2019年江苏省高考数学试卷

合集下载

2019年高考数学江苏卷-答案

2019年高考数学江苏卷-答案

2019年普通高等学校招生全国统一考试(江苏省)数学答案解析一、填空题 1.【答案】{1,6} 【解析】由交集定义可得{1,6}A B =【考点】集合的交运算 2.【答案】2【解析】(a+2 i)(1+i)=a-2+(a+2) i ,实部是0,-20, 2a a ∴==. 【考点】复数的运算、实部的概念 3.【答案】5【解析】执行算法流程图,11,2x S ==,不满足条件;32,2x S ==,不满足条件;3, 3x S ==,不满足条件;4, 5x S ==,满足条件,结束循环,故输出的S 的值是5. 【考点】算法流程图 4.【答案】[1,7]-【解析】要使函数有意义,则2760x x +-≥,解得17x -剟,则函数的定义域是[-1,7]. 【考点】函数的定义域 5.【答案】53【解析】数据6,7,8.8,9,10的平均数是678891086+++++=,则方差是410014563+++++=.【考点】平均数、方差 6.【答案】710【解析】记3名男同学为,,A B C ,2名女同学为,a b ,则从中任选2名同学的情况有(,),(,),(,),(,),(,),(,),(,),(,),(,)(,)A B A C A a A b B C B a B b C a C b a b ,,共10种,其中至少有1名女同学的情况有(,),(,),(,),()(C, a),(C, ,b),(a, b)A a A b B a B b ,,共7种,故所求概率为710. 【考点】古典概型7.【答案】y =【解析】因为双曲线2221(0)y x b b -=>经过点(3,4),所以21691b-=,得b =程是y bx =±=. 【考点】双曲线的几何性质 8.【答案】16 【解析】通解设等差数列{}n a 的公差为d .则()(22258111111914)74570,93627a a a a d a d a d a d a d a d S a d +=++++=++++==+=,解得152a d =-=,,则81828405616S a d =+=-+=.优解设等差数列{}n a 的公差为d .()199559927,32a a S a a +====,又2580a a a +=,则3(33)330d d -++=,得2d =,则()(1884584)4(13)162a a S a a +==+=+=.【考点】等差数列的通项公式与前n 项和公式 9.【答案】10【解析】因为长方体1111ABCD A B C D -的体积是120,所以1120ABCD CC S ⋅=四边形,又E 是1CC 的中点,所以三棱锥E BCD -的体积11111112010332212E BCD BCD ABCD V EC S CC S -∆=⋅=⨯⨯=⨯=四边形. 【考点】空间几何体的体积 10.【答案】4 【解析】通解设4,,0P x x x x ⎛⎫+> ⎪⎝⎭,则点P 到直线0x y +=的距离424x d +==≥=,当且仅当42x x=,即x =时取等号,故点P 到直线0x y +=的距离的最小值是4. 优解由4(0)y x x x =+>得241y x'=-,令2411x -=-,得x =,则当P点的坐标为时,点P 到直线0x y +=4=.【考点】点到直线的距高公式、基本不等式的应用 11.【答案】(e, 1)【解析】设()00,ln A x x ,又1y x'=,则曲线ln y x =在点A 处的切线方程为()0001ln y x x x x -=-,将(,1)e --代入得,()00011ln x e x x --=--,化简得00ln ex x =,解得0e x =,则点A 的坐标是(,1)e . 【考点】导数的几何意义的理解和应用 12.【解析】解法一以点D 为坐标原点,BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,不妨设(,0),(,0),(,),00B a C a A b c a c ->>,,由2B E E A=得22,33b a c E -⎛⎫⎪⎝⎭,则直线:c OA y x b =,直线:(2)()C E b a yc xa-=-,联立可得,22b c O ⎛⎫⎪⎝⎭,则222224222(,)(),,,22333b c a b c b c abAB AC a b c a b c b c a AO EC -+-⎛⎫⎛⎫⋅=---⋅--=+-⋅=--⋅-=⎪ ⎪⎝⎭⎝⎭,由6A B A CA O E C ⋅=⋅得()2222222b c a b c ab+-=+-,化简得2224ab b c a =++,则AB AC ===. 解法二由,,A O D 三点共线,可设AO AD =λ,则()2AO AB AC λ=+,由,,E O C 三点共线可设EO EC =μ,则()AO AE AC AE -=μ-,则1(1)(1)3A O A E A C A B A C =-μ+μ=-μ+μ,由平面向量基本定理可得1(1)322λ⎧-μ=⎪⎪⎨λ⎪μ=⎪⎩解得11,42μ=λ=,则11(),43AO AB AC EC AC AE AC AB=+=-=-,则221132166())43233AO EC AB AC AC AB AB AC AC AB AB AC ⎛⎫⎛⋅=⨯+⋅-=⋅+-=⋅ ⎪ ⎝⎭⎝,化简得223AC AB =,则ABAC=【考点】向量的线性运算、数量积 13.【答案】10【解析】通解t a nt a n (1t a n )2t a n 1t a n 131t a nαα-α==-α+α+-α得tan 2α=或1tan 3α=-,当t a n 2α=时,2222222222sin cos 2tan 4cos sin 1tan 3sin 2,cos2sin cos tan 15sin cos tan 15αααα-α-αα===α===-α+αα+α+αα+此时1sin 2cos 25α+α=,同理当1t a n 3α=-时,34sin 2,cos255α=-α=,此时1s i n 2c o s 25α+α=,所sin(2)2cos2)4210πα+=α+α=. 优解,s i n c o st a n 243t a n c o s s i n 44π⎛⎫αα+ ⎪α⎝⎭==-ππ⎛⎫⎛⎫α+αα+ ⎪ ⎪⎝⎭⎝⎭则2sin cos cos sin 434ππ⎛⎫⎛⎫αα+=-αα+ ⎪ ⎪⎝⎭⎝⎭,又5sin sin cos cos sin sin cos 244434⎡⎤ππππ⎛⎫⎛⎫⎛⎫⎛⎫=α+-α=α+α-α+α=α+α ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,则sin cos 4π⎛⎫α+α=⎪⎝⎭,则1s i n 44⎡⎤πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫α+=α++α=α+α+α+α=α+α== ⎪ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【考点】同角三角画款的基本关系、三角也等变换14.【答案】1,34⎡⎫⎪⎢⎪⎣⎭【解析】当(0,2]x ∈时,令y 22(1)1,0x y y -+=…,即()f x 的图象是以(1,0)为圈心、1为半径的半圆,利用()f x 是奇函数,且周期为4,画出函数()f x 在(0,9]上的图象,再在同一坐标系中作出函数()((0,9])g x x ∈的图象,如图,关于x 的方程()()f x g x =在(0,9]上有8个不同的实数根,即两个函数的图象有8个不同的交点,数形结合知()((0,1])g x x ∈与()((0,1])f x x ∈的图象有2个不同的交点时满足题意,当直线(2)y k x =+经过点(1,1)时,13k =,当直线(2)y k x =+与半圆22(1)1(0)x y y -+=…相切时,1=,k =k =,所以k的取值范围是134⎡⎢⎣⎭。

2019年江苏省高考数学试卷及答案(Word解析版)

2019年江苏省高考数学试卷及答案(Word解析版)

2019年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1.函数)42sin(3π+=x y 的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有 个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+=xAB C1A DE F1B1C213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 . 11.已知)(x f 是定义在R 上的奇函数。

2019年江苏省高考数学试卷及参考答案

2019年江苏省高考数学试卷及参考答案

数学I试题参考公式:样本数据:,.v2,…..V,,的方差^7) 2 ,其中£ = +X_V,.柱体的体积丨Z= S V i ,其中S是柱体的—商1积,/!是柱体的高._锥体的体积F= *|*仙,其中S是锥体的底面积,/;是锥体的高.一、填空题:本大题共、4小题,每小题5分,共计7〇分.请把答案填写在字年單丰.1.已知集合.4=卜1,0, 1, 6丨,= U U> 0, .v e R!,则,4门石..........................2i)(l+ i)的实部为0,其中i为虚数单位,则实2.已知复数(数a的值是▲-3.右罔是一个算法流程图,则输出的S的值是▲.4.函数y= V7+6.1-.v2的定义域是▲•5.已知一组数据6, 7, 8, 8, 9, 10+则该组数据的方差是▲.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有〗名女同学的概率是▲.7.在平面直角坐标系中,若双曲线(3, 4),则该双曲线的渐近线方程是I I¥(6>〇)经过点8.已知数列丨《…丨(》e N •)是等差数列,又是其前》项和.若《2<V是▲.9.如图,长方体-.4"'/^的体积是120, £为C C jif中点,则三棱锥£,的体积是▲.(第3题〉0, 27,则&的值___________c,10.在平面直角坐标系x()y中,尸是曲线>•= x+ 土(X> 0)上的一X个动点,则点Z3到直线H二0的距离的最小值是▲.11.在平面直角坐标系A_Oy中,点/I在曲线>•= hi•上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点4的坐标是▲.12.如图,在AA价;巾,0是沉’的中点,£:在边.招上,财;=2E4,AB5, (第9题)az?与⑶交于点a若仙•4Ctan a2 13.已知ta t](a+子)3.,则6.40 •E C,则完的值是_i(2a+ y)的值.是_▲D(第丨2题)C14.设是定义在R上的两个周期闲数,/(.t)的周期为4, #(x_)的周期为2,且/(x)是(k( x+ 2 ) +0 < ^^I,奇函数.当x e(0, 2]时,/U)= V\-(:t-1 )2t g(x)= |_丄<;v$2,其中A‘> 0•若在区间(0,9]上,关于*的方程/U)= 有8个不同的实数根,则A•的取值范围是_二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤...........................15.(本小题满分]4分)在A.4fiC中,角.4, J5, C的对边分别为(1)若n= 3c1,i= v/2 , f.os/〕]=十,求(.•的值;(2)若^^求的值.a 2b 2—16—16.(本小题满分〗4分)如图,在直三棱柱中,D , E 分别为沉’,A C 的中点,.4JS =此. 求证:(1) ,4,,// 平面 £)i ;C :t ;(2) S 芯丄(:,£;•(第16题)D ______C _____________1_(第18题)17.(本小题满分!4分)22如1^1,在平面直角坐标系中,椭圆C : $ + J y 二1U > 6 > 0)的焦点为尸,(-1,0),F 2(l ,0)•过厂2作义轴的垂线/,在:t 轴的i 方,/与圆F 2: ( t - 1 )2+ /= 4“2交于点与圆C 交于点连结并延长交圆于点S ,连结交椭圆C 于点连结/>/•'.已知(1 )求椭圆C 的标准方程;(2)求点£:的坐标.18•(本小题满分I 6分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路/,湖上有桥.4/?(_4打是 圆0的直径).规划在公路/上选两个点P ,(>,并修建两段直线型道路/出,(M ,规划要 求:线段PJ 5, (?/!上的所有点到点0的距离均不小于圆0的半径.已知点,4, 到直线/的 距离分別为.4C 和仙(C ,D 为垂足),测得/l i i 』l 'O , ,4C 二6, = 12 (单位:百米)•(1 )若道路PZ ?与桥A fi 垂直,求道路的长;(2) 在规划要求下,/>和p 中能否有一个点选在1>处?并说明理由;(3) 在规划要求下,若道路和的长度均为^ (单位:百米),求当d 最小时,P ,两点间的距离.19. (本小题满分〗6分)设兩数 f (.v ) = 〇 - a ) (:r - fc ) (^ - f ),a , r e R ,厂〇)为y " (x )的导兩数-(1)若… = 6 = c ,/(4) = 8,求《 的值;(2〉若《 # &,& = c ,且/“)和尸“)的零点均在集合|-3, 1,3丨中,求/〇〇的极小值;(3)若a = 0,0<6矣1,^=1,且/⑴的极大值为M ,求证:M 专為20. {本小题满分16分)定义首项为1且公比为正数的等比数列为“M -数列(1)已知等比数列U J U s N * )满足:《.,a 4= «s ,〜-4«,+4…=0,求证:数列丨为“M -数列”;(2 )已知数列! (“ e IV * )满足:6, = i , f = #■ - #_,其中t s …为数列! \丨的前n 项和_①求数列丨丨的通项公式;(|)设m 为正整数.若存在“M ,数列”),对任意正整数当/c 各m 时,都有成立,求…的最矢搶•数学I 试题参考答案、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分..A '• 310. 41. U ,6}2. 23. 54.[-1,7]7. )- =8. 169.1011- (e , 1)12. -J3n ^1014.[y ■J 2,417二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(.1)因为二,厶二 v T ,(-〇s S由余弦定理C fis B a2jf c2- b2 心曰 2_2ac(3e )2+ c 1- (V 2)2 x 3c x c、即A所以c sin ‘4(2)因为〇〇$ B2b '由正弦定理从而ros j =得cos J S sin B,所以cos 5sin A sin B'2bb(2sin,KPcos 2沒=4(1 - f ‘os _S ) t 故{.:<^-5 =2^52siii B. 4因为 sii ] /? > 0,所以 <.,〇s 5 = 2sin B > 0,从而 c ;〇s S j因此 siii (= cos B 二—J6.本小题主要考查直线&与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分. 叫证明:(1)因为£), £分别为/1C 的中点.所以E D //AR在直三棱柱/1M ; -,4 中,/,所以又因为平面Z ^C ,, ,4,/?,広平面,所以本fi ,//平面(2)因为仙=, £:为此的中点,所以丄/1C .因为三棱柱训C -d W i 是直棱柱,所以C f 丄平面 又因为C 平面,4S C ,所以C , C 丄石£.因为 C 'C 平面 ,,4C C 平面.4丨」4CC ,,C 丨CHAC 二 C ,所以财:丄平面'因为C ,f C 平面:4丨,4CC ,,所以fi £:丄C .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C 的焦距为2r .因为 ^(-1,0),F ,(l , 0),所以 2. c = 1.C (第16题)又因为/)尽=十,狀2丄_1‘轴,所以DF 2= ^DF]-因此2u : 由厶2 = u :2DFt + DF2-C -2 T 得 i ):224,从而a 3.2.因此,椭圆6’的标准方程为+4(2)解法一:由(1)知,椭圆•v _Tr 22.因为.4 F ,丄;t _轴,所以点/I 的横坐标为1.将.v . = 1代人圆R 的方程(.v - 1):+ y 2= 16 因为点,4在a ■轴上方,所以.4(1, 4).又。

2019年江苏高考数学试卷及答案

2019年江苏高考数学试卷及答案

2019年江苏高考数学试卷及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =▲.2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是▲.3.下图是一个算法流程图,则输出的S 的值是▲.4.函数y =的定义域是▲.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲.8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是▲.9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是▲.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲.12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则ABAC的值是▲.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是▲.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin(2B π+的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<= ,且f (x )的极大值为M ,求证:M ≤427.20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c + 成立,求m 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a +=+*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N 令n n n n M A B C = .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;数学试卷参考答案1.{1,6}2.23.54.[1,7]- 5.536.7107.y =8.169.1010.411.(e, 1)13.21014.12,34⎡⎫⎪⎢⎪⎣⎭15.解:(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c+-=⨯⨯,即213c =.所以33c =.(2)因为sin cos 2A Ba b =,由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭.16.证明:(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB.在直三棱柱ABC-A1B1C1中,AB ∥A1B1,所以A1B1∥ED.又因为ED ⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC ,E 为AC 的中点,所以BE ⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC1⊥BE.因为C1C ⊂平面A1ACC1,AC ⊂平面A1ACC1,C1C ∩AC=C 所以BE ⊥平面A1ACC1.因为C1E ⊂平面A1ACC1,所以BE ⊥C1E.17.解:(1)设椭圆C 的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2⊥x 轴,所以32==,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C 的标准方程为22143x y +=.(2)由(1)知,椭圆C :22143x y +=,a=2,因为AF2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4.因为点A 在x 轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,)55B --.又F2(1,0),所以直线BF2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.18.(1)过A 作AE BD ⊥,垂足为E.由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B=15,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP>90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA=15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ=321时,d 最小,此时P ,Q 两点间的距离PQ=PD+CD+CQ=17+321因此,d 最小时,P ,Q 两点间的距离为17+321(百米).19.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=.因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠,所以21,3,33a ba b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:x(,3)-∞-3-(3,1)-1(1,)+∞()f 'x +0–0+()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得1211,33b b b b b b x x ++==.列表如下:x1(,)x -∞1x ()12,x x 2x 2(,)x +∞()f 'x +0–0+()f x极大值极小值所以()f x 的极大值()1M f x =.()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.20.解:(1)设等比数列{an}的公比为q ,所以a1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{bn}是首项和公差均为1的等差数列.因此,数列{bn}的通项公式为bn=n ()*n ∈N .②由①知,bk=k ,*k ∈N .因为数列{cn}为“M –数列”,设公比为q ,所以c1=1,q>0.因为ck ≤bk ≤ck+1,所以1k k q k q -≤≤,其中k=1,2,3,…,m.当k=1时,有q ≥1;当k=2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-.设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=.令()0f 'x =,得x=e.列表如下:x(1,e)e (e ,+∞)()f 'x +–f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k=1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案21.A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O.在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB==.(2)因为直线l 的方程为sin(34ρθπ+=,则直线l 过点2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin(242ππ⨯-=.C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x<0时,原不等式可化为122x x -+->,解得x<–13:当0≤x ≤12时,原不等式可化为x+1–2x>2,即x<–1,无解;当x>12时,原不等式可化为x+2x –1>2,解得x>1.综上,原不等式的解集为1{|1}3x x x <->或.22.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n n n n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.23.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点.因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年江苏省高考数学试卷及答案(Word版)

