湖北省襄阳市2012届高三3月调研考试数学理试卷-word版
2012年高考文科数学湖北卷(含详细答案)
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,共22题.满分150分.考试用时120分钟.★祝考试顺利★考生注意:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合23 20,|} {A x x x x -+=∈R ,05 {|}B x x x =∈<<,N ,则满足条件A CB ⊆⊆的集合C 的个数为( ) A .1B .2C .3D .42.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为( )A .0.35B .0.45C .0.55D .0.65 3.函数s ()co 2f x x x =在区间[0,2π]上的零点的个数为 ( ) A .2B .3C .4D .54.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 5.过点)(1,1P 的直线,将圆形区域22{()|+4}x y x y ,≤分为两部分,使得这两部分的面积差最大,则该直线的方程为( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=6.已知定义在区间[0,2]上的函数()y f x =的图象如图所示,则()2y f x =--的图象为( )ABCD7.定义在()(),00,-∞+∞上的函数)(f x ,如果对于任意给定的等比数列{}n a ,{)(}n f a 仍是等比数列,则称)(f x 为“保等比数列函数”.现有定义在()(),00,-∞+∞上的如下函数:①2()f x x =;②()2x f x =;③()f x =;④()ln ||f x x =.则其中是“保等比数列函数”的)(f x 的序号为( ) A .①②B .③④C .①③D .②④8.设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整 数,且A B C >>,320b acosA =,则sin :sin :sin A B C 为 ( ) A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶49.设a b c ∈,,R ,则“1abc =++a b c ”的()--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第3页(共26页) 数学试卷 第4页(共26页)A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π-B .1πC .21π-D .2π二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人.12.若3+i=+i 1ib a b -(a ,b 为实数,i 为虚数单位),则a b += . 13.已知向量0)(1,=a ,1)(1,=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ;(Ⅱ)向量3-b a 与向量a 夹角的余弦值为 .14.若变量x ,y 满足约束条件1,1,33,x y x y x y --⎧⎪+⎨⎪-⎩≥≥≤则目标函数23z x y =+的最小值是 .15.已知某几何体的三视图如图所示,则该几何体的体积为 .16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b .可以推测: (Ⅰ)2012b 是数列{}n a 中的第 项; (Ⅱ)21k b =- .(用k 表示)三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos ()f x x x x x x ωωωωλ-∈++=R 的图象关于直线π=x 对称,其中ω,λ为常数,且)11(2ω∈,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π()40,,求函数()f x 的值域. 19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱2222ABCD A B C D -. (Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理.已知10=AB ,1120=A B ,20=3A ,113=AA (单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元? 20.(本小题满分13分)已知等差数列{}n a 前三项的和为,前三项的积为.(Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}n a 的前n 项和.21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|(|)|01DM m DA m m ≠=>,且.当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;3-8数学试卷 第5页(共26页) 数学试卷 第6页(共26页)(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.22.(本小题满分14分)设函数()(1)()0n f x ax x b x =-+>,n 为正整数,a ,b 为常数.曲线()y f x =在(1)(1)f ,处的切线方程为1x y +=.(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <.数学试卷第7页(共26页)数学试卷第8页(共26页)5 / 13数学试卷 第11页(共26页)数学试卷 第12页(共26页)3S ,4S 。
【备战】历高考数学真题汇编专题简易逻辑理
【2012年高考试题】1.【2012高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<02.【2012高考真题江西理5】下列命题中,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数3.【2012高考真题湖南理2】命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”.4.【2012高考真题湖北理2】命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q【答案】D【解析】根据对命题的否定知,是把谓词取否定,然后把结论否定。
因此选D 5.【2012高考真题福建理3】下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a+b=0的充要条件是ab=-1 D.a>1,b>1是ab>1的充分条件6.【2012高考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件7.【2012高考真题陕西理18】(本小题满分12分)(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a b ⊥,则a c ⊥”为真。
襄阳市第五中学2021-2022学年高一下学期3月月考英语试卷(不含音频)
襄阳五中2021-2022学年高一下学期3月考试英语试题2022.3 本试卷共9页,共67题。
满分150分,考试用时120分钟。
注意事项:1. 答题前,考生务必将自己的姓名.准考证号填在答题卡上.2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 主观题答在答题卡上每题对应的答题区域内,答在试题卷上无效.4.考生必须保持答题卡的整洁:考试结束后,将试卷和答题卡一并交回。
第一部分听力(共2小节;满分30分)第一小节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What are the speakers talking about?A. The womanˈs hometown.B. A spelling mistake.C. A travel plan.2.What is the relationship between the woman and Mike?A. Teacher and student.B. Mother and son.C. Fellow workers.3.What does the man suggest George do?A. Have a good rest.B. Look for a new job.C. Travel around the world.4.What does the woman think of the sharks?A. Amazing.B. Friendly.C. Frightening.5.What do we know about Peter?A. He isnˈt talkative.B. He studied very hard.C. He failed to get into college.第二小节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2023-2024学年湖北省鄂东南三月考高二下学期阶段考试数学质量检测模拟试题(含解析)
2023-2024学年湖北省鄂东南三校联考高二下学期阶段考试数学模拟试题一、单选题1.“谁知盘中餐,粒粒皆辛苦”,节约粮食是我国的传统美德.已知学校食堂中午有2种主食、6种素菜、5种荤菜,小华准备从中选取1种主食、1种素菜、1种荤菜作为午饭,并全部吃完,则不同的选取方法有()A .13种B .22种C .30种D .60种【正确答案】D【分析】根据分步乘法计数原理可求出结果.【详解】根据分步乘法计数原理,共有26560⨯⨯=(种)不同的选取方法,故选:D .2.若直线410mx y -+=与直线230x y +-=平行,则实数m =().A .2B .2-C .12D .12-【正确答案】B【分析】根据直线平行的关系计算求解即可.【详解】解:两直线的斜率分别是4m,12-,由两直线平行可知142m =-,解得2m =-.故选:B .3.已知数列{}n a 满足13a =,()111n na n a *+=-∈N ,则4a =().A .23B .12-C .3D .32【正确答案】C【分析】根据递推关系直接求解即可.【详解】解:因为13a =,()111n na n a *+=-∈N ,所以,211213a a =-=,321112a a =-=-,43113a a =-=.故选:C4.某班举办古诗词大赛,其中一个环节要求默写《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》,并要求《将进酒》与《望岳》默写次序相邻,则不同的默写次序有()A .6种B .12种C .18种D .24种【正确答案】B【分析】根据排列中相邻问题捆绑法即可求解.【详解】可先将《将进酒》与《望岳》捆绑起来看作一个元素,与剩下两首诗词全排列,有33A 种排法,然后捆绑的《将进酒》与《望岳》也有排列,有22A 种排法,根据乘法原理,得2323A A 12=种排法,即不同的默写次序有12种.故选:B.5.若曲线ln x ay x+=在点()1,a 处的切线与直线:250l x y -+=垂直,则实数=a ().A .12B .1C .32D .2【正确答案】C【分析】函数求导,计算()11k f =',利用切线与直线:250l x y -+=垂直,求得a 值.【详解】因为21ln x ay x --'=,所以曲线ln x ay x+=在点()1,a 处的切线的斜率为()111k f a ='=-,直线l 的斜率22k =,由切线与直线l 垂直知121k k =-,即()211a -=-,解得32a =.故选:C .6.记椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,右焦点为F ,过点A 且倾斜角为30 的直线l 与椭圆C 交于另一点B ,若BF AF ⊥,则椭圆C 的离心率为()A .33B C .12-D 1【正确答案】A【分析】由条件列关于,,a b c 的方程,由此可求离心率.【详解】因为椭圆22221x y a b+=的左顶点为A ,右焦点为F ,所以()(),0,,0A a F c -,因为点B 在x 轴上方,又BF AF ⊥,所以将x c =代入椭圆C 可得2by a =,即2,b B c a ⎛⎫ ⎪⎝⎭,因为直线l 的倾斜角为30 ,所以2b ac a+=,又222b a c =-,化简)222a ac a c +=-,所以)211e e +=-解得33e =.故选:A.7.已知等比数列{}n a 的前n 项和为n S ,且0n a >,若68S =,1838S =,则24S =()A .27B .45C .65D .73【正确答案】C【分析】根据等比数列前n 项和的性质可得6S ,126S S -,1812S S -,2418S S -成等比数列,然后根据等比中项的性质,代入数据求出1220S =,进而即可求出答案.【详解】由等比数列前n 项和的性质可得6S ,126S S -,1812S S -,2418S S -成等比数列,所以有()()212661812S S S S S -=-,即()()212128838S S -=⨯-,整理可得2121282400S S --=,解得1212S =-(舍)或1220S =.又因为()()()181212624182S S S S S S -=--,所以有()()224(3820)20838S -=--,解得2465S =.故选:C.8.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()0xf x f x '+>,则不等式()()()2222x f x x f x ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .()(),12,-∞-⋃+∞D .()1,2-【正确答案】D【分析】构造()()g x xf x =,由导函数得到其单调性,从而由单调性解不等式求出答案.【详解】根据题意,构造函数()()g x xf x =,则()()()0g x xf x f x ''=+>,所以函数()g x 在R 上单调递增,又()()()2222x f x x f x ++>,即()()22g x g x +>,所以22x x +>,即220x x --<,解得12x -<<.故选:D.二、多选题9.下列运算错误的是()A .'2(2)2log ex x=B .'=C .(sin1)cos1'=D .31(log )ln 3x x '=【正确答案】AC【分析】利用基本初等函数的求导公式,逐项计算判断作答.【详解】对于A ,(2)2ln 2x x '=,A 错误;对于B ,11221()2x x -'='=,B 正确;对于C ,(sin1)0'=,C 错误;对于D ,31(log )ln 3x x '=,D 正确.故选:AC10.某校环保兴趣小组准备开展一次关于全球变暖的研讨会,现有10名学生,其中5名男生5名女生,若从中选取4名学生参加研讨会,则()A .选取的4名学生都是女生的不同选法共有5种B .选取的4名学生中恰有2名女生的不同选法共有400种C .选取的4名学生中至少有1名女生的不同选法共有420种D .选取的4名学生中至多有2名男生的不同选法共有155种【正确答案】AD【分析】A 选项只在女生5人中选取4人,直接列式求解;B 选项男、女生选取各2人,则分别选取即可列式求解;C 用间接法列式求解;D 分情况讨论.【详解】选取的4名学生都是女生的不同选法共有45C 5=种,故A 正确;恰有2名女生的不同选法共有2255C C =100种,故B 错误;至少有1名女生的不同选法共有44105C C 205-=种,故C 错误;选取的4名学生中至多有2名男生的不同选法共有041322555555C C C C C C 155++=种,故D 正确.故选:AD.11.已知抛物线C :22(0)y px p =>的焦点为F ,()4,A n 为C 上一点,且5AF =,直线AF 交C 于另一点B ,记坐标原点为O ,则()A .2p =B .8n =C .1(,1)4B -D .3OA OB ⋅=-【正确答案】AD【分析】根据条件先求出抛物线的标准方程,再逐项分析求解.【详解】依题意,抛物线C 2:2(0)y px p =>的准线为2p x =-,因为()4,A n 为C 上一点,且||5AF =,则452pAF =+=,解得2p =,故A 正确;可得抛物线C :24y x =,焦点为()1,0F ,因为A 为C 上一点,则24n =⨯4,所以4n =±,故B 错误;若()4,4A ,则线AF 的方程为()413y x =-,代入2:4C y x =,得()216149x x -=,整理得241740x x -+=,解得14x =或4x =,因为B 与A 分别在x 轴的两侧,可得1,14B ⎛⎫- ⎪⎝⎭;同理:若()4,4A -,可得1,14B ⎛⎫⎪⎝⎭;综上所述:1,14B ⎛⎫- ⎪⎝⎭或1,14B ⎛⎫⎪⎝⎭,故C 错误;若()4,4A ,则()1,,144,4OB OA ⎛⎫=⎝=- ⎪⎭uu u r uu r ,则143OA OB ⋅=-=- ;同理:若()4,4A -,可得3OA OB ⋅=-;故D 正确;故选:AD.12.已知n S 是数列{}n a 的前n 项和,()113202,n n n a a a n n *+--+=≥∈N ,11a =,24a =,则()A .583S =B .数列{}1n n a a +-是等比数列C .1323n n a -=⋅-D .3223nn S n =⋅--【正确答案】ABD【分析】根据递推关系式依次求得数列{}n a 的前5项,加和即可知A 正确;将递推关系式转化为()112n n n n a a a a +--=-,结合213a a -=,由等比数列定义可得B 正确;利用累加法可求得C 错误;采用分组求和的方式,结合等比数列求和公式可求得D 正确.