19TD-LTE常见优化案例分析

合集下载

TD-LTE网优案例汇总

TD-LTE网优案例汇总

TD-LTE网优案例汇总覆盖问题覆盖是无线网络的基础,对LTE这类同频系统而言,覆盖问题也是系统内干扰问题。

一般通过以下手段解决覆盖问题:●增补基站●增减功率●调整天馈●RS功率提升案例:弱覆盖导致SINR差优化➢问题描述:该路段处于大学校园内,楼层比较多,现有的周边基站都没有形成对该路段有效覆盖,导致整体的RSRP/SINR都比较低,从而影响整体簇优化的指标。

图1 问题路段位置和基站图如图1中红色位置所示,厦大图书馆由于被楼层阻挡,无法对问题路段直视覆盖,.查看周边站点,厦大凌云5号楼3扇区的位置,正好可以对该路段直视覆盖,解决该路段的弱覆盖问题。

➢解决方案:调整厦大凌云5号楼3扇区的方位角和下倾角,使其直视覆盖问题路段。

➢结果对比:调整前后RSRP对比如下图:从图2和图3对比可以看出,通过调整,问题路段的RSRP和SINR都有较大的提升。

案例:小区间互相干扰导致SINR低象屿五金市场小区间互相干扰导致SINR低象屿五金市场象屿五金市场未优化前RSRP图象屿五金市场象屿五金市场未优化前SINR图原因分析与解决方案:由于象屿五金市场第三扇区的方位角不是朝着路上打,并且象屿五金市场的高度只有13m,但是下倾角压成6度,因此在路上的覆盖不是很好。

此外现代码头由于集装箱的遮挡,覆盖也不是很好,因此与象屿五金市场的RSRP值相差不多,造成的干扰较大,并且象屿五金市场第2扇区的下倾角太高,也对第3扇区的覆盖有影响,导致SINR的指标不是很好。

象屿五金市场调整天馈。

将互相干扰的小区中电平值较高的小区抬高天线,覆盖较弱的路段,并且能降低干扰,RSRP与SINR的值大大提高。

象屿五金市场象屿五金市场优化后RSRP图象屿五金市场象屿五金市场优化后SINR图从图中可以看出,优化后的路段由于覆盖较弱的路段有更好的覆盖,并且去除一定的干扰,是的整个路段RSRP与SINR大大提高。

案例:消除弱覆盖潜在风险➢现象描述车辆在拥军路由北往南走,UE占用NBJB汇家陈FHTL-1的信号,直至庄桥高架桥位置时UE所在的位置与基站之间存在建筑物阻挡,RSRP值下降至-100dbm左右,而附近无其他较强的小区信号衔接,导致存在弱覆盖风险,影响覆盖指标。

TD-LTE优化案例分析

TD-LTE优化案例分析

1 TD-LTE优化案例分析1.1 覆盖优化案例1.1.1 弱覆盖案例1(无主服务小区)【现象描述】UE在多伦道与和平路交界路口的路段占用的信号RSRP较弱,特别是多伦道路口左边段,同时信号的SINR较差,没有稳定的主覆盖小区,乒乓切换严重。

RSRP弱区域:SINR弱区域:【问题分析】UE在问题路段主要占用和平路桂顺斋拉远_2、信大厦附属楼_2、福安大街_2、同方花园拉远_3、人口服务中心拉远_1、集邮公司_3等距离大于400M的较远基站小区,从地理上看同方花园拉远_1、和平路桂顺斋拉远_2应该为问题路段的主覆盖基站小区,UE在该路段没有接收到同方花园拉远_1该基站的信号。

和平路桂顺斋拉远_2的信号覆盖很差,SINR测试结果也很差。

因此,该路段弱覆盖、SINR测试结果差是由于同方花园拉远_1、和平路桂顺斋拉远_2基站导致。

【优化方案】建议对和平路桂顺斋拉远_2进行基站健康检查,核查设备硬件异常告警和天馈线系统,核查天线方位角和下倾角的设置是否与设计方案相符;建议对同方花园拉远_1进行基站健康检查,查看该小区是否已经退服,核查设备硬件异常告警和天馈线系统,核查天线方位角和下倾角的设置是否与设计方案相符;案例2(无主覆盖)【现象描述】UE在鞍山道很长的一段路信号所接收的RSRP基本在-110dBm左右,信号较弱。

RSRP弱区域:没有稳定的主覆盖小区,乒乓切换严重。

SINR弱区域:【问题分析】UE在问题路段主要占用西藏路拉远_1、西宁道拉远_2、汇文中学_3、环境学院_3等距离大于400M的较远基站小区,从地理上看西藏路拉远_1、汇文中学_3应该为问题路段的主覆盖基站小区,UE在该路段没有接收到汇文中学_3该基站的信号。

西藏路拉远_1的信号覆盖很差,SINR测试结果也很差。

从LTE网络工参表里查到,西藏路拉远_1的天线机械下倾角为10、电子下倾角为6,站高为35米。

【优化方案】1,建议对汇文中学_3基站进行站点故障维护;核查设备硬件异常告警和天馈线系统,核查天线方位角和下倾角的设置是否与设计方案相符;2,适当抬升西藏路拉远_1的天线下倾角加强道路覆盖。