2019年江苏省高考数学试卷及答案(Word版)

YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。

2019年江苏高考数学真题及答案

2019年江苏高考数学真题及答案

2019年江苏高考数学真题及答案数学Ⅰ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲.2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是▲. 3.下图是一个算法流程图,则输出的S 的值是▲.4.函数276y x x =+-的定义域是▲.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲.8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是▲. 9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是▲.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲.12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是▲.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是▲. 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.2y x =±8.16 9.10 10.411.(e, 1)12.313.21014.12,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2. 由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB>=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321C Q Q A A C =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB>=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==. 列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下:x1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x(1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =,当k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立. 因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分) 在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,nn n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(13)3na b +=+,其中*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--. 令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=, 则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =, 所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(13)(13)n +=+0122334455555555C C 3C (3)C (3)C (3)C (3)=+++++3a b =+.解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=, 从而222237634432a b -=-⨯=-. 解法二:50122334455555555(13)C C (3)C (3)C (3)C (3)C (3)-=+-+-+-+-+- 0122334455555555C C C (3)C (3)C (3)(3C 3)=-+-+-.因为*,a b ∈N ,所以5(13)3a b -=-.因此225553(3)(3)(13)(13)(2)32a b a b a b -=+-=+⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X 的所有可能取值是1225,,,.X 的概率分布为22667744(1),(2)C 15C 15P X P X ======, 22662222(2),(5)C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则22()44AB a c n =-+≤+,因为当3n ≥时,2(1)4n n -+≤,所以X n >当且仅当24AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X 的所有可能取值是21n +和24n +,且2222242442(1),(4)C C n n P X n P X n ++=+==+=.因此,222246()1(1)(4)1C n P X n P X n P X n +≤=-=+-=+=-.。

2019年高考江苏卷数学真题试题(word版,含答案与解析)

2019年高考江苏卷数学真题试题(word版,含答案与解析)

2019年高考数学真题试卷(江苏卷)原卷+解析一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.(2019•江苏)已知集合,,则________.【答案】【考点】交集及其运算【解析】【解答】集合,,借助数轴得:【分析】根据已知条件借助数轴,用交集的运算法则求出集合。

2.(2019•江苏)已知复数的实部为0,其中为虚数单位,则实数a的值是________. 【答案】 2【考点】复数代数形式的乘除运算【解析】【解答】设复数的实部为0,又【分析】利用复数的乘法运算法则求出复数,从而求出复数的实部和虚部,再结合复数的实部为0的已知条件求出a的值。

3.(2019•江苏)下图是一个算法流程图,则输出的S的值是________.【答案】 5【考点】程序框图【解析】【解答】第一步:不成立;第二步:不成立;第三步:不成立;第四步:成立;输出的【分析】根据题中的已知条件结合程序框图的顺序结构、条件结构和循环结构求出输出的S的值。

4.(2019•江苏)函数的定义域是________.【答案】【考点】函数的定义域及其求法【解析】【解答】函数,要是函数有意义,则函数的定义域为【分析】利用根式函数求定义域的方法结合一元二次不等式求解集的方法求出函数的定义域。

5.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.【答案】【考点】极差、方差与标准差【解析】【解答】设一组数据为6,7,8,8,9,10的平均数为方差为这组数据的平均数为:这组数据的方差为:【分析】利用已知数据结合平均数和方差公式求出这组数据的平均数和方差。

6.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.【答案】【考点】古典概型及其概率计算公式【解析】【解答】设3名男同学为:2名女同学为:设选出的2名同学中至少有1名女同学的事件为A,则从3名男同学和2名女同学中任选2名同学参加志愿者服务的基本事件为:共十种,选出的2名同学中至少有1名女同学的基本事件为:共七种,利用古典概型求概率的公式,得:【分析】根据实际问题的已知条件结合古典概型求概率的公式,求出选出的2名同学中至少有1名女同学的概率。

2019年高考真题江苏卷数学试卷(详解版)(加密版)

2019年高考真题江苏卷数学试卷(详解版)(加密版)

2019 年高考真题江苏卷数学试卷一、填空题(本大题共14 小题,每小题5 分,共70 分)1.已知集合A = {−1,0,1,6},B = {x|x > 0, x∈R},则A∩ B = .【答案】{1,6}【解析】A = {−1,0,1,6},B = {x|x > 0, x∈ R},∴A∩ B = {1,6}.2.已知复数(a + 2i)(1 + i)的实部为0,其中i为虚数单位,则实数a的值是.【答案】2【解析】复数(a + 2i)(1+i)的实部是0,∵(a + 2i)(1+i)= a− 2 + (a + 2)i,∴a− 2 = 0,∴a = 2.3.如图是一个算法流程图,则输出的S的值是.【答案】5【解析】执行第一次,S = S + x= 1 , x = 1 ⩾ 4不成立,继续循环,x = x + 1 = 2;2 2执行第二次,S = S + x= 3 , x = 2 ⩾ 4不成立,继续循环,x = x + 1 = 3;2 25执行第三次,S = S + x = 3, x = 3 ⩾ 4不成立,继续循环,x = x + 1 = 4;2 执行第四次,S = S + x= 5, x = 4 ⩾ 4成立,输出S = 5.24.函数y = √7 + 6x − x 2的定义域是.【答案】[−1,7]【解析】 y = √7 + 6x − x 2的定义域,7 + 6x − x 2 ⩾ 0, −(x − 7)(x + 1) ⩾ 0,∴−1 ⩽ x ⩽ 7,定义域为[−1,7]. 故答案为:[−1,7].5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 .【答案】5 3【解析】 由题意,该组数据的平均数为6+7+8+8+9+10= 8,6所以该组数据的方差是1[(6 − 8)2 + (7 − 8)2 + (8 − 8)2 + (8 − 8)2 + (9 − 8)2 +6(10 − 8)2] = 5.36.学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,则选出的2人中至少有1名女同学的概率为 (结果用数值表示). 【答案】710【解析】 学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,基本事件总数n = C 2 = 10. 选出的2人中至少有1名女同学包含的基本事件个数m = C 1C 1 + C 2 = 7,3 2 2则选出的2人中至少有1名女同学的概率为p = m = 7.n 10故答案为: 7.107.在平面直角坐标系xOy 中,若双曲线x 2 − y 2= 1(b > 0)经过点(3,4),则该双曲线的渐近线方程b 2是.【答案】 y = ±√2x【解析】 双曲线x 2 − y 2= 1(b > 0)经过点(3,4),b 2∴9 − 16= 1,b 2∴b 2 = 2, ∴双曲线方程x 2 −y 2 = 1,2∴渐近线方程y =±√2x . 故答案为:y = ±√2x .8.已知数列{a n }(n ∈ N ∗)是等差数列,S n 是其前n 项和,若a 2a 5 + a 8 = 0,S 9 = 27,则S 8的值是 .【答案】 16【解析】 数列{a n }是等差数列,S n 是其前n 项和,设公差为d ,a 2a 5 + a 8 = 0,S 9 = 27,(a 1 + d )(a 1 + 4d ) + a 1 + 7d = 0∴{ q (a 1+a 1+8d )= 27, 2解得a 1 = −5,d = 2,S 8 = 8(a 1+a 1+7d )2=8(−10+14)2= 16.9.如图,长方体ABCD − A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E − BCD 的体积是 .【答案】 10【解析】 因为长方体ABCD − A 1B 1C 1D 1的体积为120,所以AB ⋅ BC ⋅ CC 1 = 120, 因为E 为CC 1的中点,所以 1,CE = 2 CC 1由长方体的性质知CC 1 ⊥底面ABCD ,所以CE 是三棱锥E − BCD 的底面BCD 上的高, 所以三棱锥E − BCD 的体积:V = 1 × 13 2 AB ⋅ BC ⋅ CE1 1 1 1= 3 × 2 AB ⋅ BC ⋅ 2 CC 1 = 12 × 120 = 10.10.在平面直角坐标系xOy 中,P 是曲线y = x + 距离的最小值是.4(x > 0)上的一个动点,则点P 到直线x + y = 0的 x【答案】 4【解析】 P 是曲线y = x +4 (x > 0)上的一个动点,x则点P 到直线x + y = 0的距离的最小值,设P (x 0 , x 0 + 4 ),x 0|x 0+x 0+ 4|2x 0+ 4P 到直线x + y = 0的距离d =x 0= x 0,设g (x ) = 2x + √2√24(x > 0),xg ′(x ) = 2 −4x 2= 2x 2−4,x 2令g ′(x ) = 0,则x = √2,∴g (x )在(0, √2)单减,在(√2, +∞)上单增,∴g (x )min = g (√2) = 4√2, ∴d min = 4.11.在平面直角坐标系xOy 中,点A 在曲线y = ln x 上,且该曲线在点A 处的切线经过点(−e, −1)(e 为自然对数的底数),则点A 的坐标是 .【答案】(e, 1)【解析】 点A 在曲线y = ln x 上,且该曲线在点A 处的切线经过点(−e, −1),。

2019年江苏省高考数学试卷(含答案解析)

2019年江苏省高考数学试卷(含答案解析)

2019年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号产品,产量分别为200,400,300,100件.为检验产品质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且t anα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R 上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n (m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得c osα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1] .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②+a n﹣2+a n+a n+1=4a n﹣1,③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s 的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd ≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A 1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

2019年普通高等学校招生全国统一考试数学及详细解析(江苏卷)

2019年普通高等学校招生全国统一考试数学及详细解析(江苏卷)

