08-09年河北省中考数学试卷分析

合集下载

2023河北中考数学试卷分析

2023河北中考数学试卷分析

2023河北中考数学试卷分析2023年河北省中考数学考试已经落下了帷幕,今年的中考数学试卷设计遵循《义务教育数学课程标准(2022年版)》的要求,再次延续了“守正创新,关注数学本质”的特点。

许多人都关注着今年的这份试题,因为它是我们三年教学的总结,同时也是下届教学的引领。

下面我们来进行简单的分析与评价,供各位关注者与考生参考。

一、结构稳定分值变化今年的数学试题与2022年相比在试卷结构上保持稳定,总分仍是120分,依旧是16道选择题、3道填空题、7道解答题。

选择题1-6题每题3分,11-16题每题2分保持不变,7-10题由原来的每题3分变为每题2分。

填空题由总分9分变为总分10分,其中17题由3分降低为2分,18题、19题由每题3分增加到每题4分,每空2分。

解答题20-24题分值没变,25题由原来的10分增加到12分,26题由原来的12分增加到13分。

从分值可以看出基础分值占比减少,中档题、综合题占比增加。

二、注重基础兼顾能力2023年河北省中考数学命题依旧注重基本数学能力、数学核心素养和学习潜能的评价,试卷兼具基础性和综合型、应用性和创新性,突出对基本知识、基本方法的考查。

试题几乎涵盖了初中数学所有知识点,其中数与代数、图形与几何、统计与概率所占比例约为5:4:1,与教学所占课时分配大致相当,实现了中考知识点易、中、难的比例为3:5:2的目标。

相比2022年的5:3:2,基础题有所减少、中档题有所增加。

选择6-16题相比2022年难度有所增加,但25题最后一问、26题最后一问相比去年难度有所降低,预测2023年中考数学满分人数比2022年会多一点,区分度会比2022年大一些。

三、经典传承新颖灵活今年,河北中考数学题考点基本稳定,呈现形式仍然新颖灵活、别具一格,每年必考的知识点,总能给人一种常考常新的感觉。

选择、填空部分,方位角、数式计算、概率、三角形三边关系、整除问题、尺规作图、多边形的性质、代数式的有关概念、平行线的判定及性质、一次方程建模、函数的图象等,都是河北省的经典考点,但河北省数学试卷题目总能让人觉得新颖灵活、别具一格。

2024年河北省中考数学试卷分析报告

2024年河北省中考数学试卷分析报告

2024年河北省中考数学试卷分析报告1. 引言本文旨在对2024年河北省中考数学试卷进行详细的分析,从题型构成、难度分布、知识点覆盖等方面进行评估和总结,以便于考生和教师更好地了解试卷的特点和趋势,有针对性地进行备考和教学。

2. 题型构成2024年河北省中考数学试卷一共由选择题、填空题、解答题三个部分组成。

其中,选择题占比约60%,填空题占比约20%,解答题占比约20%。

这种题型构成比例在近几年的中考数学试卷中比较常见,符合中考数学试卷的趋势。

2.1 选择题2024年数学中考试卷的选择题部分包含了单项选择题和不定项选择题。

•单项选择题占据了选择题部分的大部分比例,其中很多题目体现了对学生基础知识的考查和运用。

•不定项选择题则对学生的逻辑思维和推理能力提出了较高的要求,涵盖了更多的知识点。

2.2 填空题填空题是2024年河北省中考数学试卷中的另一部分重要题型。

填空题的出现在一定程度上考察了学生对数学知识的理解和灵活应用能力。

2.3 解答题解答题是试卷中的最后一部分,也是考查学生数学能力较高、思维能力较强的部分。

3. 难度分布2024年河北省中考数学试卷的难度分布比较合理,注重考查学生对基础知识的掌握和应用能力的培养。

试卷难度主要体现在以下几个方面:3.1 基础题目与综合题目的对比试卷中的基础题目主要出现在选择题和填空题中,涵盖了学生所学的数学基础知识。

这些题目难度相对较低,能够帮助学生巩固基础,提高应试能力。

综合题目则更注重学生对知识点的综合运用和思维能力的培养,难度相对较高。

这一设计可以更好地测试学生对数学知识的整体理解和应用。

3.2 题目难度的分层次试卷的题目难度分层次地设置,既有简单的基础题目,也有稍微难度较高的拓展题目。

这种设置有助于考生全面掌握基础知识,并且提升解决问题的能力。

4. 知识点覆盖2024年河北省中考数学试卷对数学的各个知识点进行了相对均衡的覆盖。

试卷的知识点覆盖具体如下:•初中代数和初中几何知识点的考查相对较多,占试卷总分的比例较大。

2008、2009、2010年河北中考数学试题及详细答案)

2008、2009、2010年河北中考数学试题及详细答案)

2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(08河北)8-的倒数是( ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则 到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正图1图2 图3方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则2_____∠=.12.(08河北)当x = 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= . 14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则______C ∠=.15.(08河北)某班学生理化生实验操作测试成绩的统计结果如下表:成绩/分3 4 5 6 7 8 9 10图4 x x x 图5-1 图5-2 图5-3 …12 ba图6 c 图7人数1 12 2 8 9 15 12 则这些学生成绩的众数为 . 16.(08河北)图8每个果冻的质量也相等,则一块巧克力的质量是 g .17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m 18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% D 各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m )d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(08河北)(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.图13-1 图13-2图13-325.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是A C AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).A (E )BC (F ) PlllB FC 图14-1图14-2图14-3(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC 上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图152008年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案DBBCAAC BDC二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由3336.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD = ,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)B -,200C -;图1(2)过点C 作CD OA ⊥于点D ,如图2,则CD =. 在Rt ACD △中,30ACD ∠=,CD =,cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=.又AC BC ⊥ ,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠./kmlAB FC Q 图3M12 34 EP在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠= .90QMA ∴∠= .BQ AP ∴⊥.(3)成立.证明:①如图4,45EPF ∠=,45CPQ ∴∠= . 又AC BC ⊥ ,45CQP CPQ ∴∠=∠= .CQ CP ∴=. 在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠= ,90APC PBN ∴∠+∠= .90PNB ∴∠= . QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, lABQP EF 图4N C将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w > 乙甲,∴应选乙地. 26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)E B图5B图6E B图7B图8B 图9图32009年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( ) A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )BAC D图1A 图24=1+3 9=3+616=6+10图7…A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )AmB .4 m C. mD .8 m9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+312009年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共96分)ADCB图6图5图4注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约 为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.图9图8电视机月销量扇形统计图第一个月 15%第二个月 30% 第三个月 25%第四个月图11-120.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m , OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y ax bx =+经过(33)A --,和点P (t ,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A ,如图12,请通过观察图象,指出此时y 的最小值,并写出t 的值;(2)若4t =-,求a 、b 方向;O图10电视机月销量折线统计图图12(3)直.接.写出使该抛物线开口向下的t 的一个值. 23.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周. (2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在 阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 ⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.图13-4图13-1AB图13-2单位:cm24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)图14-1AHC (M )DEBFG (N )G图14-2AHCDBFNMAHCD图14-3BFG MN设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC (2)在点P 从C 向A 运动的过程中,求△APQ t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图162009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1;17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品/月图1第一 第二 第三 第四 电视机月销量折线统计图牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .AHCDBFG NMP∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3. (2)由题意,得2240x y +=, ∴11202y x =-.23180x z +=,∴2603z x =-. (3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.图4P图3F由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】图52010年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是AB CD图2 ABC40°120°图1图3A B D 0C10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8C .9D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2)C .(3,3)D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.-的相反数是 .14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A对应的数为1-,则点B 所对应的数为 . 15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高图7图8 图4图6-1 图6-2AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α, 则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程:1211+=-x x .20.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角甲校成绩统计表图10-1图10-2图11-1乙校成绩扇形统计图 图12-1等于 °.(2)请你将图12-2的统计图补充完整. (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.23.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以 左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且 PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研乙校成绩条形统计图图12-2。

考试试卷分析与反思

考试试卷分析与反思

考试试卷分析与反思考试试卷分析与反思1第一单元:小数乘法总体来说:卷面干净,整洁,认真读题、审题,计算准确,简算熟练,大部分学生对所学知识掌握较好,但少数学生太差。

具体分析如下:第一大题,基础知识填空,失分较少,错的最多的是第10小题,学生对积的变化规律没掌握好,造成失分。

第二大题,判断完成较好,失分较多的是第4小题,学生对计数单位不理解,判断错误。

第三大题选择题,完成较好,错的较多的是第6小题,学生没见过这种表达形式,不明白式子的含义。

第四、五大题计算题,学生计算不熟练,不知道乘法分配律和结合律怎样运用,简算题失分多,第六大题解决问题,大部分学生思维能力强,完成较好,错题原因:第2小题忘记写“≈”,第5小题学生对题意不理解,失分太多。