TD-LTE网络优化方案设计

TD-LTE网络优化方案设计

TD-LTE网络优化方案设计TD-LTE是第四代移动通信技术中的一种,相比于传统的2G和3G网络,具有更高的传输速率和更低的时延。

然而,在实际网络部署和使用中,可能会遇到一些问题,如网络覆盖不全、信号不稳定、容量不足等。

针对这些问题,设计一个TD-LTE网络优化方案,可以提高网络性能和用户体验。

首先,进行网络规划和设计。

根据网络需求和覆盖范围,合理确定基站的位置、天线高度和方向。

利用相关的规划工具进行网络模拟和仿真,优化网络覆盖及天线配置,确保信号覆盖范围和强度的均衡,避免盲区和覆盖重叠。

此外,还要考虑网络容量规划,根据用户密度和流量需求,设置适当的基站数量和小区划分方案,以提高网络容量和负载均衡。

其次,进行信道优化。

利用信道测量工具,监测信道质量和干扰情况。

根据测量结果,对网络进行频率规划和功率控制,避免同频干扰和邻频干扰。

此外,还可以通过手动优化或自动配置工具,调整小区参数,如射频功率、PRACH配置、SRS配置等,以优化信道资源的利用效率和性能。

第三,进行干扰管理。

通过干扰捕捉工具和干扰分析工具,对网络中存在的干扰源进行定位和分析。

根据干扰的特征和影响范围,采取相应的干扰管理措施,如调整小区参数、改变天线方向、加装滤波器等。

此外,可以利用干扰协调工具,进行干扰的预测和调度,提前识别和解决潜在的干扰问题。

此外,在TD-LTE网络优化中,还可以采用一些先进的技术和方案来进一步提高网络性能。

例如,引入MIMO技术,利用多个天线进行信号的收发,提高网络容量和覆盖范围。

还可以采用小区间和小区内的载波聚合技术,将多个载波进行聚合,提高网络的传输速率。

另外,可以引入跳频技术,自动调整载波频率,避免干扰和提高网络的频谱利用率。

综上所述,设计一个TD-LTE网络优化方案,需要从网络规划、信道优化、干扰管理和引入先进技术等方面进行考虑。

通过合理的规划和设计,优化信道和减少干扰,提高网络性能和用户体验,实现更好的TD-LTE网络覆盖和服务质量。

(完整版)TDD_LTE无线网络优化案例

(完整版)TDD_LTE无线网络优化案例

TDD_LTE无线网络优化案例一、浦东大道福山路道路优化案例1. 测试环境【路测设备】:JDSU W1314A—E01 Receiver【路测软件】:JDSU E6474A-X【测试路段】:浦东大道、源深路及福山路周边路段【测试环境】:从前期的测试中发现在浦东大道福山路附近路段存在弱覆盖情况,SINR在道路上分布不满足测试需求,通过RF手段进行优化后进行前后对比。

图1浦东大道福山路附近无线环境图浦东大道福山路周边无线环境图中看出,该区域由密集居民区、高层商务写字楼、厂房及学校组成,浦东大道北侧无线环境良好,南侧道路两旁有较多建筑,对无线信号有较强的阻挡,周边主要由利男居、浦福昌、钱栖站点覆盖周边道路。

2. 优化前覆盖情况图2浦东大道福山路优化前RSRP覆盖图图3浦东大道福山路优化前CINR覆盖图从优化前的测试数据中看出浦东大道福山路附近路段RSRP值主要在-90dbm左右,但是CINR覆盖较差,浦东大道福山路至源深路之间普遍在15dB以下,不能满足道路覆盖要求,该路段主要由利男居站点覆盖,但是从该站RSRP分布情况看出,该站在浦东大道上没有出现强信号,考虑对该站重点优化。

3. 优化思路及方案图4利男居站点平面图利男居各小区照片问题路段主覆盖站点为利男居,该站点位于浦东大道44号林顿酒店7楼,天馈采用抱杆安装,挂高24米,从利男居站点各小区安装位置中看出,该站3个小区天馈周边都有阻挡物,而按照当前设计方位角,利男居_1小区的天线方位角0°,在浦东大道上是旁瓣信号覆盖,而利男居_3小区天线方位角240°覆盖方向也存在自身楼面建筑的阻挡,从而得出浦东大道该站点信号偏弱的原因,通过实际情况看中看出,利男居_1小区50°方向角有自身建筑的阻挡,往该方向调整不但不能改善浦东大道的覆盖,反而会使得信号反射而出现在背面区域,于是考虑将利男居_1调整为280°、根据挂高计算出该小区下倾调整为2°覆盖效果为最佳;利男居_2主覆盖方向由两栋高楼阻挡,导致在源深路段覆盖较差,由于建筑的阴影效果通过调整天馈是无法改善覆盖,建议该小区调整为50°来覆盖浦东大道东侧路段、利男居_3当前信号阻挡明显,调整为180°可以很好的避开阻挡物,达到最佳的覆盖效果,同时为了改善福山路近浦东大道覆盖,调整浦福昌2、钱栖1小区天馈来避免由于利男居下倾角增大后出现的弱覆盖路段,综合路测情况分析,得出具体调整方案如下:SiteNameCN CellNameCN初始值调整后Height azimuth MDownTilt azimuth MDownTilt利男居利男居_1240—22802利男居_224170050—4利男居_3242403180-4浦福昌浦福昌_121030—4浦福昌_2211001110-1浦福昌_3212401240—4钱栖钱栖_1270230—4钱栖_2271207120—4钱栖_3272402240—24. 优化后覆盖情况图5浦东大道福山路优化后RSRP覆盖图图6浦东大道福山路优化后CINR覆盖图图7浦东大道福山路优化后CELL_Identity分布图5. 优化小结从优化后的测试数据中看出,利男居_1、2小区在浦东大道上RSRP有较大幅度的提升,其主覆盖方向CINR基本能达到30的极好点,浦福昌2小区在昌邑路福山路良好,钱栖1小区天馈调整后在福山路近浦东大道信号也有所提升,从调整后的整体效果中看出,此次优化达到优化目的,当前浦东大道福山路段信号覆盖良好,各小区信号分布合理,信号满足道路覆盖指标要求。

