的可溶性蛋白含量的增加,随后转变为抑制;而高浓度(>10μg/L)则使可溶性蛋白含量在72小时内均随时间的延长而下降。
(3)正常情况下,植物体内活性氧的产生和清除之间存在动态平衡,主要是高等植物体内抗氧化系统在灭活性氧中起了重要作用。
高浓度的多氯联苯是紫菜体内活性氧的产生和清除失衡,造成植物体内氧自由基积累,导致对植物的损伤。
多氯联苯对水生的动物的影响也是很明显的。
海豹食用了被PCBs污染的鱼会导致维生素A和甲状腺。
PCBs 可以影响雌性鱼的性成熟,具有生物毒性,降低性腺体重系数,降低鱼类血液中雌激素和卵黄蛋白原的含量,导致胚胎和幼体发育障碍[2]。
多氯联苯对环境的污染及其降解方法
多氯联苯对环境的污染及其降解方法多氯联苯(PCBs)是一类有机氯化合物,其结构中含有苯环及氯原子。
PCBs在过去的几十年中广泛使用于工业生产中,主要用作绝缘材料和润滑剂。
然而,PCBs对环境和人类健康具有严重的潜在危害。
本文将就PCBs对环境的污染及其降解方法进行探讨。
PCBs具有许多有害性质,主要包括长期持久性、迁移性、生物积累性和毒性。
它们具有很强的稳定性,可以在环境中存在多年甚至几十年而不分解。
此外,PCBs可以通过空气、水和土壤等介质迁移,并积累到食物链的高层次。
PCBs对环境和生物体具有多种不良影响。
首先,它们可以引起水域的污染,破坏水生生态系统的平衡。
其次,PCBs对土壤有害,会引起土壤质量的下降,严重影响植被和农作物的生长。
此外,PCBs还具有致癌、致畸和致突变等生物毒理作用,对人体健康产生潜在威胁。
为了消除PCBs对环境的污染,人们已经提出了多种降解方法。
以下是几种常见的方法:1.生物降解:利用生物体内的细菌、真菌和其他微生物来降解PCBs。
这些微生物可以将PCBs分解为较低毒性的化合物。
例如,浸泡土壤或水体中的微生物可以有效地降解PCBs。
2.化学降解:通过化学反应来分解PCBs。
例如,氧化还原反应、酸碱中和反应等都可以降解PCBs。
这些方法通常需要在严格的条件下进行,并需要使用特殊的催化剂。
3.热解:利用高温分解PCBs。
高温可以破坏PCBs的化学结构,使其分解为较低毒性的化合物。
然而,这种方法需要高能耗以及处理废物的专业设备。
4.光解:利用紫外线或其他辐射源来降解PCBs。
光解法可以破坏有机分子的化学键,将PCBs分解为简单的化合物。
这种方法需要较好的光源和反应容器。
在实际应用中,这些降解方法往往需要经过多次处理才能达到理想的效果,并且对PCBs的降解速率和降解程度有一定的限制。
因此,在处理PCBs的过程中,需要综合考虑各个因素并选择合适的方法。
总之,PCBs具有严重的环境污染问题。
多氯联苯降解菌的筛选及其降解性能研究的开题报告
多氯联苯降解菌的筛选及其降解性能研究的开题报
告
一、研究背景和意义:
多氯联苯(PCBs)是一类广谱有机氯化合物,具有极强的抗生物降解和生物蓄积能力,对人体和环境造成严重危害。
因此,多氯联苯的处
理和降解一直是环境科学领域的热点问题。
目前,生物降解是处理PCBs
的主要方法之一,但要降解PCBs,需要有高效的多氯联苯降解菌。
因此,在筛选出高效的PCBs降解菌的基础上,研究其在不同条件下的降解性能,对于推进PCBs的高效降解和环境治理具有重要的意义。
二、研究内容和方法:
本研究的主要内容是筛选出高效的PCBs降解菌,并研究其在不同条件下的降解性能。
本研究采用以下方法进行:
(1)样品采集:采集不同环境样品(如污水、土壤、沉积物等),收集不同来源的PCBs污染样品。
(2)分离纯化:采用常规分离纯化技术,分离并纯化出PCBs降解菌。
(3)菌株鉴定:对筛选出的PCBs降解菌菌株进行鉴定,如形态学
特征、生化性质、16S rDNA序列等。
(4)降解特性研究:在不同条件下,如温度、pH、营养物质等条件下,研究所筛选出的PCBs降解菌的降解特性,比较不同条件下的降解效率和降解速率。