经过检测发现,本单元掌握存在以下不足:1、计算很差,积的末尾的“0”忘划掉,忘写“≈”。

2、减算掌握的不好,不会运用乘法分配律简便计算。

下步努力的方向:1、分析学生计算出错的地方,有针对性地加强学生的计算能力;2、进一步训练并加强学生的读题能力;3、培优补差。

一、命题特点及概况:本单元试卷包含五星种题型,填空,判断,选择,计算,,应用题,内容突出体现了基础性和普及性,体现了新课标的新理念,使数学教学面向全体学生,试题知识面覆盖广,取样有代表性。

注重于基础知识,同时又切合教材的重点、难点、疑点、有甩侧重地安排了试题,尤其在填空、选择、计算上都突出了这一点,避免了偏题、怪题、总体看来深浅适度,考查了学生对基础知识的掌握,同时培养了学生的计算能力和逻辑思想能力是一份切合教学实际,目标明确的有价值的试卷。

二、答卷情况:本次测试的是数学第二单元小数除法一章,这次测试的试卷共有五个大题,从试卷分析,这张试卷的试题比较简单,题型也都是我们平时所做过的,学生们做答中出现的错误也比较少。

这五个题,有一定的梯度,主要考查学生们对本单元的基础知识的掌握情况,比较适合我们的同学做答。

三、学生做题情况分析(一)学生存在的共性问题1.学生的计算能力在待提高,有很多同学的计算题没有算对结果,2.学生的试卷做得比较乱,书写不规范,3.有各别的知识点掌握不扎实,4.应用题方面发展很不平衡,有7名同学的应用题失分太多。

2009年河北省中考数学试题评析

2009年河北省中考数学试题评析

2009年河北省中考数学试题评析2009年的数学试题在继承我省近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、变中求新”的命题原则,贯彻《义务教育课程标准(实验稿)》(以下简称《课程标准》)和《河北省2009年中考文化课学科说明》(以下简称《学科说明》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识,整套试题充满着人文关怀.一、总体评价试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现和落实新课程改革的理念和精神.整套试题覆盖面广,题量适当,结构合理,难度适中,内容新颖,表述科学.在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、开放性、应用性、探究性和综合性.在具体操作上,紧扣《学科说明》,参照我省各地使用的不同版本教科书,强调教材的重要性,保证素材的公平性,对教学工作能够起到明显的指导作用.1. 整体稳定,局部调整今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:选择题由原来的10个小题增至12个;填空题由原来的8个小题减至6个;解答题依然是8个小题.各题型的分值和部分试题的考查重点,也作了相应的调整.2. 全面考查,突出重点纵观整套试题,覆盖近百个知识点.所关注的内容,是支撑学科的基本知识、基本技能和基本思想.强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法.试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、相交线与平行线、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想、统计与随机意识等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念.试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查.3. 层次分明,确保试题合理的难度和区分度试题在结构上形成合理的层次,整套试题从易到难形成梯度.其中第一、二大题分三个层次:第一层次(第1~7、13~15小题)考查基础知识、基本技能,判断、运算或操作方式单一,学生能直接上手;第二层次(第& 9、11、16〜18小题)是小范围的综合题,旨在考查最基本的数学方法和数学思想;第三层次(第10、12小题)更多的是关注数学思辨和思维过程.第三大题注重数学能力,也分三个层次:第一层次(第19~22小题),考查代数式变形和运算的能力,用所学知识解决简单实际问题的能力,对统计与概率知识的理解与应用,以及对函数概念的理解与应用的能力;第二层次(第23、24小题),考查学生的形成性学习方法与能力,以及逻辑思维能力.第三个层次(第25、26小题),考查学生的综合运用能力,包括知识综合、方法综合以及数学思想的综合运用.同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度,有利于高一级学校选拔新生.4. 科学严谨,确保试题的信度、效度和自洽性试卷题目陈述简明、科学准确;图形、图象规范美观.凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握;凡是带有创新成分的试题,其内容均属《课程标准》和《学科说明》要求范围之内的核心知识.这就确保了考试具有较高的信度.每类题型由易到难形成三个难度循环.试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的解答习惯、学习水平和承受能力.后面的几道解答题,设3~4问,形成问题串,起点很低,循序渐进,层层铺垫,且最后一问思维含量较高,具有一定的挑战性.这样“入口宽、出口窄”的试题设计,有利于学生临场发挥.各类型题目解答起来,容易上手,但要解答完整、准确,则需要具备较强的数学能力.这样的布局,能确保考试具有较高的效度.同时,试题的命制注意了整体的和谐性,试题的搭配,使考查功能之间形成合理的支撑,努力实现试题在能力层面上的相互校正功能.注重了整套试卷题目间的合理性、自洽性与可推广性.】、试题特点1. 从全新角度考查基础知识和基本技能要想学好数学,就必须牢固掌握数学的基础知识,并且在不同的环境中能够灵活的加以运用.因此本套试题在关注对基础知识和基本技能考查的同时,特别注意了考查方式的多样化和考查角度的新颖例1 (第5题)如图1,四个边长为1的小正方形拼成一个大正方形,A、B、为1 , P是O O上的点,且位于右上方的小正方形内,则/ APB等于A. 30 ° B . 45 °C. 60 ° D . 90 °评析本题旨在考查同弧所对的圆周角与圆心角的关系. 但其呈现方式却与众正方形之中,建立起了知识间的相互联系.例2 (第7题)下列事件中,属于不可能事件的是性.O是小正方形顶点,O O的半径不同,自然而巧妙地把问题置于A .某个数的绝对值小于0C .某两个数的和小于0 评析本题考查的是不可能事件的概念,B .某个数的相反数等于它本身D .某两个负数的积大于0但其中却蕴含着考生对数的基础知识的思考,使这道看似简单的题目变得丰满而扎实.PB图1例3 (第11题)如图2所示的计算程序中,y与x之间的函数关系所对应的图象应为评析对函数图象的考查是中考命题的常见内容,但本题不是平铺直叙,而是另辟蹊径一一借助程序设计的背景,将函数表达式的产生与函数图象的性质完美的衔接起来,设计出了一道新而不偏、新而不怪的好题.2. 关注数学思想方法,渗透数学文化数学的思想方法是数学学科的灵魂,它有时并非刻意指向解题所运用的数学知识,而更多的体现在对解题策略的思考和选择上.本套试题在对数学思想与方法的考查方面可谓独树一帜,其往往借助看似平实简洁的问题设置,却凸显了数学思想方法在解题时的重要作用.此外,渗透数学文化、陶冶学生心灵、感受数学魅力,使数学具有更为积极的教育功能,也是命题组在试题命制中始终关注的一个环节.例4 (第10题)从棱长为2的正方体毛坯的一角,这个零件的表面积是挖去一个棱长为1的小正方体,A . 20 220得到一个如图3所示的零件,则C . 24 D.例5 (第17题)如图4,等边△ ABC的边长为点A落在点A '处,且点A '在△ ABC外部,评析从表面看,上述两题是对基本几何知识性质26 1cm , D、E 分别是AB、贝V阴影部分图形的周长为(图形的周长和面积)不难发现,其关注的核心实际是数学的思想方法,即利用平移和轴对称实现这两道试题还具有良好的推广性.如例只在一个面上时,其表面积会怎样变化?例同?等等.4 (第10题)中,让挖去的小正方5 (第17题)中,点A '在△ ABC 但通过对解题策略的分析,却对问题的转化(化归). 体经过大正方体的两个面或阴影部分的周长有什么不例6 (第18题)如图5,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,另一根露出水面的长度是它的.两根铁棒长度之和为cm ,此时木桶中水5的深度是图5评析本题通过现实有趣的数学情景,将方程思想巧妙地蕴含其中.此外,解法的多样性也是本题的一大特点,既可以形成一元一次方程的模型(设水的深度为未知数),又可以形成二元一次方程组的模型(设两根木棒的长度为未知数)cm .,还可以有其他方法.这样使学生单向封闭的思路拓展成多维开放的思路,有效地培养了学生的创新思维能力.例7 (第12题)古希腊著名的毕达哥拉斯学派把1、3、数”,而把1、4、9、16 ,这样的数称为“正方形:: 一个大于1的“正方形数” 都可以看作两个相邻“三6、10 ,这样的数称为“三角形数”.从图6中可以发现,任何角形数”之和.下列等式中,符D图3点,将△ ADE沿直线DE折叠,图4 A'的内部或边上时,一根露出水面的长度是它的T ,3以借助图形进行分析,很好的体现了“数形结合”的思想.同时又向学生渗透了世界古代文化的精深与美妙,有一种内在的和谐与古远幽深的意境,激发了学生对数学文化的热爱,既有趣味性、挑战性,又有教育功能,令人耳目一新.3. 联系现实生活,突出应用意识现实生活是数学学科的出发点和最终归宿,让数学回归现实是数学课程改革的重要目标之一.着重考查学生运用所学知识解决简单实际问题的能力,要求学生能够解决决日常生活中的实际问题,能够用数学语言表达问题.为彰显课程改革的目占有相当的比例. 例8 (第25题)某公司装修需用A型板材240块、B型板材180块,A型型板材规格是40 cm X 30 cm .现只能购得规格是150 cm X 30 cm的标准地裁出A型、B型板材,共有下列三种裁法:(图7是裁法一的裁剪示设所购的标准板材全部裁完,其中按裁法一裁 x 张、按裁法二裁 y 张、按裁法三裁 z 张,且所裁出的 A 、B 两种型号的板材 刚好够用.(1 )上表中,m 二 ______________ , n 二 _______ .;( 2)分别求出y 与x 和z 与x 的函数关系式; (3)若用Q 表示所购标准 板材的张数,求 Q 与x 的函数关系式,并指出当x 取何值时 Q 最小,此时按三种裁法各裁标准板材多少张? 评析 试题在背景呈现上贴近社会现实,充满着生活气息,使学生真实地感受到“数学来源于生活,又返回来指导生活”的价 值.这正体现了《课程标准》中提到的“问题情景一建立模型一解释、应用和拓展”的数学学习模式.本题借助一次函数 关系式及其性质为知识载体,考查的核心是从现实情景中提取信息、分析数据、建立数学模型的思想和能力.4.在 考查思维能力的同时,更关注对思维方式和思维过程的考查在新课程理念的指导下,日常教学中,培养学生数学思维的能力尤为重要.但更重要的是,通过具体有形的数学知识,传递给学生一种数学的思维方式,体验思维和认知的一般方法与过程(数学思考) .可以说,今年的数学试题在关注“知识立意”与“能力立意”的同时,又注入了 “过程立意”.这必将对今后的教学产生重要的影响.例9 (第22题)已知抛物线y ax 2 bx 经过点A (- 3, - 3)和点线的对称轴经过点 A ,如图8,请通过观察图象,指出此时 若t - -4,求a 、b 的值,并指出此时抛物线的开口方向;下的t 的一个值.评析 该题以二次函数为背景, 但却打破了以往程式化的设问方式,清晰地为我们勾勒出了“在两个点确定的情况下,图80),且t 工0.( 1 )若该抛物最小值,并写出t 的值;(2) 直接 写出使该抛物线开口向抛物线的某些属性而是带有浓郁的探究成分, (开口方向)随另一个点的运动而变化 ”的一个连续的动态过程,将代数演绎与几何直观有机地结合了起来.本题考查的主旨并非是对解题方法和技巧的机械运算,而是巧妙地考查了学生直观思维的过程与方法,正所谓 斤”就是这个道理.例10 (第23题)如图9-1至图9-5 , O O 均作无滑动滚动,O O 1、O O 2、A段AB 或BC 相切于端点时刻的位置,OO 的周长为c .阅读理解:(1)如图9-1 , O O 从O O 1的位置出发,沿 AB 滚动到 恰好自转1周.(2)如图9-2,/ ABC 相邻的补角是n °,O O 在/ ABC 处,必须由O O 1的位置旋转到O O 2的位置,O O 绕点B 旋转的角 转亠周.360实践应用:(1)在阅读理解的(1 )中,若AB = 2c ,则O O 自转 -------------- 周;阅读理解的(2)中,若/ ABC = 120。