TDLTE原理及常见优化案例分析幻灯片

TDLTE原理及常见优化案例分析幻灯片
无线帧结构2:TDD模式
• 每个10ms无线帧包括两个时长为5ms的半帧,每个半帧由4个数据子帧和一个特殊子
帧组成。
• 支持5ms和10ms上下行切换点 • 子帧0和子帧5以及DwPTS永远预留为下行传输。 • 在5ms 切换周期情况下,UpPTS、子帧2和子帧7预留为上行传输。 • 在10ms 切换周期情况下,UpPTS、子帧2预留为上行传输,子帧7和子帧9预留为下行
资源分组
频率
More info: TS36.211- v8.6.0 (03/09)
RE:Resource Element。 LTE最小的时频资源单位。频域上 占一个子载波(15kHz),时域上占一个OFDM符号(1/14ms)
1个子 载波
1个 OFDM 符号
LTE RB资源示意图
时间
信道类型
控制 信道
业务信道
信道名称 PCFICH PHICH PDCCH
PBCH PUCCH PDSCH\PUSCH
REG:RE group,资源粒子组。REG = 4 RE
CCE:Control Channel Element。CCE = 9 REG
RB:Resource Block。LTE系统最常见的调度单位,上下行 业务信道都以RB为单位进行调度。RB = 84RE。左图即为一 个RB。时域上占7个OFDM符号,频域上占12个子载波
012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56

LTE簇优化优化重点及案例分析

LTE簇优化优化重点及案例分析
问题小区是否存在影响业务的告警问题小区是否存在较强干扰或弱覆盖问题小区无线参数是否设置正确测试环境是否满足峰值流量测试要求采集故障信息上报tdlte普天二线技术支持根据tdlte二线技术支持指导跟踪处理故障按照告警提示解决影响业务的告警通过干扰解决找点提升小区发射功率等手段改善ue无线环境按照现场实际组网配置和峰值流量测试配置要求修改无线参数核查测试环境根据核查结果协调局方或核心网传输侧配合解决问题问题是否解决下载速率分析流程及案例2111基站故障导致问题小区下载速率低通过业务测试确认小区速率较低首先应该考虑基站是否有影响业务的故障可以通过以下步骤进行判断
1、基础信息核查
小区1: 小区1: 小区1: 小区1: 小区1:
小区2: 小区2: 小区2: 小区2: 小区2:
小区3: 小区3: 小区3: 小区3: 小区3:
项目 是否为超近基站
是/ 否 最小宏站间距小于100米
备注
2、四超基站核查
是否为超远基站 是否为超高基站 超重叠覆盖基站
最小宏站间距大于700米,或 测试发现过覆盖超过700米。 挂高超过50米。 有一个小区重叠覆盖度大于3的基站为超高重叠覆盖基站。
簇优化内容
覆盖优化、干扰优化、切换优化以、掉线率与接通率优化、业务性能优化、TDS/TDL协同优化
簇优化
簇优化内容
覆盖优化、干扰优化、切换优化以、掉线率与接通率优化、业务性能优化、TDS/TDL协同优 化
优化内容
覆盖优化
说明
1、覆盖空洞的优化,保证导频信号连续覆盖;弱覆盖优化,保证导频信号的覆盖质量; 2、对主控小区的优化,保证各区域有较为明显的主控小区; 3、重叠覆盖问题的优化。 1、网内干扰优化:对RSRP 很好而SINR 很差进行排查; 2、网外干扰优化:根据扫频测试或基站侧OMC 统计或BTS log 看到上行低噪很高的问 题开展优化。 主要包括邻区关系配置以及切换相关参数的优化,解决相应的切换失败和切换异常事件, 提高切换成功率 专项排查,解决掉线和接通方面的问题,进而降低掉线率和提高接通率。 LTE 性能严重依赖于SINR,因此业务性能优化一定程度上可以等效为SINR 优化;不同 MIMO 模式下的性能与信道质量优化。 共天馈TDS/TDL的RF优化会互相影响和制约,需综合考虑两网性能,

TD-LTE网络优化案例汇总

TD-LTE网络优化案例汇总

TD-LTE网络优化案例汇总项目名称文档编号版本号部门专业服务业务部作者版权所有大唐移动通信设备有限公司本资料及其包含的所有内容为大唐移动通信设备有限公司(大唐移动)所有,受中国法律及适用之国际公约中有关著作权法律的保护。

未经大唐移动书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。

目录1.切换类问题 (2)1.1邻基站信息未配置成功 (2)1.2 X2口不通导致的切换失败 (4)1.3硬件和传输故障 (6)1.4随机接入参数配置不当引起切换失败 (7)1.5重选优先级设置不一致导致异频无法切换 (11)1.6 MME问题导致入POOL基站大量切换失败 (12)1.7开站数据模板不对引起切换失败 (17)1.8传输端口环回问题导致S1切换成功率低 (21)1.9府东街-3小区异常切换(A1/A2异频切换) (24)2.接入类问题 (30)2.1MCC设置错误导致E-RAB建立成功率为0 (30)2.2核心网问题导致REAB建立失败 (31)2.3LTE多模终端自由选择网络不能接入LTE网络问题分析 (34)2.4默认网关配置错误 (37)2.5核心网算法问题 (39)2.6信令面流程正常业务面无法上网案例 (42)2.7三星NOTE23信号标识不显示问题分析案例 (43)3.速率类问题 (48)3.1下行子帧调度不满导致平均下载速率低问题分析 (48)3.2传输受限引起的速率问题 (51)3.3CFI相关设置影响LTE拉网速率分析 (52)4.CSFB类问题 (59)4.1UE未收到Release消息重选到TDS (59)4.2网络侧不下发Release消息 (61)4.3MME配置TA与LA映射错误导致开机联合注册失败 (63)4.4并发业务导致CSFB失败 (64)1.切换类问题1.1邻基站信息未配置成功问题描述:测试发现NBHS维科上院FHTL-1 PCI=487与NBHS青林湾西FHTL-0 PCI=438之间切换失败。