三、预期结果和展望:
本研究预期将能够筛选出高效的PCBs降解菌,并对其进行降解特性的研究,探索PCBs的高效降解方法。
本研究的结果将为PCBs的高效降
解和环境治理提供不同角度的思路和方法,并有望在实践中得到推广和
应用。
同时,本研究还将为微生物降解领域的研究提供新思路和新实践。
多氯联苯对环境的污染及其降解方法
多氯联苯对环境的污染及其降解方法多氯联苯(PCBs)是一类有机氯化合物,由多个氯原子连接在苯环上构成。
它们具有极高的稳定性和抗酸碱性,因此被广泛应用于工业生产中。
然而,由于多氯联苯具有显著的毒性和持久性,它们对环境造成严重的污染。
下面将详细介绍多氯联苯对环境的污染及其降解方法。
多氯联苯主要通过工业废水、废气和固体废弃物的排放进入环境。
它们具有很强的蓄积性,会在生物体内积累,并通过食物链传递至人类及其他生物中。
多氯联苯在环境中的寿命非常长,能够在水中存活几十年,而在土壤中更能存活上百年。
这使得它们在环境中广泛分布,给生态系统和人类健康带来了很大的影响。
多氯联苯具有多种毒性,包括致癌、免疫毒性、神经毒性和生殖毒性等。
它们对水生生物和陆地生物产生的影响巨大。
多氯联苯会污染水体,对水生生物的生长和繁殖造成严重危害,并对鸟类和哺乳动物的繁殖和生存产生负面影响。
对人类来说,长期暴露于多氯联苯可能导致癌症、免疫系统功能下降、生殖系统异常和神经系统损害等问题。
为了降解多氯联苯,普遍采用以下几种方法:1.物理方法:物理方法主要通过热解、蒸馏和物理吸附等方式降解多氯联苯。
这些方法的原理是利用温度或压力的改变,将多氯联苯从污染物中分离出来并降解。
然而,物理方法的应用范围有限,且难以彻底降解多氯联苯。
2.化学方法:化学方法主要通过氧化、还原、加氢和酶解等方式降解多氯联苯。
氧化剂如二氧化氯、臭氧和过氧化氢能够在化学反应中将多氯联苯氧化为较为稳定的化合物,从而减少其对环境的污染。
还原剂如亚硫酸盐和铁锈等也能够降解多氯联苯。
加氢和酶解是利用微生物对多氯联苯进行降解,采用这些方法能够有效地降解多氯联苯,但操作复杂且成本较高。
3.生物方法:生物方法主要利用微生物或植物来降解多氯联苯。
微生物降解多氯联苯的过程包括初降解、细胞内降解和细胞外降解。
而植物则通过吸收多氯联苯或利用根际微生物降解多氯联苯。
生物方法通常被认为是一种环境友好和经济可行的降解方式。
多氯联苯对环境的污染 及其降解方法
五、小结
多氯联苯因为其直接毒性、高残留性、高富集性,及其对 各种生物乃至人类造成的危害而深受环境保护者的重视。 因此,针对大量存在的含PCBs废物,迫切需要找到一种 高效快速、经济适用、操作简单的降解方法。 光降解是治理PCBs污染的较好方法,它适于与生物降解 联合。寻找光降解与生物降解相结合的切入点、适宜的降 解条件,使PCBs同系物可降解的范围增加、效率提高, 应成为研究者的一个研究重点。
远距离迁移性
PCBs随工业废水或大气沉降进入水体
生物介质中的PCBs是通过生物吸收进入生 态系统,由于PCBs的水溶性很小,脂溶性 大,容易吸收富集于生物体内中,特别是 生物体脂肪组织中。
生物富集性
研究发现其在生物体不同部位的含量随脂 量的不同而异,在含脂量高的脏器中含量 明显要高。
生物毒性
2. 光化学降解
利用表面活性剂洗脱受污染土壤中的PCBs,再 对洗脱液中的PCBs污染物进行光降解,是一种 治理受PCBs污染土壤的新方法。
优点:节省燃料的使用.提高污染物的热破坏和 减少废气量。
3. 微生物降解
采取的主要途径有通过物理的、化学的、生物的 方法(例如:添加表面活性剂等)提高多氯联苯的 可生化性,提高催化降解PCBs的微生物活性等。
谢
谢
一、多氯联苯的概述
多氯联苯(Polychlorinated Biphenyls ,PCBs) 分子式:C12H10-xClx