2008年河北中考数学试题及答案 (全)

2008年河北中考数学试题及答案   (全)

数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(08河北)8-的倒数是( d ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( b ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( b ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( a )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则到弦AB 所在直线的距离为2的点有( c )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( b ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2图1图2 图3C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( d )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( c )A .上B .下C .左D .右卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则<2=7012.(08河北)当x = 1 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= -5 .14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则<c=27.15.(08图4 x A . x B . x C . D . 图5-1 图5-2 图5-3 …1 2b ac 图7则这些学生成绩的众数为 9 .16.(08河北)图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 20 g . 17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m =18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 76 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.=-1/320.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 500 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率. 1/521.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% 25各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标;D(1,0)(2)求直线2l 的解析表达式; Y=2/3X-6(3)求ADC △的面积; S ADC △=2/3(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. P(6,3)22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系. (1)台风中心生成点B 的坐标为 (100^3,-100^3) ,台风中心转折点C 的坐标为 (100^3,200-100^3) ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?11小时。

2008——2011年河北中考数学试题(精编横版适合印刷)

2008——2011年河北中考数学试题(精编横版适合印刷)

第1页,共21页2008年河北省初中毕业生升学数学试卷一、选择题(本大题共10个小题;每小题2分,共20分.) 1.(08河北)8-的倒数是( ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( ) A .80.155110⨯ B .4155110⨯ C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( ) A .点P B .点O C .点M D .点N 6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ) 10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次图4A .xB .C .xD.图1图2图3第2页,共21页变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=,则2_____∠=. 12.(08河北)当x = 时,分式31x -无意义.13.(08河北)若m n ,互为相反数,则555m n +-= .14.(08河北)如图7,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC .若36A ∠=,则______C ∠=.15.(08河北)某班学生理化生实验操作测试成绩的统计结果如下表:成绩/分3 4 5 6 7 8 9 10 人数1 12 2 8 9 15 12则这些学生成绩的众数为 .16.(08河北)图8所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m = . 18.(08河北)图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个 全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.)19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ;AB C图9-1 图9-2图5-1图5-2图5-3…12ba图6c 图7图8第3页,共21页(2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B 点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a = (1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).A35%B 20%C 20%D 各型号种子数的百分比 图10-1 图10-2 图11C 6045图12第4页,共21页观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”); (2)请你参考右边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(08河北)(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.25.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)A (E ) BC (F ) PlllBFC 图14-1图14-2图14-3图13-1 图13-2图13-3可以对它们的平方进行比较:2m n 2-=22()m n ∴-当22m n -当22m n -22m n -第5页,共21页(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图15第6页,共21页4=1+3 9=3+616=6+10图7 …图32009河北省中考数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0 BC .某两个数的和小于0D .某两个负数的积大于8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )A mB .4 mC . mD .8 m 9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/sB .20 m/sC .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 象应为( ) .古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+31BACD图1A DCB 图6图2图5 图4第7页,共21页电视机月销量扇形统计图第一个月 15%第二个月 30% 第三个月25%第四个月图11-1二、填空题(本大题共6个小题,每小题3分,共18分)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.20.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ;(2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;O图10图9 图8第8页,共21页(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y a x b x =+经过(33)A --,和点P (t ,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A 图12,请通过观察图象,指出此时y 值,并写出t 的值;(2)若4t =-,求a 、b 此时抛物线的开口方向;(3)直.接.写出使该抛物线开口向下的t 的一个值.23.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O2、⊙O3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O恰好自转1周.(2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O在点B 处自转︒360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 时间/月图11-2第一 第二 第三 第四 电视机月销量折线统计图图12图13-1图13-2图13-3第9页,共21页⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2, 求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)图13-4图14-1AHC (M )DEBFG (N )G图14-2AHCDEBFNMHCFG N图13-5第10页,共21页设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.图16图15单位:cm第11页,共21页2010年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是( )6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A .7B .C .9D .10 11.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中A BCD图2ABC40°120°图1图3A B D CA B C D21页 点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2) C .(3,3) D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成 一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.) 13.的相反数是 .14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A对应的数为1-,则点B 所对应的数为 . 15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α, 则圆锥的底面积是 平方米(结果保留π). 18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.) 19.(本小题满分8分)解方程:1211+=-x x .20.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,图10-1图10-2D图11-1乙校成绩扇形统计图图7图8图图第13页,共21页发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °.(2)请你将图12-2的统计图补充完整. (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.23.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是分米;点Q 与点O 间的最大距离是 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l 的距离最小.”事实上,还存在着点P到l 距离最大的位置,此时,点P 到l 的距离是l lQ 图14-2 图14-1乙校成绩条形统计图图12-2第14页,共21页分米;②当OP 绕点O 左右摆动时,所扫过的区域为扇形, 求这个扇形面积最大时圆心角的度数.24.(本小题满分10分) 在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°. (1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到 图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ; (3)将图15-2中的OB 拉长为AO 的k 倍得到 图15-3,求AC BD 的值. 25.(本小题满分12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止.设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积. (3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.P Q 图16 (备用图)图15-2A D OB C 2 1 M N 图15-1A DB M N 1 2 图15-3A D OBC21 M N O第15页,共21页26.(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--.第16页,共21页2011河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.计算30的结果是A .3B .30C .1D .0 2.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)2 4.下列运算中,正确的是A .2x -x =1B .x +x 4=x 5C .(-2x )3=-6x 3D .x 2y ÷y =x 25.一次函数y =6x +1的图象不经过... A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG 7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S =甲,219.6S =乙,21.6S =丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选A .甲团B .乙团C .丙团D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是 A .1米 B .5米 C .6米 D .7米9.如图3,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在A ′处,若A ′为CE 的中点,则折痕DE 的长为A .12B .5米C .6米D .7米10.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为 A .2 B .3 C .5 D .13 11.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:ABD图1图4① ② 图2。