2019年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()xy x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A(B(C(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++(C )6sin()33B π++ (D )6sin()36B π++(6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A )3 (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷试题数:25.满分:2001.(填空题.5分)已知集合A={-1.0.1.6}.B={x|x>0.x∈R}.则A∩B=___ .2.(填空题.5分)已知复数(a+2i)(1+i)的实部为0.其中i为虚数单位.则实数a的值是___ .3.(填空题.5分)如图是一个算法流程图.则输出的S的值是___ .4.(填空题.5分)函数y= $\sqrt{7+6x-{x}^{2}}$ 的定义域是___ .5.(填空题.5分)已知一组数据6.7.8.8.9.10.则该组数据的方差是___ .6.(填空题.5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务.则选出的2名同学中至少有1名女同学的概率是___ .7.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2- $\frac{{y}^{2}}{{b}^{2}}$ =1(b>0)经过点(3.4).则该双曲线的渐近线方程是___ .8.(填空题.5分)已知数列{a n}(n∈N*)是等差数列.S n是其前n项和.若a2a5+a8=0.S9=27.则S8的值是___ .9.(填空题.5分)如图.长方体ABCD-A1B1C1D1的体积是120.E为CC1的中点.则三棱锥E-BCD的体积是 ___ .10.(填空题.5分)在平面直角坐标系xOy中.P是曲线y=x+ $\frac{4}{x}$ (x>0)上的一个动点.则点P到直线x+y=0的距离的最小值是___ .11.(填空题.5分)在平面直角坐标系xOy中.点A在曲线y=lnx上.且该曲线在点A处的切线经过点(-e.-1)(e为自然对数的底数).则点A的坐标是___ .12.(填空题.5分)如图.在△ABC中.D是BC的中点.E在边AB上.BE=2EA.AD与CE交于点O.若 $\overrightarrow{AB}$ • $\overrightarrow{AC}$ =6 $\overrightarrow{AO}$ •$\overrightarrow{EC}$ .则 $\frac{AB}{AC}$ 的值是 ___ .13.(填空题.5分)已知 $\frac{tanα}{tan(α+\frac{π}{4})}$ =- $\frac{2}{3}$ .则sin(2α+ $\frac{π}{4}$)的值是___ .14.(填空题.5分)设f(x).g(x)是定义在R上的两个周期函数.f(x)的周期为4.g(x)的周期为2.且f(x)是奇函数.当x∈(0.2]时.f(x)= $\sqrt{1-(x-1)^{2}}$ .g(x)=$\left\{\begin{array}{l}{k(x+2).}&{0<x≤1.}\\{-\frac{1}{2}.}&{1<x≤2.}\end{array}\right.$ 其中k>0.若在区间(0.9]上.关于x的方程f(x)=g(x)有8个不同的实数根.则k的取值范围是___ .15.(问答题.14分)在△ABC中.角A.B.C的对边分别为a.b.c.(1)若a=3c.b= $\sqrt{2}$ .cosB= $\frac{2}{3}$ .求c的值;(2)若 $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .求sin(B+ $\frac{π}{2}$)的值.16.(问答题.14分)如图.在直三棱柱ABC-A1B1C1中.D.E分别为BC.AC的中点.AB=BC.求证:(1)A1B1 || 平面DEC1;(2)BE⊥C1E.17.(问答题.14分)如图.在平面直角坐标系xOy中.椭圆C: $\frac{{x}^{2}}{{a}^{2}}$ + $\frac{{y}^{2}}{{b}^{2}}$ =1(a>b>0)的焦点为F1(-1.0).F2(1.0).过F2作x轴的垂线l.在x轴的上方.l与圆F2:(x-1)2+y2=4a2交于点A.与椭圆C交于点D.连结AF1并延长交圆F2于点B.连结BF2交椭圆C于点E.连结DF1.已知DF1= $\frac{5}{2}$ .(1)求椭圆C的标准方程;(2)求点E的坐标.18.(问答题.16分)如图.一个湖的边界是圆心为O的圆.湖的一侧有一条直线型公路l.湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P.Q.并修建两段直线型道路PB.QA.规划要求:线段PB.QA上的所有点到点O的距离均不小于圆O的半径.已知点A.B到直线l的距离分别为AC和BD(C.D为垂足).测得AB=10.AC=6.BD=12(单位:百米).(1)若道路PB与桥AB垂直.求道路PB的长;(2)在规划要求下.P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下.若道路PB和QA的长度均为d(单位:百米).求当d最小时.P、Q两点间的距离.19.(问答题.16分)设函数f(x)=(x-a)(x-b)(x-c).a.b.c∈R.f′(x)为f(x)的导函数.(1)若a=b=c.f(4)=8.求a的值;(2)若a≠b.b=c.且f(x)和f′(x)的零点均在集合{-3.1.3}中.求f(x)的极小值;(3)若a=0.0<b≤1.c=1.且f(x)的极大值为M.求证:M≤ $\frac{4}{27}$ .20.(问答题.16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5.a3-4a2+4a1=0.求证:数列{a n}为“M-数列”;(2)已知数列{b n}(n∈N*)满足:b1=1. $\frac{1}{{S}_{n}}$ = $\frac{2}{{b}_{n}}$ -$\frac{2}{{b}_{n+1}}$ .其中S n为数列{b n}的前n项和.① 求数列{b n}的通项公式;② 设m为正整数.若存在“M-数列”{c n}(n∈N*).对任意正整数k.当k≤m时.都有c k≤b k≤c k+1成立.求m的最大值.21.(问答题.10分)已知矩阵A= $\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$ .(1)求A2;(2)求矩阵A的特征值.22.(问答题.10分)在极坐标系中.已知两点A(3. $\frac{π}{4}$).B( $\sqrt{2}$ .$\frac{π}{2}$).直线l的方程为ρsin(θ+ $\frac{π}{4}$)=3.(1)求A.B两点间的距离;(2)求点B到直线l的距离.23.(问答题.10分)设x∈R.解不等式|x|+|2x-1|>2.24.(问答题.10分)设(1+x)n=a0+a1x+a2x2+…+a n x n.n≥4.n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+ $\sqrt{3}$ )n=a+b $\sqrt{3}$ .其中a.b∈N*.求a2-3b2的值.25.(问答题.10分)在平面直角坐标系xOy中.设点集A n={(0.0).(1.0).(2.0).….(n.0)}.B n={(0.1).(n.1)}.C n={(0.2).(1.2).(2.2).…….(n.2)}.n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点.用随机变量X表示它们之间的距离.(1)当n=1时.求X的概率分布;(2)对给定的正整数n(n≥3).求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷参考答案与试题解析试题数:25.满分:2001.(填空题.5分)已知集合A={-1.0.1.6}.B={x|x>0.x∈R}.则A∩B=___ .【正确答案】:[1]{1.6}【解析】:直接利用交集运算得答案.【解答】:解:∵A={-1.0.1.6}.B={x|x>0.x∈R}.∴A∩B={-1.0.1.6}∩{x|x>0.x∈R}={1.6}.故答案为:{1.6}.【点评】:本题考查交集及其运算.是基础题.2.(填空题.5分)已知复数(a+2i)(1+i)的实部为0.其中i为虚数单位.则实数a的值是___ .【正确答案】:[1]2【解析】:利用复数代数形式的乘除运算化简.再由实部为0求的a值.【解答】:解:∵(a+2i)(1+i)=(a-2)+(a+2)i的实部为0.∴a-2=0.即a=2.故答案为:2.【点评】:本题考查复数代数形式的乘除运算.考查复数的基本概念.是基础题.3.(填空题.5分)如图是一个算法流程图.则输出的S的值是___ .【正确答案】:[1]5【解析】:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值.模拟程序的运行过程.分析循环中各变量值的变化情况.可得答案.【解答】:解:模拟程序的运行.可得x=1.S=0S=0.5不满足条件x≥4.执行循环体.x=2.S=1.5不满足条件x≥4.执行循环体.x=3.S=3不满足条件x≥4.执行循环体.x=4.S=5此时.满足条件x≥4.退出循环.输出S的值为5.故答案为:5.【点评】:本题考查了程序框图的应用问题.解题时应模拟程序框图的运行过程.以便得出正确的结论.是基础题.4.(填空题.5分)函数y= $\sqrt{7+6x-{x}^{2}}$ 的定义域是___ .【正确答案】:[1][-1.7]【解析】:由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】:解:由7+6x-x2≥0.得x2-6x-7≤0.解得:-1≤x≤7.∴函数y= $\sqrt{7+6x-{x}^{2}}$ 的定义域是[-1.7].故答案为:[-1.7].【点评】:本题考查函数的定义域及其求法.考查一元二次不等式的解法.是基础题.5.(填空题.5分)已知一组数据6.7.8.8.9.10.则该组数据的方差是___ .【正确答案】:[1] $\frac{5}{3}$【解析】:先求出一组数据6.7.8.8.9.10的平均数.由此能求出该组数据的方差.【解答】:解:一组数据6.7.8.8.9.10的平均数为:$\overline{x}$ = $\frac{1}{6}$ (6+7+8+8+9+10)=8.∴该组数据的方差为:S2= $\frac{1}{6}$ [(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=$\frac{5}{3}$ .故答案为: $\frac{5}{3}$ .【点评】:本题考查一组数据的方差的求法.考查平均数、方差等基础知识.考查运算求解能力.是基础题.6.(填空题.5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务.则选出的2名同学中至少有1名女同学的概率是___ .【正确答案】:[1] $\frac{7}{10}$【解析】:基本事件总数n= ${C}_{5}^{2}$ =10.选出的2名同学中至少有1名女同学包含的基本事件个数m= ${C}_{3}^{1}{C}_{2}^{1}$ + ${C}_{2}^{2}$ =7.由此能求出选出的2名同学中至少有1名女同学的概率.【解答】:解:从3名男同学和2名女同学中任选2名同学参加志愿者服务.基本事件总数n= ${C}_{5}^{2}$ =10.选出的2名同学中至少有1名女同学包含的基本事件个数:m= ${C}_{3}^{1}{C}_{2}^{1}$ + ${C}_{2}^{2}$ =7.∴选出的2名同学中至少有1名女同学的概率是p= $\frac{m}{n}=\frac{7}{10}$ .故答案为: $\frac{7}{10}$ .【点评】:本题考查概率的求法.考查古典概型、排列组合等基础知识.考查运算求解能力.考查数形结合思想.是基础题.7.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2- $\frac{{y}^{2}}{{b}^{2}}$ =1(b>0)经过点(3.4).则该双曲线的渐近线方程是___ .【正确答案】:[1]y= $±\sqrt{2}x$【解析】:把已知点的坐标代入双曲线方程.求得b.则双曲线的渐近线方程可求.【解答】:解:∵双曲线x2- $\frac{{y}^{2}}{{b}^{2}}$ =1(b>0)经过点(3.4).∴ ${3}^{2}-\frac{16}{{b}^{2}}=1$ .解得b2=2.即b= $\sqrt{2}$ .又a=1.∴该双曲线的渐近线方程是y= $±\sqrt{2}x$ .故答案为:y= $±\sqrt{2}x$ .【点评】:本题考查双曲线的标准方程.考查双曲线的简单性质.是基础题.8.(填空题.5分)已知数列{a n}(n∈N*)是等差数列.S n是其前n项和.若a2a5+a8=0.S9=27.则S8的值是___ .【正确答案】:[1]16【解析】:设等差数列{a n}的首项为a1.公差为d.由已知列关于首项与公差的方程组.求解首项与公差.再由等差数列的前n项和求得S8的值.【解答】:解:设等差数列{a n}的首项为a1.公差为d.则$\left\{\begin{array}{l}{({a}_{1}+d)({a}_{1}+4d)+{a}_{1}+7d=0}\\{9{a}_{1}+\frac{9×8}{2}d =27}\end{array}\right.$ .解得 $\left\{\begin{array}{l}{{a}_{1}=-5}\\{d=2}\end{array}\right.$ .∴ ${S}_{8}=8{a}_{1}+\frac{8×7d}{2}$ =8×(-5)+56=16.故答案为:16.【点评】:本题考查等差数列的通项公式.考查等差数列的前n项和.是基础题.9.(填空题.5分)如图.长方体ABCD-A1B1C1D1的体积是120.E为CC1的中点.则三棱锥E-BCD的体积是 ___ .【正确答案】:[1]10【解析】:推导出 ${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$ =AB×BC×DD1=120.三棱锥E-BCD的体积:V E-BCD= $\frac{1}{3}×{S}_{△ BCD}×CE$ =$\frac{1}{3}×\frac{1}{2}×BC×DC×CE$ = $\frac{1}{12}$ ×AB×BC×DD1.由此能求出结果.【解答】:解:∵长方体ABCD-A1B1C1D1的体积是120.E为CC1的中点.∴ ${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$ =AB×BC×DD1=120.∴三棱锥E-BCD的体积:V E-BCD= $\frac{1}{3}×{S}_{△ BCD}×CE$= $\frac{1}{3}×\frac{1}{2}×BC×DC×CE$= $\frac{1}{12}$ ×AB×BC×DD1=10.故答案为:10.【点评】:本题考查三棱锥的体积的求法.考查长方体的结构特征、三棱锥的性质等基础知识.考查运算求解能力.考查数形结合思想.是中档题.10.(填空题.5分)在平面直角坐标系xOy中.P是曲线y=x+ $\frac{4}{x}$ (x>0)上的一个动点.则点P到直线x+y=0的距离的最小值是___ .【正确答案】:[1]4【解析】:利用导数求平行于x+y=0的直线与曲线y=x+ $\frac{4}{x}$ (x>0)的切点.再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】:解:由y=x+ $\frac{4}{x}$ (x>0).得y′=1- $\frac{4}{{x}^{2}}$ .设斜率为-1的直线与曲线y=x+ $\frac{4}{x}$ (x>0)切于(x0.${x}_{0}+\frac{4}{{x}_{0}}$ ).由 $1-\frac{4}{{{x}_{0}}^{2}}=-1$ .解得 ${x}_{0}=\sqrt{2}$ (x0>0).∴曲线y=x+ $\frac{4}{x}$ (x>0)上.点P( $\sqrt{2}.3\sqrt{2}$ )到直线x+y=0的距离最小.最小值为 $\frac{|\sqrt{2}+3\sqrt{2}|}{\sqrt{2}}=4$ .故答案为:4.【点评】:本题考查利用导数研究过曲线上某点处的切线方程.考查点到直线距离公式的应用.是中档题.11.(填空题.5分)在平面直角坐标系xOy中.点A在曲线y=lnx上.且该曲线在点A处的切线经过点(-e.-1)(e为自然对数的底数).则点A的坐标是___ .【正确答案】:[1](e.1)【解析】:设A(x0.lnx0).利用导数求得曲线在A处的切线方程.代入已知点的坐标求解x0即可.【解答】:解:设A(x0.lnx0).由y=lnx.得y′= $\frac{1}{x}$ .∴ $y′{|}_{x={x}_{0}}=\frac{1}{{x}_{0}}$ .则该曲线在点A处的切线方程为y-lnx0=$\frac{1}{{x}_{0}}(x-{x}_{0})$ .∵切线经过点(-e.-1).∴ $-1-ln{x}_{0}=-\frac{e}{{x}_{0}}-1$ .即 $ln{x}_{0}=\frac{e}{{x}_{0}}$ .则x0=e.∴A点坐标为(e.1).故答案为:(e.1).【点评】:本题考查利用导数研究过曲线上某点处的切线方程.区分过点处与在点处的不同.是中档题.12.(填空题.5分)如图.在△ABC中.D是BC的中点.E在边AB上.BE=2EA.AD与CE交于点O.若 $\overrightarrow{AB}$ • $\overrightarrow{AC}$ =6 $\overrightarrow{AO}$ •$\overrightarrow{EC}$ .则 $\frac{AB}{AC}$ 的值是 ___ .【正确答案】:[1] $\sqrt{3}$【解析】:首先算出 $\overrightarrow{AO}$ = $\frac{1}{2}$ $\overrightarrow{AD}$ .然后用$\overrightarrow{AB}$ 、 $\overrightarrow{AC}$ 表示出 $\overrightarrow{AO}$ 、$\overrightarrow{EC}$ .结合 $\overrightarrow{AB}$ • $\overrightarrow{AC}$ =6$\overrightarrow{AO}$ • $\overrightarrow{EC}$ 得$\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ = $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .进一步可得结果.【解答】:解:设 $\overrightarrow{AO}$ =λ $\overrightarrow{AD}$ =$\frac{λ}{2}$( $\overrightarrow{AB}+\overrightarrow{AC}$ ).$\overrightarrow{AO}$ = $\overrightarrow{AE}$ + $\overrightarrow{EO}$ =$\overrightarrow{AE}$ +μ $\overrightarrow{EC}$ = $\overrightarrow{AE}$ +μ( $\overrightarrow{AC}-\overrightarrow{AE}$ )=(1-μ) $\overrightarrow{AE}$ +μ $\overrightarrow{AC}$ = $\frac{1-μ}{3}$ $\overrightarrow{AB}$ +μ $\overrightarrow{AC}$∴ $\left\{\begin{array}{l}{\frac{λ}{2}=\frac{1-μ}{3}}\\{\frac{λ}{2}=μ}\end{array}\right.