3
2 1
1'
2'
多氯联苯降解方法的研究
多氯联苯降解方法的研究【摘要】多氯联苯类化合物是典型的持久性有机污染物,对人类的健康、生命安全和生存环境有着巨大的威胁。
为消除这类化合物的危害,一般可采取封存法、高温处理法、化学脱除法、生物降解法、多相催化加氢法等处理方法。
【关键词】持久性有机污染物;多氯联苯;化学脱除;生物降解据统计,全球约有各种合成化学物质1000万种,每年新增合成化学品有10万种,其中含有大量的持久性有机污染物(Persistent Organic Pollutants),简称POPs,包括除草剂(三氯联苯氧基乙酸等)、杀虫剂(DDT等)、杀菌剂(六氯苯等)、防腐剂(三丁基锡等)、塑料增塑剂(邻苯二甲酸二丁酯等)、洗涤剂(壬基苯酚等)、副产品(二噁英等)、多环芳烃(苯并芘等)和其它用途的化合物(多氯联苯类等)。
POPs与常规污染物不同,它具有毒性、生物蓄积性、半挥发性和持久性,能通过蚱蜢效应在全球范围内长距离迁移;它们在自然环境中难降解;能在生物体脂肪中生物蓄积,会通过生物链对其有放大作用。
大量POPs 对人体会产生致癌、致畸、致突变性,而且能对生物体产生内分泌紊乱等危害,因此,对人类的健康和生命产生巨大威胁。
因此,研究POPs的污染过程机制和控制POPs的环境行为势在必行。
多氯联苯(Polychlorinated Biphenyls,简称PCBs)1881年首次在实验室合成,因其化学稳定性高,隔热性和润湿性能好,阻燃和绝缘性优良,1929年开始在世界范围内大规模工业生产并广泛应用于电力电容器及变压器等设备中。
但是,多氯联苯对脂肪具有很强的亲和性,进入生物体后,易在脂肪层和脏器堆积而几乎不被排出或降解,进而通过食物链浓缩造成对人体的潜在危害,产生积累性中毒。
因此,从根本上解决并治理PCBs的污染问题,对变废为宝、保持国民经济的可持续发展、保护人类的生存环境具有十分重大的意义。
目前主要用封存、高温处理、化学处理及生物降解等方法对PCBs进行处理。
多氯联苯在土壤水环境中生物降解过程规律研究
多氯联苯在土壤水环境中生物降解过程规律研究刘凌,崔广柏,郝振纯(河海大学水资源开发利用国家专业实验室)摘要:土壤水环境中的有机污染物多氯联苯(PCB)可以采用土地生物处理的方法进行降解,在综合考虑土壤水环境系统中有机污染物生物降解各分过程的基础上所建立的数学模型,可以预测降解PCB所需的时间、降解程度以及降解结束后被土壤所屏蔽的PCB的量。
数学模型通过美国Alcoa 公司在LTU基地的大型土地生物处理工程得到了验证。
利用数学模型和理论分析,预测了2,3,4和5-Cl-PCB的土地生物处理过程及规律。
关键词:多氯联苯;土地生物处理过程;屏蔽收稿日期:1999-12-27基金项目:国家自然科学基金资助项目(59909003)研究成果。
作者简介:刘凌(1964-),女,安徽合肥人,副教授,博士有机化合物多氯联苯(简称PCB)是一类具有两个相联苯环结构的含氯化合物,它具有非常优良的物理特性,因而被广泛应用于许多行业之中,如作为变压器的绝缘液体,农药、油漆、润滑油等产品的添加剂,热传导系统的传导介质,以及塑料的增塑剂等等。
多氯联苯在使用过程中,可以通过废物排放、储油罐泄露、挥发和干、湿沉降等原因进入土壤及相连的水环境(简称土壤水环境)中,造成土壤水环境的污染。
目前人们已经发现植物和水生生物可以吸收多氯联笨,并通过食物链传递和富集。
美国、英国等许多国家都已在人乳中检出一定量的多氯联苯。
多氯联苯进入人体后,有致毒、致癌性能,可引起肝损伤和白细胞增加症,并通过母体传递给胎儿,使胎儿畸形,因此对人类健康危害极大,目前各国已普遍减少使用或停止生产多氯联苯。
但是,多氯联苯已使用近40年的时间,由于它用途极其广泛,理化性质稳定,又对人体健康危害较大,因此各国都把多氯联苯列入必须优先处理的污染物名单中,对已存在于土壤水环境的多氯联苯进行处理已迫在眉睫。