河北中考数学试卷(含答案解析)

河北中考数学试卷(含答案解析)

河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。

专题:计算题。

分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。

专题:计算题。

分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。

专题:因式分解。

分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。

专题:计算题。

分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。

2009年河北省中考数学试题分析与思考

2009年河北省中考数学试题分析与思考

2009年河北省中考数学试题分析与思考随着基础教育改革的不断深入,2009年河北省中考数学试题在继承我省近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、变中求新”的命题原则,贯彻《义务教育课程标准(实验稿)》和《河北省2009年中考文化课学科说明》所阐述的命题指导思想,中考数学命题更加成熟。

今年中考数学试题突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识,整套试题充满着人文关怀。

试题设计新颖,解题方法常规,由易到难,较好的落实了“狠抓基础,注重过程,渗透思想,突出能力,强调应用,着重创新”的新课改理念。

与往年数学试题相比,今年试题保持了命题思路的连续性和稳定性,但今年的试题仍给人以耳目一新的感觉。

解答今年中考题感觉面前不再是枯燥的计算与证明,而好像是在书写一篇优美的作文———试卷给我们呈现了数与形的完美结合,生活中实用有趣的数学知识,更能让我们体会探索与归纳的乐趣。

一、面向全体,考察双基基础知识和技能是其他一切思想方法和能力培养的基础,只有基础扎实思想方法才能得到充分的挖掘,能力培养才能顺利的进行。

纵观整套试题,覆盖近百个知识点,所关注的内容,是支撑学科的基本知识和基本技能,强调考查学生在这一学段所必须掌握的通法通则,淡化了繁杂的运算和技巧性很强的方法。

本份试题在数和形的两条线对双基进行了重点考查,例如数线索方面:数(1,13,14题)——式(2,4,16,19题)——方程(9.18题)——函数(6,9,11题)——统计与概率(7,15题)形线索方面:基本图形(10题)——三角形(8,17题)——四边形(3题)——圆(5,20题)数形结合方面(11,12,22题),并且今年有些双基类题目考查方式特别新颖,例如第7题考查的是不可能事件的概念,但其中却蕴含着考生对数的基础知识的思考,使这道看似简单的题目变得丰满而扎实;再如第11题对函数图像的考查,借助程序设计的背景,将函数表达式的产生与函数图象的性质完美的衔接起来,设计出了一个好题目。

2008-2012年河北省中考数学试卷分析与趋势

2008-2012年河北省中考数学试卷分析与趋势

2008—2012年河北省中考数学试卷变化特点与趋势
一、试题特点
1、注重双基,紧抓主干着重考查了学科知识体系的知识主干内容以及应用性较强的知识。

试题分值和题目位置的变化使考察重点向基础知识部分倾斜,同时压轴题又能起到很好的选拔性考试应有的区分度。

2、注重考察学生综合能力。

着力考查学生的阅读理解能力,应用探究能力,实践操作能力,综合创新能力。

试题在全面考查数学核心内容基础上,注重考查学生灵活运用数学知识解决问题的能力,关注对数学活动过程的考查,加强了探究性问题的设计与应用,注意考查学生的观察、实验猜想、推理能力。