$ .∴ $\left\{\begin{array}{l}{λ=\frac{1}{2}}\\{μ=\frac{1}{4}}\end{array}\right.$ .∴ $\overrightarrow{AO}$ = $\frac{1}{2}$ $\overrightarrow{AD}$ =$\frac{1}{4}$ ( $\overrightarrow{AB}+\overrightarrow{AC}$ ).$\overrightarrow{EC}$ = $\overrightarrow{AC}-\overrightarrow{AE}$ =-$\frac{1}{3}$ $\overrightarrow{AB}$ + $\overrightarrow{AC}$ .6 $\overrightarrow{AO}$ • $\overrightarrow{EC}$ =6×$\frac{1}{4}$ ( $\overrightarrow{AB}+\overrightarrow{AC}$ )•(-$\frac{1}{3}$ $\overrightarrow{AB}$ + $\overrightarrow{AC}$ )= $\frac{3}{2}$ ( $-\frac{1}{3}$ ${\overrightarrow{AB}}^{2}$ +$\frac{2}{3}$ $\overrightarrow{AB}\bullet \overrightarrow{AC}$ +${\overrightarrow{AC}}^{2}$ )= $-\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ + $\overrightarrow{AB}\bullet\overrightarrow{AC}$ + $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .∵ $\overrightarrow{AB}$ • $\overrightarrow{AC}$ = $-\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ + $\overrightarrow{AB}\bullet\overrightarrow{AC}$ + $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .∴ $\frac{1}{2}$ ${\overrightarrow{AB}}^{2}$ = $\frac{3}{2}$ ${\overrightarrow{AC}}^{2}$ .∴ $\frac{{\overrightarrow{AB}}^{2}}{{\overrightarrow{AC}}^{2}}$ =3.∴ $\frac{AB}{AC}$ = $\sqrt{3}$ .故答案为: $\sqrt{3}$【点评】:本题考查向量的数量积的应用.考查向量的表示以及计算.考查计算能力.13.(填空题.5分)已知 $\frac{tanα}{tan(α+\frac{π}{4})}$ =- $\frac{2}{3}$ .则sin(2α+ $\frac{π}{4}$)的值是___ .【正确答案】:[1] $\frac{\sqrt{2}}{10}$【解析】:由已知求得tanα.分类利用万能公式求得sin2α.cos2α的值.展开两角和的正弦求sin (2α+ $\frac{π}{4}$)的值.【解答】:解:由 $\frac{tanα}{tan(α+\frac{π}{4})}$ =- $\frac{2}{3}$ .得$\frac{tanα}{\frac{tanα+tan\frac{π}{4}}{1-tanαtan\frac{π}{4}}}=-\frac{2}{3}$ .∴ $\frac{tanα(1-tanα)}{1+tanα}=-\frac{2}{3}$ .解得tanα=2或tan $α=-\frac{1}{3}$ .当tanα=2时.sin2α= $\frac{2tanα}{1+ta{n}^{2}α}=\frac{4}{5}$ .cos2α= $\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}=-\frac{3}{5}$ .∴sin(2α+ $\frac{π}{4}$)= $sin2αcos\frac{π}{4}+cos2αsin\frac{π}{4}$ =$\frac{4}{5}×\frac{\sqrt{2}}{2}-\frac{3}{5}×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{10}$ ;当tanα= $-\frac{1}{3}$ 时.sin2α= $\frac{2tanα}{1+ta{n}^{2}α}$ = $-\frac{3}{5}$ .cos2α= $\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}=\frac{4}{5}$ .∴sin(2α+ $\frac{π}{4}$)= $sin2αcos\frac{π}{4}+cos2αsin\frac{π}{4}$ = $-\frac{3}{5}×\frac{\sqrt{2}}{2}+\frac{4}{5}×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{10}$ .综上.sin(2α+ $\frac{π}{4}$)的值是 $\frac{\sqrt{2}}{10}$ .故答案为: $\frac{\sqrt{2}}{10}$ .【点评】:本题考查三角函数的恒等变换与化简求值.考查两角和的三角函数及万能公式的应用.是中档题.14.(填空题.5分)设f(x).g(x)是定义在R上的两个周期函数.f(x)的周期为4.g(x)的周期为2.且f(x)是奇函数.当x∈(0.2]时.f(x)= $\sqrt{1-(x-1)^{2}}$ .g(x)=$\left\{\begin{array}{l}{k(x+2).}&{0<x≤1.}\\{-\frac{1}{2}.}&{1<x≤2.}\end{array}\right.$ 其中k>0.若在区间(0.9]上.关于x的方程f(x)=g(x)有8个不同的实数根.则k的取值范围是___ .【正确答案】:[1][ $\frac{1}{3}$ . $\frac{\sqrt{2}}{4}$ )【解析】:由已知函数解析式结合周期性作出图象.数形结合得答案.【解答】:解:作出函数f(x)与g(x)的图象如图.由图可知.函数f(x)与g(x)=- $\frac{1}{2}$ (1<x≤2.3<x≤4.5<x≤6.7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根.则f(x)= $\sqrt{1-(x-1)^{2}}$ .x∈(0.2]与g(x)=k(x+2).x∈(0.1]的图象有2个不同交点.由(1.0)到直线kx-y+2k=0的距离为1.得 $\frac{|3k|}{\sqrt{{k}^{2}+1}}=1$ .解得k= $\frac{\sqrt{2}}{4}$ (k>0).∵两点(-2.0).(1.1)连线的斜率k= $\frac{1}{3}$ .∴ $\frac{1}{3}$ ≤k< $\frac{\sqrt{2}}{4}$ .即k的取值范围为[ $\frac{1}{3}$ . $\frac{\sqrt{2}}{4}$ ).故答案为:[ $\frac{1}{3}$ . $\frac{\sqrt{2}}{4}$ ).【点评】:本题考查函数零点的判定.考查分段函数的应用.体现了数形结合的解题思想方法.是中档题.15.(问答题.14分)在△ABC中.角A.B.C的对边分别为a.b.c.(1)若a=3c.b= $\sqrt{2}$ .cosB= $\frac{2}{3}$ .求c的值;(2)若 $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .求sin(B+ $\frac{π}{2}$)的值.【正确答案】:【解析】:(1)由余弦定理得:cosB= $\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$ =$\frac{10{c}^{2}-2}{6{c}^{2}}$ = $\frac{2}{3}$ .由此能求出c的值.(2)由 $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .利用正弦定理得2sinB=cosB.再由sin2B+cos2B=1.能求出sinB= $\frac{\sqrt{5}}{5}$ .cosB= $\frac{2\sqrt{5}}{5}$ .由此利用诱导公式能求出sin(B+ $\frac{π}{2}$)的值.【解答】:解:(1)∵在△ABC中.角A.B.C的对边分别为a.b.c.a=3c.b= $\sqrt{2}$ .cosB= $\frac{2}{3}$ .∴由余弦定理得:cosB= $\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$ = $\frac{10{c}^{2}-2}{6{c}^{2}}$ =$\frac{2}{3}$ .解得c= $\frac{\sqrt{3}}{3}$ .(2)∵ $\frac{sinA}{a}$ = $\frac{cosB}{2b}$ .∴由正弦定理得: $\frac{sinA}{a}=\frac{sinB}{b}=\frac{cosB}{2b}$ .∴2sinB=cosB.∵sin2B+cos2B=1.∴sinB= $\frac{\sqrt{5}}{5}$ .cosB= $\frac{2\sqrt{5}}{5}$ .∴sin(B+ $\frac{π}{2}$)=cosB= $\frac{2\sqrt{5}}{5}$ .【点评】:本题考查三角形边长、三角函数值的求法.考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识.考查推理能力与计算能力.属于中档题.16.(问答题.14分)如图.在直三棱柱ABC-A1B1C1中.D.E分别为BC.AC的中点.AB=BC.求证:(1)A1B1 || 平面DEC1;(2)BE⊥C1E.【正确答案】:【解析】:(1)推导出DE || AB.AB || A1B1.从而DE || A1B1.由此能证明A1B1 || 平面DEC1.(2)推导出BE⊥AA1.BE⊥AC.从而BE⊥平面ACC1A1.由此能证明BE⊥C1E.【解答】:证明:(1)∵在直三棱柱ABC-A1B1C1中.D.E分别为BC.AC的中点.∴DE || AB.AB || A1B1.∴DE || A1B1.∵DE⊂平面DEC1.A1B1⊄平面DEC1.∴A1B1 || 平面DEC1.解:(2)∵在直三棱柱ABC-A1B1C1中.E是AC的中点.AB=BC.∴BE⊥AC.∵直三棱柱ABC-A1B1C1中.AA1⊥平面ABC.BE⊂平面ABC.∴BE⊥AA1.又AA1∩AC=A.∴BE⊥平面ACC1A1.∵C1E⊂平面ACC1A1.∴BE⊥C1E.【点评】:本题考查线面平行、线线垂直的证明.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.考查数形结合思想.是中档题.17.(问答题.14分)如图.在平面直角坐标系xOy中.椭圆C: $\frac{{x}^{2}}{{a}^{2}}$ + $\frac{{y}^{2}}{{b}^{2}}$ =1(a>b>0)的焦点为F1(-1.0).F2(1.0).过F2作x轴的垂线l.在x轴的上方.l与圆F2:(x-1)2+y2=4a2交于点A.与椭圆C交于点D.连结AF1并延长交圆F2于点B.连结BF2交椭圆C于点E.连结DF1.已知DF1= $\frac{5}{2}$ .(1)求椭圆C的标准方程;(2)求点E的坐标.【正确答案】:【解析】:(1)由题意得到F1D || BF2.然后求AD.再由AD=DF1= $\frac{5}{2}$ 求得a.则椭圆方程可求;(2)求出D的坐标.得到 ${k}_{B{F}_{2}}={k}_{D{F}_{1}}$ =$\frac{\frac{3}{2}}{2}=\frac{3}{4}$ .写出BF2的方程.与椭圆方程联立即可求得点E的坐标.【解答】:解:(1)如图.∵F2A=F2B.∴∠F2AB=∠F2BA.∵F2A=2a=F2D+DA=F2D+F1D.∴AD=F1D.则∠DAF1=∠DF1A.∴∠DF1A=∠F2BA.则F1D || BF2.∵c=1.∴b2=a2-1.则椭圆方程为 $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1$ .取x=1.得 ${y}_{D}=\frac{{a}^{2}-1}{a}$ .则AD=2a- $\frac{{a}^{2}-1}{a}$ =$\frac{{a}^{2}+1}{a}$ .又DF1= $\frac{5}{2}$ .∴ $\frac{{a}^{2}+1}{a}=\frac{5}{2}$ .解得a=2(a>0).∴椭圆C的标准方程为 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$ ;(2)由(1)知.D(1. $\frac{3}{2}$ ).F1(-1.0).∴ ${k}_{B{F}_{2}}={k}_{D{F}_{1}}$ = $\frac{\frac{3}{2}}{2}=\frac{3}{4}$ .则BF2:y=$\frac{3}{4}(x-1)$ .联立 $\left\{\begin{array}{l}{y=\frac{3}{4}(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$ .得21x2-18x-39=0.解得x1=-1或 ${x}_{2}=\frac{13}{7}$ (舍).∴ ${y}_{1}=-\frac{3}{2}$ .即点E的坐标为(-1.- $\frac{3}{2}$ ).【点评】:本题考查直线与圆.圆与椭圆位置关系的应用.考查计算能力.证明DF1 || BF2是解答该题的关键.是中档题.18.(问答题.16分)如图.一个湖的边界是圆心为O的圆.湖的一侧有一条直线型公路l.湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P.Q.并修建两段直线型道路PB.QA.规划要求:线段PB.QA上的所有点到点O的距离均不小于圆O的半径.已知点A.B到直线l的距离分别为AC和BD(C.D为垂足).测得AB=10.AC=6.BD=12(单位:百米).(1)若道路PB与桥AB垂直.求道路PB的长;(2)在规划要求下.P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下.若道路PB和QA的长度均为d(单位:百米).求当d最小时.P、Q两点间的距离.【正确答案】:【解析】:(1)设BD与圆O交于M.连接AM.以C为坐标原点.l为x轴.建立直角坐标系.则A (0.-6).B(-8.-12).D(-8.0)设点P(x1.0).PB⊥AB.运用两直线垂直的条件:斜率之积为-1.求得P的坐标.可得所求值;(2)当QA⊥AB时.QA上的所有点到原点O的距离不小于圆的半径.设此时Q(x2.0).运用两直线垂直的条件:斜率之积为-1.求得Q的坐标.即可得到结论;(3)设P(a.0).Q(b.0).则a≤-17.b≥- $\frac{9}{2}$ .结合条件.可得b的最小值.由两点的距离公式.计算可得PQ.【解答】:解:设BD与圆O交于M.连接AM.AB为圆O的直径.可得AM⊥BM.即有DM=AC=6.BM=6.AM=8.以C为坐标原点.l为x轴.建立直角坐标系.则A(0.-6).B(-8.-12).D(-8.0)(1)设点P(x1.0).PB⊥AB.则k BP•k AB=-1.即 $\frac{0-(-12)}{{x}_{1}-(-8)}$ • $\frac{-6-(-12)}{0-(-8)}$ =-1.解得x1=-17.所以P(-17.0).PB= $\sqrt{(-17+8)^{2}+(0+12)^{2}}$ =15;(2)当QA⊥AB时.QA上的所有点到原点O的距离不小于圆的半径.设此时Q(x2.0).则k QA•k AB=-1.即 $\frac{0-(-6)}{{x}_{2}-0}$ • $\frac{-6-(-12)}{0-(-8)}$ =-1.解得x2=-$\frac{9}{2}$ .Q(- $\frac{9}{2}$ .0).由-17<-8<- $\frac{9}{2}$ .在此范围内.不能满足PB.QA上所有点到O的距离不小于圆的半径. 所以P.Q中不能有点选在D点;(3)设P(a.0).Q(b.0).由(1)(2)可得a≤-17.b≥- $\frac{9}{2}$ .由两点的距离公式可得PB2=(a+8)2+144≥225.当且仅当a=-17时.d=|PB|取得最小值15.又QA2=b2+36≥225.则b≥3 $\sqrt{21}$ .当d最小时.a=-17.b=3 $\sqrt{21}$ .PQ=17+3$\sqrt{21}$ .【点评】:本题考查直线和圆的位置关系.考查直线的斜率和两直线垂直的条件:斜率之积为-1.以及两点的距离公式.分析问题和解决问题的能力.考查运算能力.属于中档题.19.(问答题.16分)设函数f(x)=(x-a)(x-b)(x-c).a.b.c∈R.f′(x)为f(x)的导函数.(1)若a=b=c.f(4)=8.求a的值;(2)若a≠b.b=c.且f(x)和f′(x)的零点均在集合{-3.1.3}中.求f(x)的极小值;(3)若a=0.0<b≤1.c=1.且f(x)的极大值为M.求证:M≤ $\frac{4}{27}$ .【正确答案】:【解析】:(1)由a=b=c.可得f(x)=(x-a)3.根据f(4)=8.可得(4-a)3=8.解得a.(2)a≠b.b=c.设f(x)=(x-a)(x-b)2.令f(x)=(x-a)(x-b)2=0.解得x=a.或x=b.f′(x)=(x-b)(3x-b-2a).令f′(x)=0.解得x=b.或x= $\frac{2a+b}{3}$ .根据f (x)和f′(x)的零点均在集合A={-3.1.3}中.通过分类讨论可得:只有a=3.b=-3.可得$\frac{2a+b}{3}$ = $\frac{6-3}{3}$ =1∈A.可得:f(x)=(x-3)(x+3)2.利用导数研究其单调性可得x=1时.函数f(x)取得极小值.(3)a=0.0<b≤1.c=1.f(x)=x(x-b)(x-1).f′(x)=3x2-(2b+2)x+b.△>0.令f′(x)=3x2-(2b+2)x+b=0.解得:x1= $\frac{b+1-\sqrt{{b}^{2}-b+1}}{3}$ ∈$(0.\frac{1}{3}]$ .x2= $\frac{b+1+\sqrt{{b}^{2}-b+1}}{3}$ .x1<x2.可得x=x1时.f(x)取得极大值为M.f′(x1)= $3{x}_{1}^{2}$ -(2b+2)x1+b=0.令x1=t∈ $(0.\frac{1}{3}]$ .可得:b= $\frac{3{t}^{2}-2t}{2t-1}$ .M=f(x1)=x1(x1-b)(x1-1)=t(t-b)(t-1)= $\frac{-{t}^{4}+2{t}^{3}-{t}^{2}}{2t-1}$ .利用导数研究函数的单调性即可得出.【解答】:解:(1)∵a=b=c.∴f(x)=(x-a)3.∵f(4)=8.∴(4-a)3=8.∴4-a=2.解得a=2.(2)a≠b.b=c.设f(x)=(x-a)(x-b)2.令f(x)=(x-a)(x-b)2=0.解得x=a.或x=b.f′(x)=(x-b)2+2(x-a)(x-b)=(x-b)(3x-b-2a).令f′(x)=0.解得x=b.或x= $\frac{2a+b}{3}$ .∵f(x)和f′(x)的零点均在集合A={-3.1.3}中.