土壤水环境中的多氯联苯,目前可以采用的最适宜的处理方法是土地生物处理,因为土壤号称“微生物的天然培养基”,它具有微生物生活最适宜的环境,它能够将多氯联苯降解为环境可以接受的物质,如二氧化碳和水等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
生物降解是指有机化合物在生物所分泌的各种酶的催化作用下,通过氧化、还原、水解、脱氢、脱卤、芳烃羟基化和异构化等一系列的生物化学反应,使复杂的有机化学物转化为简单的有机物质。
多氯联苯(polychlorinated biphenyls,简称PCBs)通过废物排放、储油罐泄露和干、湿沉降等过程进入环境中,并通过植物和水生生物进入食物链。
孙红斌刘亚云陈桂珠微生物降解多氯联苯的研究进展[J]。
Chinese Journal of Ecology生态学杂志. 2006 ,25 (12) :1564~1569。
因其高度持久性、半挥发性、生物积累性、亲脂憎水性、长距离迁移性和高毒性, 被列入优先污染物POPs 的首批行动计划名单。
PCBs 即使在极低浓度下也可对人的生殖、内分泌、神经和免疫系统造成不利影响。
对PCBs 污染的修复方法主要包括:高温处理、化学降解、利用紫外光降解和生物降解,其中生物降解法PCB污染的生物修复费用低,降解彻底,不造成二次污染,被认为是最有前景的手段[2] Abramowicz D A. Aerobic and anaerobic biodegradation of PCBs:a review [J]. Crit. Rev. Biotechnol., 1990,10(3):241-251。
2 PCBs的生物降解
PCBs根据降解所用的主体可分为微生物降解、植物降解、植物- 微生物联合降解和土壤- 动物联合降解等。
2.1 PCBs 的微生物降解
微生物降解PCBs 有2 种方式,一种是无机化,即在好氧或厌氧条件下以PCBs 为碳源或能源,降解的同时满足自身的生长和繁殖的需要;另一种是共代谢,即微生物生长代、谢过程中以另外一种基质作为碳源或能源,同时转化目标污染物[16 ] 。
[ 16 ] Borjia J , Taleon DM , Auresenia J , et al . 2005. Polychlorinatedbiphenyls and their biodegradation [J ] . Process Biochem. , 40 1999~2013.:PCBs 的微生物降解包括厌氧降解和好氧降解。
2.1.1 PCBs 的厌氧脱氯
参与厌氧脱氯的微生物通过催化还原反应把脂肪族和芳香族的氯代化合物从高氯( ≥5 个氯)转化为低氯或无氯的物质,。
芳香族化合物的厌氧脱氯具有如下共性: ①脱氯过程需要诱导酶催化; ②这些诱导酶具有明显的底物专一性; ③芳香族脱氯微生物共生群落中执行脱氯功能,其功能可能依赖于这些群落; ④芳香族脱氯微生物在从还原脱氯过程中获得代谢能量[16 ] 。
微生物对PCBs 的脱氯作用在厌氧沉积物中非
常普遍。
厌氧还原减少了氯取代的数量和位点,降
低了PCBs 的毒性而使之更易被好氧微生物降解。
PCBs 的厌氧降解速率与氯化程度成正比,氯的取代
数量和取代位点决定了PCBs 的降解速率[46 ] 。
高
氯代的PCBs 同系物比低氯代的PCBs 同系物更容
易脱氯[40 ] ; 还原脱氯的主要还原位点在间位和对
位[10 ,51 ] ,导致邻位同系物的累积[10 ,40 ] , 但也有
PCBs 邻位脱氯的报道[49 ,55 ] 。
另外,Natarajan 等[43 ]
用实验室筛选的厌氧微生物颗粒脱掉了Aroclor
1254 所有的氯,反应的终产物是联苯。
不同微生物产生的脱氯酶不同,因而脱氯活性