19TDLTE常见优化案例分析

19TDLTE常见优化案例分析

19TDLTE常见优化案例分析一、引言19TDLTE是第四代移动通信技术中的一种,以其高速、低延迟和大容量等特点被广泛应用于现代无线通信网络中。

然而,在实际部署和应用过程中,19TDLTE网络可能会遇到各种问题,需要进行优化处理。

本文将分析一些常见的19TDLTE优化案例,以期为相关技术人员提供参考。

二、覆盖问题优化覆盖问题是19TDLTE网络中常见的优化问题之一。

在弱覆盖或无覆盖区域,用户将无法正常连接到网络。

针对这一问题,可以采取以下措施进行优化:1、调整基站天线角度和高度,增强信号覆盖范围。

2、增加基站数量或功率,提高网络覆盖能力。

3、使用微小区和射频拉远技术,扩大覆盖范围。

4、对于室内覆盖问题,可以部署室内分布系统或使用小型基站。

19TDLTE网络中的干扰问题主要来自于其他无线通信系统的干扰以及网络内部之间的干扰。

针对这一问题,可以采取以下措施进行优化:1、合理规划频谱资源,避免与现有无线通信系统的频谱冲突。

2、使用干扰协调和抑制技术,如频谱感知、动态频谱分配等。

3、对于网络内部干扰,可以通过优化基站和用户的调度策略来减少干扰。

四、容量问题优化随着用户数量的增加和业务需求的增长,19TDLTE网络的容量逐渐成为制约网络发展的瓶颈。

针对这一问题,可以采取以下措施进行优化:1、引入高频段和更大带宽的频谱,提高网络容量。

2、使用多天线技术,如MIMO和Beamforming,提高频谱效率和容量。

3、优化用户调度和资源分配策略,提高网络整体容量。

4、引入内容分发网络(CDN)等技术,减轻网络负载。

19TDLTE网络性能问题主要包括速率低、延迟大等问题。

针对这些问题,可以采取以下措施进行优化:1、分析网络参数配置是否合理,如CPRI参数、发射功率等。

2、优化无线链路质量,通过调整天线角度、高度等方法改善信号质量。

3、引入QoS(Quality of Service)保障机制,确保不同业务需求的网络质量。

TD-LTE接入问题分析与优化

TD-LTE接入问题分析与优化
下行信道质量如何?RSRP?SINR? 是否是PDCCH没收到? 是否多次收到PDCCH,而没有收到PDSCH。
分析将MAC Contention Resolution Timer由48sf改为64sf,使得UE发送 MSG3后等待接收MSG4的时间由48ms增大到64ms,增加弱场起呼时 UE接收MSG4的概率。
初始接入的信令流程
消息1~5随机接入过程,建立 RRC连接。
消息6~9 初始直传建立S1连接, 完成这些过程标志着NAS signalling connection建立完成。
消息10~12 UECapabilityEnquiry 过程。
消息13~14安全模式控制过程。
初始接入的信令流程
消息15~17 RRC Connection Reconfiguation ,E-RAB建立过程。
接入问题案例分析-2
修改CRT定时器为64ms后,通过MSG4 Report和LTE MAC RACH Attemt看到基于竞争的随机接入成功。
接入问题案例分析-1
参数调整
通过降低“eNode B对PRACH的绝对前缀检测门限”,提高 PRACH检测概率,提升MSG1正确解调的概率。
参数:eNode B对PRACH的绝对前缀检测门限 PRACH Absolute Preamble Threshold for Enode B Detecting Preamble
下行:
1. UE侧收不到以RA_RNTI加扰的PDCCH,检查下行RSRP是否>119dBm,SINR>-3dB,下行覆盖问题通过调整工程参数、RS功率、 PCI等改善。
2. PDCCH相关参数调整:比如增大公共空间CCE聚合度初始值。
接通率的分析思路

TD-LTE原理及常见优化案例分析

TD-LTE原理及常见优化案例分析

Resource element (k,l)
Not used for transmission on this antenna port Reference symbols on this antenna port
Two antenna ports
Four antenna ports
R0
R0
R0
R0
H
9
Mode
1 2 3 4 5 6 7
8
传输模式
单天线传输
发射分集
开环空间复用
闭环空间复用
多用户MIMO 单层闭环 空间复用
单流 Beamforming
双流 Beamforming
传输模式 技术描述
信息通过单天线进行发送
同一信息的多个信号副本分别通过多个衰落特性相互独立的信道进行 发送
应用场景
无法布放双通道室分系统的室 内站
RB为业务信道资源分配的资源单位
频域上相当于12个子载波 (180kHz);时域上相当于1个时隙(0.5ms)
小单位
Subcarrier 1 0 1 2 3 4 5 6 0 1 2 3 4 5 6
eNodeB是以一个TTI即2个RB为调度的最
180 KHz
012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56 012 34 56 01 2 34 56

TD-lte优化案例分析(测试类)2稿

TD-lte优化案例分析(测试类)2稿

目录1 TD-LTE优化案例分析 (3)1.1 覆盖优化案例 (3)1.1.1 弱覆盖 (3)案例1(无主服务小区) (3)案例2(无主覆盖) (4)案例3(有遮挡) (6)1.1.2 越区覆盖 (7)1.1.3 重叠覆盖 (8)案例1(无主覆盖,各小区RSRP值相近) (8)案例2(天线权值调整重叠覆盖) (9)1.2 切换优化案例 (11)1.2.1 邻区漏配 (11)案例1 (11)案例2 (12)1.2.2 乒乓切换 (16)案例1 (16)案例2 (18)1.2.3 切换不及时 (19)1.2.4 UE未启动同频测量 (21)1.2.5 切换失败在源侧发起重建立 (22)1.2.6 中兴爱立信边界不能切换问题处理 (24)1.2.7 PCI规划不合理导致无法切换 (28)1.2.8 邻区中频点配置过多导致未能测量目标小区 (29)1.2.9 由于归属核心网未割接导致切换问题掉线 (30)1.3 干扰优化 (31)1.3.1 PCI干扰 (31)案例1(调整PCI解决MOD3干扰) (31)案例2(调整RF解决MOD3干扰) (32)案例3(MOD3导致切换失败掉话) (33)案例4(MOD3冲突导致SINR差) (35)1.3.2 重叠覆盖干扰 (39)1.3.3子帧配比相互干扰 (40)1.3.5天线接反导致邻区漏配造成掉线 (44)1.4 参数优化 (45)1.4.1 DSR上报周期 (45)1.4.2 小区驻留困难 (47)1.4.3 同频小区重选失败 (47)案例1(与SIB3中参数有关) (47)案例2(删除同频小区黑名单列表) (48)1.4.4 重选参数设置不合理 (50)1.4.5 高重选优先级的室分信号泄漏 (52)1.4.6 切换后TAU导致掉话 (55)1.4.7 切换参数设置不合理导致掉线 (56)1.4.8 LTE下载速率低(DSR参数设置) (57)1.4.9 LTE参数设置不合理导致下载速率低的处理 (59)1.4.10 上行信道功率不足导致上行速率异常问题 (61)1.4.11 子帧配比问题 (63)1.5 接入类优化 (68)1.5.1 LTE接入失败问题分析 (68)1.5.2 基站不能接入问题处理案例 (70)1.5.3 某外场部分站点UE无法接入和小区无法建立问题分析 (76)1.5.4 UE触发重建被拒 (77)1.7有线类优化 (78)1.7.1 厂家PTN配置问题导致下载速率低 (78)1.7.2 eNodeB路由配置错误导致UE无法附着问题 (81)1.8 测试终端问题 (83)1.8.1 detach之后出现重建信令 (83)1.8.2 收到MIB后解不出SIB (85)1.7.3 SIM卡速率限制 (87)2 常见优化问题总结 (89)2.1 覆盖优化类 (89)2.1.1影响覆盖的主要因素有以下几个方面: (89)2.1.2覆盖问题可以归纳为以下几类: (89)2.1.3 对于以上5种覆盖问题的优化,遵循以下原则。