【详解】对于A ,()113202,n n n a a a n n *+--+=≥∈N ,11a =,24a =,3213210a a a ∴=-=,4323222a a a =-=,5433246a a a =-=,51410224683S ∴=++++=,A 正确;对于B ,由()113202,n n n a a a n n *+--+=≥∈N 得:()112n n n n a a a a +--=-,又213a a -=,∴数列{}1n n a a +-是以3为首项,2为公比的等比数列,B 正确;对于C ,由B 知:1132n n n a a -+-=⋅,当2n ≥时,()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-+⋅⋅⋅+-+=()()1231112322213321132212n n n n n ------++⋅⋅⋅++=⨯=-+=⋅--,又11a =满足1322n n a -=⋅-,()1322n n a n -*∴=⋅-∈N ,C 错误;对于D ,()011123222232322312nn n n S n n n --=++⋅⋅⋅+-=⨯-=⋅---,D 正确.故选:ABD.三、填空题13.已知等差数列{}n a 的前n 项和为n S ,若785a a +=,则14S =__________.【正确答案】35【分析】根据给定条件,利用等差数列性质结合前n 项和公式求解作答.【详解】因为{}n a 是等差数列,114785a a a a +=+=,所以()1141414352a a S +==.故3514.若圆221:5C x y +=与圆222:480C x y x y m +---=外切,则m =________.【正确答案】15-【分析】由题意分别求两圆的圆心和半径,根据两圆外切可得1212C C r r =+,代入运算求解.【详解】由题意可得:圆12,C C 的圆心分别为12(0,0),(2,4)C C ,半径分别是)1220r r m =>-,因为圆12,C C 外切,所以1212C C r r =+,1520m =->-.故答案为.15-15.在中国空间站某项建造任务中,需6名航天员在天和核心舱、问天实验舱和梦天实验舱这三个舱内同时进行工作,由于空间限制,每个舱至少1人,至多3人,则不同的安排方案共有___________种.【正确答案】450【分析】安排方案可以分为两类,第一类,每个舱各安排2人,第二类,分别安排3人,2人,1人,结合分堆分配问题解决方法求解即可.【详解】满足条件的安排方案可以分为两类,第一类,每个舱各安排2人,共有2223642333C C C A 90A ⋅=(种)不同的方案;方案二:一个实验舱安排3人,一个实验舱2人,一个实验舱1人,共有32136313C C C A 360=(种)不同的方案.所以共有()90360450+=种不同的安排方案.故450.16.设函数()e 2xf x mx =-在区间[1,32⎡⎤⎢⎥⎣⎦上有零点,则实数m 的取值范围是___________.【正确答案】3e e ,26⎡⎤⎢⎥⎣⎦【分析】参数分离,构造新函数,根据所构造的新函数的值域求解.【详解】令()e 20xf x mx =-=,则e 2x m x=,函数()e 2xf x mx =-在区间[12,3]上有零点等价于直线y m =与曲线()e 2xg x x=在1,32x ⎡⎤∈⎢⎥⎣⎦上有交点,则()()'21e 2x x g x x -=,当1,12x ⎡⎫∈⎪⎢⎣⎭时,()()'0,g x g x <单调递减,当(]1,3x ∈时,()()'0,g x g x >单调递增,()()mine 12g x g ==,()1321e e ,326g g ⎛⎫== ⎪⎝⎭,显然132e e 6,∴()3e e ,26g x ⎡⎤∈⎢⎣⎦,即当m 3e e ,26⎡⎤∈⎢⎥⎣⎦时,函数()f x 在1,32⎡⎤⎢⎥⎣⎦上有零点;故3e e ,26⎡⎤⎢⎥⎣⎦.四、解答题17.已知nx ⎛⎝的展开式中前三项的二项式系数和为37.(1)求n ;(2)求展开式中的常数项.【正确答案】(1)8n =;(2)1792.【分析】(1)写出前三项二项式系数,根据和为37,列方程求出n 的值;(2)利用通项,并令x 的指数为0,求出常数项.【详解】(1)因为nx ⎛ ⎝的展开式中前三项的二项式系数分别是0C n ,1C n ,2C n ,所以()012711C C 32C n n n n n n -=+++=+,即2720n n +-=,解得8n =或()9n =-舍去(2)8x ⎛- ⎝的展开式中通项为()()4883188C C 208N kk k k k kk T x x k k --+⎛==-≤≤∈ ⎝,,由4803k -=时,可得6k =,即第7项为常数项,所以展开式中的常数项为()66618C 21792T +=-=.18.已知等差数列{}n a 的前n 项和为632n S a a =,,且7499S S a -=+.(1)求数列{}n a 的通项公式;(2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .【正确答案】(1)n a n =(2)21n n T n =+【分析】(1)根据等差数列公式,运用条件列方程求出1,a d ;(2)运用裂项相消法求解.【详解】(1)设数列{n a }的公差为d ,由637492,9a a S S a =-=+,得()()()111115227214689a d a d a d a d a d ⎧+=+⎪⎨+-+=++⎪⎩,解得11,1a d ==,∴n a n =;(2)()()11111,2221n n n n a a n n S S n n ++⎛⎫===- +⎝⎭,11111112212233411n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ;综上,2,1n n na n T n ==+.19.已知函数()()323129R f x ax x x a =++-∈的两个极值点12,x x 满足122x x =-.(1)求a 的值;(2)求()f x 在区间[]3,3-上的最值.【正确答案】(1)2a =-(2)最大值为36,最小值为-16【分析】(1)()f x 有2个极值点等价于导函数()'f x 有2个零点,根据条件运用韦达定理求解;(2)根据导函数求出()f x 的单调区间,根据单调性以及闭区间两端的函数值求解.【详解】(1)()'23612f x ax x =++,令()'0f x =,则()'f x 有2个零点12,x x ,显然0a ≠,由韦达定理得121224x x ax x a ⎧+=-⎪⎪⎨⎪=⎪⎩①②,又122x x =-代入①得:1242,x x a a =-=,再代入②得:284,2a a a-==-,2646120∆=+⨯⨯>,符合题意,()3223129f x x x x ∴=-++-;(2)()()()'26612621f x x x x x =-++=--+,得下表:x()3,1---1()1,2-2()2,3()'f x 0<0>0<()f x 单调递减极小值-16单调递增极大值11单调递减又()336f -=,()30f =,所以()f x 在区间[]3,3-上的最大值为36,最小值为-16;综上,2a =-,()f x 在区间[]3,3-上的最大值为36,最小值为-16.20.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,平面11AA D D ⊥平面ABCD ,点E 是AD 的中点,1122A A A D AD AB ====.(1)求证:平面1A EB ⊥平面ABCD ;(2)求直线1A D 与平面1A BC 所成角的正弦值.【正确答案】(1)证明见解析(2)4【分析】(1)先证明1A E AD ⊥,根据面面垂直的性质定理证明1A E ⊥平面ABCD ,再由面面垂直判定定理证明平面1A EB ⊥平面ABCD ;(2)建立空间直角坐标系,求直线1A D 的方向向量与平面1A BC 的法向量,利用空间向量夹角公式求直线1A D 与平面1A BC 夹角.【详解】(1)因为11A A A D =,点E 是AD 的中点,所以1A E AD ⊥,又平面11AA D D ⊥平面ABCD ,平面11AA D D 平面ABCD AD =,1A E ⊂平面11AA D D ,所以1A E ⊥平面ABCD ,又1A E ⊂平面1A EB ,所以平面1A EB ⊥平面ABCD ;(2)取BC 的中点F ,连结EF ,因为四边形ABCD 为矩形,且22AD AB ==,所以四边形CDEF 为正方形,EF AD ⊥,以E 为坐标原点,EF ,ED ,1EA 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系如图所示,则()()()(11,1,0,1,1,0,0,1,0,0,0,B C D A -,所以()((110,2,0,,0,1,BC BA A D ==-=- ,设平面1A BC 的法向量(),,m x y z = ,则有100m BC m BA ⎧⋅=⎪⎨⋅=⎪⎩,即200y x y =⎧⎪⎨-+=⎪⎩,令1z =,则0,y x ==所以平面1A BC的一个法向量)m = ,设直线1A D 与平面1A BC 所成角为θ,则111sin cos ,m A D m A D m A Dθ⋅====⋅ 直线1A D 与平面1A BC21.已知双曲线()2222:10,0x y C a b a b-=>>()4P 是C 上一点.(1)求C 的方程;(2)已知直线():0l y kx m m =+>与C 交于,E F 两点,O 为坐标原点,若4OE OF ⋅= ,判断直线l 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【正确答案】(1)22124x y -=(2)直线l恒过定点(【分析】(1)根据离心率、双曲线,,a b c 关系和双曲线所过点可构造方程求得22,a b ,进而得到双曲线方程;(2)将直线方程与双曲线方程联立可得韦达定理的结论,代入向量数量积的坐标运算中,整理可求得m =.【详解】(1) 双曲线C的离心率==c e a ,22223c a b a ∴=+=,则222b a =,又()4P 为C 上一点,22101612a a∴-=,解得:22a =,24b ∴=,∴双曲线C 的方程为.22124x y -=(2)设()11,E x y ,()22,F x y ,由22124y kx m x y =+⎧⎪⎨-=⎪⎩得:()2222240k x kmx m ----=,()()2222220Δ44240k k m k m ⎧-≠⎪∴⎨=+-+>⎪⎩,则222224k m k ⎧≠⎨>-⎩;12222km x x k ∴+=-,212242m x x k +=--,()()()()221212121212121OE OF x x y y x x kx m kx m k x x km x x m ∴⋅=+=+++=++++ ()()2222222142422k m k m m k k++=-++=--,整理可得:212m =,又0m >,m ∴=,则:l y kx =+∴直线l恒过定点(.22.已知函数()()ln f x x x a =-,a ∈R .(1)若函数()f x 在[]1,4上单调递增,求a 的取值范围;(2)若0a >,求证.()()2ln f x x x a ≤--【正确答案】(1)(,1]-∞;(2)证明见解析.【分析】(1)对()f x 求导后,问题转化为()0f x '≥在[1,4]上恒成立,进而求得()f x '的最小值即可求解;(2)由0x >可得只需证明ln 2ln x a x a -≤--,令()2ln ln g x x a a x =+---,求导后求得()(1)1ln g x g a a ≥=--;令()1ln (0)h a a a a =-->,求导后求得()(1)0h a h ≥=,从而可得()0g x ≥,问题得证.【详解】(1)()ln 1=-+'f x x a ,因为函数()f x 在[1,4]上单调递增,所以()0f x '≥在[1,4]上恒成立,又()ln 1=-+'f x x a 在[1,4]上单调递增,所以min ()1f x a '=-+,所以10a -+≥,解得1a ≤,所以a 的取值范围是(,1]-∞.(2)因为0,0a x >>,所以要证()(2ln )f x x x a ≤--,只需证ln 2ln x a x a -≤--,令()2ln ln g x x a a x =+---,则11()1x g x x x -'=-=.当01x <<时,()0g x '<,函数()g x 单调递减;当1x >时,()0g x '>,函数()g x 单调递增.所以()(1)1ln g x g a a ≥=--,令()1ln (0)h a a a a =-->,则11()1a h a a a -'=-=,当01a <<时,()0,()h a h a '<单调递减,当1a >时,()0,()h a h a '>单调递增.所以1a =时,()h a 取最小值,则()(1)0h a h ≥=,所以0a >时,()0h a ≥,因此()0g x ≥.所以()(2ln )f x x x a ≤--.。
数学理卷·2014届湖北省襄阳市高三统一调研测试(2013.12)word版
襄阳市2013-2014学年普通高中调研统一测试高三数学(理科)一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(СR B )= A .(1,4) B .(3,4) C .(1,3) D .(1,2)∪(3,4) 2.设a 、b 为实数,若复数12ia bi++=1+i 则 A .a =32,b =12 B .a =3,b =1 C .a =12,b =32D .a =1,b =33.已知幂函数y =f (x )的图象过点(12,2),则log 4f (2)的值为A .14B .-14C .2D .-24.已知向量a =(cos α,sin α),向量b =-1),则|2a -b |的最大值,最小值分别是A .,0B .4,.16,0 D .4,05.命题甲:p 是q 的充分条件,命题乙:p 是q 的充分必要条件,则命题甲是命题乙的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.已知f (x ),g (x )是定义为R 的函数,在有穷数列中,任意取正整数k (1≤k ≤10),则前k 项和大于的概率是7.执行如右图所示的程序框图,若输出的值为-105,则输入的n 值可能为A .5B .7C .8D .108.已知正数x 、y 满足x +2y -xy =0,则x +2y 的最小值为 A .8 B .4 C .2 D .0 9.给出下面结论:①命题p :“0x R ∃∈,20032x x -+≥0”的否定为p ⌝:“x R ∀∈,200320x x -+<”.②若,则实数m 的值为③函数在内没有零点;④设函数则f (x )为周期函数,最小正周期为其中正确结论的个数是A .1B .2C .3D .4 10.已知函数有两个极值点,若,则关于x 的方程的不同实根个数为 A .4 B .4 C .5 D .6二、填空题(本大题共7小题,每小题5分,共35分。
2021-2022学年湖北省襄阳市优质高中高三第三次模拟考试数学试卷含解析
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p :若1a >,1b c >>,则log log b c a a <;命题q :()00,x ∃+∞,使得0302log x x <”,则以下命题为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝ 2.过抛物线22x py =(0p >)的焦点且倾斜角为α的直线交抛物线于两点A B ,.2AF BF =,且A 在第一象限,则cos2α=( )A .55B .35C .79D .2353.点M 在曲线:3ln G y x =上,过M 作x 轴垂线l ,设l 与曲线1y x =交于点N ,3OM ON OP +=,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( )A .0B .1C .2D .34.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在[250,350]内的学生人数为( )A .800B .1000C .1200D .16005.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( )A .22y x =B .24y x =C .28y x =D .210y x =6.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A .40B .60C .80D .1007.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( )A .向左平移12π个单位长度 B .向右平移12π个单位长度 C .向左平移512π个单位长度 D .向右平移512π个单位长度 8.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位9.已知向量()34OA =-,,()15OA OB +=-,,则向量OA 在向量OB 上的投影是( )A .25B 25C .25-D .2510.已知函数()sin3cos3f x x x =-,给出下列四个结论:①函数()f x 的值域是2,2⎡-⎣;②函数4f x π⎛⎫+ ⎪⎝⎭为奇函数;③函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦单调递减;④若对任意x ∈R ,都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为3π;其中正确结论的个数是( ) A .1 B .2C .3D .4 11.已知直线2:0l x m y +=与直线:0n x y m ++=则“//l n ”是“1m =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.已知ABC ∆为等腰直角三角形,2A π=,22BC =,M 为ABC ∆所在平面内一点,且1142CM CB CA =+,则MB MA ⋅=( )A .224-B .72-C .52-D .12- 二、填空题:本题共4小题,每小题5分,共20分。
湖北省襄阳市2015届高三上学期第一次调研考试数学(文)试题 Word版含答案
机密★启用前2015年高考襄阳市普通高中第一次调研统一测试数 学(文史类)襄阳市教研室 郭仁俊 审定人:襄阳三中 陈显宏 襄阳四中 陈 琰襄阳五中 段仁保本试卷共4页,共22题,全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1. 答卷前,请考生认真阅读答题卡上的注意事项。