若:a=-3.b=1.则 $\frac{2a+b}{3}$ = $\frac{-6+1}{3}$ =- $\frac{5}{3}$ ∉A.舍去.a=1.b=-3.则 $\frac{2a+b}{3}$ = $\frac{2-3}{3}$ =- $\frac{1}{3}$ ∉A.舍去.a=-3.b=3.则 $\frac{2a+b}{3}$ = $\frac{-6+3}{3}$ =-1∉A.舍去..a=3.b=1.则 $\frac{2a+b}{3}$ = $\frac{6+1}{3}$ = $\frac{7}{3}$ ∉A.舍去.a=1.b=3.则 $\frac{2a+b}{3}$ = $\frac{5}{3}$ ∉A.舍去.a=3.b=-3.则 $\frac{2a+b}{3}$ = $\frac{6-3}{3}$ =1∈A.因此a=3.b=-3. $\frac{2a+b}{3}$ =1∈A.可得:f(x)=(x-3)(x+3)2.f′(x)=3[x-(-3)](x-1).可得x=1时.函数f(x)取得极小值.f(1)=-2×42=-32.(3)证明:a=0.0<b≤1.c=1.f(x)=x(x-b)(x-1).f′(x)=(x-b)(x-1)+x(x-1)+x(x-b)=3x2-(2b+2)x+b.△=4(b+1)2-12b=4b2-4b+4=4 $(b-\frac{1}{2})^{2}$ +3≥3.令f′(x)=3x2-(2b+2)x+b=0.解得:x1= $\frac{b+1-\sqrt{{b}^{2}-b+1}}{3}$ ∈ $(0.\frac{1}{3}]$ .x2=$\frac{b+1+\sqrt{{b}^{2}-b+1}}{3}$ .x1<x2.x1+x2= $\frac{2b+2}{3}$ .x1x2= $\frac{b}{3}$ .可得x=x1时.f(x)取得极大值为M.∵f′(x1)= $3{x}_{1}^{2}$ -(2b+2)x1+b=0.令x1=t∈ $(0.\frac{1}{3}]$ .可得:b= $\frac{3{t}^{2}-2t}{2t-1}$ .∴M=f(x1)=x1(x1-b)(x1-1)=t(t-b)(t-1)= $\frac{-{t}^{4}+2{t}^{3}-{t}^{2}}{2t-1}$ . M′= $\frac{-6{t}^{4}+12{t}^{3}-8{t}^{2}+2t}{(2t-1)^{2}}$ .令g(t)=-6t3+12t2-8t+2.g′(t)=-18t2+24t-8=-2(3t-2)2<0.∴函数g(t)在t∈ $(0.\frac{1}{3}]$ 上单调递减. $g(\frac{1}{3})$ = $\frac{4}{9}$ >0.∴t•g(t)>0.∴M′>0.∴函数M(t)在t∈ $(0.\frac{1}{3}]$ 上单调递增.∴M(t)≤ $M(\frac{1}{3})$ = $\frac{4}{27}$ .【点评】:本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法.考查了推理能力与计算能力.属于难题.20.(问答题.16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5.a3-4a2+4a1=0.求证:数列{a n}为“M-数列”;(2)已知数列{b n}(n∈N*)满足:b1=1. $\frac{1}{{S}_{n}}$ = $\frac{2}{{b}_{n}}$ -$\frac{2}{{b}_{n+1}}$ .其中S n为数列{b n}的前n项和.① 求数列{b n}的通项公式;② 设m为正整数.若存在“M-数列”{c n}(n∈N*).对任意正整数k.当k≤m时.都有c k≤b k≤c k+1成立.求m的最大值.【正确答案】:【解析】:(1)设等比数列{a n}的公比为q.然后根据a2a4=a5.a3-4a2+4a1=0列方程求解.在根据新定义判断即可;(2)求出b2.b3.b4猜想b n.然后用数学归纳法证明;(3)设{c n}的公比为q.将问题转化为 $[\frac{lnk}{k}]_{max}≤[\frac{lnk}{k-1}]_{min}$ .然后构造函数f(x)= $\frac{lnx}{x}(x≥3)$ .g(x)= $\frac{lnx}{x-1}(x≤3)$ .分别求解其最大值和最小值.最后解不等式 $\frac{ln3}{3}≤\frac{lnm}{m-1}$ .即可.【解答】:解:(1)设等比数列{a n}的公比为q.则由a2a4=a5.a3-4a2+4a1=0.得$\left\{\begin{array}{l}{{{a}_{1}}^{2}{q}^{4}={a}_{1}{q}^{4}}\\{{a}_{1}{q}^{2}-4{a}_{1}q+4{a}_{1}=0}\end{array}\right.$ ∴$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$ .∴数列{a n}首项为1且公比为正数即数列{a n}为“M-数列”;(2)① ∵b1=1. $\frac{1}{{S}_{n}}$ = $\frac{2}{{b}_{n}}$ - $\frac{2}{{b}_{n+1}}$ .∴当n=1时. $\frac{1}{S_1}=\frac{1}{b_1}=\frac{2}{b_1}-\frac{2}{b_2}$ .∴b2=2.当n=2时. $\frac{1}{S_2}=\frac{1}{b_1+b_2}=\frac{2}{b_2}-\frac{2}{b_3}$ .∴b3=3.当n=3时. $\frac{1}{S_3}=\frac{1}{b_1+b_2+b_3}=\frac{2}{b_3}-\frac{2}{b_4}$ .∴b4=4.猜想b n=n.下面用数学归纳法证明;(i)当n=1时.b1=1.满足b n=n.(ii)假设n=k时.结论成立.即b k=k.则n=k+1时.由 $\frac{1}{S_{k}}=\frac{2}{b_{k}}-\frac{2}{b_{k+1}}$ .得$b_{k+1}=\frac{2b_kS_k}{2S_k-b_k}$ = $\frac{2k\bullet \frac{k(k+1)}{2}}{2\bullet\frac{k(k+1)}{2}-k}$ =k+1.故n=k+1时结论成立.根据(i)(ii)可知.b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;② 设{c n}的公比为q.存在“M-数列”{c n}(n∈N*).对任意正整数k.当k≤m时.都有c k≤b k≤c k+1成立.即q k-1≤k≤q k对k≤m恒成立.当k=1时.q≥1.当k=2时. $\sqrt{2}≤q≤2$ .当k≥3.两边取对数可得. $\frac{lnk}{k}≤lnq≤\frac{lnk}{k-1}$ 对k≤m有解.即$[\frac{lnk}{k}]_{max}≤lnq≤[\frac{lnk}{k-1}]_{min}$ .令f(x)= $\frac{lnx}{x}(x≥3)$ .则 $f'(x)=\frac{1-lnx}{x^2}$ .当x≥3时.f'(x)<0.此时f(x)递减.∴当k≥3时. $[\frac{lnk}{k}]_{max}=\frac{ln3}{3}$ .令g(x)= $\frac{lnx}{x-1}(x≤3)$ .则 $g'(x)=\frac{1-\frac{1}{x}-lnx}{x^2}$ .令 $ϕ(x)=1-\frac{1}{x}-lnx$ .则 $ϕ'(x)=\frac{1-x}{x^2}$ .当x≥3时.ϕ'(x)<0.即g'(x)<0.∴g(x)在[3.+∞)上单调递减.即k≥3时. $[\frac{lnk}{k-1}]_{min}=\frac{lnm}{m-1}$ .则 $\frac{ln3}{3}≤\frac{lnm}{m-1}$ .下面求解不等式 $\frac{ln3}{3}≤\frac{lnm}{m-1}$ .化简.得3lnm-(m-1)ln3≥0.令h(m)=3lnm-(m-1)ln3.则h'(m)= $\frac{3}{m}$ -ln3.由k≥3得m≥3.h'(m)<0.∴h(m)在[3.+∞)上单调递减.又由于h(5)=3ln5-4ln3=ln125-ln81>0.h(6)=3ln6-5ln3=ln216-ln243<0.∴存在m0∈(5.6)使得h(m0)=0.∴m的最大值为5.此时q∈ $[3^{\frac{1}{3}}$ . $5^{\frac{1}{4}}]$ .【点评】:本题考查了由递推公式求等比数列的通项公式和不等式恒成立.考查了数学归纳法和构造法.是数列、函数和不等式的综合性问题.属难题.21.(问答题.10分)已知矩阵A= $\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$ .(1)求A2;(2)求矩阵A的特征值.【正确答案】:【解析】:(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)= $\left|\b egin{array}{l}{λ-3}&{-1}\\{-2}&{λ-2}\end{array}\right|$ =λ2-5λ+4.解方程f(λ)=0即可.【解答】:解:(1)∵A= $\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$∴A2=$\left[\begin{array}{l}{3}&{1}\\{2}&{2}\end{array}\right]$ $\left[\begin{array}{l}{3}&{1}\\{ 2}&{2}\end{array}\right]$= $\left[\begin{array}{l}{11}&{5}\\{10}&{6}\end{array}\right]$(2)矩阵A的特征多项式为:f(λ)= $\left|\begin{array}{l}{λ-3}&{-1}\\{-2}&{λ-2}\end{array}\right|$ =λ2-5λ+4.令f(λ)=0.则由方程λ2-5λ+4=0.得λ=1或λ=4.∴矩阵A的特征值为1或4.【点评】:本题考查了矩阵的运算和特征值等基础知识.考查运算与求解能力.属基础题.22.(问答题.10分)在极坐标系中.已知两点A(3. $\frac{π}{4}$).B( $\sqrt{2}$ .$\frac{π}{2}$).直线l的方程为ρsin(θ+ $\frac{π}{4}$)=3.(1)求A.B两点间的距离;(2)求点B到直线l的距离.【正确答案】:【解析】:(1)设极点为O.则由余弦定理可得 $AB^2=OA^2+OB^2-2OA\bulletOBcos\angleAOB$ .解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】:解:(1)设极点为O.则在△OAB中.由余弦定理.得AB2=OA2+OB2-2OA $\bulletOBcos\angleAOB$ .∴AB= $\sqrt{{3}^{2}+(\sqrt{2})^{2}-2×3×\sqrt{2}×cos(\frac{π}{2}-\frac{π}{4})}$ =$\sqrt{5}$ ;(2)由直线l的方程ρsin(θ+ $\frac{π}{4}$)=3.知直线l过(3 $\sqrt{2}$ . $\frac{π}{2}$).倾斜角为 $\frac{3π}{4}$ .又B( $\sqrt{2}$ . $\frac{π}{2}$).∴点B到直线l的距离为 $(3\sqrt{2}-\sqrt{2})\bulletsin(\frac{3π}{4}-\frac{π}{2})=2$.【点评】:本题考查了在极坐标系下计算两点间的距离和点到直线的距离.属基础题.23.(问答题.10分)设x∈R.解不等式|x|+|2x-1|>2.【正确答案】:【解析】:对|x|+|2x-1|去绝对值.然后分别解不等式即可.【解答】:解:|x|+|2x-1|= $\left\{\begin{array}{l}{3x-1.x>\frac{1}{2}}\\{-x+1.0≤x≤\frac{1}{2}}\\{-3x+1.x<0}\end{array}\right.$ .∵|x|+|2x-1|>2.∴ $\left\{\begin{array}{l}{3x-1>2}\\{x>\frac{1}{2}}\end{array}\right.$ 或$\left\{\begin{array}{l}{-x+1>2}\\{0≤x≤\frac{1}{2}}\end{array}\right.$ 或$\left\{\begin{array}{l}{-3x+1>2}\\{x<0}\end{array}\right.$ .∴x>1或x∈∅或x<- $\frac{1}{3}$ .∴不等式的解集为{x|x<- $\frac{1}{3}$ 或x>1}.【点评】:本题考查了绝对值不等式的解法.属基础题.24.(问答题.10分)设(1+x)n=a0+a1x+a2x2+…+a n x n.n≥4.n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+ $\sqrt{3}$ )n=a+b $\sqrt{3}$ .其中a.b∈N*.求a2-3b2的值.【正确答案】:【解析】:(1)运用二项式定理.分别求得a2.a3.a4.结合组合数公式.解方程可得n的值;(2)方法一、运用二项式定理.结合组合数公式求得a.b.计算可得所求值;方法二、由于a.b∈N*.求得(1- $\sqrt{3}$ )5=a-b $\sqrt{3}$ .再由平方差公式.计算可得所求值.【解答】:解:(1)由(1+x)n=C ${}_{n}^{0}$ +C ${}_{n}^{1}$ x+C ${}_{n}^{2}$ x2+…+C ${}_{n}^{n}$ x n.n≥4.可得a2=C ${}_{n}^{2}$ = $\frac{n(n-1)}{2}$ .a3=C ${}_{n}^{3}$ = $\frac{n(n-1)(n-2)}{6}$ .a4=C ${}_{n}^{4}$ = $\frac{n(n-1)(n-2)(n-3)}{24}$ .a32=2a2a4.可得( $\frac{n(n-1)(n-2)}{6}$ )2=2• $\frac{n(n-1)}{2}$ • $\frac{n(n-1)(n-2)(n-3)}{24}$ .解得n=5;(2)方法一、(1+ $\sqrt{3}$ )5=C ${}_{5}^{0}$ +C ${}_{5}^{1}$ $\sqrt{3}$ +C${}_{5}^{2}$ ( $\sqrt{3}$ )2+C ${}_{5}^{3}$ ( $\sqrt{3}$ )3+C ${}_{5}^{4}$ ( $\sqrt{3}$ )4+C ${}_{5}^{5}$ ( $\sqrt{3}$ )5=a+b $\sqrt{3}$ .由于a.b∈N*.可得a=C ${}_{5}^{0}$ +3C ${}_{5}^{2}$ +9C ${}_{5}^{4}$ =1+30+45=76.b=C ${}_{5}^{1}$ +3C ${}_{5}^{3}$ +9C ${}_{5}^{5}$ =44.可得a2-3b2=762-3×442=-32;方法二、(1+ $\sqrt{3}$ )5=C ${}_{5}^{0}$ +C ${}_{5}^{1}$ $\sqrt{3}$ +C${}_{5}^{2}$ ( $\sqrt{3}$ )2+C ${}_{5}^{3}$ ( $\sqrt{3}$ )3+C ${}_{5}^{4}$ ( $\sqrt{3}$ )4+C ${}_{5}^{5}$ ( $\sqrt{3}$ )5=a+b $\sqrt{3}$ .(1- $\sqrt{3}$ )5=C ${}_{5}^{0}$ +C ${}_{5}^{1}$ (- $\sqrt{3}$ )+C ${}_{5}^{2}$ (-$\sqrt{3}$ )2+C ${}_{5}^{3}$ (- $\sqrt{3}$ )3+C ${}_{5}^{4}$ (- $\sqrt{3}$ )4+C${}_{5}^{5}$ (- $\sqrt{3}$ )5=C ${}_{5}^{0}$ -C ${}_{5}^{1}$ $\sqrt{3}$ +C ${}_{5}^{2}$ ( $\sqrt{3}$ )2-C${}_{5}^{3}$ ( $\sqrt{3}$ )3+C ${}_{5}^{4}$ ( $\sqrt{3}$ )4-C ${}_{5}^{5}$ ( $\sqrt{3}$ )5.由于a.b∈N*.可得(1- $\sqrt{3}$ )5=a-b $\sqrt{3}$ .可得a2-3b2=(1+ $\sqrt{3}$ )5•(1- $\sqrt{3}$ )5=(1-3)5=-32.【点评】:本题主要考查二项式定理、组合数公式的运用.考查运算能力和分析问题能力.属于中档题.25.(问答题.10分)在平面直角坐标系xOy中.设点集A n={(0.0).(1.0).(2.0).….(n.0)}.B n={(0.1).(n.1)}.C n={(0.2).(1.2).(2.2).…….(n.2)}.n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点.用随机变量X表示它们之间的距离.(1)当n=1时.求X的概率分布;(2)对给定的正整数n(n≥3).求概率P(X≤n)(用n表示).【正确答案】:【解析】:(1)当n=1时.X的所有可能取值为1. $\sqrt{2}$ .2. $\sqrt{5}$ .由古典概率的公式.结合组合数可得所求值;(2)设A(a.b)和B(c.d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n).所以只需考虑X>n的情况.分别讨论b.d的取值.结合古典概率的计算公式和对立事件的概率.即可得到所求值.【解答】:解:(1)当n=1时.X的所有可能取值为1. $\sqrt{2}$ .2. $\sqrt{5}$ .X的概率分布为P(X=1)= $\frac{7}{{C}_{6}^{2}}$ = $\frac{7}{15}$ ;P(X= $\sqrt{2}$ )= $\frac{4}{{C}_{6}^{2}}$ = $\frac{4}{15}$ ;P(X=2)= $\frac{2}{{C}_{6}^{2}}$ = $\frac{2}{15}$ ;P(X= $\sqrt{5}$ )=$\frac{2}{{C}_{6}^{2}}$ = $\frac{2}{15}$ ;(2)设A(a.b)和B(c.d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n).所以只需考虑X>n的情况.① 若b=d.则AB≤n.不存在X>n的取法;② 若b=0.d=1.则AB= $\sqrt{(a-c)^{2}+1}$ ≤ $\sqrt{{n}^{2}+1}$ .所以X>n当且仅当AB= $\sqrt{{n}^{2}+1}$ .此时a=0.c=n或a=n.c=0.有两种情况;③ 若b=0.d=2.则AB= $\sqrt{(a-c)^{2}+4}$ ≤ $\sqrt{{n}^{2}+4}$ .所以X>n当且仅当AB= $\sqrt{{n}^{2}+4}$ .此时a=0.c=n或a=n.c=0.有两种情况;④ 若b=1.d=2.则AB= $\sqrt{(a-c)^{2}+1}$ ≤ $\sqrt{{n}^{2}+1}$ .所以X>n当且仅当AB= $\sqrt{{n}^{2}+1}$ .此时a=0.c=n或a=n.c=0.有两种情况;综上可得当X>n.X的所有值是 $\sqrt{{n}^{2}+1}$ 或 $\sqrt{{n}^{2}+4}$ .且P(X= $\sqrt{{n}^{2}+1}$ )= $\frac{4}{{C}_{2n+4}^{2}}$ .P(X= $\sqrt{{n}^{2}+4}$ )= $\frac{2}{{C}_{2n+4}^{2}}$ .可得P(X≤n)=1-P(X= $\sqrt{{n}^{2}+1}$ )-P(X= $\sqrt{{n}^{2}+4}$ )=1-$\frac{6}{{C}_{2n+4}^{2}}$ .【点评】:本题考查随机变量的概率的分布.以及古典概率公式的运用.考查分类讨论思想方法.以及化简运算能力.属于难题.。