LTE移动互联网端到端低速率优化案例

LTE移动互联网端到端低速率优化案例

LTE移动互联网端到端低速率优化案例随着移动互联网的快速发展,需求不断增加,用户体验成为了重要的考量因素。

然而,由于网络资源的有限性和网络负载的增加,用户在一些情况下可能会遇到移动互联网的低速率问题。

为了提高用户体验,LTE移动互联网端到端低速率的优化是一个重要的课题。

下面将介绍一个针对LTE移动互联网端到端低速率的优化案例。

首先,我们需要了解用户使用移动互联网时出现低速率的原因。

一般来说,移动互联网的低速率问题主要有以下几个方面的原因:网络拥塞、信道质量差、用户设备性能低下等。

针对这些问题,我们可以采取以下优化措施:1.网络拥塞优化:网络拥塞是导致移动互联网低速率的主要原因之一、可以采取流量调节以及流量分配策略。

该策略可以根据网络负载情况,动态调整用户的带宽分配。

通过监控网络负载,当网络拥塞时,可以将带宽分配给优先级高的应用或者重要的用户,以提高用户的体验。

2.信道质量优化:信道质量差会导致用户在使用移动互联网时出现低速率的问题。

可以通过部署更多的基站,增加网络覆盖范围,提高信号质量和稳定性。

同时,可以采用基站天线优化技术,如波束赋形和智能天线技术,以增强覆盖强度和质量。

3.用户设备优化:用户设备的性能低下也会导致用户在使用移动互联网时出现低速率的问题。

可以通过提供更高性能的设备,以满足用户对于速度和稳定性的需求。

同时,可以优化设备的软件,提高网络连接和数据传输的效率。

此外,也可以通过提供更好的设备维护和更新服务,以确保用户设备的正常运行。

4.缓存技术优化:应用缓存技术可以有效减少数据传输的频率和数据流量,从而提高用户的使用体验。

通过在移动网络中部署缓存服务器,可以将常用的应用资源缓存在服务器端,加快用户访问速度。

此外,还可以采用离线缓存技术,在用户离线状态下仍能访问已经缓存的数据,提高用户体验。

5.数据压缩和优化:采用数据压缩和优化技术可以减少数据传输的大小,从而提高网络传输速度。

通过对数据进行压缩和优化,可以减少数据的传输量和传输时延,提高用户体验。

案例集LTE网络优化案例

案例集LTE网络优化案例

案例集L T E网络优化案例集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]TD-LTE网络优化案例目录1概述TD-LTE无线网络要实现系统的高性能指标, 需要有合理的网络规划设计、稳定的产品性能、良好的施工工艺以及高质量的网络优化,几者缺一不可。

本报告收录了XX市TD-LTE试验网建网以来遇到的一些典型优化案例,旨在为后续优化工作提供帮助和参考。

2D频段优化案例2.1重叠覆盖优化【问题描述】在华兴街靠近中和路区域测试时,UE驻留在华安证券_3(频点:38050,PCI:88),RSRP: -71dBm左右,SINR:25dB左右,但DL Throughput=31Mbps。

【问题分析】分析路测数据,发现在华兴街靠近中和路的区域,华安证券_2、华安证券_3小区RSRP电平值较接近,如上图所示,对该路段形成了重叠覆盖。

而该区域规划的主覆盖小区为华安证券_3,现场勘察发现,华安证券_2信号经周边楼宇反射至该区域,2、3小区形成重叠覆盖,造成吞吐速率降低。

【解决措施】调整华安证券_2方位角由120°调至155°,机械下倾角由12°调至6°。

【处理效果】调整小区方位角后,重叠覆盖问题得到较好解决,下载速率明显提升。

2.2PCI优化【问题描述】在九华中路测试中,UE驻留在新都快捷酒店_1(频点:38050,PCI:51),RSRP:-74dbm左右,SINR:5db左右,下载速率:7Mbps左右。

【问题分析】分析路测数据,覆盖该路段的小区为新都快捷酒店_1和盛峰商贸_3,二者的PCI分别为51和18,经计算,两小区间存在模三冲突。

【解决措施】将盛峰商贸_2与盛峰商贸_3的PCI对调。

【处理效果】调整PCI后,模三冲突问题得到较好解决,下载速率明显提升。

2.3邻区列表优化【问题描述】在优化初期,存在较多切换问题,如CDS测试软件显示:UE不断发送MeasurementReport给eNB请求切换,而切换始终无法执行,直到UE被Release,然后Reselection。