考生务必将自己的姓名、考号填写在答题卡上指定位置,贴好条形码或将考号对应数字涂黑。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸和答题卡上的非答题区域均无效。
3. 填空题和解答题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4. 考生必须保持答题卡的清洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 集合A = {x x 2-2x ≤0},B = {x ⎢lg(1)y x =-},则A ∩B 等于 A .{x 0 < x ≤1} B .{x 1≤x < 2} C .{x 1 < x ≤2} D .{x 0≤x < 1}2. 直线2(1)40x m y +++=与直线320mx y +-=平行,则m = A .-2 B .-3 C .2或-3 D .-2或-33. 已知x 、y 满足不等式组2303201x y x y y +-⎧⎪+-⎨⎪⎩≤≥≤,则z = x -y 的最大值是A .6B .4C .0D .-2 4. 等差数列{a n }中,a 5 + a 6 = 4,则310122log (2222)a a a a = A .10B .20C .40D .22log 5+5. 已知圆M 的方程为22860x y x y +-+=,则下列说法中不正确的是 A .圆M 的圆心为(4,-3) B .圆M 被x 轴截得的弦长为8 C .圆M 的半径为25D .圆M 被y 轴截得的弦长为66. 已知双曲线22221(00)x y a b a b-=>>,,则此双曲线的渐近线方程为 A .2y x =± B.y =C.y x = D .12y x =±7. 若某多面体的三视图如右图所示,则此多面体外接球的表面积是 A .6 BC .2πD .3π8. 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1 = 5.06x -0.15x 2和L 2 = 2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为 A .45.606万元 B .45.6万元 C .45.56万元 D .45.51万元 9. 设f (x )为奇函数且在(-∞,0)内是增函数,f (-2) = 0,则xf (x ) > 0的解集为 A .(-∞,-2)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-2,0)∪(2,+∞) D .(-2,0)∪(0,2)10. 若a 、b 是方程lg 4x x +=、104xx +=的解,函数2()20()20x a b x x f x x ⎧+++=⎨>⎩≤,则关于x 的方程f (x ) = x 的解的个数是 A .1 B .2 C .3 D .4二.填空题(本大题共7小题,每小题5分,共35分。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
2012年湖北省高考数学试卷(理科)附送答案
2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i2.(5分)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q3.(5分)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.4.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π5.(5分)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.126.(5分)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.7.(5分)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.(5分)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.(5分)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.710.(5分)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果s=.13.(5分)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有个;)位回文数有个.(Ⅱ)2n+1(n∈N+14.(5分)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD 的垂线交⊙O于点C,则CD的最大值为.16.(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.18.(12分)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.19.(12分)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.20.(12分)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥90002610工期延误天数Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.21.(13分)设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.22.(14分)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•湖北)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i【分析】由方程x2+6x+13=0中,△=36﹣52=﹣16<0,知=﹣3±2i,由此能求出结果.【解答】解:∵方程x2+6x+13=0中,△=36﹣52=﹣16<0,∴=﹣3±2i,故选A.2.(5分)(2012•湖北)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q【分析】根据特称命题“∃x∈A,p(A)”的否定是“∀x∈A,非p(A)”,结合已知中命题,即可得到答案.【解答】解:∵命题“∃x0∈C R Q,∈Q”是特称命题,而特称命题的否定是全称命题,∴“∃x0∈C R Q,∈Q”的否定是∀x0∈C R Q,∉Q故选D3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.【分析】先根据函数的图象求出函数的解析式,然后利用定积分表示所求面积,最后根据定积分运算法则求出所求.【解答】解:根据函数的图象可知二次函数y=f(x)图象过点(﹣1,0),(1,0),(0,1)从而可知二次函数y=f(x)=﹣x2+1∴它与X轴所围图形的面积为=()=(﹣+1)﹣(﹣1)=故选B.4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:=3π.故选B.5.(5分)(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.12【分析】由二项式定理可知512012+a=(52﹣1)2012+a的展开式中的项含有因数52,要使得能512012+a能被13整除,只要a+1能被13整除,结合已知a的范围可求【解答】解:∵512012+a=(52﹣1)2012+a=+…++a由于含有因数52,故能被52整除要使得能512012+a能被13整除,且a∈Z,0≤a≤13则可得a+1=13∴a=12故选D6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.【分析】根据所给条件,利用柯西不等式求解,利用等号成立的条件即可.【解答】解:由柯西不等式得,(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,当且仅当时等号成立∵a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,∴等号成立∴∴=故选C.7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f (x)的序号为()A.①②B.③④C.①③D.②④【分析】根据新定义,结合等比数列性质,一一加以判断,即可得到结论.【解答】解:由等比数列性质知,①=f2(a n),故正确;+1),故不正确;②≠=f2(a n+1),故正确;③==f2(a n+1④f(a n)f(a n+2)=ln|a n|ln|a n+2|≠=f2(a n+1),故不正确;故选C8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB 为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.【分析】求出阴影部分的面积即可,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB的面积.【解答】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.9.(5分)(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7【分析】令函数值为0,构建方程,即可求出在区间[0,4]上的解,从而可得函数f(x)=xcosx2在区间[0,4]上的零点个数【解答】解:令f(x)=0,可得x=0或cosx2=0∴x=0或x2=,k∈Z∵x∈[0,4],则x2∈[0,16],∴k可取的值有0,1,2,3,4,∴方程共有6个解∴函数f(x)=xcosx2在区间[0,4]上的零点个数为6个故选C10.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈【分析】根据球的体积公式求出直径,然后选项中的常数为,表示出π,将四个选项逐一代入,求出最接近真实值的那一个即可.【解答】解:由V=,解得d=设选项中的常数为,则π=选项A代入得π==3.375;选项B代入得π==3;选项C代入得π==3.14;选项D代入得π==3.142857由于D的值最接近π的真实值故选D.二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.【分析】利用已知条件(a+b﹣c)(a+b+c)=ab,以及余弦定理,可联立解得cosB 的值,进一步求得角B.【解答】解:由已知条件(a+b﹣c)(a+b+c)=ab可得a2+b2﹣c2+2ab=ab即a2+b2﹣c2=﹣ab由余弦定理得:cosC==又因为0<C<π,所以C=.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.【分析】用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.【解答】解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N)位回文数有9×10n个.+【分析】(I)利用回文数的定义,四位回文数只需从10个数字中选两个可重复数字即可,但要注意最两边的数字不能为0,利用分步计数原理即可计算4位回文数的个数;(II)将(I)中求法推广到一般,利用分步计数原理即可计算2n+1(n∈N)位+回文数的个数【解答】解:(I)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,有10种选法;故4位回文数有9×10=90个故答案为90(II)第一步,选左边第一个数字,有9种选法;第二步,分别选左边第2、3、4、…、n、n+1个数字,共有10×10×10×…×10=10n 种选法,)位回文数有9×10n个故2n+1(n∈N+故答案为9×10n14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.【分析】(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为,根据以A1A2为直径的圆内切于菱形F1B1F2B2,可得,由此可求双曲线的离心率;(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=,由此可得结论.(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为【解答】解:∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴(c2﹣a2)c2=(2c2﹣a2)a2∴c4﹣3a2c2+a4=0∴e4﹣3e2+1=0∵e>1∴e=(Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2n,BA=2m,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.【分析】由题意可得CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值,故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半.【解答】解:由题意可得△OCD为直角三角形,故有CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值.故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半,由于AB=4,故CD的最大值为2,故答案为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).【分析】化极坐标方程为直角坐标方程,参数方程为普通方程,联立可求线段AB的中点的直角坐标.【解答】解:射线θ=的直角坐标方程为y=x(x≥0),曲线(t为参数)化为普通方程为y=(x﹣2)2,联立方程并消元可得x2﹣5x+4=0,∴方程的两个根分别为1,4∴线段AB的中点的横坐标为2.5,纵坐标为2.5∴线段AB的中点的直角坐标为(2.5,2.5)故答案为:(2.5,2.5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx ﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.【分析】(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域.【解答】解:(1)∵f(x)=•+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx ×2cosωx+λ=﹣(cos2ωx﹣sin2ωx)+sin2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z∴ω=+,又ω∈(,1)∴k=1时,ω=∴函数f(x)的最小正周期为=(2)∵f()=0∴2sin(2××﹣)+λ=0∴λ=﹣∴f(x)=2sin(x﹣)﹣由x∈[0,]∴x﹣∈[﹣,]∴sin(x﹣)∈[﹣,1]∴2sin(x﹣)﹣=f(x)∈[﹣1﹣,2﹣]故函数f(x)在区间[0,]上的取值范围为[﹣1﹣,2﹣]18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.【分析】(I)设等差数列的公差为d,由题意可得,,解方程可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n ﹣7|=,根据等差数列的求和公式可求【解答】解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n ﹣7(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.【分析】(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A﹣BCD 的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N 点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角【解答】解:(1)设BD=x,则CD=3﹣x∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D∴AD⊥平面BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)∴V A﹣BCD设f(x)=(x3﹣6x2+9x)x∈(0,3),∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数∴当x=1时,函数f(x)取最大值∴当BD=1时,三棱锥A﹣BCD的体积最大;(2)以D为原点,建立如图直角坐标系D﹣xyz,由(1)知,三棱锥A﹣BCD的体积最大时,BD=1,AD=CD=2∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E (,1,0),且=(﹣1,1,1)设N(0,λ,0),则=(﹣,λ﹣1,0)∵EN⊥BM,∴•=0即(﹣1,1,1)•(﹣,λ﹣1,0)=+λ﹣1=0,∴λ=,∴N(0,,0)∴当DN=时,EN⊥BM设平面BMN的一个法向量为=(x,y,z),由及=(﹣1,,0)得,取=(1,2,﹣1)设EN与平面BMN所成角为θ,则=(﹣,﹣,0)sinθ=|cos<,>|=||==∴θ=60°∴EN与平面BMN所成角的大小为60°20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥900工期延误天数02610Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.