【真题】2019年江苏省高考数学试题(含附加题+答案)

【真题】2019年江苏省高考数学试题(含附加题+答案)

15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
样本数据 x1, x2 ,…, xn 的方差 s2
5.已知一组数据 6,7,8,8,9,10,则该组数据的方差是 ▲ . 6.从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少有 1 名女同学
的概率是 ▲ .
7.在平面直角坐标系
xOy
中,若双曲线
x2
y2 b2
1(b
0)
经过点(3,4),则该双曲线的渐近线方程是
绝密★考试结束前
2019 年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间为 120 分钟。

2019年江苏省高考数学试卷(含参考答案)

2019年江苏省高考数学试卷(含参考答案)

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B={1,6}.解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是2.解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.3.(5分)如图是一个算法流程图,则输出的S的值是5.解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.4.(5分)函数y=的定义域是[﹣1,7].解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是y=.解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是10.解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD 1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是4.解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是(e,1).解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:13.(5分)已知=﹣,则sin(2α+)的值是.解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是[,).解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x <﹣,∴不等式的解集为{x|x <﹣或x>1}.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C =,a3=C =,a4=C =,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C ()2+C ()3+C ()4+C ()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C ()2+C ()3+C ()4+C ()5=a+b,(1﹣)5=C+C (﹣)+C (﹣)2+C (﹣)3+C (﹣)4+C (﹣)5=C﹣C+C ()2﹣C ()3+C ()4﹣C ()5,由于a,b∈N*,可得(1﹣)5=a﹣b,第21页(共22页)可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X =)==;P(X=2)==;P(X =)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB =≤,所以X>n当且仅当AB =,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X 的所有值是或,且P(X =)=,P(X =)=,可得P(X≤n)=1﹣P(X =)﹣P(X =)=1﹣.第22页(共22页)。

2019年江苏省高考数学试卷(解析版)

2019年江苏省高考数学试卷(解析版)

2019年江苏省高考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、填空题(共14小题)1.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.如图是一个算法流程图,则输出的S的值是.4.函数y=的定义域是﹣.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.已知=﹣,则sin(2α+)的值是.14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题(共11小题)15.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.21.已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.22.在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin(θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.23.设x∈R,解不等式|x|+|2x﹣1|>2.24.设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学试卷(解析版)参考答案一、填空题(共14小题)1.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【知识点】交集及其运算2.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【知识点】复数代数形式的乘除运算3.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【知识点】程序框图4.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【知识点】函数的定义域及其求法5.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【知识点】极差、方差与标准差6.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【知识点】古典概型及其概率计算公式7.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【知识点】双曲线的标准方程8.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=8×(﹣5)+56=16.故答案为:16.【知识点】等差数列的前n项和9.【分析】推导出=AB×BC×DD 1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.【知识点】棱柱、棱锥、棱台的体积10.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【知识点】利用导数研究曲线上某点切线方程11.【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【知识点】利用导数研究曲线上某点切线方程12.【分析】首先算出=,然后用、表示出、,结合•=6•得=,进一步可得结果.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:【知识点】平面向量数量积的性质及其运算律13.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【知识点】三角函数的恒等变换及化简求值14.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【知识点】分段函数的应用二、解答题(共11小题)15.【分析】(1)由余弦定理得:cos B===,由此能求出c的值.(2)由=,利用正弦定理得2sin B=cos B,再由sin2B+cos2B=1,能求出sin B=,cos B=,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.【知识点】余弦定理、三角函数的恒等变换及化简求值16.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.【知识点】直线与平面平行的判定、棱柱的结构特征17.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF2的方程,与椭圆方程联立即可求得点E的坐标.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【知识点】椭圆的简单性质18.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【知识点】直线和圆的方程的应用19.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.【知识点】利用导数研究函数的极值20.【分析】(1)设等比数列{a n}的公比为q,然后根据a2a4=a5,a3﹣4a2+4a1=0列方程求解,在根据新定义判断即可;(2)求出b2,b3,b4猜想b n,然后用数学归纳法证明;(3)设{c n}的公比为q,将问题转化为,然后构造函数f(x)=,g(x)=,分别求解其最大值和最小值,最后解不等式,即可.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤q k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递减,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≥0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【知识点】数列与不等式的综合21.【分析】(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)==λ2﹣5λ+4,解方程f(λ)=0即可.【解答】解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.【知识点】二阶矩阵、特征值与特征向量的计算22.【分析】(1)设极点为O,则由余弦定理可得,解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.【知识点】极坐标刻画点的位置23.【分析】对|x|+|2x﹣1|去绝对值,然后分别解不等式即可.【解答】解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x<﹣,∴不等式的解集为{x|x<﹣或x>1}.【知识点】绝对值不等式的解法24.【分析】(1)运用二项式定理,分别求得a2,a3,a4,结合组合数公式,解方程可得n的值;(2)方法一、运用二项式定理,结合组合数公式求得a,b,计算可得所求值;方法二、由于a,b∈N*,求得(1﹣)5=a﹣b,再由平方差公式,计算可得所求值.【解答】解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C=,a3=C=,a4=C=,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,(1﹣)5=C+C(﹣)+C(﹣)2+C(﹣)3+C(﹣)4+C(﹣)5=C﹣C+C()2﹣C()3+C()4﹣C()5,由于a,b∈N*,可得(1﹣)5=a﹣b,可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.【知识点】二项式定理25.【分析】(1)当n=1时,X的所有可能取值为1,,2,,由古典概率的公式,结合组合数可得所求值;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,分别讨论b,d的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X=)==;P(X=2)==;P(X=)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.【知识点】古典概型及其概率计算公式。

2019年江苏省高考数学试卷(解析版)