TD-LTE热点区域MOS优化提升案例

TD-LTE热点区域MOS优化提升案例
3 结语
总之袁随着计算机信息技术的发展袁其逐渐地被应用在各 个行业的发展中袁在智能交通以及教育教学尧物流管理等方面 有着很重要的应用袁同时获得了很好的成就遥 因此袁在未来的计
算机技术的发展中袁其也会被逐渐的应用的每一个行业当中遥
参考文献 [1]徐昊成.计算机信息技术发展方向及其应用分析[J].通讯世界袁2018 渊01冤院161-162. [2]董淑泽.高中生眼中的计算机信息技术发展方向及其应用[J].电子 技术与软件工程袁2017渊19冤院263. [3]白保琦.计算机信息技术发展方向及其应用探究[J].信息与电脑院理 论版袁2017渊19冤院18-19.
42 通信设计与应用
2019 年 7 月
TD-LTE 热点区域 MOS 优化提升案例
张春涛(中国移动通信集团四川有限公司攀枝花分公司,四川 攀枝花 617000)
【摘 要】MOS 值的大小显示了网络的质量好坏,是客户感知的一个重要指标。本文针对代表 TD-LTE 客户感知的 MOS 值,对提升 MOS 值相
宏站 MR 弱覆盖比例逸25% 1 周存在 4d 级以上为弱覆盖
表 3 MR 弱覆盖 TOP 点位优化
小区名
弱覆盖采 样点比例
天 数
覆盖 类型
原因分析
解决方案
方案措施及需求 类型
江阳茶坪千佛ZLH-4
66.74%
7
室外
孤岛站点
现场排查袁合 理新增规划
新增规划
江阳沸水红星ZLH-1
35.39%
7
室外
互操作参 数问题
3.1 基础覆盖性能
RSRP 电平小于-113dBm 时袁语音 MOS 值会低于 3.5 分袁 语音质量较差袁 吞字断续问题会比较突出袁 覆盖分析以113dBm 进行分析袁如图 1 所示遥

优选TDLTE原理及常见优化案例分析

优选TDLTE原理及常见优化案例分析

DwPTS: Downlink Pilot time Slot UpPTS: Uplink Pilot Time Slot GP: Guard Period to separate between UL/DL
Presentation / Author / Date
特殊子帧传输内容
1、DwPTS(下行链路导频时隙)
时隙配比2DL:2UL。 Configuration2 提供上下行时隙配比3DL:1UL
Presentation / Author / Date
资源分组
频率
More info: TS36.211- v8.6.0 (03/09)
RE:Resource Element。 LTE最小的时频资源单位。频域上 占一个子载波(15kHz),时域上占一个OFDM符号(1/14ms)
– No frequency planning required • There are no dedicated physical (neither transport) channels anymore, as all
resource mapping is dynamically driven by the scheduler
– This is the same for both FDD and TDD mode of operation • No need of RNC like functional element
– Everything radio related can be terminated in the eNodeB • System is reuse 1, single frequency network operation is feasible

LTE系统的网络优化方法与案例

LTE系统的网络优化方法与案例

LTE系统的网络优化方法与案例一、容量优化容量优化旨在提高网络的承载能力,减少拥塞现象,提供更好的用户体验。

1.频谱优化:通过频段重叠排列、载波聚合等技术,充分利用有限的频谱资源,提高网络容量。

例如,中国移动开展了2.6GHz频段的频谱清理工作,将 2.6GHz频段中部分频率划分为可用频段,增加了网络的容量。

2.载频优化:通过合理布局载频,避免相邻小区之间的干扰,提高网络吞吐量。

例如,中国联通通过优化载频,减少LTE小区的相邻小区干扰,提高传输效率。

3.功控优化:通过调整功控参数,使得终端设备发送适当的功率,避免信号过强或过弱,提高网络覆盖和容量。

例如,中国电信通过优化LTE小区功控参数,使得终端设备发送适当的功率,解决了小区内部功率不均衡的问题,提升了网络性能。

二、覆盖优化覆盖优化主要针对LTE网络的覆盖范围和质量进行优化,提供更好的信号覆盖和传输速率。

1.小区规划优化:通过合理规划小区的布局和位置,使得信号覆盖面积最大化,提高网络的覆盖率。

例如,华为公司使用数学模型和仿真工具进行小区规划优化,提供了高质量的LTE网络覆盖。

2.天线优化:通过调整天线的方向、仰角和下倾角等参数,改善信号的覆盖范围和传输质量。

例如,爱立信对南非一个LTE网络进行了天线优化,通过调整天线仰角,解决了城市区域的覆盖问题。

3.信号增强技术:通过引入信号增强技术,如中继站、分布式天线系统等,提高室内和拐角等复杂环境下的信号覆盖和传输速率。

例如,三星公司在加拿大为一个地下商场的LTE网络部署了分布式天线系统,有效提高了网络的覆盖能力和传输速率。

三、干扰优化干扰是影响LTE网络性能的主要因素之一,干扰优化旨在减少不同小区、不同制式、不同频段之间的干扰,提高网络的质量和传输速率。

1.邻区干扰抑制:通过调整邻区频率、功控参数和接入限制等,减少邻区之间的干扰。

例如,诺基亚公司针对德国一些城市的LTE网络,通过优化邻区频率的选择和调整功控参数,成功降低了邻区干扰。

LTE典型案例分析

LTE典型案例分析

LTE典型案例分析覆盖类1.1 概述覆盖类问题只要涉及弱覆盖、越区覆盖、过覆盖、无主导小区、上下行不平衡及导频污染等。

在TD-LTE中一般认为RSRP<-110dBm,认为是弱覆盖。

越区覆盖:由于基站天线挂高过高或下倾角过小引起的该小区覆盖距离过远,从而越区覆盖到其他站点覆盖的区域,并且在该区域终端接收到的信号电平较好。

过覆盖:指网络中存在过度的覆盖重叠,容易引起干扰和乒乓切换;无主导小区:指某一片区域内服务小区和邻区的接收电平相差不大,不同小区之间的下行信号在小区重选门限附近的区域,并且无主导覆盖的区域接收电平一般或者较差,在这种情况下由于网络频率复用的原因,导致服务小区的SINR不稳定,可能发生空闲态主导小区频繁重选、连接态频繁切换,无主导覆盖也可认为是若覆盖的一种。