【分析】(I)由题意,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,结合某程施工期间的降水量对工期的影响,可求相应的概率,进而可得期延误天数Y的均值与方差;(Ⅱ)利用概率的加法公式可得P(X≥300)=1﹣P(X<300)=0.7,P(300≤X <900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6,利用条件概率,即可得到结论【解答】(I)由题意,P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X <300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1Y的分布列为Y02610P0.30.40.20.1∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8∴工期延误天数Y的均值为3,方差为9.8;(Ⅱ)P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P (X<300)=0.9﹣0.3=0.6由条件概率可得P(Y≤6|X≥300)=.21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,l是过点A与x 轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m 丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.【分析】(I)设M(x,y),A(x0,y0),根据丨DM丨=m丨DA丨,确定坐标之间的关系x0=x,|y0|=|y|,利用点A在圆上运动即得所求曲线C的方程;根据m∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;(Ⅱ)∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),利用P,H两点在椭圆C上,可得,从而可得可得.利用Q,N,H三点共线,及PQ⊥PH,即可求得结论.【解答】解:(I)如图1,设M(x,y),A(x0,y0)∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|∴x0=x,|y0|=|y|①∵点A在圆上运动,∴②①代入②即得所求曲线C的方程为∵m∈(0,1)∪(1,+∞),∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(),m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r 为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.【分析】(I)求导函数,令f′(x)=0,解得x=1;确定函数在(0,1)上是减函数;在(0,1)上是增函数,从而可求f(x)的最小值;(II)由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r),分类讨论:若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,,可得a1b1a2b2≤a1b1+a2b2成立(III)(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;用数学归纳法证明:(1)当n=1时,b1=1,a1≤a1,推广命题成立;(2)假设当n=k时,推广命题成立,证明当n=k+1时,利用a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1,结合归纳假设,即可得到结论.【解答】(I)解:求导函数可得:f′(x)=r(1﹣x r﹣1),令f′(x)=0,解得x=1;当0<x<1时,f′(x)<0,所以f(x)在(0,1)上是减函数;当x>1时,f′(x)>0,所以f(x)在(0,1)上是增函数所以f(x)在x=1处取得最小值f(1)=0;(II)解:由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r)①若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,∵b1+b2=1,∴b2=1﹣b1,∴①中令,可得a1b1a2b2≤a1b1+a2b2成立综上,对a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;②(III)解:(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;③用数学归纳法证明(1)当n=1时,b1=1,a1≤a1,③成立(2)假设当n=k时,③成立,即a1≥0,a2≥0,…,a k≥0,b1,b2,…,b k为正有理数,若b1+b2+…+b k=1,则a1b1a2b2…a k bk≤a1b1+a2b2+…a k b k.当n=k+1时,a1≥0,a2≥0,…,a k+1≥0,b1,b2,…,b k+1为正有理数,若b1+b2+…+b k+1=1,>0则1﹣b k+1于是a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1∵++…+=1∴…≤++…+=bk+1≤•(1∴a k+1﹣b k)+a k+1b k+1,+1∴a1b1a2b2…a k b ka k+1bk+1≤a1b1+a2b2+…a k b k+a k+1b k+1.∴当n=k+1时,③成立由(1)(2)可知,对一切正整数,推广的命题成立.。
2012年高考真题——理科数学(全国卷)Word版(附答案)
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
湖北省七市州2024届高三下学期3月联合统一调研测试数学试题含答案
2024年湖北省七市州高三年级3月联合统一调研测试数学试卷命题单位:荆州市教育科学研究院2024.3本试卷共4页,19题,全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,log 1A xx x B x x =-<=>∣∣,则()R A B ⋂=ð()A.()0,2 B.(]0,2 C.(]1,2 D.()2,32.已知复平面内坐标原点为O ,复数z 对应点,Z z 满足()43i 34i z -=+,则OZ =()A.45B.34C.1D.23.已知正方形ABCD 的边长为2,若BP PC = ,则AP BD ⋅=()A.2B.-2C.4D.-44.已知椭圆22:1x C y m +=,则“2m =”是“椭圆C 的离心率为22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.过点()1,1P -的直线l 与圆22:410C x y x ++-=交于,A B 两点,则AB 的最小值为()A. D.26.已知公差为负数的等差数列{}n a 的前n 项和为n S ,若347,,a a a 是等比数列,则当n S 取最大值时,n =()A.2或3B.2C.3D.47.若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A.718-B.718C.18+-D.18-8.能被3个半径为1的圆形纸片完全覆盖的最大的圆的半径是()A.263B.62C.233D.3132+二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.已知,A B 为随机事件,()()0.5,0.4P A P B ==,则下列结论正确的有()A.若,A B 为互斥事件,则()0.9P A B +=B.若,A B 为互斥事件,则()0.1P A B +=C.若,A B 相互独立,则()0.7P A B +=D.若()0.3P BA =∣,则()0.5P B A =∣10.如图,棱长为2的正方体1111ABCD A B C D -中,E 为棱1DD 的中点,F 为正方形11C CDD 内一个动点(包括边界),且1B F ∥平面1A BE ,则下列说法正确的有()A.动点FB.三棱锥11B D EF -体积的最小值为13C.1B F 与1A B 不可能垂直D.当三棱锥11B D DF -的体积最大时,其外接球的表面积为25π211.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.已知函数()422xf x =+,则下列结论正确的有()A.函数()f x 的值域为(]0,2B.函数()f x 的图象关于点()1,1成中心对称图形C.函数()f x 的导函数()f x '的图象关于直线1x =对称D.若函数()g x 满足()11y g x =+-为奇函数,且其图象与函数()f x 的图象有2024个交点,记为()(),1,2,,2024i i i A x y i =,则()202414048i i i x y =+=∑三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭满足()2π3f x f ⎛⎫ ⎪⎝⎭ 恒成立,且在区间π,π3⎛⎫ ⎪⎝⎭上无最小值,则ω=__________.13.已知双曲线22:13y C x -=的左右顶点分别为,A B ,点P 是双曲线C 上在第一象限内的点,直线,PA PB 的倾斜角分别为,αβ,则tan tan αβ⋅=__________;当2tan tan αβ+取最小值时,PAB 的面积为__________.14.已知函数()1ln 3f x ax b ⎛⎫=+- ⎪⎝⎭22a b +取最小值时,b a 的值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)如图,四棱锥P ABCD -的底面是矩形,2,AB BC PBC == 是等边三角形,平面PBC ⊥平面,,ABCD O F 分别是,BC PC 的中点,AC 与BD 交于点E .(1)求证:BD ⊥平面PAO ;(2)平面OEF 与直线PD 交于点Q ,求直线OQ 与平面PCD 所成角θ的大小.某高中学校为了解学生参加体育锻炼的情况,统计了全校所有学生在一年内每周参加体育锻炼的次数,现随机抽取了60名同学在某一周参加体育锻炼的数据,结果如下表:一周参加体育锻炼次数01234567合计男生人数1245654330女生人数4556432130合计579111086460(1)若将一周参加体育锻炼次数为3次及3次以上的,称为“经常锻炼”,其余的称为“不经常锻炼”.请完成以下22⨯列联表,并依据小概率值0.1α=的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;性别锻炼合计不经常经常男生女生合计(2)若将一周参加体育锻炼次数为0次的称为“极度缺乏锻炼”,“极度缺乏锻炼”会导致肥胖等诸多健康问题.以样本频率估计概率,在全校抽取20名同学,其中“极度缺乏锻炼”的人数为X ,求()E X 和()D X ;(3)若将一周参加体育锻炼6次或7次的同学称为“运动爱好者”,为进一步了解他们的生活习惯,在样本的10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为Y ,求Y 的分布列和数学期望.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++α0.10.050.01x α2.7063.8416.63517.(本小题15分)已知各项均不为0的数列{}n a 的前n 项和为n S ,且1111,4n n n a a a S ++==.(1)求{}n a 的通项公式;(2)若对于任意*,2nn n S λ∈⋅N成立,求实数λ的取值范围.如图,O 为坐标原点,F 为抛物线22y x =的焦点,过F 的直线交抛物线于,A B 两点,直线AO 交抛物线的准线于点D ,设抛物线在B 点处的切线为l.(1)若直线l 与y 轴的交点为E ,求证:DE EF =;(2)过点B 作l 的垂线与直线AO 交于点G ,求证:2||AD AO AG =⋅.19.(本小题17分)微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.对于函数()()1(0),f x x f x x=>在区间[],a b 上的图像连续不断,从几何上看,定积分1b a dx x ⎰便是由直线,,0x a x b y ===和曲线1y x=所围成的区域(称为曲边梯形ABQP )的面积,根据微积分基本定理可得1ln ln b a dx b a x=-⎰,因为曲边梯形ABQP 的面积小于梯形ABQP 的面积,即ABQP ABQP S S <曲边梯形梯形,代入数据,进一步可以推导出不等式:211ln ln a b a b a b->-+.(1)请仿照这种根据面积关系证明不等式的方法,证明:ln ln 2a b a ba b -+<-;(2)已知函数()2ln f x ax bx x x =++,其中,a b R ∈.(i )证明:对任意两个不相等的正数12,x x ,曲线()y f x =在()()11,x f x 和()()22,x f x 处的切线均不重合;(ii )当1b =-时,若不等式()()2sin 1f x x -恒成立,求实数a 的取值范围.数学参考答案及评分标准2024.31-8BCBA ABDC9.ACD10.ABD11.BCD12.1413.3;(填对一空得3分)14.24±15.解析:要求出被完全覆盖的最大的圆的半径,由圆的对称性知只需考虑三个圆的圆心构成等边三角形的情况,设三个半径为1的圆的圆心分别为123,,O O O ,设被覆盖的圆的圆心为O ,如图所示,设圆1O 与2O 交于12,,A B O O 交AB 于,H AB 交圆3O 于C ,方法1:设12313,,22x OO OO OO x O H OH ===∴==,:22x x OA OH HA =+=+=,又331OC OO O C x OA =+=+>,所以圆O 的最大半径为OA ,下求OA 的最大值,设()()2x f x f x =+'=,所以()f x 在30,3⎛⎫⎪ ⎪⎝⎭为增函数,在323,33⎛⎫ ⎪ ⎪⎝⎭为减函数,max 323()33f x f ⎛⎫== ⎪ ⎪⎝⎭,即被完全覆盖的最大的圆的半径为233.此时1223311O O O O O O ===,即圆1O 、圆2O 、圆3O 中的任一圆均经过另外两圆的圆心.方法2:同上,设11,1AO H O A ∠θ== ,113cos ,sin ,O H AH OH OO OO θθ∴==∴===331,sinOC OO O C OA OH HA OCθ∴=+==+=<πsin sin,363OA OH HAθθ⎛⎫=+==+≤⎪⎝⎭即当π3θ=时,OA的最大值为3,即被完全覆盖的最大的圆的半径为3.此时1223311O O O O O O===,即圆1O、圆2O、圆3O中的任一圆均经过另外两圆的圆心.14.解析:设()f x的零点为t,则1ln03at b⎛⎫+-⎪⎝⎭,即()10*3at b+-=,设(),P a b为直线1:03l tx y+-=上任意一点,坐标原点O到直线l的距离为h=,因为(),P a bh≥,下求h13m m⎛⎫=≥⎪⎝⎭,则()()()21,mm e meg m g mm m'-==()g m∴在1,13⎛⎫⎪⎝⎭为减函数,在()1,∞+为增函数,即()min()1g m g e==,此时22l3t=⇒=±,所以l的斜率为k=±,124ba k∴=-=±(此时22,33ea b=±=).15.(1)证明:因为PBC为正三角形,O是BC中点,所以PO BC⊥,又因为平面PBC⊥平面ABCD,所以PO⊥平面,.ABCD PO BD⊥()2211440,22BD AO BC BA BC BA BC BA BD AO⎛⎫⋅=+⋅-=-=-=⊥⎪⎝⎭,.AO BD∴⊥又,PO AO在平面POA内且相交,故BD⊥平面PAO(2)解:,E O分别为,BD BC的中点,EO∴∥DC,又平面PDC过DC且不过EO,EO∴∥平面,PDC.又平面OEF交平面PDC于QF,故EO∥QF,进而QF∥DC,因为F 是PC 中点,所以Q 是PD 的中点.方法1:以O 为原点,,,OE OC OP 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()260,0,6,0,2,0,2,2,0,1,,22P C D Q ⎛⎫⎪ ⎪⎝⎭,()()2,0,0,0,2,6CD PC ==-设平面PCD 法向量为(),,n x y z = ,由00CD n PC n ⎧⋅=⎪⎨⋅=⎪⎩,20260x y z =⎧⎪⎨-=⎪⎩取()0,3,1n = ,26621,,sin cos ,22223OQ n OQ θ⎛⎫==== ⎪ ⎪⎝⎭所以π4θ=方法2:过点O 作PC 的垂线,垂足为H ,连接QH .因为DC BC ⊥且PO ⊥平面,ABCD PO DC ⊥,故有DC ⊥平面BPC ,平面PCB 与平面PCD 垂直且交线为PC ,故OH ⊥平面DPC ,故直线OQ 与平面PCD 所成角O OQH ∠=在直角三角形OHC 巾,60,2OCH OC ∠== 所以62OH =因为DC ⊥半面PBC ,故DC PC ⊥,又QF ∥DC ,所以QF PC ⊥.任直角三角形QFH 中,21,2QF FH ==,所以62QH =在直角三角形OQH 中62OH QH ==,所以45θ= 16.解:(1)列联表性别锻炼合计不经常经常男生72330女生141630合计213960零假设为0H :性别与锻炼情况独立,即性别因素与学生体育锻炼的经常性无关;根据列联表的数据计算2220.160(7162314)60(730)140 3.590 2.706213930302139303039x χ⨯-⨯⨯⨯===≈>=⨯⨯⨯⨯⨯⨯根据小概率值0.1α=的独立性检验,推断0H 不成立,即性别因素与学生体育锻炼的经常性有关系,此推断犯错误的概率不超过0.1(2)因学校总学生数远大于所抽取的学生数,故X 近似服从二项分布,随机抽取一人为“极度缺乏锻炼”者的概率51.6012p ==.120,12X B ⎛⎫~ ⎪⎝⎭故()1520123E X =⨯=()1115520121236D X =⨯⨯=.(3)10名“运动爱好者”有7名男生,3名女生,Y 服从超几何分布:()()0312737333101012170,112012040C C C C P Y P Y C C =======()()2130737333101021321357231204012024C C C C P Y P Y C C ⨯========故所求分布列为Y0123P11207402140724()37 2.110E Y ⨯==17.