3、突出对数学思想方法的考查,关注数学素养的培养。

如整体思想、数形结合思想、函数与方程思想、分类思想、转化思想、配方法、待定系数法、换元法等。

同时注重考察数学模型思想,注重考查建模过程和建模能力。

4、试题呈现形式简洁,减少无效的阅读量,文字材料向图像材料、表格材料、图片材料转换。

使题意直接明了,降低学生审题障碍和无关信息的干扰。

二、考查知识点分布
三、解答题类型。

2009年河北省中考数学试卷及答案解析

2009年河北省中考数学试卷及答案解析

2009年河北省中考数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)(﹣1)3等于()A.﹣1 B.1 C.﹣3 D.32.(2分)在实数范围内,有意义,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<03.(2分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.54.(2分)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m5.(2分)如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°6.(2分)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值()A.增大B.减小C.不变D.先减小后增大7.(2分)下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身C.某两个数的和小于0 D.某两个负数的积大于08.(2分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m9.(2分)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/s C.10m/s D.5m/s10.(2分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.2611.(2分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.12.(2分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(共6小题,每小题3分,满分18分)13.(3分)比较大小:﹣6﹣9.(填“<”、“=”或“>”).14.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为千瓦.15.(3分)在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃)36.136.236.336.436.536.636.7次数2346312则这些体温的中位数是℃.16.(3分)若m、n互为倒数,则mn2﹣(n﹣1)的值为.17.(3分)如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.18.(3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.三、解答题(共8小题,满分78分)19.(8分)已知a=2,b=﹣1,求1+的值.20.(8分)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?21.(9分)某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.(1)第四个月销量占总销量的百分比是;(2)在图2中补全表示B品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.22.(9分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.23.(10分)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.24.(10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)25.(12分)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm 的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?26.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BC﹣CP 于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.2009年河北省中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.(2分)(2009•河北)(﹣1)3等于()A.﹣1 B.1 C.﹣3 D.3【分析】根据﹣1的奇次幂等于﹣1,直接得出结果.【解答】解:(﹣1)3=﹣1.故选A.【点评】本题考查了有理数的乘方:﹣1的奇次幂等于﹣1.2.(2分)(2009•河北)在实数范围内,有意义,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<0【分析】根据二次根式有意义的条件可直接解答.【解答】解:二次根式有意义的条件可知:x≥0.故选A.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(2分)(2010•南通)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.4.(2分)(2009•河北)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m【分析】根据合并同类项的法则,只把系数相加减,字母与字母的次数不变;去括号法则,括号前面是负号,去掉括号和负号,括号里的各项都变号;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为4m﹣m=3m,故本选项错误;B、应为﹣(m﹣n)=﹣m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选C.【点评】本题综合考查了合并同类项的法则,去括号法则,幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质和法则是解题的关键.5.(2分)(2009•河北)如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°【分析】根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半求解.【解答】解:根据题意∠APB=∠AOB,∵∠AOB=90°,∴∠APB=90°×=45°.故选B.【点评】本题考查了圆周角和圆心角的有关知识.6.(2分)(2010•宁德)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值()A.增大B.减小C.不变D.先减小后增大【分析】根据反比例函数的性质:当k>0时,在每一个象限内,函数值y随着自变量x的增大而减小作答.【解答】解:由解析式知k=1>0,所以当x>0时,函数y随着自变量x的增大而减小.故选B.【点评】本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.7.(2分)(2009•河北)下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身C.某两个数的和小于0 D.某两个负数的积大于0【分析】不可能事件是一定条件下一定不会发生的事件.依据定义即可解得.【解答】解:A、任何数的绝对值都大于或等于0,故为不可能事件,符合题意;B、0的相反数等于它本身,为随机事件,不符合题意;C、两个负数的和小于0,为随机事件,不符合题意;D、正确,为必然事件,不符合题意;故选A.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.8.(2分)(2010•枣庄)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m【分析】过C作CE⊥AB,已知ABC=150°,即已知∠CBE=30°,根据三角函数就可以求解.【解答】解:过C作CE⊥AB于E点.在Rt△CBE中,由三角函数的定义可知CE=BC•sin30°=8×=4m.故选:B.【点评】考查三角函数的应用.9.(2分)(2009•河北)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/s C.10m/s D.5m/s【分析】本题实际是告知函数值求自变量的值,代入求解即可.另外实际问题中,负值舍去.【解答】解:当刹车距离为5m时,即y=5,代入二次函数解析式:5=x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.【点评】考查自变量的值与函数值的一一对应关系,明确x、y代表的实际意义,刹车距离为5m,即是y=5,求刹车时的速度x.10.(2分)(2009•河北)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26【分析】本题考查整体的思想及简单几何体表面积的计算能力.从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积.【解答】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故选C.【点评】本题可以有多种解决方法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.11.(2分)(2009•河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y 随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选D.【点评】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=﹣2x+4,然后根据一次函数的图象的性质求解.12.(2分)(2009•河北)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【解答】解:显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2009•河北)比较大小:﹣6>﹣9.(填“<”、“=”或“>”).【分析】本题可利用绝对值概念根据两个负数绝对值大的数反而小比较大小.【解答】解:∵|﹣6|=6,|﹣9|=9,且6<9;∴﹣6>﹣9.【点评】本题考查的是两个负有理数大小的比较方法:两个负数相比较,绝对值大的数反而小.14.(3分)(2009•河北)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 1.2×107千瓦.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意12 000 000用科学记数法表示为1.2×107千瓦.【点评】本题考查的是科学记数法.任意一个绝对值大于10或绝对值小于1的数都可写成a×10n的形式,其中1≤|a|<10,对于绝对值大于10的数,指数n 等于原数的整数位数减去1.所以12 000 000=1.2×107.15.(3分)(2009•河北)在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃)36.136.236.336.436.536.636.7次数2346312则这些体温的中位数是36.4℃.【分析】由表提供的信息可知,一组数据的中位数是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的中位数.【解答】解:这组数据的中位数应是第11个数为36.4.故填36.4.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16.(3分)(2009•河北)若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;17.(3分)(2009•河北)如图,等边△ABC的边长为1cm,D、E分别是AB、AC 上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为3cm.【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC 的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故答案为:3.【点评】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.18.(3分)(2013•鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是20cm.【分析】考查方程思想及观察图形提取信息的能力.【解答】解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为55cm,故可列x+y=55,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为30×=20cm.故填20.【点评】本题是一道能力题,注意图形与方程等量关系的结合.三、解答题(共8小题,满分78分)19.(8分)(2009•河北)已知a=2,b=﹣1,求1+的值.【分析】先对所求的代数式化简,再将未知数的值代入计算.【解答】解:原式=1+=1+a+b;当a=2,b=﹣1时,原式=2.【点评】此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.(8分)(2009•河北)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?【分析】根据三角函数可得到OD的值;再根据勾股定理求得OE的值,此时再求所需的时间就变得容易了.【解答】解:(1)∵OE⊥CD于点E,CD=24,∴ED=CD=12,在Rt△DOE中,∵sin∠DOE==,∴OD=13(m);(2)OE===5,∴将水排干需:5÷0.5=10(小时).【点评】此题主要考查了学生对垂径定理及勾股定理的运用.21.(9分)(2009•河北)某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.(1)第四个月销量占总销量的百分比是30%;(2)在图2中补全表示B品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.【分析】(1)分析扇形图,易得答案;(2)根据扇形图,可补全折线图;(3)根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小;(4)比较折线图,经销销量好的那个品牌.【解答】解:(1)分析扇形图可得:第四个月销量占总销量的百分比为:1﹣(15%+30%+25%)=30%;(2)根据扇形图及(1)的结论,可补全折线图如图2;(3)根据题意可得:第四个月售出的电视机中,共400×30%=120台,其中B 品牌电视机为80台,故其概率为;(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.所以该商店应经销B品牌电视机.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.【分析】(1)由图可以看出A点为抛物线的顶点,且开口向上,所以此点即为此函数的最小值;(2)点p是抛物线与x轴的一个交点,而此时另一个交点是0,那么P与O是关于抛物线对称轴的两个对称点,知道了对称点的坐标,就很容易求出t的值;(3)a>0时,抛物线的开口向上,a<0时,抛物线的开口向下,求出a的值就知道其开口方向.【解答】解:(1)∵抛物线的对称轴经过点A,∴A点为抛物线的顶点,∴y的最小值为﹣3,∵P点和O点对称,∴t=﹣6;(2)分别将(﹣4,0)和(﹣3,﹣3)代入y=ax2+bx,得:,解得,∴抛物线开口方向向上;(3)将A(﹣3,﹣3)和点P(t,0)代入y=ax2+bx,,由①得,b=3a+1③,把③代入②,得at2+t(3a+1)=0,∵t≠0,∴at+3a+1=0,∴a=﹣.∵抛物线开口向下,∴a<0,∴﹣<0,∴t+3>0,∴t>﹣3.故t的值可以是﹣1(答案不唯一).(注:写出t>﹣3且t≠0或其中任意一个数均给分)【点评】此题主要考查了抛物线的对称性及开口方向的问题,对于二次函数的图象和性质要很熟悉.23.(10分)(2009•河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转2周;若AB=l,则⊙O 自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.【分析】(1)读懂题意,套公式易得若AB=2c,则⊙O自转2周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周.(2)因∠ABC=90°,AB=BC=c,则⊙O自转1+=周,拓展联想:因三角形和五边形的外角和是360°,则⊙O共自转了(+1)周.【解答】解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵五边形的外角和也等于360°∴所做运动和三角形的一样:(+1)周.【点评】此题主要考查三角形外角的性质,也是一道探索规律题,找准规律是关键.24.(10分)(2009•河北)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)【分析】(1)本题主要利用重合的性质来证明.(2)首先要连接MB、MD,然后证明△FBM≌△MDH,从而求出两角相等,且有一角为90°.(3)根据(2)的证明过程,中△FBM≌△MDH仍然成立即可证明.【解答】(1)证明:∵四边形BCGF为正方形∴BF=BM=MN,∠FBM=90°∵四边形CDHN为正方形∴DM=DH=MN,∠HDM=90°∵BF=BM=MN,DM=DH=MN∴BF=BM=DM=DH∵BF=DH,∠FBM=∠HDM,BM=DM∴△FBM≌△HDM∴FM=MH,∵∠FMB=∠DMH=45°,∴∠FMH=90度,∴FM⊥HM.(2)证明:连接MB、MD,如图2,设FM与AC交于点P.∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=AC=BC=BF;MB∥CD,且MB=CE=CD=DH(三角形的中位线平行于第三边并且等于第三边的一半),∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,∴△FBM≌△MDH,∴FM=MH,且∠FMB=∠MHD,∠BFM=∠HMD.∴∠FMB+∠HMD=180°﹣∠FBM,∵BM∥CE,∴∠AMB=∠E,同理:∠DME=∠A.∴∠AMB+∠DME=∠A+∠AMB=∠CBM.由已知可得:BM=CE=AB=BF,∴∠A=∠BMA,∠BMF=∠BFM,∴∠FMH=180°﹣(∠FMB+∠HMD)﹣(∠AMB+∠DME),=180°﹣(180°﹣∠FBM)﹣∠CBM,=∠FBM﹣∠CBM,=∠FBC=90°.∴△FMH是等腰直角三角形.(3)解:△FMH还是等腰直角三角形.【点评】本题综合考查了等腰三角形的判定,偏难,学生要综合运用学过的几何知识来证明.25.(12分)(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=0,n=3;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)由题意得:共需用A型板材240块、B型板材180块,又因为满足x+2y=240,2x+3z=180,然后整理即可求出解析式;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x和,[注:事实上,0≤x≤90且x是6的整数倍].由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90张、75张、0张.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;∴m=0,n=3;(2)由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理即可求出解析式为:y=120﹣x,z=60﹣x;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x.。

2008年河北省中考数学试题评析

2008年河北省中考数学试题评析

2008年河北省中考数学试题评析河北省中考数学试题命题组今年数学试卷较为充分地体现了课程改革理念,试题给人以耳目一新的感觉,能启发人们如何突破常规实现常考常新、不落俗套。

试题起点较低,难度分布合理有序,陈述准确,表达简洁、规范,图文制作精良。

题目相互间具有一定的校正随机测量误差功能。

试题载体的选取贴近于学生的学习现实和生活现实,题目的呈现形式和内容丰富多彩,既着眼于熟悉的题型和在此基础上的演变,又着眼于情景的创新,而且注意根据考查目标的差异采用不同的呈现方式,有利于学生稳定发挥其真实的数学水平。

试题在全面考查支撑数学核心内容基础上,注重考查学生灵活运用数学知识解决问题的能力,关注对数学活动过程的考查,加强了探究性问题的设计与应用,注意考查学生的观察、实验、猜想、推理能力。