导频污染:指在某一点存在过多(一般认为大于等于3个)的强导频,但却没有一个足够强的主导频;1.2弱覆盖1.2.1弱覆盖分析造成弱覆盖的原因有:1、规划的站点由于种种原因如物业等没有开起来;2、天线方位角、下倾角不合理,如下倾角过低;3、在站建起来后,由于新建楼宇的遮挡,导致部分区域RSRP很差;4、站点过高,如四十多米或更高,会造成塔下黑5、下倾角、方位角由于条件所限,无法调整,如:美化邓杆站点不方便调整天线的方位角(3个天线方位要一起转,因为外面有罩子盖住下倾角无法调整,如科技园四、海德三路等;深大校园里站点天线都是放在美化罩子(长方体的箱子)里面,对天线的下倾角和方位角调整范围也有影响(如:深大、深大南校等))。

针对以上原因建议的方案有:1、推动客户将规划站点尽快开起来;2、调整天线方位角、下倾角到合理位置;1.2.2天线方位角不合理导致弱覆盖现象:科技园三的102和104小区由于天线被住宅楼遮挡,导致覆盖区域内部分道路信号较弱,存在弱覆盖,科技园三站点周围的地物如图:图表1科技园三周围地物调整前道路的电平值如下图:图表2优化前科技园三覆盖措施:将104小区的方位角由20度调整为40度;将102的方位角由150度调整到100度;调整后弱覆盖得到改善,如下图:图表3优化后科技园三覆盖1.2.3天线方位角下倾角不合理导致的弱覆盖现象:东都花园附近有小段路RSRP低于-110dBm,该路段属于东都花园和龙中站点主覆盖区,需要调整东都花园和龙中站的天馈方向角和下倾角加强覆盖。

TD-LTE上下行交叉干扰案例分析-网络性能优化

TD-LTE上下行交叉干扰案例分析-网络性能优化

上下行交叉干扰案例分析
1、问题概述
2014年5月接通率、无线掉线率TOP小区南宁江南区香格里拉营业厅_HLW_1,后台跟踪有干扰,TOP小区南宁江南区香格里拉营业厅_HLW_1指标如下:
无线掉线率:
无线接通率:
干扰指标监控图:
2、问题处理
UE占用南宁江南区香格里拉营业厅_HLW_1同时能收到南宁江南区香格里拉_HLW_1的信号,现场扫频排查未发现有系统外干扰,且闭掉邻区南宁江南区香格里拉_HLW_1后,干扰消除。

怀疑为系统内干扰,核查两站点告警未发现GPS失锁。

对比两小区配置,发现两小区使用RRU型号不同,其中南宁江南区香格里拉_HLW_1使用的是RRU3151e-fae;南宁江南区香格里拉营业厅_HLW_1使用的是RRU3152-e。

由于RRU3151e-fae是双模RRU,为了和TDS空口同步,作了空口提前,而RRU3152-e是单模RRU,所以未作空口提前,双模单模RRU3152e与双模RRU 3151e-fae之间空口同步未对齐,同覆盖时造成上下行交叉干扰。