解析:(1)当2n ≥时,11141,41n n n n n n S a a S a a +--=+=+两式相减得()114n n n n a a a a +-=-⋅因为0n a ≠,故114n n a a +--=.所以1321,,,,n a a a -及242,,,,n a a a 均为公差为4的等差数列:当1n =时,由11a =及12114a a S +=,得23a =.()()211412211n a n n -∴=+-=--()()2341221n a n n =+-=-所以21n a n =-(2)由已知,2n S n =即22n n λ≥恒成立,设22n n n b =,则222111(1)21.222n n n n n n n n n b b ++++-++-=-=当11n -<<+1,2n =时110,n n n n b b b b ++-><当1n >*3,n n N ≥∈时110,n n n n b b b b ++<>-所以12345b b b b b <<>>> ,故()3max 98n b b ==,所以9,8λ∞⎡⎫∈+⎪⎢⎣⎭18.解:设直线AB 的方程为()()11221,,,,,2x my A x y B x y =+联立2122x my y x⎧=+⎪⎨⎪=⎩得:2210y my --=.1212Δ021y y m y y >⎧⎪+=⎨⎪⋅=-⎩(1)不妨设A 在第一象限,B在第四象限,对于y y =='l ∴的斜率为21y =l ∴的方程为()2221y y x x y -=-,即为221.2y y x y =+.令0x =得20,2y E ⎛⎫ ⎪⎝⎭直线OA 的方程为:121122y y x x y x x y ===-,令12x =-得21,2D y ⎛⎫- ⎪⎝⎭.又1,02F ⎛⎫ ⎪⎝⎭,所以DE EF = 即DE EF =得证.(2)方法1:过点B 的l 得垂线的方程为:()222y y y x x -=--,即222212y y y x y ⎛⎫=-++ ⎪⎝⎭则22222122y y y x y y y x ⎧⎛⎫=-++⎪ ⎪⎨⎝⎭⎪=-⎩,解得G 的纵坐标为()2222G y y y =+要证明2||AD AO AG =⋅,因为,,,A O D G 三点共线,只需证明:22111G y y y y y -=⋅-(*)..()2222221222211y y y y y y +-=+= ()()222211221222112G y y y y y y y y y +⋅-=-+-=.所以(*)成立,2||AD AO AG =⋅得证方法2:由()2221,,,2D y B x y ⎛⎫- ⎪⎝⎭知DB 与x 轴平行AFAOAB AD∴=①又DF 的斜率为2,y BG -的斜率也为2y -,所以DF 与BG 平行AFADAB AG ∴=②由①②得AOADAD AG ∴=,即2||AD AO AG =⋅得证19.解:(1)在曲线1y x =取一点2,2a b M a b +⎛⎫⋅ ⎪+⎝⎭.过点2,2a b M a b +⎛⎫ ⎪+⎝⎭作()f x 的切线分别交,AP BQ 于12,M M 囚为21ABQP ABM M S S >曲边梯形梯形()()12112ln ln 222b a AM BM AB b a a b ∴->⋅+⋅=⋅⋅⋅-+即ln ln 2a b a b a b -+<-.(2)方法1:由题意得:()2ln 1f x ax x b =+++'不妨设120x x <<,曲线()y f x =在()()11,x f x 处的切线方程为:()()()1111:l y f x f x x x '-=-,即()()()1111y f x x f x x f x '=+'-同理曲线()y f x =在()()22,x f x 处的切线方程为:()()()22222:7l y f x x f x x f x +'-'=分假设1l 与2l 重合,则()()()()()()12111222f x f x f x x f x f x x f x ⎧=⎪⎨-=-⎪'''⎩',代入化简可得:()()212121ln ln 201(0)x x a x x a x x a ⎧-+-=⎪⎨+=-<⎪⎩两式消去a 可得:212121ln ln 20x x x x x x ---=+,得到212121ln ln 2x x x x x x -+=-由(1)的结论知212121ln ln 2x x x x x x -+<-,与上式矛盾即:对任意实数,a b 及任意不相等的正数121,,x x l 与2l 均不重合.方法2:同方法1得到2212111ln 201x x x x x x --=+设21(1)x t t x =>,即()()222114(1)ln 20,01(1)(1)t t g t t g t t t t t t --=-==-+++'=>()g t 在()1,∞+为增函数,()()10g t g ∴>=,矛盾.即:对任意实数,a b 及任意不相等的正数121,,x x l 与2l 均不重合(3)即:当1b =-时,不等式()()2sin 1f x x ≥-恒成立,()()2ln 2sin 10h x ax x x x x ∴=-+--≥在()0,∞+恒成立,()101h a ∴≥⇒≥⋯下证:当1a ≥时,()0h x ≥恒成立.因为1a ≥,所以()()2ln 2sin 1h x x x x x x ≥-+--设()()()()2ln 2sin 1,2ln 2cos 1H x x x x x x H x x x x =-+--='+--①当[)1,x ∞∈+时,由()22,,ln 0,2cos 12x x x ≥≥--≥-知()0H x '≥恒成立,即()H x 在[)1,∞+为增函数,()()10H x H ∴≥=成立;②当()0,1x ∈时,设()()2ln 2cos 1G x x x x =+--,()()122sin 1G x x x =++-'由()12sin 12,0x x -≥->知()0G x '≥恒成立,即()()G x H x ='在()0,1为增函数.()()10H x H ''∴<=,即()H x 在()0,1为减函数,()()10H x H ∴>=成立.综上所述:实数a 的取值范围是[)1,.∞+。
2024届湖北省襄樊市高三练习三(全国卷I)数学试题
2024届湖北省襄樊市高三练习三(全国卷I )数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线C :2222x y a b -=1(a >0,b >0)的焦距为8,一条渐近线方程为3y x =,则C 为( )A .221412x y -=B .221124x y -=C .2211648x y -=D .2214816x y -=2.已知集合U =R ,{}0A y y =≥,{}1B y y x ==+,则UAB =( )A .[)0,1B .()0,∞+C .()1,+∞D .[)1,+∞ 3.已知双曲线C 的一个焦点为()0,5,且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为( )A .2214y x -=B .221520y x -=C .221205x y -=D .2214x y -=4.已知复数z 满足32i z i ⋅=+(i 是虚数单位),则z =( ) A .23i +B .23i -C . 23i -+D . 23i --5.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( )A .1233AD AB - B .2133AD AB + C .2133AD AB -D .1233AD AB +6.设m ,n 为直线,α、β为平面,则m α⊥的一个充分条件可以是( ) A .αβ⊥,n αβ=,m n ⊥ B .//αβ,m β⊥ C .αβ⊥,//m βD .n ⊂α,m n ⊥7.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则UM N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞8.已知椭圆C :()222210x y a b a b +=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF ,AB ,2AF 成等差数列,则C 的离心率为( )A .12B .33C .22D .329.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( ) A .43i +B .43i -C .43i -+D .43i --10.已知集合{}0,1,2,3A =,{|22}B x x =-≤≤,则AB 等于( )A .{}012,,B .{2,1,0,1,2}--C .{}2,1,0,1,2,3--D .{}12, 11.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,7,3a b c C π+==,则ABC ∆的面积为( )A .332B .3C .33D .2312.已知函数()sin 2cos 2f x x a x =+的图象的一条对称轴为12x π=,将函数()f x 的图象向右平行移动4π个单位长度后得到函数()g x 图象,则函数()g x 的解析式为( ) A .()2sin(2)12g x x π=- B .()2sin(2)12g x x π=+C .()2sin(2)6g x x π=-D .()2sin(2)6g x x π=+二、填空题:本题共4小题,每小题5分,共20分。
数学理卷·2014届湖北省襄阳市高三第二次调研统一测试(2014.03)word版
2014年高考襄阳市普通高中第二次调研统一测试理科数学一、选择题(本大题共l0小题。
每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知全集U=R,集合,则图中阴影部分所表示的集合为2.在复平面内,复数i(i-1)对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列命题的否定为假命题的是B.任意一个四边形的四个顶点共圆C.所有能被3整除的整数都是奇数4.将函数y=sin2x(x∈R)的图像分别向左平移m(m>O)个单位,向右平移n(n>0)个单位,所得到的两个函数图象都与函数y=sin(2x+)的图象重合,则m+n的最小值为5.等比数列{a n}的前n项和为S n,若a3=6,S3=,则公比q的值为A.1 B.-C.1或-D.-1或-6.右图是某几何体的三视图,则该几何体的体积为A.1 B.C.D.7.在平面区域内任取一点P(x,y),若(x,y)满足2x+y≤b的概率大于,则b的取值范围是A.(-∞,2) B.(0,2) C.(1,3) D.(1,+∞。
)8.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A、B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为A.x=-1 B.x=-2 C.x=1 D.x=29.给出下列命题:①向量a、b满足|a|=|b|=|a-b|,则a、b的夹角为30°;②a·b>0是向量a、b的夹角为锐角的充要条件;③将函数y=|x-1|的图象向左平移一个单位,得到函数y=|x|的图象;④在△ABC中,若,则△ABC为等腰三角形.以上命题正确的个数是A.1个 B.2个 C.3个 D.4个10.如图,偶函数f(x)的图像形如字母M,奇函数g(x)的图像形如字母N,若方程f(f(x))=0,f(g(x))=0,g(g(x))=0,g(f(x))=0的实根个数分别为a、b、c、d,则a+b+c+d=A.27 B.30 C.33 D.36二.填空题(本大题共6小题,考生共需作答5小题,每小题5分,共25分。
湖北省襄阳市中考数学试卷及答案(Word解析版)
湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)1.(3分)(•襄阳)2的相反数是()A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:2的相反数是﹣2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:15180=1.581×104,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(•襄阳)下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、4a﹣a=3a,选项错误;B、正确;C、(﹣a3)2=a6,选项错误;D、a6÷a2=a4,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.5.(3分)(•襄阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.解答:解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选D.点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.6.(3分)(•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°,∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.7.(3分)(•襄阳)分式方程的解为()A.x=3 B.x=2 C.x=1 D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分)(•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.考点:简单组合体的三视图.分析:判断出组合体的左视图、主视图及俯视图,即可作出判断.解答:解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.点评:本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.9.(3分)(•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)(•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<0的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11.(3分)(•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则中位数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.12.(3分)(•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.二、填空题(3*5=15分)13.(3分)(•襄阳)计算:|﹣3|+=4.考点:实数的运算;零指数幂.分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案.解答:解:原式=3+1=4.故答案为:4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键.14.(3分)(•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(3分)(•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.(3分)(•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.考点:列表法与树状图法.专题:图表型.分析:可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.解答:解:李老师先选择,然后儿子选择,画出树状图如下:一共有9种情况,都选择古隆中为第一站的有1种情况,所以,P(都选择古隆中为第一站)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.三、解答题(69分)18.(6分)(•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可解答:解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.(6分)(•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用.分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.21.(6分)(•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.分析:(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.解答:解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.(6分)(•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.考点:反比例函数综合题.分析:(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AO•CE求出面积的值.解答:解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE,DF=CE,∵A(﹣4,0),B(2,0),C(3,3),∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA﹣AF=OA﹣BE=OA﹣(OE﹣OB)=4﹣(3﹣2)=3,∴D(﹣3,3),∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3),把x=﹣3代入y=得,y=﹣3,∴点D′在双曲线上;(3)∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称,∴D′O=CO=D′C,∴S△AD′C=2S△AOC=2×AO•CE=2××4×3=12,即S△AD′C=12.