试卷注意试题的不同难易层次试题的安排,让不同水平的学生能力都能得到充分的发挥,使试题整体具有恰当的区分性,有利于高一级学校选拔新生。

一、试题的设计关注了五个问题1.关注支撑学科的基本知识、基本技能、基本方法和基本思想的考查,以确保试题的效度试题重点考查代数式的运算、方程、不等式、函数、统计与概率、三角形和四边形等学科核心主干内容及数形结合思想、函数与方程思想、分类讨论思想、转化思想、统计意识、随机思想、待定系数法、换元法等.2.关注载体公平、题目陈述准确精练,以保证试题的信度题目力争在语言陈述、图形、图像的展现均准确明白、精练而无异议.即凡是与实际相联系的其背景为所有学生所熟悉,这些题目的背景不仅不会干扰学生对其数学内涵的分析与理解,而且有助于学生对其中数量关系的把握;凡是带有创新成份的试题均在核心内容范围内,预留的思考空间也较为适当,呈现形式也导示明确.这些特点为确保考试的信度提供了有力的支持。

3.关注了不同层次的学习习惯,以确保试卷的区分度在试题的赋分方面,注意了有利于考查结果形成不同认知水平学生的得分区间,从而形成合理的得分分布区间.这样既尊重了学生数学水平的差异,又能较好的区分出不同数学水平的学生,较好地保证了区分结果的稳定性.如21题和25题都是函数问题,但从不同角度体现着函数的图像与关系式之间的结合与统一,这使得擅长从"数"的角度考虑问题与擅长从"形"的角度考虑问题的考生都能得到施展与发挥,从而提高了试题的区分度.整套试卷形成三个难度循环,即选择、填空与解答.即使是把关的压轴题(25、26题)的前两问也是入口很宽,难度相当于填空题的难度,但出口很窄,体现了不同水平的学生有序解答试题的要求.4.关注试题的可推广性整卷所考查知识和能力的内涵丰富而深厚,所考查的知识性目标可以抽象到课标之内容的程度,所考查的技能性目标可抽象到一般意义下该技能的程度,所考查的能力和思想方法性可抽象到一般意义下该技能的目标和思想方法的程度.如10题(转盘问题),能抽象到课标所要求"探索图形之间的变换关系(轴对称、平移、旋转及其组合)";16题(天平问题),能抽象到课标所要求"能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型";如20题(种子发芽试验,能抽象到课标所要求的"能根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点";22题(防范台风问题),能抽象到《课标》所要求的"运用三角函数解决与直角三角形有关的简单实际问题"。

2024年河北中考数学试卷分析报告

2024年河北中考数学试卷分析报告

2024年河北中考数学试卷分析报告引言本报告基于2024年河北中考数学试卷的真实数据,对试卷的整体难度、题型分布和知识点覆盖情况进行了详细分析。

通过对试卷的分析,旨在帮助学生和老师更好地了解试卷的特点,从而有效地备考和教学。

试卷整体难度分析本次数学试卷整体难度较为适中,考察了基础和拓展性的知识点,平均得分较为合理。

具体分析如下: - 选择题部分:选择题的难度集中在易、中等水平,大多数题目能够被学生正确解答。

其中,常规选择题占主导地位,涉及面广,考察了学生对知识点的理解和应用能力。

- 填空题部分:填空题的难度适中,主要考察了学生的计算和推理能力。

少数题目涉及了一些较为深入的知识点,对学生的综合能力要求稍高。

题型分布分析本次数学试卷的题型分布合理,能够全面考察学生的数学能力。

具体如下: -选择题占比较大,包括单选题和多选题。

选择题主要考察学生的记忆和理解能力,覆盖了各个知识点。

- 填空题数量适中,涉及了一些计算和推理题型,对学生的分析和推理能力进行了考察。

- 解答题部分设置较少,但难度较高,需要学生运用所学的数学知识进行归纳和推理。

通过解答题,能够考察学生的综合运用能力。

知识点覆盖分析本次数学试卷涵盖了初中数学各个重要的知识点,较好地贯彻了教育教学大纲。

具体分析如下: - 整数与有理数:试卷中设置了一些整数和有理数的相关计算题目,考察了学生对于整数和有理数的基本概念和运算规则的掌握程度。

- 几何:试卷中涉及到了平面图形和空间图形的相关知识点,考察学生对于几何图形的认知和判断能力。

- 数据与概率:试卷中设置了一些与数据和概率相关的题目,考察学生的统计分析和推理能力。

学生备考建议根据本次数学试卷的分析,为学生提供以下备考建议,帮助他们更好地备考:- 夯实基础知识:加强对于基础知识的掌握,包括整数与有理数、几何等方面的知识。

通过做大量的练习题,加深对这些知识点的理解。

- 多做题:做更多的选择题、填空题和解答题,提高解题能力和应试能力。

2024年河北省中考真题数学试卷含答案解析

2024年河北省中考真题数学试卷含答案解析

2024年河北省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .【答案】A 【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是( )A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线【答案】B 【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .【答案】D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是( )A .38a b+=B .38a b =C .83a b +=D .38a b=+【答案】A 【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( )A .13∠=∠,AASB .13∠=∠,ASAC .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( )A .x B .y C .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法⨯,运算结果为3036.图运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132232表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.【答案】89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若1<<+,则n=;n n(2)若1,1-<<<<+,则满足条件的a的个数总比b的个数少个.n n n n2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为4-,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;∠的值.(2)求CP的长及sin APC∵1tan tan 4CH PAE AH α=∠==,设∴()22249x x AC +==,解得:31717x =,∴317CH =m,23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,此时2BP '=,222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 此时2CP CQ ==,222PQ =+=∴22BP =-,综上:BP 的长为2或22-.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p=;当150p x ≤≤时,()2080150x p y p -=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)9510010511115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =ABC 中,90,3,ABC AB BC ∠=︒==先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B与点N重合时,求劣弧 AN的长;∥时,如图2,求点B到OA的距离,并求此时x的值;(2)当OA MN(3)设点O到BC的距离为d.①当点A在劣弧 MN上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;∵25MN =,O H M N ⊥,∴5MH NH ==,而OM =∴222OH OM MH =-==∴点B 到OA 的距离为2;⊥于J,过O作过O作OJ BC∴四边形KOJB为矩形,=,∴OJ KB∵3AB=,32BC=,∴2233=+=,AC AB BC⊥于Q 如图,过A作AQ OB⊥∵B为MN中点,则OB MN∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO ∠+∠=︒=∠∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴122OJ BQ BJ AQ ==,26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+,∴()44266b -+=-,解得:8622b =-,∴直线l 为:48622y x =+-,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()21,2N n n t ⎡--+⎢⎣∴L 的横坐标为2m n +,。