和脱氯途径也不同。
微生物群落的组成及群落中非
脱卤和脱卤微生物之间复杂的相互作用决定着脱氯
的速率、程度和途径。
而微生物群落组成又受环境
因素如:碳源的可利用性、氢原子或电子供体,其它
电子受体的存在与否,温度、pH 值等影响[9 ,16 ] 。
增强微生物脱氯能力的一种方法是在容易脱氯
的基质中培养微生物,降低底物的专一性,产生酶和
协同因子,从卤代化合物中脱掉卤素原子。
研究发
现,一些PCBs 同系物有效地激活或引导微生物脱
氯,不同的同系物引导的脱氯方式各不相同[54 ] 。
除了PCB 同系物,其它的卤代芳香族化合物也可引导
脱卤过程,如溴代联苯[14 ] 、溴代苯甲酸[22 ]及有氧代谢降解产生的氯代苯甲酸[36 ] 。
在不同来源的厌氧污泥中PCBs 的脱氯程度不
同, 产甲烷条件> 硫酸盐还原条件> 反硝化条
件[17 ] 。
Fafa 等[26 ]认为硫酸盐还原菌和产甲烷菌可能参与了PCBs 脱氯。
同时,在脱氯过程中加入醋
酸盐、乳酸盐、丙酮酸盐和氯化铁可缩短延迟期,提
高脱氯效率[17 ] 。
还有研究采用在厌氧过程中加入
脂肪酸的方法[45 ] ,主要是增加碳源并提高PCBs 的
溶解性,在一定程度起到缩短延迟期的作用,增加脱
氯的初始速率,而PCBs 脱氯的总体速率并未增加。
Kim 等[33 ]的研究表明, 底泥的性质和有机碳的成
分在选择脱氯菌种时不起作用。
很难用传统的分离技术鉴定参与PCBs 还原脱
氯的微生物,近年来,非培养微生物群落基因指纹图
谱方法在还原脱氯的培养物中应用较多。
Hou
等[29 ]对参与PCBs 对位和间位脱氯的微生物群落
进行了研究,发现这些微生物群中基因序列与梭菌
属( Clost ri di um) 相关的菌株很丰富,虽然还没有足
够的证据说明这种菌参与PCBs 脱氯,但有报道表
明梭菌产生的酶能使过氯乙烯脱氯[48 ] 。
虽然参与PCBs 还原脱氯的微生物的纯培养技
术还不成功,但有2 种菌团的成分已经被分析得较
透彻。
这2 种菌团,一种参与PCBs 的邻位脱氯[20 ] , 另一种参与两侧氯取代的间位和对位脱氯[57 ] 。
前
者经16S rDNA 分析,发现一种被命名为0 - 17 的
细菌的序列与Dehalococcoi des ethenogenes 的序列具有相似性,这种细菌可利用2 ,3 ,5 ,6 四氯联苯为生
长基质并脱氯。
而Dehalococcoi des ethenogenes 是首次报道的可以使氯苯完全脱氯的纯培养物[11 ] ,这种
细菌能使三氯乙烯完全脱氯[42 ] 。
PCBs 经过脱氯,可以从两方面降低环境风险:
一是从高氯转化为低氯的PCBs 可进一步被好氧菌
降解;二是脱氯把高氯同系物转化为不易被富集到
食物链的低氯联苯,降低了生物富集力,如22氯联
苯和2 ,2’2 二氯联苯的生物富集度只是三氯、四氯联苯的1/ 450[10 ] ,同时也降低了致癌性和二恶英类
似物的毒性。
212 PCBs 的好氧降解
尽管低氯的PCBs 化学性质相当稳定,但在有
氧条件下,它们还是能被微生物降解或转化。
这些
微生物包括B urkhol deria sp. , Pseudomonas sp. ,
S phi ngomonas sp. , Rhodococcus sp. , Microccus
sp. , Achromobacter sp. , Norcardia sp. , A lcale2 genes sp. , A rthrobacter sp. , Aci netobacter sp. Janibacter sp. , B acill us sp. 以及Corynebacteri um sp. 的一些菌株[3~5 ,16 ,23 ,27 ,31 ,32 ,41 ,56 ,58 ] 。
_殭8_?__歿PCBs。