点评:本题主要考查反比例函数综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及点的对称性等知识点,此题难度不大,是一道不错的中考试题.23.(7分)(•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.考点:全等三角形的判定与性质;等边三角形的性质;旋转的性质.专题:几何综合题.分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°﹣60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.24.(9分)(•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.考点:一次函数的应用.分析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解答:解:(1)由题意,得y A=(10×30+3x)×0.9=2.7x+270,y B=10×30+3(x﹣20)=3x+240,(2)当y A=y B时,2.7x+270=3x+240,得x=100;当y A>y B时,2.7x+270>3x+240,得x<100;当y A<y B时,2.7x+270=3x+240,得x>100∴当2≤x<100时,到B超市购买划算,当x=100时,两家超市一样划算,当x>100时在A 超市购买划算.(3)由题意知x=15×10=150>100,∴选择A超市,y A=2.7×150+270=675元,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球(10×15﹣20)×30.9=351元,共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.点评:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.25.(10分)(•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.解答:(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD==5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵AB∥PD,∴∠PDA=∠DAB=45°,∴∠PAD=∠PCD,而∠DPA=∠CPD,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.26.(13分)(•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值;②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标.解答:解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+.点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称﹣最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.。
湖北省襄阳四中2020届高三下学期理科数学3月月考试题(解析版)
湖北省襄阳四中2020届高三下学期理科数学(3月份)模拟试卷一、选择题(共12小题)1.已知实数集R,集合A={x|x2﹣4x+3<0},集合,则A∩B=()A.{x|1<x≤2}B.{x|2≤x<3}C.{x|2<x<3}D.{x|1<x<3} 2.已知向量,,若,则在方向上的投影为()A.B.1C.D.23.“方程表示双曲线”的一个充分不必要条件为()A.m∈(2,3)B.m∈(1,4)C.m∈(0,4)D.m∈(4,+∞)4.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013年到2018年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将2013年编号为1,2014年编号为2,…,2018年编号为6,把每年的公共图书馆业机构个数作为因变量,把年份编号从1到6作为自变量进行回归分析),得到回归直线,其相关指数R2=0.9817,给出下列结论,其中正确的个数是()①公共图书馆业机构数与年份的正相关性较强②公共图书馆业机构数平均每年增加13.743个③可预测2019年公共图书馆业机构数约为3192个A.0B.1C.2D.35.已知f(x)=x•2|x|,,,c=f(ln3),则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.c>a>b6.函数f(x)=的部分图象大致是()A.B.C.D.7.现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.8.已知定义在R上的偶函数f(x)=对任意x∈R都有f(x)+f (x+)=0,当ω取最小值时,的值为()A.1B.C.D.9.在△ABC中,|AC|=2,|AB|=2,∠BAC=120°,=λ,=μ,M为线段EF 的中点,若||=1,则λ+μ的最大值为()A.B.C.2D.10.已知数列{a n}满足a1=1,,则na n的最小值是()A.0B.C.1D..211.已知P={α|f(α)=0},Q={β|g(β)=0},若存在α∈P,β∈Q,使得|α﹣β|<n,则称函数f(x)与g(x)互为“n距零点函数”若f(x)=log2020(x﹣1)与g(x)=x2﹣ae x(e为自然对数的底数)互为“1距零点函数”,则实数a的取值范围为()A.B.C.D.12.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}二、填空题13.已知复数z满足(2﹣i)2•z=1,则z的虚部为.14.已知实数x、y满足条件,则z=x﹣3y的最小值为.15.已知椭圆,点P是椭圆上在第一象限上的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的角平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.16.已知直线y=kx+b与函数y=e x的图象相切于点P(x1,y1),与函数y=lnx的图象相切于点Q(x2,y2),若x2>1,且x2∈(n,n+1),n∈Z,则n=.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知a,b,c分别为△ABC三个内角A,B,C的对边,且b2+c2﹣a2=ac cos C+c2cos A.(1)求A;(2)在△ABC中,,D为边AC的中点,E为AB边上一点,且DE⊥AC,,求△ABC的面积.18.在斜三棱柱ABC﹣A1B1C1中,,侧面ACC1A1是边长为4的菱形,,A1B=4,E、F分别为AC、A1B1的中点.(1)求证:BC⊥平面A1EF;(2)若,求二面角A1﹣EF﹣C1的正弦值.19.已知直线l与抛物线C:y2=4x交于A,B两点,M(2,y0)(y0≠0)为弦AB的中点,过M作AB的垂线交x轴于点P.(1)求点P的坐标;(2)当弦AB最长时,求直线l的方程.20.有一种叫“对对碰”的游戏,游戏规则如下:一轮比赛中,甲乙两人依次轮流抛一枚质地均匀的硬币,甲先抛,每人抛3次,得分规则如下:甲第一次抛得x(x∈N+)分,再由乙第一次抛,若出现朝上的情况与甲第一次抛的朝上的情况一样,则本次得2分,否则得1分;再甲第二次抛,若出现朝上的情况与乙第一次抛的朝上的情况一样,则本次得分是乙第一次得分的基础上加1分,否则得1分;再乙第二次抛,若出现朝上的情况与甲第二次抛的朝上的情况一样,则本次得分是甲第二次得分的基础上加1分,否则得1分;按此规则,直到游戏结束.记甲乙累计得分分别为ξ,η.(1)一轮游戏后,求η>3的概率;(2)一轮游戏后,经计算得乙的数学期望,要使得甲的数学期望,求x的最小值.21.已知函数f(x)=e x﹣x﹣axln(x+1)﹣1.(1)若a=0,证明:f(x)≥0.(2)若函数f(x)在x=0处有极大值,求实数a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一个题计分.[选修4-4:极坐标与参数方程]22.已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)已知点M(1,0),直线l与曲线C交于A、B两点,求||MA|﹣|MB||.[选修45:不等式选讲]23.已知函数f(x)=|2x﹣3|+|2x+1|.(1)解不等式:f(x)≥6;(2)设x∈R时,f(x)的最小值为M.若正实数a,b,c满足a+b+c=M,求ab+bc+ca 的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知实数集R,集合A={x|x2﹣4x+3<0},集合,则A∩B=()A.{x|1<x≤2}B.{x|2≤x<3}C.{x|2<x<3}D.{x|1<x<3}【分析】可以求出集合A,B,然后进行交集的运算即可.解:A={x|1<x<3},B={x|x≥2},∴A∩B={x|2≤x<3}.故选:B.2.已知向量,,若,则在方向上的投影为()A.B.1C.D.2【分析】先利用利用两个向量垂直的充要条件,将其转化为坐标运算,解方程可得m值;再由向量数量积运算的几何意义知,向量在方向上的投影为,代入坐标计算即可.解:因为向量,,∴2﹣=(2﹣m,1);∵⇒2﹣m+2=0⇒m=4;∴=(4,3);∴向量在方向上的投影为==2.故选:D.3.“方程表示双曲线”的一个充分不必要条件为()A.m∈(2,3)B.m∈(1,4)C.m∈(0,4)D.m∈(4,+∞)【分析】先求出“方程表示双曲线”的m的取值范围,再找它的真子集即可.解:若“方程表示双曲线”,则(m﹣1)(m﹣4)<0,解得:1<m<4,∵“方程表示双曲线”的一个充分不必要条件为(1,4)的真子集,故选:A.4.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013年到2018年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将2013年编号为1,2014年编号为2,…,2018年编号为6,把每年的公共图书馆业机构个数作为因变量,把年份编号从1到6作为自变量进行回归分析),得到回归直线,其相关指数R2=0.9817,给出下列结论,其中正确的个数是()①公共图书馆业机构数与年份的正相关性较强②公共图书馆业机构数平均每年增加13.743个③可预测2019年公共图书馆业机构数约为3192个A.0B.1C.2D.3【分析】由散点图中各点分布情况和R2的值,判断①正确;由回归直线方程判断②正确;由回归直线方程计算x=7时的值,判断③正确.解:由散点图中各点散布在从左下角到右上角的区域内,所以为正相关,又R2=0.9817趋近于1,所以相关性较强,所以①正确;由回归直线方程,知②正确;由回归直线方程知,当x=7时,计算得=13.743×7+3095.7=3191.9,其估计值为3191.9≈3192,所以③正确;综上知,正确的命题个数为3.故选:D.5.已知f(x)=x•2|x|,,,c=f(ln3),则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.c>a>b【分析】根据题意,由函数的解析式分析可得当x<0,f(x)=x•()x<0,据此可得b<0,当x≥0时,f(x)=x•2x,求出其导数,分析可得f(x)在[0,+∞)上为增函数,由此分析可得0<a<c,综合可得答案.解:根据题意,f(x)=x•2|x|=,当x<0时,f(x)=x•()x<0,又由log3=﹣log32<0,则b<0,当x≥0时,f(x)=x•2x,其导数f′(x)=2x+x•2x ln2>0,则f(x)在[0,+∞)上为增函数,其f(0)=0,则当x>0时,f(x)>0;又由0<log3<1<ln3,则0<a<c,综合可得:c>a>b;故选:D.6.函数f(x)=的部分图象大致是()A.B.C.D.【分析】判断函数的奇偶性,排除选项,利用特殊值以及函数的图象的变化趋势判断即可解:令函数f(﹣x)==﹣=﹣f(x),所以函数f(x)是奇函数,故排除选项B,D,又f()=0,f()=<0,故排除C故选:A.7.现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.【分析】现有4名高三学生进行去四个地方的总排列,再选出一个地方将剩下的三个地方进行四人的排列,捆绑两人即可.解:现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,基本事件总数44=256,再四个地方选出一个地方无人选择有种情况,将剩下的三个地方进行4人选择,将4人中捆绑2人有C42种情况,进行排列在三个位置有:A33种排法,∴恰有一个地方未被选中包含的基本事件个数m═C41C42A33=144,则恰有一个地方未被选中的概率为p===.故选:B.8.已知定义在R上的偶函数f(x)=对任意x∈R都有f(x)+f(x+)=0,当ω取最小值时,的值为()A.1B.C.D.【分析】利用三角函数恒等变换化简函数f(x),根据f(x)为偶函数求出φ的值;再由f(x)+f(x+)=0,结合题意求得ω的最小值,即可计算f()的值.解:函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)=2[sin(ωx+φ)﹣cos(ωx+φ)]=2sin(ωx+φ﹣),又f(x)为偶函数,所以φ﹣=+kπ,k∈Z;解得φ=+kπ,k∈Z;又φ∈(0,π),所以φ=;所以f(x)=2sin(ωx+)=2cosωx;又对任意x∈R都有f(x)+f(x+)=0,所以f(0)+f()=2cos0+2cos=0,解得cosω=﹣1,所以ω=2kπ+π,k∈Z;解得ω=4k+2,k∈Z;又ω>0,所以ω的最小值是2,此时=2cos(2×)=2×=1.故选:A.9.在△ABC中,|AC|=2,|AB|=2,∠BAC=120°,=λ,=μ,M为线段EF 的中点,若||=1,则λ+μ的最大值为()A.B.C.2D.【分析】建立坐标系,求出各点的坐标,得到关于λ,μ之间的等量关系,再令λ+μ=t,结合二次方程联立求解即可.解:建立如图所示坐标系;则A(0,0),C(2,0),B(﹣1,);∵=λ,=μ,∴E(﹣λ,λ),F(2μ,0);∴M(μ﹣,λ);∴||=1⇒(μ﹣)2+=1⇒μ2﹣λμ+λ2=1;①令λ+μ=t,则λ=t﹣μ代入①整理可得:3μ2﹣3μt+t2﹣1=0;△=(﹣3t)2﹣4×3×(t2﹣1)≥0⇒﹣2≤t≤2;∴λ+μ的最大值为2.故选:C.10.已知数列{a n}满足a1=1,,则na n的最小值是()A.0B.C.1D..2【分析】两边同时除以a n a n+1,得,利用累加法求出,最后求出na n的最小值.解:,两边同时除以a n a n+1,得,=2﹣,故,故最小值为n=1时,na n的最小值是1,故选:C.11.已知P={α|f(α)=0},Q={β|g(β)=0},若存在α∈P,β∈Q,使得|α﹣β|<n,则称函数f(x)与g(x)互为“n距零点函数”若f(x)=log2020(x﹣1)与g(x)=x2﹣ae x(e为自然对数的底数)互为“1距零点函数”,则实数a的取值范围为()A.B.C.D.【分析】由g(x)=x2﹣ae x=0,得x2=ae x,即.构造函数,结合导数可判断单调性,进而可求.解:易知函数f(x)只有一个零点2,故P={2},由题意知|2﹣β|<1,即1<β<3.由题意知,函数g(x)在(1,3)内存在零点,由g(x)=x2﹣ae x=0,得x2=ae x,所以.记,则.所以当x∈(1,2)时,h'(x)>0,函数h(x)单调递增;当x∈(2,3)时,h'(x)<0,函数h(x)单调递减;所以,而,所以实数a的值范围为.故选:B.12.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}【分析】设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点.分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可证出平面A1MN∥平面D1AE,从而得到A1F是平面A1MN内的直线.由此将点F在线段MN上运动并加以观察,即可得到A1F与平面BCC1B1所成角取最大值、最小值的位置,由此不难得到A1F与平面BCC1B1所成角的正切取值范围.解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则∵A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,∴A1M∥平面D1AE.同理可得MN ∥平面D1AE,∵A1M、MN是平面A1MN内的相交直线∴平面A1MN∥平面D1AE,由此结合A1F∥平面D1AE,可得直线A1F⊂平面A1MN,即点F是线段MN上上的动点.设直线A1F与平面BCC1B1所成角为θ运动点F并加以观察,可得当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1,此时所成角θ达到最小值,满足tanθ==2;当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ==2∴A1F与平面BCC1B1所成角的正切取值范围为[2,2]故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.已知复数z满足(2﹣i)2•z=1,则z的虚部为.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由(2﹣i)2•z=1,得,∴z的虚部为.故答案为:.14.已知实数x、y满足条件,则z=x﹣3y的最小值为﹣.【分析】可画出不等式组所表示的平面区域,而由z=x﹣3y可得出y=x﹣z,表示斜率为的一族平行直线,当直线在y轴上的截距取最大值时,z取得最小值,从而结合图形即可求出最大截距,即得出z的最小值.解:不等式组表示的平面区域如下图阴影部分所示:由z=x﹣3y得y=x﹣z,这是斜率为的一族平行直线,直线在y轴上的截距为﹣z,截距最大时,z最小,根据图形看出,当直线y=x﹣z经过点B时,截距最大,z取最小值,解得,∴B(3,).此时z=x﹣3y的最小值为:z=3﹣3×=﹣;故答案为:﹣.15.