2024年河北省中考数学真题卷含答案解析

2024年河北省中考数学真题卷含答案解析

2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A. B. C.D.2. 下列运算正确的是( )A. B. C. D.3. 如图,与交于点O ,和关于直线对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A.B. C.D.4. 下列数中,能使不等式成立的x 的值为( )A. 1B. 2C. 3D. 45. 观察图中尺规作图的痕迹,可得线段一定是的( )A. 角平分线B. 高线C. 中位线D. 中线6. 如图是由个大小相同的正方体搭成的几何体,它的左视图是( )A. B. C. D.7. 节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A若,则 B. 若,则C. 若x减小,则y也减小D. 若x减小一半,则y增大一倍8. 若a,b是正整数,且满足,则a与b的关系正确的是()A. B. C. D.9. 淇淇在计算正数a平方时,误算成a与2的积,求得的答案比正确答案小1,则()A. 1B.C.D. 1或10. 下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,中,,平分的外角,点是的中点,连接并延长交于点,连接.求证:四边形是平行四边形.证明:∵,∴.∵,,,∴①______.又∵,,∴(②______).∴.∴四边形是平行四边形.若以上解答过程正确,①,②应分别为()A. ,B. ,C. ,D. ,11. 直线l与正六边形的边分别相交于点M,N,如图所示,则()A. B. C. D.12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A. 点AB. 点BC. 点CD. 点D13. 已知A为整式,若计算的结果为,则()A. xB. yC.D.14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是()A. B. C. D.15. “铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为16. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为()A. 或B. 或C. 或D. 或二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.18. 已知a,b,n均为正整数.(1)若,则______;(2)若,则满足条件的a的个数总比b的个数少______个.19. 如图,的面积为,为边上的中线,点,,,是线段的五等分点,点,,是线段的四等分点,点是线段的中点.(1)的面积为______;(2)的面积为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为,2,32,乙数轴上的三点D ,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21. 甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22. 中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离,仰角为;淇淇向前走了后到达点D,透过点P恰好看到月亮,仰角为,如图是示意图.已知,淇淇的眼睛与水平地面的距离,点P到的距离,的延长线交于点E.(注:图中所有点均在同一平面)(1)求的大小及的值;(2)求的长及的值.23. 情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线,裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉剪拼过程,解答问题:(1)直接写出线段的长;(2)直接写出图3中所有与线段相等的线段,并计算的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段)的位置,并直接写出的长.24. 某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当时,;当时,.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25. 已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.(1)当点B与点N重合时,求劣弧的长;(2)当时,如图2,求点B到的距离,并求此时x的值;(3)设点O到的距离为d.①当点A在劣弧上,且过点A的切线与垂直时,求d的值;②直接写出d的最小值.26. 如图,抛物线过点,顶点为Q.抛物线(其中t 为常数,且),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将的顶点Q向左平移2个单位长度后一定落在上.淇淇说:无论t为何值,总经过一个定点.请选择其中一人说法进行说理.(3)当时,①求直线PQ的解析式;②作直线,当l与的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设与的交点A,B的横坐标分别为,且.点M在上,横坐标为.点N在上,横坐标为.若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B. C.D.【答案】A【解析】【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为得到,,,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为得到,,∴气温变化为先下降,然后上升,再上升,再下降.故选:A.2. 下列运算正确的是()A. B. C. D.【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A.,不是同类项,不能合并,故此选项不符合题意;B.,故此选项不符合题意;C.,故此选项符合题意;D.,故此选项不符合题意.故选:C.3. 如图,与交于点O,和关于直线对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A. B. C. D.【答案】A【解析】【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B、C选项,再根据垂直于同一条直线的两条直线平行即可判断选项D.【详解】解:由轴对称图形的性质得到,,∴,∴B、C、D选项不符合题意,故选:A.4. 下列数中,能使不等式成立的x的值为()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到,以此判断即可.【详解】解:∵,∴.∴符合题意的是A故选A.5. 观察图中尺规作图的痕迹,可得线段一定是的()A. 角平分线B. 高线C. 中位线D. 中线【答案】B【解析】【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得,从而可得答案.【详解】解:由作图可得:,∴线段一定是的高线;故选B6. 如图是由个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.【答案】D【解析】【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有列,每列上小正方体个数从左往右分别为、、.故选:D.7. 节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A. 若,则B. 若,则C. 若x减小,则y也减小D. 若x减小一半,则y增大一倍【答案】C【解析】【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴,∴,当时,,故A不符合题意;当时,,故B不符合题意;∵,,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.8. 若a,b是正整数,且满足,则a与b的关系正确的是()A. B. C. D.【答案】A【解析】【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:,∴,∴,故选:A.9. 淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则()A. 1B.C.D. 1或【答案】C【解析】【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程,利用公式法求解即可.【详解】解:由题意得:,解得:或(舍)故选:C.10. 下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,中,,平分的外角,点是的中点,连接并延长交于点,连接.求证:四边形是平行四边形.证明:∵,∴.∵,,,∴①______.又∵,,∴(②______).∴.∴四边形是平行四边形.若以上解答过程正确,①,②应分别为()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得,根据三角形外角的性质及角平分线的定义可得,证明,得到,再结合中点的定义得出,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵,∴.∵,,,∴①.又∵,,∴(②).∴.∴四边形是平行四边形.故选:D.11. 直线l与正六边形的边分别相交于点M,N,如图所示,则()A. B. C. D.【答案】B【解析】【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为,再根据六边形的内角和为即可求解的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:,而六边形的内角和也为,∴,∴,∵,∴,故选:B.12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设,,,可得,,,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设,,,∵矩形,∴,,∴,,,∵,而,∴该矩形四个顶点中“特征值”最小的是点B;故选:B.13. 已知A为整式,若计算的结果为,则()A. xB. yC.D.【答案】A【解析】【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得,对进行通分化简即可.【详解】解:∵的结果为,∴,∴,∴,故选:A.14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是()A. B. C. D.【答案】C【解析】【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为,根据扇形的面积公式表示出,进一步得出,再代入即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为,,∴,∵该折扇张开的角度为时,扇面面积为,∴,∴,∴是的正比例函数,∵,∴它的图像是过原点的一条射线.故选:C.15. “铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为【答案】D【解析】【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为和,则,即,可确定时,则,由题意可判断A、B选项,根据题意可得运算结果可以表示为:,故可判断C、D选项.【详解】解:设一个三位数与一个两位数分别为和如图:则由题意得:,∴,即,∴当时,不是正整数,不符合题意,故舍;当时,则,如图:,∴A、“20”左边的数是,故本选项不符合题意;B、“20”右边的“□”表示4,故本选项不符合题意;∴上面的数应为,如图:∴运算结果可以表示为:,∴D选项符合题意,当时,计算的结果大于6000,故C选项不符合题意,故选:D.16. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为()A. 或B. 或C. 或D. 或【答案】D【解析】【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照的反向运动理解去分类讨论:①先向右1个单位,不符合题意;②先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,那么最后一次若向右平移则为,若向左平移则为.【详解】解:由点可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q按上述规则连续平移16次后,到达点,则按照“和点”反向运动16次求点Q 坐标理解,可以分为两种情况:①先向右1个单位得到,此时横、纵坐标之和除以3所得的余数为0,应该是向右平移1个单位得到,故矛盾,不成立;②先向下1个单位得到,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到,故符合题意,那么点先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,即,那么最后一次若向右平移则为,若向左平移则为,故选:D.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.【答案】89【解析】【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,以上数据的众数为89.故答案为:89.18. 已知a,b,n均为正整数.(1)若,则______;(2)若,则满足条件a的个数总比b的个数少______个.【答案】①. ②.【解析】【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;(1)由即可得到答案;(2)由,,为连续的三个自然数,,可得,,再利用完全平方数之间的数据个数的特点探究规律即可得到答案.【详解】解:(1)∵,而,∴;故答案为:;(2)∵a,b,n均为正整数.∴,,为连续的三个自然数,而,∴,,观察,,,,,,,,,,,而,,,,,∴与之间的整数有个,与之间的整数有个,∴满足条件的a的个数总比b的个数少(个),故答案为:.19. 如图,的面积为,为边上的中线,点,,,是线段的五等分点,点,,是线段的四等分点,点是线段的中点.(1)的面积为______;(2)的面积为______.【答案】①. ②.【解析】【分析】(1)根据三角形中线的性质得,证明,根据全等三角形的性质可得结论;(2)证明,得,推出、、三点共线,得,继而得出,,证明,得,推出,最后代入即可.【详解】解:(1)连接、、、、,∵的面积为,为边上的中线,∴,∵点,,,是线段的五等分点,∴,∵点,,是线段的四等分点,∴,∵点是线段的中点,∴,在和中,,∴,∴,,∴的面积为,故答案为:;(2)在和中,,∴,∴,,∵,∴,∴、、三点共线,∴,∵,∴,∵,,∴,在和中,∵,,∴,∴,∴,∵,∴,∴,∴的面积为,故答案为:.【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为,2,32,乙数轴上的三点D ,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.【答案】(1),(2)【解析】【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;(1)直接列式求解三个数的和即可,再分别计算,从而可得答案;(2)由题意可得,对应线段是成比例的,再建立方程求解即可.【小问1详解】解:∵甲数轴上的三点A,B,C所对应的数依次为,2,32,∴,,,∴;【小问2详解】解:∵点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,∴,∴,解得:;21. 甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.【答案】(1)(2)填表见解析,【解析】【分析】(1)先分别求解三个代数式当时的值,再利用概率公式计算即可;(2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.【小问1详解】解:当时,,,,∴取出的卡片上代数式的值为负数的概率为:;【小问2详解】解:补全表格如下:∴所有等可能的结果数有种,和为单项式的结果数有种,∴和为单项式的概率为.【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.22. 中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离,仰角为;淇淇向前走了后到达点D,透过点P恰好看到月亮,仰角为,如图是示意图.已知,淇淇的眼睛与水平地面的距离,点P到的距离,的延长线交于点E.(注:图中所有点均在同一平面)(1)求的大小及的值;(2)求的长及的值.【答案】(1),(2),【解析】【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;(1)根据题意先求解,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解,如图,过作于,结合,设,则,再建立方程求解,即可得到答案.【小问1详解】解:由题意可得:,,,,,∴,,,∴,∴,;【小问2详解】解:∵,,∴,如图,过作于,∵,设,则,∴,解得:,∴,∴.23. 情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线,裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段的长;(2)直接写出图3中所有与线段相等的线段,并计算的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段)的位置,并直接写出的长.【答案】(1);(2),;的长为或.【解析】【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.(1)如图,过作于,结合题意可得:四边形为矩形,可得,由拼接可得:,可得,,为等腰直角三角形,为等腰直角三角形,设,则,再进一步解答即可;(2)由为等腰直角三角形,;求解,再分别求解;可得答案,如图,以为圆心,为半径画弧交于,交于,则直线为分割线,或以圆心,为半径画弧,交于,交于,则直线为分割线,再进一步求解的长即可.【详解】解:如图,过作于,结合题意可得:四边形为矩形,∴,由拼接可得:,由正方形的性质可得:,。