2019年江苏省高考数学试卷(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据12,,,n x x x …的方差2211n i i sx x n ,其中11n i i x x n .柱体的体积VSh ,其中S 是柱体的底面积,h 是柱体的高.锥体的体积13V Sh ,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,6}A,{|0,}B x x x R ,则A B _____.【答案】{1,6}.【解析】【分析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}A B .【点睛】本题主要考查交集的运算,属于基础题.2.已知复数(2i)(1i)a 的实部为0,其中i 为虚数单位,则实数a 的值是_____.【答案】 2.【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【详解】2(a 2)(1i)222(2)i a ai i i a a i ,令20a 得2a .【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力. 3.下图是一个算法流程图,则输出的S 的值是_____.【答案】 5.【解析】【分析】结合所给的流程图运行程序确定输出的值即可.【详解】执行第一次,1,1422x S S x 不成立,继续循环,12x x ;执行第二次,3,2422x S S x 不成立,继续循环,13x x ;执行第三次,3,342xS S x 不成立,继续循环,14x x ;执行第四次,5,442xS S x 成立,输出 5.S。

2019年江苏省高考数学试卷以及答案解析

2019年江苏省高考数学试卷以及答案解析

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD 的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M ﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n ∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学答案解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【点评】本题考查交集及其运算,是基础题.2.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【点评】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.6.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题.8.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.9.【分析】推导出=AB×BC×DD1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.【点评】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题.11.【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【点评】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题.12.【分析】首先算出=,然后用、表示出、,结合•=6•得=,进一步可得结果.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:【点评】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.13.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.14.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【点评】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【分析】(1)由余弦定理得:cos B===,由此能求出c的值.(2)由=,利用正弦定理得2sin B=cos B,再由sin2B+cos2B=1,能求出sin B =,cos B=,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.【点评】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题.16.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF2的方程,与椭圆方程联立即可求得点E的坐标.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【点评】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明DF1∥BF2是解答该题的关键,是中档题.18.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【点评】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为﹣1,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2] ==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.20.【分析】(1)设等比数列{a n}的公比为q,然后根据a2a4=a5,a3﹣4a2+4a1=0列方程求解,在根据新定义判断即可;(2)求出b2,b3,b4猜想b n,然后用数学归纳法证明;(3)设{c n}的公比为q,将问题转化为,然后构造函数f(x)=,g(x)=,分别求解其最大值和最小值,最后解不等式,即可.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【点评】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.【分析】(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)==λ2﹣5λ+4,解方程f(λ)=0即可.【解答】解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.【点评】本题考查了矩阵的运算和特征值等基础知识,考查运算与求解能力,属基础题.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.【分析】(1)设极点为O,则由余弦定理可得,解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.【点评】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题.C.[选修4-5:不等式选讲](本小题满分0分)23.【分析】对|x|+|2x﹣1|去绝对值,然后分别解不等式即可.【解答】解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x<﹣,∴不等式的解集为{x|x<﹣或x>1}.【点评】本题考查了绝对值不等式的解法,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.【分析】(1)运用二项式定理,分别求得a2,a3,a4,结合组合数公式,解方程可得n 的值;(2)方法一、运用二项式定理,结合组合数公式求得a,b,计算可得所求值;方法二、由于a,b∈N*,求得(1﹣)5=a﹣b,再由平方差公式,计算可得所求值.【解答】解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C=,a3=C=,a4=C=,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,(1﹣)5=C+C(﹣)+C(﹣)2+C(﹣)3+C(﹣)4+C(﹣)5=C﹣C+C()2﹣C()3+C()4﹣C()5,由于a,b∈N*,可得(1﹣)5=a﹣b,可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.【点评】本题主要考查二项式定理、组合数公式的运用,考查运算能力和分析问题能力,属于中档题.25.【分析】(1)当n=1时,X的所有可能取值为1,,2,,由古典概率的公式,结合组合数可得所求值;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,分别讨论b,d的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X=)==;P(X=2)==;P(X=)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.【点评】本题考查随机变量的概率的分布,以及古典概率公式的运用,考查分类讨论思想方法,以及化简运算能力,属于难题.。

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则A B =I . 2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 3.如图是一个算法流程图,则输出的S 的值是 .4.函数276y x x =+-的定义域是 .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .8.已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 . 11.在平面直角坐标系xOy 中,点A 在曲线y lnx =上,且该曲线在点A 处的切线经过点(e -,1)(e -为自然对数的底数),则点A 的坐标是 . 12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC =u u u r u u u r u u u r u u u r g g ,则AB AC的值是 .13.已知tan23tan()4απα=-+,则sin(2)4πα+的值是.14.设()f x,()g x是定义在R上的两个周期函数,()f x的周期为4,()g x的周期为2,且()f x是奇函数.当(0x∈,2]时,2()1(1)f x x=--,(2),01,()1,12,2k x xg xx+<⎧⎪=⎨-<⎪⎩„„其中0k>.若在区间(0,9]上,关于x的方程()()f xg x=有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在ABC∆中,角A,B,C的对边分别为a,b,c.(1)若3a c=,2b=,2cos3B=,求c的值;(2)若sin cos2A Ba b=,求sin()2Bπ+的值.16.(14分)如图,在直三棱柱111ABC A B C-中,D,E分别为BC,AC的中点,AB BC=.求证:(1)11//A B平面1DEC;(2)1BE C E⊥.17.(14分)如图,在平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的焦点为1(1,0)F-,2(1,0)F.过2F作x轴的垂线l,在x轴的上方,1与圆2222:(1)4F x y a-+=交于点A,与椭圆C交于点D.连结1AF并延长交圆2F于点B,连结2BF交椭圆C于点E,连结1DF.已知152DF=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD=(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.19.(16分)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <„,1c =,且()f x 的极大值为M ,求证:427M „.20.(16分)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和.①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m „时,都有1k k k c b c +剟成立,求m 的最大值.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵3122A ⎡⎤=⎢⎥⎣⎦. (1)求2A ;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点(3,)4A π,B ,)2π,直线1的方程为sin()34πρθ+=.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分) 23.设x R ∈,解不等式|||21|2x x +->.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值. 25.(10分)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n n n n M A B C =U U .从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布; (2)对给定的正整数(3)n n …,求概率()P X n „(用n 表示).2019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则A B =I {1,6} . 【思路分析】直接利用交集运算得答案. 【解析】:{1A =-Q ,0,1,6},{|0B x x =>,}x R ∈,{1A B ∴=-I ,0,1,6}{|0x x >I ,}{1x R ∈=,6}.故答案为:{1,6}.【归纳与总结】本题考查交集及其运算,是基础题.2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 2 . 【思路分析】利用复数代数形式的乘除运算化简,再由实部为0求的a 值. 【解析】:(2)(1)(2)(2)a i i a a i ++=-++Q 的实部为0, 20a ∴-=,即2a =.故答案为:2.【归纳与总结】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 3.如图是一个算法流程图,则输出的S 的值是 5 .【思路分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解析】:模拟程序的运行,可得 1x =,0S = 0.5S =不满足条件4x …,执行循环体,2x =, 1.5S = 不满足条件4x …,执行循环体,3x =,3S = 不满足条件4x …,执行循环体,4x =,5S =此时,满足条件4x …,退出循环,输出S 的值为5. 故答案为:5.【归纳与总结】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.函数276y x x =+-的定义域是 [1-,7] .【思路分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解析】:由2760x x +-…,得2670x x --„,解得:17x -剟. ∴函数276y x x =+-[1-,7].故答案为:[1-,7].【归纳与总结】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 2 .【思路分析】先求出一组数据6,7,8,9,10的平均数,由此能求出该组数据的方差. 【解析】:一组数据6,7,8,9,10的平均数为:1(678910)85x =++++=,∴该组数据的方差为:2222221[(68)(78)(88)(98)(108)]25S =-+-+-+-+-=.故答案为:2.【归纳与总结】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 710.【思路分析】基本事件总数2510n C ==,选出的2名同学中至少有1名女同学包含的基本事件个数1123227m C C C =+=,由此能求出选出的2名同学中至少有1名女同学的概率. 【解析】:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数2510n C ==,选出的2名同学中至少有1名女同学包含的基本事件个数:1123227m C C C =+=,∴选出的2名同学中至少有1名女同学的概率是710m p n ==. 故答案为:710. 【归纳与总结】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是y = .【思路分析】把已知点的坐标代入双曲线方程,求得b ,则双曲线的渐近线方程可求.【解析】:Q 双曲线2221(0)y x b b-=>经过点(3,4),∴221631b-=,解得22b =,即b又1a =,∴该双曲线的渐近线方程是y =.故答案为:y =.【归纳与总结】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题. 8.已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 16 .【思路分析】设等差数列{}n a 的首项为1a ,公差为d ,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n 项和求得8S 的值. 【解析】:设等差数列{}n a 的首项为1a ,公差为d , 则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩. ∴818786(5)152162dS a ⨯=+=⨯-+⨯=.故答案为:16.【归纳与总结】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.9.如图,长方体1111ABCD A B C D-的体积是120,E为1CC的中点,则三棱锥E BCD-的体积是10 .【思路分析】推导出11111120ABCD A B C DV AB BC DD-=⨯⨯=,三棱锥E BCD-的体积:1111133212E BCD BCDV S CE BC DC CE AB BC DD-∆=⨯⨯=⨯⨯⨯⨯=⨯⨯⨯,由此能求出结果.【解析】:Q长方体1111ABCD A B C D-的体积是120,E为1CC的中点,∴11111120ABCD A B C DV AB BC DD-=⨯⨯=,∴三棱锥E BCD-的体积:13E BCD BCDV S CE-∆=⨯⨯1132BC DC CE=⨯⨯⨯⨯1112AB BC DD=⨯⨯⨯10=.故答案为:10.【归纳与总结】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.在平面直角坐标系xOy中,P是曲线4(0)y x xx=+>上的一个动点,则点P到直线0x y+=的距离的最小值是 4 .【思路分析】利用导数求平行于0x y+=的直线与曲线4(0)y x xx=+>的切点,再由点到直线的距离公式求点P到直线0x y+=的距离的最小值.【解析】:由4(0)y x xx=+>,得241yx'=-,设斜率为1-的直线与曲线4(0)y x xx=+>切于(x,4)xx+,由2411x-=-,解得002(0)x x=>.∴曲线4(0)y x xx=+>上,点(2,32)P到直线0x y+=的距离最小,最小值为|232|42+=. 故答案为:4. 【归纳与总结】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题. 11.在平面直角坐标系xOy 中,点A 在曲线y lnx =上,且该曲线在点A 处的切线经过点(e -,1)(e -为自然对数的底数),则点A 的坐标是 (,1)e . 【思路分析】设0(A x ,0)lnx ,利用导数求得曲线在A 处的切线方程,代入已知点的坐标求解0x 即可.【解析】:设0(A x ,0)lnx ,由y lnx =,得1y x'=, ∴001|x x y x ='=,则该曲线在点A 处的切线方程为0001()y lnx x x x -=-, Q 切线经过点(,1)e --,∴0011elnx x --=--, 即00elnx x =,则0x e =. A ∴点坐标为(,1)e . 故答案为:(,1)e . 【归纳与总结】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题. 12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC =u u u r u u u r u u u r u u u r g g ,则ABAC的值是 3 .【思路分析】首先算出12AO AD =u u u r u u u r,然后用AB u u u r 、AC u u u r 表示出AO u u u r 、EC u u u r ,结合6AB AC AO EC =u u u r u u u r u u u r u u u r g g 得221322AB AC =u u ur u u u r ,进一步可得结果.【解析】:设()2AO AD AB AC λλ==+u u u r u u u r u u u r u u u r,()AO AE EO AE EC AE AC AE μμ=+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r1(1)3AE AC AB AC μμμμ-=-+=+u u u r u u u r u u u r u u u r∴1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,∴1214λμ⎧=⎪⎪⎨⎪=⎪⎩,∴11()24AO AD AB AC ==+u u u r u u u r u u u r u u u r ,13EC AC AE AB AC =-=-+u u u r u u u r u u u r u u ur u u u r ,1166()()43AO EC AB AC AB AC =⨯+⨯-+u u u r u u u r u u u r u u u r u u ur u u u r g22312()233AB AB AC AC =-++u u ur u u u r u u u r u u u r g 221322AB AB AC AC =-++u u ur u u u r u u u r u u u r g ,Q 221322AB AC AB AB AC AC =-++u u u r u u u r u u ur u u u r u u u r u u u r g g ,∴221322AB AC =u u ur u u u r ,∴223AB AC =u u u r u u u r ,∴AB AC【归纳与总结】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是. 【思路分析】由已知求得tan α,分类利用万能公式求得sin 2α,cos2α的值,展开两角和的正弦求sin(2)4πα+的值.【解析】:由tan 23tan()4απα=-+,得tan 23tan tan41tan tan4απαπα=-+-, ∴tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-.当tan 2α=时,22tan 4sin 215tan ααα==+,2213cos2tan αα-==-+, 43sin(2)sin 2cos cos2sin 444525210πππααα∴+=+=⨯-⨯=; 当1tan 3α=-时,22tan 3sin 215tan ααα==-+,2214cos215tan tan ααα-==+, 34sin(2)sin 2cos cos2sin 44455πππααα∴+=+=-. 综上,sin(2)4πα+..【归纳与总结】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.14.设()f x ,()gx 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0x ∈,2]时,()f x (2),01,()1,12,2k x x g x x +<⎧⎪=⎨-<⎪⎩„„其中0k >.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 1[3,. 【思路分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解析】:作出函数()f x 与()g x 的图象如图,由图可知,函数()f x 与1()(122g x x =-<„,34x <„,56x <„,78)x <„仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1)f x x =--,(0x ∈,2]与()(2)g x k x =+,(0x ∈,1]的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为1211k =+,解得0)22k k >,Q 两点(2,0)-,(1,1)连线的斜率13k =, ∴1322k <„.即k 的取值范围为1[3)22.故答案为:1[3)22.【归纳与总结】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(14分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,2b ,2cos 3B =,求c 的值;(2)若sin cos 2A Ba b=,求sin()2B π+的值. 【思路分析】(1)由余弦定理得:222221022cos 263a cbc B ac c +--===,由此能求出c 的值. (2)由sin cos 2A Ba b =,利用正弦定理得2sin cos B B =,再由22sin cos 1B B +=,能求出5sin B =,25cos B =,由此利用诱导公式能求出sin()2B π+的值. 【解析】:(1)Q 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .3a c =,2b =,2cos 3B =,∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得3c =. (2)Q sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=,22sin cos 1B B +=Q ,5sin B ∴=,25cos B =, 25sin()cos 2B B π∴+==. 【归纳与总结】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题. 16.(14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ; (2)1BE C E ⊥.【思路分析】(1)推导出//DE AB ,11//AB A B ,从而11//DE A B ,由此能证明11//A B 平面1DEC .(2)推导出1BE AA ⊥,BE AC ⊥,从而BE ⊥平面11ACC A ,由此能证明1BE C E ⊥. 【解答】证明:(1)Q 在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点, //DE AB ∴,11//AB A B ,11//DE A B ∴, DE ⊂Q 平面1DEC ,11A B ⊂/平面1DEC , 11//A B ∴平面1DEC . 解:(2)Q 在直三棱柱111ABC A B C -中,E 是AC 的中点,AB BC =. 1BE AA ∴⊥,BE AC ⊥,又1AA AC A =I ,BE ∴⊥平面11ACC A , 1C E ⊂Q 平面11ACC A ,1BE C E ∴⊥.【归纳与总结】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.(14分)如图,在平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的焦点为1(1,0)F-,2(1,0)F.过2F作x轴的垂线l,在x轴的上方,1与圆2222:(1)4F x y a-+=交于点A,与椭圆C交于点D.连结1AF并延长交圆2F于点B,连结2BF交椭圆C于点E,连结1DF.已知152DF=.(1)求椭圆C的标准方程;(2)求点E的坐标.【思路分析】(1)由题意得到12//F D BF,然后求AD,再由152AD DF==求得a,则椭圆方程可求;(2)求出D的坐标,得到2133224BF DFk k===,写出2BF的方程,与椭圆方程联立即可求得点E的坐标.【解析】:(1)如图,22F A F B=Q,22F AB F BA∴∠=∠,22212F A a F D DA F D F D==+=+Q,1AD F D∴=,则11DAF DF A∠=∠,12DF A F BA∴∠=∠,则12//F D BF,1c=Q,221b a∴=-,则椭圆方程为222211x ya a+=-,取1x=,得21Daya-=,则22112a aAD aa a-+=-=.又152DF=,∴2152aa+=,解得2(0)a a=>.∴椭圆C的标准方程为22143x y+=;(2)由(1)知,3(1,)2D,1(1,0)F-,∴2133224BF DFk k===,则23:(1)4BF y x=-,联立223(1)4143y xx y⎧=-⎪⎪⎨⎪+=⎪⎩,得22118390x x--=.解得11x=-或2137x=(舍).∴132y =-.即点E 的坐标为3(1,)2--.【归纳与总结】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明12//DF BF 是解答该题的关键,是中档题. 18.(16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.【思路分析】(1)设BD 与圆O 交于M ,连接AM ,以C 为坐标原点,l 为x 轴,建立直角坐标系,则(0,6)A -,(8,12)B --,(8,0)D -设点1(P x ,0),PB AB ⊥,运用两直线垂直的条件:斜率之积为1-,求得P 的坐标,可得所求值;(2)当QA AB ⊥时,QA 上的所有点到原点O 的距离不小于圆的半径,设此时2(Q x ,0),运用两直线垂直的条件:斜率之积为1-,求得Q 的坐标,即可得到结论;(3)设(,0)P a ,(,0)Q b ,则17a -„,92b -…,结合条件,可得b 的最小值,由两点的距离公式,计算可得PQ . 【解析】:设BD 与圆O 交于M ,连接AM , AB 为圆O 的直径,可得AM BM ⊥, 即有6DM AC ==,6BM =,8AM =,以C 为坐标原点,l 为x 轴,建立直角坐标系,则(0,6)A -,(8,12)B --,(8,0)D - (1)设点1(P x ,0),PB AB ⊥, 则1BP AB k k =-g , 即10(12)6(12)1(8)0(8)x -----=-----g ,解得117x=-,所以(17,0)P-,22(178)(012)15PB=-+++=;(2)当QA AB⊥时,QA上的所有点到原点O的距离不小于圆的半径,设此时2(Q x,0),则1QA ABk k=-g,即20(6)6(12)100(8)x-----=----g,解得292x=-,9(2Q-,0),由91782-<-<-,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设(,0)P a,(,0)Q b,则17a-„,92b-…,22(8)144225PB a=++…,2236225QA b=+…,则321b…,当d最小时,17321PQ=+.【归纳与总结】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为1-,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.(16分)设函数()()()()f x x a x b x c=---,a,b,c R∈,()f x'为()f x的导函数.(1)若a b c==,f(4)8=,求a的值;(2)若a b≠,b c=,且()f x和()f x'的零点均在集合{3-,1,3}中,求()f x的极小值;(3)若0a=,01b<„,1c=,且()f x的极大值为M,求证:427M„.【思路分析】(1)由a b c==,可得3()()f x x a=-,根据f(4)8=,可得3(4)8a-=,解得a.(2)a b≠,b c=,设2()()()f x x a x b=--.令2()()()0f x x a x b=--=,解得x a=,或x b=.()()(32)f x x b x b a'=---.令()0f x'=,解得x b=,或23a bx+=.根据()f x和()f x'的零点均在集合{3A=-,1,3}中,通过分类讨论可得:只有3a=,3b=-,可得263133a bA+-==∈,可得:2()(3)(3)f x x x=-+.利用导数研究其单调性可得1x=时,函数()f x取得极小值.(3)0a=,01b<„,1c=,()()(1)f x x x b x=--.2()3(22)f x x b x b'=-++.△0>.令2()3(22)0f x x b x b'=-++=.解得:21111(0,]3b b bx+--+,2211b b bx++-+.12x x<,可得1x x=时,()f x取得极大值为M,通过计算化简即可证明结论.【解析】:(1)a b c==Q,3()()f x x a∴=-,fQ(4)8=,3(4)8a∴-=,42a∴-=,解得2a=.(2)a b≠,b c=,设2()()()f x x a x b=--.令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---.令()0f x '=,解得x b =,或23a bx +=.()f x Q 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去.1a =,3b =-,则2231333a b A +-==-∉,舍去.3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去.1a =,3b =,则2533a b A +=∉,舍去.3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈,可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <„,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.△22214(1)124444()332b b b b b =+-=-+=-+….令2()3(22)0f x x b x b '=-++=.解得:11(0,]3x =,2x =.12x x <,12223b x x ++=,123b x x =, 可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=Q ,可得:2111[(22)]3x b x b =+-,1111()()(1)M f x x x b x ==--222211111111(22)1()()()()[(21)2]33b x b x b x x x b x b x b x b +-=--=--=--+2222111(22)11[(21)2][(222)]339b x b b b x b b b x b b +-=--+=-+-++g , 22132222()022b b b -+-=---<Q ,M ∴在1(0x ∈,1]3上单调递减,2221252524()932727b b b b M b b -+-+-∴++=剟.427M ∴„. 【归纳与总结】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题. 20.(16分)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和.①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m „时,都有1k k k c b c +剟成立,求m 的最大值. 【思路分析】(1)设等比数列{}n a 的公比为q ,然后根据245a a a =,321440a a a -+=列方程求解,在根据新定义判断即可;(2)求出2b ,3b ,4b 猜想n b ,然后用数学归纳法证明;(3)设{}n c 的公比为q ,将问题转化为[][]1max min lnk lnk k k -„,然后构造函数()(3)lnxf x x x=…,()(3)1lnxg x x x =-„,分别求解其最大值和最小值,最后解不等式331ln lnmm -„,即可. 【解析】:(1)设等比数列{}n a 的公比为q ,则 由245a a a =,321440a a a -+=,得244112111440a q a qa q a q a ⎧=⎪⎨-+=⎪⎩∴112a q =⎧⎨=⎩, ∴数列{}n a 首项为1且公比为正数即数列{}n a 为“M -数列”;(2)①11b =Q ,1122n n n S b b +=-,∴当1n =时,11121122S b b b ==-,22b ∴=, 当2n =时,212231122S b b b b ==-+,33b ∴=,当3n =时,3123341122S b b b b b ==-++,44b ∴=, 猜想n b n =,下面用数学归纳法证明; ()i 当1n =时,11b =,满足n b n =,()ii 假设n k =时,结论成立,即k b k =,则1n k =+时, 由1122k k k S b b +=-,得 1(1)2221(1)222k k k k k k k k b S b k k k S b k++===++--gg , 故1n k =+时结论成立,根据()()i ii 可知,n b n =对任意的*n N ∈都成立.故数列{}n b 的通项公式为n b n =; ②设{}n c 的公比为q ,存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m „时,都有1k k k c b c +剟成立,即1k kq k -剟对k m „恒成立,当1k =时,1q …,当2k =2,当3k …,两边取对数可得,1lnk lnkk k -剟对k m „有解, 即[][]1max min lnk lnk k k -„,令()(3)lnx f x x x =…,则21()lnxf x x -'=, 当3x …时,()0f x '<,此时()f x 递增,∴当3k …时,3[]3max lnk ln k =, 令()(3)1lnx g x x x =-„,则211()lnxx g x x --'=, 令1()1x lnx x φ=--,则21()xx xφ-'=,当3x …时,()0x φ'<,即()0g x '<, ()g x ∴在[3,)+∞上单调递减,即3k …时,[]11min lnk lnmk m =--,则 331ln lnmm -„, 下面求解不等式331ln lnmm -„, 化简,得3(1)30lnm m ln --„,令()3(1)3h m lnm m ln =--,则3()3h m ln m'=-,由3k …得3m …,()0h m '<,()h m ∴在[3,)+∞上单调递减,又由于h (5)3543125810ln ln ln ln =-=->,h (6)36532162430ln ln ln ln =-=-<, ∴存在0(5,6)m ∈使得0()0h m =,m ∴的最大值为5,此时13[3q ∈,145]. 【归纳与总结】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵3122A ⎡⎤=⎢⎥⎣⎦. (1)求2A ;(2)求矩阵A 的特征值.【思路分析】(1)根据矩阵A 直接求解2A 即可;(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--,解方程()0f λ=即可.【解析】:(1)3122A ⎡⎤=⎢⎥⎣⎦Q231312222A ⎡⎤⎡⎤∴=⎢⎥⎢⎥⎣⎦⎣⎦ 115106⎡⎤=⎢⎥⎣⎦(2)矩阵A 的特征多项式为:231()5422f λλλλλ--==-+--,令()0f λ=,则由方程2540λλ-+=,得1λ=或4λ=,∴矩阵A 的特征值为1或4.【归纳与总结】本题考查了矩阵的运算和特征值等基础知识,考查运算与求解能力,属基础题.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点(3,)4A π,B ,)2π,直线1的方程为sin()34πρθ+=.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.【思路分析】(1)设极点为O ,则由余弦定理可得2222?cos AB OA OB OA OB AOB =+-∠,解出AB ;(2)根据直线l 的方程和点B 的坐标可直接计算B 到直线l 的距离. 【解析】:(1)设极点为O ,则在OAB ∆中,由余弦定理,得 2222?cos AB OA OB OA OB AOB =+-∠,AB ∴=(2)由直线1的方程sin()34πρθ+=,知直线l过)2π,倾斜角为34π,又B )2π,∴点B 到直线l的距离为3?()242sin ππ-=.【归纳与总结】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题. C.[选修4-5:不等式选讲](本小题满分10分) 23.设x R ∈,解不等式|||21|2x x +->.【思路分析】对|||21|x x +-去绝对值,然后分别解不等式即可. 【解析】:131,21|||21|1,0231,0x x x x x x x x ⎧->⎪⎪⎪+-=-+⎨⎪-+<⎪⎪⎩剟, |||21|2x x +->Q ,∴31212x x ->⎧⎪⎨>⎪⎩或12102x x -+>⎧⎪⎨⎪⎩剟或3120x x -+>⎧⎨<⎩,1x ∴>或x ∈∅或13x <-,∴不等式的解集为1{|3x x <-或1}x >.【归纳与总结】本题考查了绝对值不等式的解法,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值. 【思路分析】(1)运用二项式定理,分别求得2a ,3a ,4a ,结合组合数公式,解方程可得n 的值;(2)方法一、运用二项式定理,结合组合数公式求得a ,b ,计算可得所求值; 方法二、由于a ,*b N ∈,求得5(1a =-【解析】:(1)由0122(1)n n n n n n n x C C x C x C x +=+++⋯+,4n …,可得22(1)2n n n a C -==,33(1)(2)6n n n n a C --==,44(1)(2)(3)24n n n n n a C ---==, 23242a a a =,可得2(1)(2)(1)(1)(2)(3)()26224n n n n n n n n n ------=g g, 解得5n =;(2)方法一、502233445555555(1C C C C C C a +=++++=+ 由于a ,*b N ∈,可得024555391304576a C C C =++=++=,1355553944b C C C =++=, 可得222237634432a b -=-⨯=-;方法二、502233445555555(1C C C C C C a +=++++=+50122334455555555(1(((((C C C C C C -=+++++02233445555555C C C C C C =-+-+-,由于a ,*b N ∈,可得5(1a =-可得225553(1(1(13)32a b -=+-=-=-g .【归纳与总结】本题主要考查二项式定理、组合数公式的运用,考查运算能力和分析问题能力,属于中档题. 25.(10分)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n n n n M A B C =U U .从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布; (2)对给定的正整数(3)n n …,求概率()P X n „(用n 表示). 【思路分析】(1)当1n =时,X 的所有可能取值为12,由古典概率的公式,结合组合数可得所求值;(2)设(,)A a b 和(,)B c d 是从n M 中取出的两个点,因为()1()P X n P X n =->„,所以只需考虑X n >的情况,分别讨论b ,d 的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解析】:(1)当1n =时,X 的所有可能取值为1,2,X 的概率分布为2677(1)15P X C ===;2644(15P X C ===;2622(2)15P X C ===;2622(5)15P X C ===; (2)设(,)A a b 和(,)B c d 是从n M 中取出的两个点,因为()1()P X n P X n =->„,所以只需考虑X n >的情况, ①若b d =,则AB n „,不存在X n >的取法;②若0b =,1d =,则22()11AB a c n =-++„,所以X n >当且仅当21AB n =+, 此时0a =.c n =或a n =,0c =,有两种情况;③若0b =,2d =,则22()44AB a c n =-++„,所以X n >当且仅当24AB n =+, 此时0a =.c n =或a n =,0c =,有两种情况;④若1b =,2d =,则22()11AB a c n =-++„,所以X n >当且仅当21AB n =+, 此时0a =.c n =或a n =,0c =,有两种情况; 综上可得当X n >,X 的所有值是21n +或24n +,且22244(1)n P X n C +=+=,22242(4)n P X n C +=+=,可得222246()1(1)(4)1n P X n P X n P X n C+=-=+-=+=-„.【归纳与总结】本题考查随机变量的概率的分布,以及古典概率公式的运用,考查分类讨论思想方法,以及化简运算能力,属于难题.————————————————————————————————————《高中数学教研微信系列群》简介:目前有6个群,共2000多优秀、特、高级教师,省、市、区县教研员、教辅公司数学编辑、报刊杂志高中数学编辑等汇聚而成,是一个围绕高中数学教学研究展开教研活动的微信群.宗旨:脚踏实地、不口号、不花哨、接地气的高中数学教研! 特别说明:1.本系列群只探讨高中数学教学研究、高中数学试题研究等相关话题;2.由于本群是集“研究—写作—发表(出版)”于一体的“桥梁”,涉及业务合作,特强调真诚交流,入群后立即群名片: 教师格式:省+市+真实姓名,如:四川成都张三 编辑格式:公司或者刊物(简写)+真实姓名欢迎各位老师邀请你身边热爱高中数学教研(不喜欢研究的谢绝)的教师好友(学生谢绝)加入,大家共同研究,共同提高! 群主二维码:见右图————————————————————————————————————。