3、解决方法
将RRU3152e的帧偏置调整为一致。

配置命令MOD TDDFRAMEOFFSET时隙配比对应的时间提前量:
调整实施后指标恢复正常(2014060419:00实施调整):
调整实施后干扰检测监控:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例六:室分小区随机接入失败
【现象描述】室分小区随机接入失败。 1.在室分主测小区切换或者初始接入时,经常会有切换失败或者attch 失败,现象为PRACH上行同步次数较多,且PRACH的功率会逐渐攀 升到满功率23dbm。CDS软件会提示定时器T304或T300超时。如图
2.反切失败。室分主测小区PCI:336向同层同频的PCI:337切换正常 ,但是经过海量测试发现PCI:337向PCI:336失败率高。现象和上图中 PRACH接入问题相同。
案例八:参数配置导致切换失败
【现象描述】 •测试中UE由LTE_下沙联华1小区(PCI:49)向LTE_下沙联华3小区 (PCI:50)切换失败,如下图所示: •LOG分析,UE在四号大街由东向西行驶,占用LTE_下沙联华1( PCI:49)UE上发测量报告,目标小区为LTE_下沙联华3(PCI:50) ,当RSRP相差10db仍未发生切换,1秒后出现“HandOver Failed” 。
【解决方案】
•把现象报给海思技术支持,回复可能是锁小区的原因造成的 ,CDS上查看,并没有锁小区,仍然执行行锁小区解锁,问题 依旧;继续重启电脑,拔插海思终端,问题解决。 注意:海思终端,在进行锁小区操作后,会在硬件中记录,即 使断电重启也不会复位。需要在CDS软件上进行解锁操作后, 并且重启海思终端,重启电脑,才能复位。。
案例二:滨江电力公司上传速率低
案例描述: •在对滨江电力公司进行单站验证的过程中,在进行上传业务 时发现该站点的3个扇区的速度均比较低,只能达到约 2~5Mbps,而在前期的测试中,该站的上传速度表现一直很 好达到了15Mbps以上;
案例分析: •1.在滨江电力1扇区测试中显示 BLER较高,MCS较低; •2.在滨江电力3扇区测试中显示 时隙配比为3:1;
案例五:远见智能第1小区下载速率偏低问题
【现象描述】在远见智能基站1小区下载速率偏低(20Mbps),
RSRP很高,下行SINR很好,MCS偏低,16QAM比例很高、 BLER很低。
【问题分析】 •关闭ATB/UL PC等问题依然存在。 •关闭远见智能第2、3小区问题依然存在; •初步分析问题不是由于干扰问题,检查SCF文件发现DLTARGETBLER设置 为1%,可能与此有关,由于BLER要求太高,OLLA会调低MCS以保证BLER 目标,而对于FTP等业务不需要如此高的BLER要求,并且会导致不能够使用 高阶MCS及64QAM,从而导致下载速率偏低。 【解决方案】 •将第1小区恢复成DLTARGETBLER=10%。
案例四:海斯终端ATTCH 失败,出现EPS attach failed
【现象描述】最近在测试过程中,经常出现hisi终端无法进行attach业务 和ping 服务器无法到达的情况,具体表现为发起attach业务时在信令中 出现EPS Attach failed
【问题分析】海斯终端鉴权与网络不同步 【解决方案】通过sscom32在hisi终端的bluetooth口发送命令,将hisi终 端的鉴权与基站侧的鉴权进行同步。设备连接后,通过sscom32打开终端 的bluetooth端口,发送命令:g_ulSmcControl=1,点击发送后,鼠标 移至运行窗口按enter,返回值value = 1即表示操作成功,然后关闭 bluetooth端口,如下图所示。
基站有信号,Attach不成功
【解决方案】 •联系排障组上站排查,发现该小区主BBU上的第二个FSP下的3个CPU全部 DOWN掉,导致无法做业务,但是小区有信号; •排障组对该小区的主BBU进行断电重启,5分钟后基站侧观察该小区BBU状态, 模块均恢复正常,使用海思终端在该小区下做业务,业务可以做且均成功
• 3.使用jperf,对传输进行推 送测试,发现主要问题应该在 传输上,由于传输的限制导致 下载速度最大只能达到10Mbps ;
问题解决: •1.根据传输的拓扑结构,测试路径一共分为三段:
1、长河水产基站到PTN侧 CE,如果下载速率有问题,证 明 PTN传输有问题,如果没有 问题,排除PTN传输 2、PTN侧CE到EPC机房 FTP server,如果PTN侧CE到 EPC FTP SERVER速率有问题 3、EPC机房交换机上内网 FTP SERVER测试
案例七:基站有信号,Attach不成功
【问题描述】 •在下沙顶新1小区下做业务,从CDS软件中观察主服务小区有信号,但是无论做 Attach,ping,upload,download业务,均不成功 【问题分析】 •怀疑测试终端问题,重启海思终端,拔插SIM卡,问题依然存在; •怀疑为Windows系统问题,重启电脑,重新接入,仍未解决; •怀疑基站问题,更换至其他小区测试测试,业务正常,定位为小区问题。
案例九:修正测试规范BF Gain计算公式
案例一:长河水产市场下载速度低
案例描述: •在对长河水产市场进行单站验证的过程中,对该站进行定点 的上传和下载业务,发现即使在覆盖“极好点”,该站的下载 速度依旧只有8~10Mbps,达不到测试用例的要求;
案例分析: •1.根据在该站采用不同的电脑分别在不同的极好点进行测试 下载速度均只能达到8~10Mbps,排除无线环境的因素; •2.检查电脑网卡设置,修改TCP相关参数,排除电脑本身的网 卡设置导致无法达到要求的上传速度;
案例一:长河水产市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach不成功 案例八:参数配置导致切换失败
案例九:修正测试规范BF Gain计算公式
案例九:修正测试规范BF Gain计算公式
案例三:海斯终端无法搜网
【现象描述】在优化中突然发现海思终端无法进行小区搜索。 【问题分析】
•怀疑CDS软件设置问题,重启CDS程序,问题依旧; •怀疑Windows问题,重启系统,问题依旧; •怀疑电脑硬件问题,更换电脑,问题依旧; •怀疑海思终端问题,更换海思终端,问题不出现。初步定位 海思终端故障。
室分小区随机接入失败
【问题分析】 1. 怀疑定时器设置或者切换参数问题,但是核查参数发现336和337 的定时器设置相同,切换参数也相同,故排除定时器设置和切换 参数问题; 2. 怀疑无线环境问题,336小区和337小区做的是同层的2个小区,在 同层测试RSRP/RSRQ/SINR都比较好,排除无线环境问题; 3. 怀疑随机接入参数设置有问题,由于336向337切换都正常而反向 切换337向336会出现失败,因此对比这两个小区的PRACH参数, 发现prachConfigIndex参数不同。将336小区的 prachConfigIndex从51修改到3,多次测试切换成功率和接入成 功率明显提高。 4. 进一步定位发现海思终端在prachConfigIndex=51(preamble format 4)时随机接入的成功率较低。
问题解决: •1.在滨江电力1小区进行参数核查,确定无线参数均正常,尝 试修改相关上行参数进行调整,但上传速度依旧没有改善;
•2.恢复修改的参数,核查干扰源,检查周边邻区的无线参数配 置,经过核查发现滨江电力3小区的TDDframeconf=2,即时 隙配比为3:1,而周边基站均为2:2;
•3.将时隙配比改为2:2后,三个扇区上传速度均达到了 15Mbps以上,确认为3扇区的3:1配置对该站有强干扰导致 上行底噪上升,上传速度低;
优化结果: •在将滨江电力3小区的时隙配比TDDframeconf改为1后,分 别验证3个小区的上传速率,均达到了15Mbps以上;
案例一:长河水产市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach不成功 案例八:参数配置导致切换失败
案例九:修正测试规范BF Gain计算公式
参数配置导致切换失败
【问题分析】
•核查切换参数:配置正确无问题; •核查邻区配置:均已配置; •怀疑设备问题,重启设备,复测问题依旧; •尝试重新配置邻区:删除原邻区配置,重新添加双向邻区,进行复测,切换 关系正常,如下图所示:
【解决方案】
•重新核查参数,发现邻区配置参数存在问题。正常邻区配置参数如下: eNodeB IP,eNB id,MCC,MNC,MNC length in PLMN,如 172.27.0.121 719204 460 8 2 •存在问题的邻区配置参数如下: 172.27.0.19 0 0 0 2 172.27.0.99 172.27.0.105 2 172.27.0.106 172.27.0.121 719204 460 8 2 172.27.0.123 739204 460 8 2 172.27.0.139 •由于前期工程部门配置邻区参数存在问题,需要重新正确配置。
案例一:长河水产市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach不成功 案例八:参数配置导致切换失败
案例九:修正测试规范BF Gain计算公式
TD-LTE 网络优化经验总结
——优化案例集
案例一:长河水产市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach不成功 案例八:参数配置导致切换失败
相关文档
最新文档