2009年河北省中考数学试卷及答案

2009年河北省中考数学试卷及答案
体,得到一个如图5所示的零件,则这个零件的表面积是()
A.20B.22
C.24D.26
11.如图6所示的计算程序中,y与x之间的函数关系所对应的图
象应为()
12.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.
从图7中可以发现,任何一个大于1
2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
题号


19
20
21
22
23
24
25
26
得分
得分
评卷人
二、填空题(本大题共6个小题,每小题3分,共18分.把答案
写在题中横线上)
13.比较大小:-6-8.(填“<”、“=”或“>”)
14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约
得分
评卷人
19.(本小题满分8分)
已知a= 2, ,求 ÷ 的值.
得分
评卷人
20.(本小题满分8分)
图10是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,
OE⊥CD于点E.已测得sin∠DOE= .
(1)求半径OD;
(2)根据需要,水面要以每小时0.5 m的速度下降,
∴ED= =12.
在Rt△DOE中,
∵sin∠DOE = = ,
∴OD=13(m).
(2)OE=
= .
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
(3) ;
(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.

河北省2008年中考数学试题分析

河北省2008年中考数学试题分析

本题给学生展现了“从问题的提出、方案设计、特 殊赋值、归纳提升、问题解决的课题学习的完整过程, 所呈现的情境不是教材上内容的简单搬移,而是解决 了同一类问题的一般情况。在解答本题过程中可以充 分体验感受从特殊到一般的一般性数学方法. 教学中本题还可拓展:当A,B到l的距离相等且AB= a时.怎样选择方案。或当A,B到l的距离分别是m, n, AB=a时, 怎样选择方案。
稳中求变,常考常新,和谐自 恰,全面考查能力
——河北省2008年中考数学试题分析 及几点建议 邢台市28中学 白军强
一、试题的总体评价
08年试题在保持07试题稳定性和连续性的同时, 突出了数学学科是基础学科的特点,在坚持能力立意, 全面考查学生的“四基”的前提下,按照《义务教育 阶段国家课程标准》、《河北省2008年中考文化课 学科说明》的有关要求,积极探索试题的创新,精心 设计了一定的结合现实情景的问题,着力考查学生的 阅读理解能力、应用探究能力、实践操作能力、综合 创新能力.
整套试卷形成三个难度循环,即选择、填空与 解答.即使是把关的压轴题(25、26题)的前两 问也是入口很宽,难度相当于填空题的难度,但 出口很窄,即最后一问均有较高思维含量.解答完 整,准确,则需要有较强的数学能力. 体现了不同 水平的学生有序解答试题的要求.
在知识点的覆盖率上不再刻意追求(知识 点覆盖率超过55%),着重考查了学科知识体 系的知识主干内容以及应用性较强的知识。比 如数与代数中的数式组合变形运算、方程、函 数;空间与图形中的简单视图、空间观念、直 线形、特殊四边形、圆;以及应用性较强的统 计与概率知识。显示出重点知识在试卷中突出 的地位,同时,发现、猜想、探究、归纳、推 理等与素质教育相关的能力考查也在彰显。还 注意到了避免偏题、怪题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图7
单位:cm
2008-2009年河北省中考数学试卷分析
08-09两年的河北中考数学试卷在变化中力求稳定,在稳定中力求发展.在上述稳定之中,首先是控制试题的难度,使它体现学业水平考的性质.稳定的同时,又有一些情景新颖、立意新颖,而且新而不难,活而不难的试题出现。

试卷在注意内容覆盖的基础上,突出了对支撑学科主干的“方程与不等式”、“函数”、“基本图形的性质”、“图形间的基本关系”、“统计的应用”和“概率的计算”核心知识内容的考查。

试卷在载体选择方面突出教育性,发挥试题的教育功能。

试卷在题目的设置上,注意关注从社会、经济、政治、科技和教育的现实问题中取材设计题目,增进考生对数学的认识,也向考生渗透应用数学的意识,更可以引导考生关爱生活,渗透情感与态度教育。

(一)数形结合思想以及所考查的“方程与不等式”
(09年第25题)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm ×30 cm ,B 型板材规格是40 cm ×30 cm .现只能购得规格是150 cm ×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图7是裁法一的裁剪示意图)
设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用.(1)上表中,m = ,n = ;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,
求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张? (08年第3题)把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( )
A .41x x >⎧⎨
-⎩
,≤ B .41x x <⎧⎨
-⎩,≥ C .41x x >⎧⎨
>-⎩, D .41x x ⎧⎨
>-⎩
≤, (二)方程思想
(08年第6题)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )
A .
2
3000(1)5000x += B .
2
30005000x = 图1
C .2
3000(1)5000x +=%
D .2
3000(1)3000(1)5000x x +++=
教育投入问题,试卷在题目的设置上,注意关注从教育的现实问题中取材设计题目 (09年第9题)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2
120y x =
(x
>0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( )
A .40 m/s
B .20 m/s
C .10 m/s
D .5 m/s
(08年第12题)当x = 时,分式3
1x -无意义.
(09年第6题)反比例函数1
y x =
(x >0)的图象如图3所示,随着x 值的
增大,y 值( ) A .增大 B .减小 C .不变
D .先减小后增大
(09年第18题)如图9,两根铁棒直立于桶底水平的木桶中,在桶中
加入水后,一根露出水面的长度是它的1
3,另一根露 出水面的长度是它的1
5.两根铁棒长度之和为55 cm , 此时木桶中水的深度是 cm . (三)概率与统计意识
(08年第15题)某班学生理化生实验操作测试成绩的统计结果如下表:
则这些学生成绩的众数为
.
(09年第15题)在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:
则这些体温的中位数是 ℃.
(08年第8题)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6
B .两枚骰子朝上一面的点数和不小于2

9
C .两枚骰子朝上一面的点数均为偶数
D .两枚骰子朝上一面的点数均为奇数
(09年第7题)下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0 D .某两个负数的积大于0
(四)换元法
(08年第13题).若m
n ,互为相反数,则555m n +-= . (09年第16题).若m 、n 互为倒数,则
2
(1)mn n --的值为 . (五)基本技能训练
(08年第12题).已知2x =-,求2
1211x x x x -+⎛⎫-÷
⎪⎝⎭的值.
(09年第19题).已知a = 2,1-=b ,求22
2
1a b a ab --+÷1a 的值. (六)观察能力
(08年第10题)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90
,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )
A .上
B .下
C .左
D .右
体现“众志成城”问题,注意试题载体的时代性,通过解答此题让学生再次感受抗震救灾中的众志成城,人文精神与教育价值都得到较好体现
(09年第17题)如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、 AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .
图5-1
图5-2

5-3 …
图8
(七)科学记数法
(08年第4题)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( )
A .8
0.155110⨯
B .4
155110⨯
C .7
1.55110⨯
D .6
15.5110⨯
我省向汶川灾区捐款问题本题的情境是当前社会热点问题,所选数据真实,体现了慷慨的河北人民心系灾区,引导学生从实际生活中发现数学问题,它把真实的捐款数据与科学记数法的表示方法结合到一起,落实了义务教育的基础性和对公民数学素养的基本要求。

把数与式和汶川地震灾区相连 ,有一定的教育意义,激发兴趣。

数学试题要促进学生的发展,必须形式多样,富有新意,打破传统的直叙提问为情境展现,只有这样,学生才会有学习兴趣,学习起来才会更加轻松和有效率. (09年第14题)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 .
试题在结构上形成合理的层次,整套试题从易到难形成梯度.其中第一、二大题分三个层次:第一层次(第1~7、13~15小题)考查基础知识、基本技能,判断、运算或操作方式单一,学生能直接上手;第二层次(第8、9、11、16~18小题)是小范围的综合题,旨在考查最基本的数学方法和数学思想;第三层次(第10、12小题)更多的是关注数学思辨和思维过程.第三大题注重数学能力,也分三个层次:第一层次(第19~22小题),考查代数式变形和运算的能力,用所学知识解决简单实际问题的能力,对统计与概率知识的理解与应用,以及对函数概念的理解与应用的能力;第二层次(第23、24小题),考查学生的形成性学习方法与能力,以及逻辑思维能力.第三个层次(第25、26小题),考查学生的综合运用能力,包括知识综合、方法综合以及数学思想的综合运用.
同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度,有利于高一级学校选拔新生.。

相关文档
最新文档