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则AB = .2.(5分)已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 3.(5分)如图是一个算法流程图,则输出的S 的值是 .4.(5分)函数y =的定义域是 .5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .7.(5分)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .8.(5分)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 .9.(5分)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 .10.(5分)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .11.(5分)在平面直角坐标系xOy 中,点A 在曲线y lnx =上,且该曲线在点A 处的切线经过点(e -,1)(e -为自然对数的底数),则点A 的坐标是 .12.(5分)如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC =,则ABAC的值是 .13.(5分)已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 . 14.(5分)设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0x ∈,2]时,()f x ,(2),01,()1,12,2k x x g x x +<⎧⎪=⎨-<⎪⎩……其中0k >.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c . (1)若3a c =,b 2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 16.(14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ;(2)1BE C E ⊥.17.(14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.19.(16分)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M …. 20.(16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,求m 的最大值.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分) 21.(10分)已知矩阵3122A ⎡⎤=⎢⎥⎣⎦. (1)求2A ;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点(3,)4A π,B ,)2π,直线1的方程为sin()34πρθ+=.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分0分) 23.设x R ∈,解不等式|||21|2x x +->.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a +=+a ,*b N ∈,求223a b -的值.25.(10分)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n n n n M A B C =.从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布;(2)对给定的正整数(3)n n …,求概率()P X n …(用n 表示).2019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则A B = {1,6} .【解答】解:{1A =-,0,1,6},{|0B x x =>,}x R ∈,{1AB ∴=-,0,1,6}{|0x x >,}{1x R ∈=,6}.故答案为:{1,6}.2.(5分)已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 2 . 【解答】解:(2)(1)(2)(2)a i i a a i ++=-++的实部为0, 20a ∴-=,即2a =.故答案为:2.3.(5分)如图是一个算法流程图,则输出的S 的值是 5 .【解答】解:模拟程序的运行,可得 1x =,0S = 0.5S =不满足条件4x …,执行循环体,2x =, 1.5S = 不满足条件4x …,执行循环体,3x =,3S = 不满足条件4x …,执行循环体,4x =,5S = 此时,满足条件4x …,退出循环,输出S 的值为5. 故答案为:5.4.(5分)函数y =的定义域是 [1-,7] . 【解答】解:由2760x x +-…,得2670x x --…, 解得:17x -剟.∴函数y =[1-,7].故答案为:[1-,7].5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是 2 . 【解答】解:一组数据6,7,8,9,10的平均数为: 1(678910)85x =++++=,∴该组数据的方差为:2222221[(68)(78)(88)(98)(108)]25S =-+-+-+-+-=.故答案为:2.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是710. 【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务, 基本事件总数2510n C ==,选出的2名同学中至少有1名女同学包含的基本事件个数:1123227m C C C =+=,∴选出的2名同学中至少有1名女同学的概率是710m p n ==. 故答案为:710. 7.(5分)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 y = .【解答】解:双曲线2221(0)y x b b-=>经过点(3,4),∴221631b-=,解得22b =,即b =.又1a =,∴该双曲线的渐近线方程是y =.故答案为:y =.8.(5分)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 16 .【解答】解:设等差数列{}n a 的首项为1a ,公差为d ,则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩. ∴818786(5)152162dS a ⨯=+=⨯-+⨯=. 故答案为:16.9.(5分)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 10 .【解答】解:长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点, ∴11111120ABCD A B C D V AB BC DD -=⨯⨯=, ∴三棱锥E BCD -的体积:13E BCD BCD V S CE -∆=⨯⨯1132BC DC CE =⨯⨯⨯⨯ 1112AB BC DD =⨯⨯⨯ 10=.故答案为:10.10.(5分)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 4 .【解答】解:由4(0)y x x x =+>,得241y x'=-,设斜率为1-的直线与曲线4(0)y x x x=+>切于0(x ,004)x x +,由20411x -=-,解得000)x x =>. ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4=.故答案为:4.11.(5分)在平面直角坐标系xOy 中,点A 在曲线y lnx =上,且该曲线在点A 处的切线经过点(e -,1)(e -为自然对数的底数),则点A 的坐标是 (,1)e . 【解答】解:设0(A x ,0)lnx ,由y lnx =,得1y x'=, ∴001|x x y x ='=,则该曲线在点A 处的切线方程为0001()y lnx x x x -=-, 切线经过点(,1)e --,∴0011elnx x --=--, 即00elnx x =,则0x e =. A ∴点坐标为(,1)e .故答案为:(,1)e .12.(5分)如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC =,则ABAC【解答】解:设()2AO AD AB AC λλ==+,()AO AE EO AE EC AE AC AE μμ=+=+=+-1(1)3AE AC AB AC μμμμ-=-+=+∴1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,∴1214λμ⎧=⎪⎪⎨⎪=⎪⎩,∴11()24AO AD AB AC ==+, 13EC AC AE AB AC =-=-+,1166()()43AO EC AB AC AB AC =⨯+⨯-+22312()233AB AB AC AC =-++ 221322AB AB AC AC =-++,221322AB AC AB AB AC AC =-++,∴221322ABAC =,∴223AB AC=, ∴ABAC13.(5分)已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 . 【解答】解:由tan 23tan()4απα=-+,得tan 23tan tan41tan tan4απαπα=-+-, ∴tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-.当tan 2α=时,22tan 4sin 215tan ααα==+,2213cos215tan tan ααα-==-+,43sin(2)sin 2cos cos2sin 44455πππααα∴+=+=-=; 当1tan 3α=-时,22tan 3sin 215tan ααα==-+,2214cos215tan tan ααα-==+, 34sin(2)sin 2cos cos2sin 44455πππααα∴+=+=-. 综上,sin(2)4πα+的值是10.. 14.(5分)设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0x ∈,2]时,()f x ,(2),01,()1,12,2k x x g x x +<⎧⎪=⎨-<⎪⎩……其中0k >.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是.【解答】解:作出函数()f x 与()g x 的图象如图,由图可知,函数()f x 与1()(122g x x =-<…,34x <…,56x <…,78)x <…仅有2个实数根;要使关于x 的方程()()f x gx =有8个不同的实数根,则()f x ,(0x ∈,2]与()(2)g x k x =+,(0x ∈,1]的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k >,两点(2,0)-,(1,1)连线的斜率13k =,∴13k <…. 即k的取值范围为1[3.故答案为:1[3. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b 2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 【解答】解:(1)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .3a c =,b =,2cos 3B =, ∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得c =. (2)sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=,22sin cos 1B B +=,sin B ∴=,cos Bsin()cos 2B B π∴+==. 16.(14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ; (2)1BE C E ⊥.【解答】证明:(1)在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点, //DE AB ∴,11//AB A B ,11//DE A B ∴,DE ⊂平面1DEC ,11A B ⊂/平面1DEC ,11//A B ∴平面1DEC .解:(2)在直三棱柱111ABC A B C -中,E 是AC 的中点,AB BC =. 1BE AA ∴⊥,BE AC ⊥,又1AA AC A =,BE ∴⊥平面11ACC A ,1C E ⊂平面11ACC A ,1BE C E ∴⊥.17.(14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【解答】解:(1)如图,22F A F B =,22F AB F BA ∴∠=∠,22212F A a F D DA F D F D ==+=+,1AD F D ∴=,则11DAF DF A ∠=∠, 12DF A F BA ∴∠=∠,则12//F D BF ,1c =,221b a ∴=-,则椭圆方程为222211x y a a +=-, 取1x =,得21D a y a -=,则22112a a AD a a a -+=-=. 又152DF =,∴2152a a +=,解得2(0)a a =>.∴椭圆C 的标准方程为22143x y +=;(2)由(1)知,3(1,)2D ,1(1,0)F -,∴2133224BF DF k k ===,则23:(1)4BF y x =-, 联立223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得22118390x x --=. 解得11x =-或2137x =(舍). ∴132y =-.即点E 的坐标为3(1,)2--.18.(16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.【解答】解:设BD 与圆O 交于M ,连接AM ,AB 为圆O 的直径,可得AM BM ⊥,即有6DM AC ==,6BM =,8AM =,以C 为坐标原点,l 为x 轴,建立直角坐标系,则(0,6)A -,(8,12)B --,(8,0)D - (1)设点1(P x ,0),PB AB ⊥, 则1BP AB k k =-, 即10(12)6(12)1(8)0(8)x -----=-----,解得117x =-,所以(17,0)P -,15PB ==;(2)当QA AB ⊥时,QA 上的所有点到原点O 的距离不小于圆的半径,设此时2(Q x ,0), 则1QA AB k k =-,即20(6)6(12)100(8)x -----=----,解得292x =-,9(2Q -,0),由91782-<-<-,在此范围内,不能满足PB ,QA 上所有点到O 的距离不小于圆的半径,所以P ,Q 中不能有点选在D 点; (3)设(,0)P a ,(,0)Q b ,则17a -…,92b -…,22(8)144225PB a =++…, 2236225QA b =+…,则b …d 最小时,17PQ =+.19.(16分)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M …. 【解答】解:(1)a b c ==,3()()f x x a ∴=-,f (4)8=,3(4)8a ∴-=,42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---. 令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+.()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <…,1c =,()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.△22214(1)124444()332b b b b b =+-=-+=-+….令2()3(22)0f x x b x b '=-++=.解得:11(0,]3x =,2x =.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,可得:2111[(22)]3x b x b =+-,1111()()(1)M f x x x b x ==--222211111111(22)1()()()()[(21)2]33b x b x b x x x b x b x b x b +-=--=--=--+2222111(22)11[(21)2][(222)]339b x b b b x b b b x b b +-=--+=-+-++, 22132222()022b b b -+-=---<,M ∴在1(0x ∈,1]3上单调递减,2221252524()932727b b b b M b b -+-+-∴++=剟. 427M ∴…. 20.(16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,求m 的最大值.【解答】解:(1)设等比数列{}n a 的公比为q ,则 由245a a a =,321440a a a -+=,得244112111440a q a qa q a q a ⎧=⎪⎨-+=⎪⎩∴112a q =⎧⎨=⎩, ∴数列{}n a 首项为1且公比为正数即数列{}n a 为“M -数列”; (2)①11b =,1122n n n S b b +=-, ∴当1n =时,11121122S b b b ==-,22b ∴=, 当2n =时,212231122S b b b b ==-+,33b ∴=,当3n =时,3123341122S b b b b b ==-++,44b ∴=, 猜想n b n =,下面用数学归纳法证明;()i 当1n =时,11b =,满足n b n =,()ii 假设n k =时,结论成立,即k b k =,则1n k =+时,由1122k k k S b b +=-,得 1(1)2221(1)222k k k k k k k kb S b k k k S b k++===++--, 故1n k =+时结论成立,根据()()i ii 可知,n b n =对任意的*n N ∈都成立. 故数列{}n b 的通项公式为n b n =; ②设{}n c 的公比为q ,存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k kc b c +剟成立,即1k kq k -剟对k m …恒成立,当1k =时,1q …,当2k =2, 当3k …,两边取对数可得,1lnk lnkk k -剟对k m …有解, 即[][]1max min lnk lnkk k -…,令()(3)lnx f x x x =…,则21()lnxf x x-'=, 当3x …时,()0f x '<,此时()f x 递增, ∴当3k …时,3[]3max lnk ln k =, 令()(3)1lnxg x x x =-…,则211()lnx x g x x --'=, 令1()1x lnx x φ=--,则21()x x xφ-'=, 当3x …时,()0x φ'<,即()0g x '<,()g x ∴在[3,)+∞上单调递减,即3k …时,[]11min lnk lnmk m =--,则 331ln lnm m -…, 下面求解不等式331ln lnmm -…, 化简,得3(1)30lnm m ln --…, 令()3(1)3h m lnm m ln =--,则3()3h m ln m'=-, 由3k …得3m …,()0h m '<,()h m ∴在[3,)+∞上单调递减,又由于h (5)3543125810ln ln ln ln =-=->,h (6)36532162430ln ln ln ln =-=-<, ∴存在0(5,6)m ∈使得0()0h m =,m ∴的最大值为5,此时13[3q ∈,145].【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分) 21.(10分)已知矩阵3122A ⎡⎤=⎢⎥⎣⎦. (1)求2A ;(2)求矩阵A 的特征值. 【解答】解:(1)3122A ⎡⎤=⎢⎥⎣⎦231312222A ⎡⎤⎡⎤∴=⎢⎥⎢⎥⎣⎦⎣⎦ 115106⎡⎤=⎢⎥⎣⎦(2)矩阵A 的特征多项式为: 231()5422f λλλλλ--==-+--,令()0f λ=,则由方程2540λλ-+=,得1λ=或4λ=,∴矩阵A 的特征值为1或4.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点(3,)4A π,B ,)2π,直线1的方程为sin()34πρθ+=.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.【解答】解:(1)设极点为O ,则在OAB ∆中,由余弦定理,得2222?cos AB OA OB OA OB AOB =+-∠,AB ∴= (2)由直线1的方程sin()34πρθ+=,知直线l过)2π,倾斜角为34π,又B )2π,∴点B 到直线l的距离为3?()242sin ππ-=. C.[选修4-5:不等式选讲](本小题满分0分) 23.设x R ∈,解不等式|||21|2x x +->. 【解答】解:131,21|||21|1,0231,0x x x x x x x x ⎧->⎪⎪⎪+-=-+⎨⎪-+<⎪⎪⎩剟,|||21|2x x +->,∴31212x x ->⎧⎪⎨>⎪⎩或12102x x -+>⎧⎪⎨⎪⎩剟或3120x x -+>⎧⎨<⎩, 1x ∴>或x ∈∅或13x <-,∴不等式的解集为1{|3x x <-或1}x >.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a +=+a ,*b N ∈,求223a b -的值.【解答】解:(1)由0122(1)n n nn n n n x C C x C x C x +=+++⋯+,4n …,可得22(1)2n n n a C -==,33(1)(2)6n n n n a C --==,44(1)(2)(3)24n n n n n a C ---==, 23242a a a =,可得2(1)(2)(1)(1)(2)(3)()26224n n n n nn n n n ------=,解得5n =;(2)方法一、502233445555555(1C C C C C C a =++++=+ 由于a ,*b N ∈,可得024555391304576a C C C =++=++=,1355553944b C C C =++=, 可得222237634432a b-=-⨯=-;方法二、502233445555555(1C C C CC C a +=++++=+50122334455555555(1(((((C C C C CC -=+++++02233445555555C CC C C C =-+-+-,由于a ,*bN ∈,可得5(1a -=-, 可得225553(1(13)(13)32a b -=+-=-=-.25.(10分)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n n n n M A B C =.从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布;(2)对给定的正整数(3)n n …,求概率()P X n …(用n 表示). 【解答】解:(1)当1n =时,X 的所有可能取值为1,2,X 的概率分布为2677(1)15P X C ===;2644(15P X C ===; 2622(2)15P X C ===;2622(15P X C ===; (2)设(,)A a b 和(,)B c d 是从n M 中取出的两个点, 因为()1()P X n P X n =->…,所以只需考虑X n >的情况, ①若b d =,则AB n …,不存在X n >的取法;②若0b =,1d =,则AB ,所以X n >当且仅当AB = 此时0a =.c n =或a n =,0c =,有两种情况;③若0b =,2d =,则AB X n >当且仅当AB 此时0a =.c n =或a n =,0c =,有两种情况;④若1b =,2d =,则AB =X n >当且仅当AB = 此时0a =.c n =或a n =,0c =,有两种情况; 综上可得当X n >,X且2244(n P X C +==,2242(n P X C +==,可得2246()1((1n P X n P X P X C+=-=-==-….。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,二、1.(5分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.(5分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.3.(5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.(5分)函数f(x)=的定义域为.6.(5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.7.(5分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.8.(5分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f (x)=,则f(f(15))的值为.10.(5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(5分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.(5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A 的横坐标为.13.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.14.(5分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.16.(14分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.17.(14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P 为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.19.(16分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.20.(16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s >i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).2018年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B={1,8} .【分析】直接利用交集运算得答案.【解答】解:∵A={0,1,2,8},B={﹣1,1,6,8},∴A∩B={0,1,2,8}∩{﹣1,1,6,8}={1,8},故答案为:{1,8}.【点评】本题考查交集及其运算,是基础的计算题.2.(5分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为2.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由i•z=1+2i,得z=,∴z的实部为2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【分析】根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为×(89+89+90+91+91)=90.故答案为:90.【点评】本题考查了利用茎叶图计算平均数的问题,是基础题.4.(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.【点评】本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法.5.(5分)函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).【点评】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.6.(5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为0.3.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故答案为:0.3【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.7.(5分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【分析】根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.【点评】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.8.(5分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f (x)=,则f(f(15))的值为.【分析】根据函数的周期性,进行转化求解即可.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:【点评】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.10.(5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【分析】求出多面体中的四边形的面积,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.11.(5分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.(5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A 的横坐标为3.【分析】设A(a,2a),a>0,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合=0求得a值得答案.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.【点评】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.13.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.【点评】本题主要考查基本不等式的应用,利用1的代换结合基本不等式是解决本题的关键.14.(5分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为27.【分析】采用列举法,验证n=26,n=27即可.【解答】解:利用列举法可得:S26=,a27=43,⇒12a27=516,不符合题意.S27==546,28=45⇒1228=540,符合题意,故答案为:27.【点评】本题考查了集合、数列的求和,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【分析】(1)由⇒AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,由AB1⊥B1C1⇒AB1⊥BC⇒AB1⊥面A1BC,⇒平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.16.(14分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【分析】(1)由已知结合平方关系求得sinα,cosα的值,再由倍角公式得cos2α的值;(2)由(1)求得tan2α,再由cos(α+β)=﹣求得tan(α+β),利用tan(α﹣β)=tan[2α﹣(α+β)],展开两角差的正切求解.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.17.(14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【分析】(1)根据图形计算矩形ABCD和△CDP的面积,求出sinθ的取值范围;(2)根据题意求出年总产值y的解析式,构造函数f(θ),利用导数求f(θ)的最大值,即可得出θ为何值时年总产值最大.=(40sinθ+10)•80cosθ【解答】解:(1)S矩形ABCD=800(4sinθcosθ+cosθ),S△CDP=•80cosθ(40﹣40sinθ)=1600(cosθ﹣cosθsinθ),当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时sinθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则y=3200t(4sinθcosθ+cosθ)+4800t(cosθ﹣cosθsinθ)=8000t(sinθcosθ+cosθ),其中sinθ∈[,1);设f(θ)=sinθcosθ+cosθ,则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈[,1)时,f′(θ)<0,f(θ)单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.答:(1)S=800(4sinθcosθ+cosθ),矩形ABCDS△CDP=1600(cosθ﹣cosθsinθ),sinθ∈[,1);(2)θ=时总产值y最大.【点评】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是中档题.18.(16分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.【分析】(1)由题意可得.,又a2+b2=c2=3,解得a=2,b=1即可.(2)①可设直线l的方程为y=kx+m,(k<0,m>0).可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,解得k=﹣,m=3.即可②设A(x1,y1),B(x2,y2),联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.即可【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2+b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.19.(16分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【分析】(1)根据“S点”的定义解两个方程,判断方程是否有解即可;(2)根据“S点”的定义解两个方程即可;(3)分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.【点评】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.20.(16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【分析】(1)根据等比数列和等差数列的通项公式,解不等式组即可;(2)根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].【点评】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的运算能力,综合性较强,难度较大.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.【分析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断△COB是等边三角形,BC的长.【解答】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,,所以BO=OC=2,,所以,所以∠COP=60°,所以△COB为等边三角形,所以BC=BO=2.【点评】本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.【分析】(1)矩阵A=,求出det(A)=1≠0,A可逆,然后求解A的逆矩阵A﹣1.(2)设P(x,y),通过•=,求出=,即可得到点P的坐标.【解答】解:(1)矩阵A=,det(A)=2×2﹣1×3=1≠0,所以A可逆,从而:A的逆矩阵A﹣1=.(2)设P(x,y),则•=,所以=A﹣1=,因此点P的坐标为(3,﹣1).【点评】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【分析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【分析】根据柯西不等式进行证明即可.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为4【点评】本题主要考查不等式的证明,利用柯西不等式是解决本题的关键.,【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【分析】设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O﹣xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.【解答】解:如图,在正三棱柱ABC﹣A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{}为基底,建立空间直角坐标系O﹣xyz,∵AB=AA1=2,A(0,﹣1,0),B(,0,0),C(0,1,0),A1(0,﹣1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,∴,.|cos|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q()∴,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,﹣1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos|==,∴直线CC1与平面AQC1所成角的正弦值为.【点评】本题考查了向量法求空间角,属于中档题.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s >i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).【分析】(1)由题意直接求得f3(2)的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得f4(2)的值;(2)对一般的n(n≥4)的情形,可知逆序数为0的排列只有一个,逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排+1列,n+1在新排列中的位置只能是最后三个位置,可得f n(2)=f n(2)+f n(1)+1+f n(0)=f n(2)+n,则当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2),则f n(2)(n≥5)的表达式可求.【解答】解:(1)记μ(abc)为排列abc得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排为计算f n+1列,n+1在新排列中的位置只能是最后三个位置.(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.因此,f n+1当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.。

相关文档
最新文档