已知椭圆,点P是椭圆上在第一象限上的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的角平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.【分析】由已知画出图形,利用三角形中位线定理得到|F1B|=4b,再利用椭圆的定义得到a=2b,结合隐含条件求解椭圆离心率.解:如图,由题意可得,A为F2B的中点,由|OA|=2b,得|F1B|=4b,又|PF2|=|PB|,∴|F1B|=|PF1|+|PB|=|PF1|+|PF2|=2a=4b,∴a=2b,则c==,得e=,故答案为:.16.已知直线y=kx+b与函数y=e x的图象相切于点P(x1,y1),与函数y=lnx的图象相切于点Q(x2,y2),若x2>1,且x2∈(n,n+1),n∈Z,则n=4.【分析】由题意求出函数y=e x在点P(x1,y1)处的切线方程,函数y=lnx在点Q(x2,y2)处的切线方程,可得x2lnx2﹣lnx2﹣x2﹣1=0(x2>1),构造函数g(x)=xlnx﹣lnx ﹣x﹣1,利用导数研究其单调性,再由函数零点的判定得答案.解:由题意,k=,①曲线y=e x在点P(x1,y1)处的切线方程为y﹣=,即y=;曲线y=lnx在点Q(x2,y2)处的切线方程为,即.∴b=,②联立①②可得,x2lnx2﹣lnx2﹣x2﹣1=0(x2>1),令g(x)=xlnx﹣lnx﹣x﹣1,则g′(x)=lnx﹣,该函数在(1,+∞)上为增函数,∵g′(1)=﹣1<0,g′(2)=ln2﹣>0,∴存在x0∈(1,2),使得g′(x0)=0,则g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,而g(x0)=x0lnx0﹣lnx0﹣x0﹣1=﹣lnx0﹣x0<0,当x→1+时,g(x)<0,∴g(x)的零点在(x0,+∞)上,又g(4)=6ln2﹣5<0,g(5)=4ln5﹣6>0,∴x0∈(4,5),则n=4.故答案为:4.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知a,b,c分别为△ABC三个内角A,B,C的对边,且b2+c2﹣a2=ac cos C+c2cos A.(1)求A;(2)在△ABC中,,D为边AC的中点,E为AB边上一点,且DE⊥AC,,求△ABC的面积.【分析】(1)b2+c2﹣a2=ac cos C+c2cos A.由余弦定理可得:2bc cos A=ac cos C+c2cos A.再利用正弦定理即可得出.(2)在△ABC中,DE⊥AC,,A=.可得=tan,解得AD.可得AC.利用余弦定理可得AB,利用三角形的面积计算公式即可得出.解:(1)b2+c2﹣a2=ac cos C+c2cos A.由余弦定理可得:2bc cos A=ac cos C+c2cos A.化为:2b cos A=a cos C+c cos A.∴2sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B≠0.∴cos A=,A∈(0,π),∴A=.(2)在△ABC中,DE⊥AC,,A=.∴=tan,解得AD=.∴AC=.又BC=.∴3=2+AB2﹣2AB cos,解得AB=∴△ABC的面积S=×××sin=.18.在斜三棱柱ABC﹣A1B1C1中,,侧面ACC1A1是边长为4的菱形,,A1B=4,E、F分别为AC、A1B1的中点.(1)求证:BC⊥平面A1EF;(2)若,求二面角A1﹣EF﹣C1的正弦值.【分析】(1)结合菱形的性质及沟勾股定理可得A1E⊥BC,再由BC⊥AB,可得BC⊥A1F,进而得证;(2)建立空间直角坐标系,求出两个平面的法向量,利用向量公式即可得解.解:(1)证明:依题意,四边形ACC1A1是菱形,,E为AC的中点,∴A1E⊥AC,又∵BE是直角三角形ABC斜边上的中线,∴BE=2,又,∴,则A1E⊥BE,∵AC∩BE=E,∴A1E⊥平面ABC,∴A1E⊥BC,又∵BC⊥AB,A1F∥AB,∴BC⊥A1F,∴BC⊥平面A1EF;(2)由(1)知BC⊥平面A1EF,∵BC在平面ABC内,∴平面ABC⊥平面A1EF,又由A1E⊥AC,∴A1E⊥平面ABC,以B为坐标原点,射线BC为x轴,射线BA为y轴,过点B向上作平面ABC的垂线为z轴建立如图所示的空间直角坐标系,A1E∥z轴,则,由(1)知,BC⊥平面A1EF,故平面A1EF的一个法向量为,设平面C1EF的一个法向量为,又,∴,可取,∴,∴二面角A1﹣EF﹣C1的正弦值为.19.已知直线l与抛物线C:y2=4x交于A,B两点,M(2,y0)(y0≠0)为弦AB的中点,过M作AB的垂线交x轴于点P.(1)求点P的坐标;(2)当弦AB最长时,求直线l的方程.【分析】(1)设直线l的方程为y=kx+b,联立抛物线方程,运用韦达定理和中点坐标公式可得k,b的关系式,再由两直线垂直的条件,可得所求坐标;(2)运用弦长公式公式和二次函数的配方法和最值求法,可得最大值.解:(1)设直线l的方程为y=kx+b,联立y2=4x,可得k2x2+(2kb﹣4)x+b2═0,设A(x1,y1),B(x2,y2),可得x1+x2==4,即kb+2k2=2,x1x2=,设P(t,0),由题意可得k MP==﹣,即t=2+ky0=2+k(2k+b)=2+2=4;可得P(4,0);(2)由(1)可得x1+x2=4,x1x2=,△=(2kb﹣4)2﹣4k2b2>0,即kb<1,则|AB|=•=•=•=4=4=4≤4•=6,当k2=2即k=±时,|AB|取得最大值6.20.有一种叫“对对碰”的游戏,游戏规则如下:一轮比赛中,甲乙两人依次轮流抛一枚质地均匀的硬币,甲先抛,每人抛3次,得分规则如下:甲第一次抛得x(x∈N+)分,再由乙第一次抛,若出现朝上的情况与甲第一次抛的朝上的情况一样,则本次得2分,否则得1分;再甲第二次抛,若出现朝上的情况与乙第一次抛的朝上的情况一样,则本次得分是乙第一次得分的基础上加1分,否则得1分;再乙第二次抛,若出现朝上的情况与甲第二次抛的朝上的情况一样,则本次得分是甲第二次得分的基础上加1分,否则得1分;按此规则,直到游戏结束.记甲乙累计得分分别为ξ,η.(1)一轮游戏后,求η>3的概率;(2)一轮游戏后,经计算得乙的数学期望,要使得甲的数学期望,求x的最小值.【分析】(1)抛硬币出现正面朝上,反面朝上的概率均为,由游戏规则可知η≥3,且每次抛币得分为1分的概率均为,由此能求出P(η>3).(2)记ξi,ηi(i=1,2,3)分别表示甲乙第i次抛币的得分,分别求出乙第一次得分分布列、甲第二次得分分布列、乙第二次得分分布列、甲第三次得分分布列,并分别求出相应的数学期望,列出不等式,能求出x的最小值.解:(1)抛硬币出现正面朝上,反面朝上的概率均为,由游戏规则可知η≥3,且每次抛币得分为1分的概率均为,则P(η=3)==,则P(η>3)=1﹣P(η=3)=1﹣=.(2)记ξi,ηi(i=1,2,3)分别表示甲乙第i次抛币的得分,乙第一次得分分布列:ηi12PEξi==.甲第二次得分分布列:ξ2123PEξ2==.乙第二次得分分布列:η21234PEη2==.甲第三次得分分布列:ξ312345PEξ3==,∴Eξ=Eξ1+Eξ2+Eξ3=>.∴x>,∵x∈N+,∴x的最小值为2.21.已知函数f(x)=e x﹣x﹣axln(x+1)﹣1.(1)若a=0,证明:f(x)≥0.(2)若函数f(x)在x=0处有极大值,求实数a的取值范围.【分析】(1)求出原函数的定义域为(﹣1,+∞).把a=0代入函数解析式,求出函数的最小值,由最小值大于等于0即可证明;(2)求出原函数的导函数,要使函数f(x)在x=0处有极大值,可得f′(0)=0,且在x=0处f′(x)左正右负,然后对a分类分析即可求解实数a的取值范围.【解答】(1)证明:函数的定义域为(﹣1,+∞).当a=0时,f(x)=e x﹣x﹣1,f′(x)=e x﹣1,由f′(x)=0,得x=0.当x∈(﹣1,0)时,f′(x)<0,f(x)单调递减,当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)的极小值也是最小值为f(0)=0,即f(x)≥0.(2)解:f′(x)==,由题意可得:f′(0)=0,且在x=0处f′(x)左正右负,必存在ɛ>0,当x∈(﹣ɛ,0)时,f′(x)>0,当x∈(0,ɛ)时,f′(x)<0,记f″(x)=,若a≤0,f″(x)=>0恒成立,则f′(x)=在定义域上单调递增,当x>0时,f′(x)>f′(0)=0,不合题意,舍去;若0,当x>0时,e x>1,<2,﹣a()>﹣2a,f″(x)=>1﹣2a≥0,f′(x)在(0,+∞)上单调递增,即x>0时,f′(x)>f′(0)=0,不合题意,舍去;当a>时,f″(x)=单调递增,f″(0)=1﹣2a<0,必存在ɛ>0,使得当x∈(﹣ɛ,ɛ)时,f″(x)<0,此时f′(x)在(﹣ɛ,ɛ)上单调递减.又f′(0)=0,故当x∈(﹣ɛ,0)时,f′(x)>0,f(x)单调递增;当x∈(0,ɛ)时,f′(x)<0,f(x)单调递减,即函数f(x)在x=0处有极大值.综上所述,a>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一个题计分.[选修4-4:极坐标与参数方程]22.已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)已知点M(1,0),直线l与曲线C交于A、B两点,求||MA|﹣|MB||.【分析】(1)直接把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数关系式的应用求出结果.解:(1)曲线C的极坐标方程为ρ=4cosθ,转换为直角坐标方程为x2+y2﹣4x=0.直线l的参数方程为(t为参数).转换为直角坐标方程为,整理得.(2)把直线l的参数方程为(t为参数)代入圆的方程整理为.所以,t1t2=﹣3.||MA|﹣|MB||=.[选修45:不等式选讲]23.已知函数f(x)=|2x﹣3|+|2x+1|.(1)解不等式:f(x)≥6;(2)设x∈R时,f(x)的最小值为M.若正实数a,b,c满足a+b+c=M,求ab+bc+ca 的最大值.【分析】(1)分类讨论,即可求得不等式的解集,得到答案;(2)由绝对值的三角不等式,求得f(x)的最小值M=4,再结合基本不等式,即可求解.解:(1)当时,不等式等价为﹣2x+3﹣2x﹣1≥6,解得x≤﹣1;当时,不等式等价为﹣2x+3+2x+1≥6,无解;当时,不等式等价为2x﹣3+2x+1≥6,解得x≥2;综上,不等式的解集为(﹣∞,﹣1]∪[2,+∞);(2)由|2x﹣3|+|2x+1|≥|2x﹣3﹣2x﹣1|=4,可得f(x)的最小值为M=4,即a+b+c=4,由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,当且仅当“a=b=c”时取等号,所以3(ab+bc+ca)≤(a+b+c)2=16,故,当且仅当“a=b=c”时取等号,故ab+bc+ca的最大值为.。
2012年考研数学三真题及解析
1 x 2x
ln 1x
1 x2
sin x
x
1 x 1 x2
ln 1x
1
x2 x
sin x
当0
x
1时,有 ln 1 x 1x
0,1 1
x2 x2
1 ,所以 1 1
x2 x2பைடு நூலகம்x
sin x
0,
故 f' x
0 ,而 f 0
1x
x2
0,即得 x ln
cos x 1
0
1x
2
所以 x ln 1 x cos x x2 1 。
【答案】:( B)
f (x2
y 2 )dy
【解析】: 由 x x 2 y 2 解得 y 的下界为 2x x 2 ,由 x 2 y 2 2 解得 y 的上界为 4 x 2 .故排
除答案( C)( D) . 将极坐标系下的二重积分化为 X 型区域的二重积分得到被积函数为
f (x2 y2) ,
故选( B) .
10000(万元),设该企
业生产甲、乙两种产品的产量分别为
x(件)和( y 件),且固定两种产品的边际成本分别为
x 20 (万元
2
/件)与 6 y (万元 /件)。
1)求生产甲乙两种产品的总成本函数 C (x, y) (万元 )
2)当总产量为 50 件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本。
4
1 , P(C)
2
1 ,则 P( ABC )
3
________。
【解析】: 由条件概率的定义, P AB C
P ABC
,
PC
其中 P C
1 PC
12
2012年高考真题理科数学解析分类汇编7(立体几何)
立体几何一、选择题的边长为1,1.【2012高考新课标理7】如图,网格纸上小正方形粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.BC=2。
将2.【2012高考浙江理10】已知矩形ABCD ,AB=1,△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。
A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.3.【2012高考新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36()C 23 ()D 22 【答案】A【解析】ABC ∆的外接圆的半径33r =,点O 到面ABC 的距离2263d R r =-=,SC 为球O 的直径⇒点S 到面ABC 的距离为2623d =此棱锥的体积为113262233436ABC V S d ∆=⨯=⨯⨯= 另:13236ABC V S R ∆<⨯=排除,,B C D ,选A.4.【2012高考四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式. 5.【2012高考四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A、arccos4R B 、4R π C、arccos 3R D 、3Rπ [答案]A[解析] 以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴,则A )0,23,21(),22,0,22(R R P R R42arccos=∠∴AOP42arccos ⋅=∴R P A[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.6.【2012高考陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A.5B.3C. 5D. 35422=•=∠∴R PO AO AOP COS【答案】A.【解析】法1:设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A ,),2,0(),,2,2(11a a BC a a a AB -=-=∴,55||||,cos 111111=⋅>=<∴BC AB BC AB BC AB ,故选A. 法2:过点1B 作11//B D C B 交Oz 轴于点D ,连结AD ,设122CA CC CB a ===,则113,5,22AB a B D a AD a ===,在1AB D ∆中,由余弦定理知直线1AB 与直线1BC 夹角的余弦值为2222221111958525235AB B D AD a a a AB B D a a+-+-==⋅⋅⋅. 7.【2012高考湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.8.【2012高考湖北理4】已知某几何体的三视图如右图所示,则该几何体的体积为侧视图2 正视图42 42A .8π3B .3πC .10π3D .6π【答案】B考点分析:本题考察空间几何体的三视图.【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 9.【2012高考广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .10.【2012高考福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A.球 B.三棱柱 C.正方形 D.圆柱 【答案】D.【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】法1:球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.法2:球的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形;圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
襄阳市七年级数学试卷有理数解答题训练经典题目(含答案)
襄阳市七年级数学试卷有理数解答题训练经典题目(含答案)一、解答题1.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值4.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,以此类推(1)阴影部分的面积是多少?(2)受此启发,你能求出1+ 的值吗?5.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.6.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.7.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.8.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.9.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点(点C在线段AB上).例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.(1)数________所表示的点是(M,N)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?10.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:11.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .12.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
坐标系与参数方程7
坐标系与参数方程7一、填空题1 .(湖北省浠水一中2013届高三理科数学模拟测试 )(选修4-4:坐标系与参数方程)已知曲线1C的极坐标系方程为πsin ()42ρθ+=,曲线2C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),则曲线1C 与2C 的交点的直角坐标为__________【答案】解析:1C :1=+y x ,2C :422=-yx 联立解得23,25-==y x2 .(湖北省武汉市2013届高三5月供题训练数学理试题(二)(word 版) )(选修4-4:坐标系与参数方程)在极坐标系中,曲线C 1: 1)sin cos 2(=+θθρ与曲线C 2: ρ=a(a >0)只有一个公共点, 则 a =_______.【答案】33 .(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧--=-=ty x 41253(t 为参数)与曲线2ρ(cos 2θ-sin 2θ)=16相交于A,B 两点,则|AB| =______4 .(湖北省襄阳市2013届高三3月调研考试数学(理)试题)(选修4-4:坐标系与参数方程)在直角坐标系中,以坐标原点为极点,x 轴正半轴为极轴建 立极坐标系,曲线(a 为参数)与曲线cos 22=-θρρ【答案】25 .(湖北省黄冈中学2013届高三第一次模拟考试数学(理)试题)(极坐标与参数方程)已知抛物线C 的极坐标方程为2sin 8cos 0ρθθ-=,若斜率为1的直线经过抛物线C 的焦点,与圆()2224(0)x y r r -+=>相切,则r =________.【答案】答案解析:将2sin 8cos 0ρθθ-=化为普通方程即28y x =,得(2,0)F6 .(湖北省八市2013届高三3月联考数学(理)试题)(选修4-4:坐标系与参数方程)设直线1l 的参数方程为13x t y a t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,另一直线2l 的方程为sin 3cos 40ρθρθ-+=,若直线1l 与2l则实数a 的值为__________.【答案】9或-117 .(湖北省天门市2013届高三模拟测试(一)数学理试题 )(坐标系与参数方程选做题)已知在平面直角坐标系xoy 中,圆C的参数方程为3co s ,(13sin x y θθθ⎧=⎪⎨=+⎪⎩为参数),平面直角坐标系的原点作为极点,x 轴的正半轴为以极轴,并在两种坐标系中取相同的单位长度建立极坐标系,直线l 的极坐标方程为co s()06πρθ+=,则直线l 截圆C 所得的弦长为__________.【答案】8 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )(选修4-5:坐标系与参数方程)在直角坐标系xoy中,直线l的参数方程为1222x ty ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),若以直角坐标系xoy 的O 点为极点,o x 为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为2co s()4πρθ=-.若直线l 与曲线C 交于,A B 两点,则A B =___________【答案】49 .(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )(选修4- 4 :坐标系与参数方程)在直角坐标系xOy 中,已知曲线C 1: ⎩⎨⎧-=+=t y t x 211(t 为参数)与曲线C 2: ⎩⎨⎧==θθcos 3sin y a x (θ为参数,a>0)有一个公共点在x 轴上,则a=_____.【答案】3210.(2012年湖北高考试题(理数,word 解析版))(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知射线π4θ=与曲线21,(1)x t y t =+⎧⎨=-⎩(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为__________.【答案】55,22⎛⎫⎪⎝⎭【解析】曲线()21,1x t y t =+⎧⎪⎨=-⎪⎩化为直角坐标方程是()22y x =-,射线4πθ=化为直角坐标方程是()0y x x =≥.联立()()22,0,y x y x x ⎧=-⎪⎨=≥⎪⎩消去y 得2540x x -+=,解得121,4x x ==.所以121,4y y ==.故线段A B 的中点的直角坐标为1122,22x y x y ++⎛⎫ ⎪⎝⎭,即55,22⎛⎫⎪⎝⎭. 【点评】本题考查极坐标方程,参数方程与直角坐标方程的互化,中点坐标公式的应用问题.()()1122,,,A x y B x y 两点的中点坐标公式为1122,22x y x y ++⎛⎫⎪⎝⎭.来年需注意极坐标方程,参数方程与直角坐标方程的互化,直线与圆锥曲线的位置关系,交点个数等题型.11.(湖北省黄冈市2013届高三4月调研考试数学(理)试题)(选修4—4,坐标与参数方程)在直角坐标系xOy 中,曲线C 1的参数方程为⎪⎩⎪⎨⎧==22,2t y t x (t 为参数),在以O 为极 点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为22)4sin(=+πθρ,则C 1与C 2的交点个数为________.【答案】212.(湖北省七市2013届高三4月联考数学(理)试题)(坐标系与参数方程)在直角坐标平面内,以坐标原点0为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M 的极坐标为(42,π41),曲线C 的参数方程为⎪⎩⎪⎨⎧=+=ααsin 2cos 21y x (α为参数),则点M 到曲线C 上的点的距离的最小值为____.【答案】25-13.(湖北省八校2013届高三第二次联考数学(理)试题)(选修4—4:坐标系与参数方程)在极坐标系中,过圆 6co s ρ=θ的圆心,且垂直于极轴的直线的极坐标方程为_______________.【答案】cos 3ρθ=14.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)在极坐标系中,曲线ρ=2sinθ与ρcosθ=-1(ρ>0,0≤θ<2π)的交点的极坐标为 .【答案】3)4π15.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)(坐标系与参数方程)在直角坐标系xO y 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的参数方程为214x ty t =⎧⎨=+⎩(t 为参数),曲线C的极坐标方程为()4πρθ=+,则直线l 被曲线C 截得的弦长为__________________.【答案】516.(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)(坐标系与参数方程)曲线C 1的极坐标方程为2cos sin ,ρθθ=曲线C 2的参数方程为31x t y t=-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线C 1上的点与曲线C 2上的点最近的距离为______.【答案】827。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省襄阳市普通高中2012年3月高三调研统一测试数 学 试 题(理)本试卷全卷满分150分。
考试时间120分钟。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数22ii+-表示复平面内的点位于( ) A .第一象限B .第二象限C .第三象限 D .第四象限 2.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示, 则甲、乙两从这几场比赛得分的中位数之和是 ( ) A .63B .64 C .65D .663.已知向量(1,2),(2,0)a b ==,若向量a b λ+与向量(1,2)c =-共线,则实数λ等于 ( )A .-2B .13-C .-1D .23- 4.二项式8(2x -的展开式中常数项是( )A .-28B .-7C .7D .285.平面内动点(,)P x y 与A (-2,0),B (2,0)两点连线的斜率之积为14,动点P 的轨迹方程为A .2214x y +=B .2214x y -=C .221(2)4x y x +=≠±D .221(2)4x y x -=≠± 6.已知变量x 、y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则4log (24)z x y =++的最大值为( )A .2B .32C .23D .17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边洗定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为 ( )A.B.C.D.2m 8.关于直线,,a b l 以及平面M 、N ,下面命题中正确的是( )A .若//,//,//a M b M a b 则B .若//,,M a M b a ⊥⊥则bC .若,//,a M a N M N ⊥⊥则D .若,,,a M b M l a l b ⊂⊂⊥⊥且,则l M ⊥ 9.右面是“二分法”解方程的流程图。
在①~④处应填写的内容分别是( )C .()()0,f b f m m b <=,是,否D .()()0,f b f m b m <=,否,是10.若函数()f x 在给定区间M 上存在正数t ,使得对于任意x M ∈,有x t M +∈,且()()f x t f x +≥,则称()f x 为M 上的t 级类增函数。
以下命题中真命题是 ( )A .函数4()(1,)f x x x=++∞是上的1级类增函数B .函数2()|log (1)|(1,)f x x =-+∞是上的1级类增函数C .若函数()sin ,2f x x ax π⎡⎫=++∞⎪⎢⎣⎭是上的3π级类增函数,则实数a 的最小值为2D .若函数[)2()31,f x x x =-+∞是上的t 级类增函数,则实数t 的取值范围为[)1,+∞二、填空题(本大题共5小题,每小题5分,25分。
将答案填在答题卡相应位置上。
) 11.曲线233y x =-与x 轴所围成的面积图形面积为 。
12.已知某几何体的三视图如图所示,则该几何体的体积为 。
13.已知命题:|1||1|3p x x a -++≥恒成立,命题:(21)xq y a =-为减函数,若p 且q 为真命题,则a 的取值范围是 。
14.(考生注意:请在下列两题中任选一题作答,如果多做,则按所做的第一题记分)A .(坐标系与参数方程选做题)极坐标系中,圆22cos 30ρρθ+-=上的动点到直线cos sin 70ρθρθ+-=的距离的最大值是 。
B .(几何证明选讲选做题)如图,已知ABC ∆内接于O ,点D 在OC 的延长线上,AD 是O 的切线,若30B ∠=︒,AC=2,则OD 的长为 。
15.“无字证明”(proofs without words )就是将数学命题用简单、有创意而且易于理解的几何图形来呈现。
请利用图甲、图乙中阴影部分的面积关系,写出该图所验证的一个三角恒等变换公式 。
三、解答题(本大题共5小题,满分65分。
解答应写出文字说明,证明过程或演算步骤)16.(本大题满分12分) 已知函数2()2sin cos 2cos f x x x b x b ωωω=+-(其中0,0b ω>>)的最大值为2,直线12,x x x x ==是()y f x =的图象的任意两条对称轴,且12||x x -的最小值为.2π(1)求,b ω的值; (2)若25(),sin(4)36f a a π=-求的值。
17.(本大题满分12分) 已知数列{}n a 的前n 项和为n S ,若112,.n n n n n n a S a n b a a +-=+=且 (1)求证:{1}n a -为等比数列;(2)求数列{}n b 的前n 项和。
18.(本大题满分12分) 为了减少交通事故,某市在不同路段对机动车时速有不同的限制,在限速为70km ?h 的某一路段上,流动测速车对经过该路段的100辆机动车进行测速,下图是所测100辆机动车时速的频率分布直方图。
(1)估计这100辆机动车中,时速超过限定速度10%以上(包括10%)的机动车辆数; (2)该市对机动车超速的处罚规定如下:时速超过限定速度10%(包括10%)以上不足20%的处100元罚款;超过限定速度20%(包括20%)以上不足50%的处200元罚款;……。
设这一路段中任意一辆机动车被处罚金额为X (单位:元),求X 的分布列和数学期望(以被测的100辆机动车时速落入各组的频率作为该路段中任意一辆机动车时速落入相应组的频率。
)19.(本大题满分13分) 如图,在四棱锥P —ABCD 中,底面ABCD是菱形,60,2,1,BAD AB PA PA ∠=︒==⊥平面ABCD ,E 是PC 的中点,F 是AB 的中点。
(1)求证:BE//平面PDF ;(2)求证:平面PDF ⊥平面PAB ;(3)求平面PAB 与平面PCD 所成的锐二面角的大小。
20.(本大题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点。
(1)求椭圆C 的方程;(2)求,OA OB 的取值范围;(3)若B 点在于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点。
21.(本大题满分14分) 已知函数22()ln(21)2().3x f x ax x ax a R =++--∈ (1)若x=2为()f x 的极值点,求实数a 的值;(2)若()y f x =在[)3,+∞上为增函数,求实数a 的取值范围;(3)当12a =-时,方程3(1)(1)3xb f x x --=+有实根,求实数b 的最大值。
17.(1)解:由2n n S a n =+ 得:1121n n S a n ++=++ ∴111221n n n n n a S S a a +++=-=-+,即121n n a a +=- 2分 ∴112(1)n n a a +-=-4分 又因为1121S a =+,所以a 1 =-1,a 1-1 =-2≠0, ∴{1}n a -是以-2为首项,2为公比的等比数列. 6分 (2)解:由(1)知,11222n n n a --=-⨯=-,即21n n a =-+ 8分 ∴11211(12)(12)2121n n n n n n b ++-==----- 10分故223111111111[()()()]121212121212121n n n n T ++=--+-++-=--------. 12分18.(1)解:由题意,超过限定速度10%的时速为70×(1 + 10%) = 77(km/h)由频率分布直方图得,时速在[77,80)中的车辆数为30.020101006⨯⨯⨯=时速在[90,100]中的车辆数为0.002×10×100 = 24分 ∴估计在这100辆机动车中,时速超过限定速度10%以上(包括10%)的车辆数为 6 + 4 + 2 = 125分(2)解:由题意,超过限定速度20%的时速为70×(1 + 20%) = 84(km/h) 超过限定速度50%的时速为70×(1 + 50%) = 105(km/h) X 的可能取值为0,100,200P (X = 0) = 1-0.02-0.04-0.20×0.3 = 0.88 P (X = 100) = 0.20×0.3 + 0.04×0.4 = 0.076 P (X = 200) = 0.040×0.6 + 0.02 = 0.04410分20.(1)解:由题意知12c e a ==,∴22222214c a b e a a -===,即2243a b =又b ==2243a b ==, 故椭圆的方程为22143y x +=2分(2)解:由题意知直线l 的斜率存在,设直线l 的方程为(4)y k x =- 22(4)y k x =-⎧⎪2222由2222(32)4(43)(6412)0k k k ∆=--+->得:214k <设A (x 1,y 1),B (x 2,y 2),则221212223264124343k k x x x x k k -+==++, ① 6分∴22212121212(4)(4)4()16y y k x k x k x x k x x k =--=-++21.(1)解:222[2(14)(42)]2()222121x ax a x a a f x x x a ax ax +--+'=+--=++ 1分 因为x = 2为f (x )的极值点,所以(2)0f '= 2分即22041a a a -=+,解得:a = 0 3分 又当a = 0时,()(2)f x x x '=-,从而x = 2为f (x )的极值点成立. 4分 (2)解:∵f (x )在区间[3,+∞)上为增函数,∴22[2(14)(42)]()021x ax a x a f x ax +--+'=+≥在区间[3,+∞)上恒成立.5分 ①当a = 0时,()(2)0f x x x '=-≥在[3,+∞)上恒成立,所以f (x )在[3,+∞)上为增函数,故a = 0符合题意. 6分 ②当a ≠0时,由函数f (x )的定义域可知,必须有2ax + 1 > 0对x ≥3恒成立,故只能a > 0, 所以222(14)(42)0ax a x a +--+≥在区间[3,+∞)上恒成立. 7分令22()2(14)(42)g x ax a x a =+--+,其对称轴为114a- 8分∵a > 0,∴1114a-<,从而g (x )≥0在[3,+∞)上恒成立,只要g (3)≥0即可,由2(3)4610g a a =-++≥a 9分∵a > 0,∴0a <综上所述,a 的取值范围为[0] 10分(3)解:12a =-时,方程3(1)(1)3xb f x x --=+可化为,2ln (1)(1)bx x x x --+-=.问题转化为2[ln ]b x x x x =+-在(0,+∞)上有解 11分令2()ln h x x x x =+-,则(21)(1)1()12x x h x x x x+-'=+-= 12分当0 < x < 1时,()0h x '>,∴h (x )在(0,1)上为增函数 当x > 1时,()0h x '<,∴h (x )在(1,+∞)上为减函数即实数b的最大值是0.14分。