[最新版]高考理科数学《不等式选讲》题型归纳与训练
2021届高考理科数学复习《不等式选讲》题型汇总
考点14不等式选讲1.(2020·全国高三其他(理))设函数f (x )=|2x ﹣1|+mx +2,m ∈R .(1)若m =1,解不等式f (x )<6;(2)若f (x )有最小值,且关于x 的方程2()1f x x x =-++有两个不等实根,求实数m 的取值范围.【答案】(1)5(3,3-;(2)322m -≤<-【解析】(1)当1m =时,()212f x x x =-++,当12x ≤时,()1226f x x x =-++<,得3x >-,综合得132x -<≤,当12x >时,()2126f x x x =-++<,得53x <,综合得1523x <<,综上,不等式的解集为5(3,)3-;(2)当12x ≤时,()122(2)3f x x mx m x =-++=-+,当12x >时,()212(2)1f x x mx m x =-++=++,则1(2)3,2()1(2)1,2m x x f x m x x ⎧-+≤⎪⎪=⎨⎪++>⎪⎩,要使()f x 有最小值,则2020m m -≤⎧⎨+≥⎩,解得22m -≤≤,要使方程()21f x x x =-++有两个不等实数根,则()y f x =与2()1g x x x =-++有两交点,易知当12x =时,()f x 有最小值122m +,()g x 有最大值54作示意图如图所示:2021届高考理科数学复习《不等式选讲》题型汇总则122m +<54,得32m <-,综合得322m -≤<-.2.(2020·湖北蔡甸汉阳一中高三其他(理))已知函数()22f x x x =--.(1)求不等式()3f x ≥-的解集;(2)若a R ∈,且0a ≠,证明:()14114a f x a-++≥.【答案】(1){}|15x x -≤≤;(2)见解析.【解析】(1)法一:()2,02232,012,1x x f x x x x x x x -<⎧⎪=--=-≤≤⎨⎪-+>⎩,作出()f x的图象,如图所示:结合图象,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,又()13f -=-,()53f =-,所以不等式()3f x ≥-的解集是{}|15x x -≤≤.法二:()223f x x x =--≥-,等价于:0223x x x <⎧⎨-+-≥-⎩或01223x x x ≤<⎧⎨+-≥-⎩或1223x x x ≥⎧⎨-+≥-⎩,解得:10x -≤<或01x ≤<或15x ≤≤,所以不等式()3f x ≥-的解集是{}|15x x -≤≤.(2)由(1)知函数()f x 的最大值是()11f =,所以()1f x ≤恒成立.因为11144111a a aa ++≥-++-11444a a a a =+=+≥,当且仅当12a =±时,等号成立.所以()14114a f x a-++≥.3.(2020·南昌市八一中学高三三模(理))设函数f (x )=|x ﹣a |+|x +b |,ab >0.(1)当a =1,b =1时,求不等式f (x )<3的解集;(2)若f (x )的最小值为2,求41a b+的最小值.【答案】(1){x |3322x -<<}(2)92【解析】(1)原不等式等价于|x ﹣1|+|x +1|<3,当x ≥1时,可得x ﹣1+x +1<3,解得1≤x 32<;当﹣1<x <1时,可得﹣x +1+x +1<3,得2<3成立;当x ≤﹣1时,可得﹣x +1﹣x ﹣1<3,解得32-<x ≤﹣1.综上所述,原不等式的解集为{x |3322x -<<};(2)f (x )=|x ﹣a |+|x +b |≥|b +a |,当且仅当(x ﹣a )(x +b )≤0时等号成立.∴f (x )的最小值为|b +a |,即|b +a |=2.又∵ab >0,∴|b +a |=|a |+|b |=2,∴()41411412a b a b a b a b ⎛⎫+=+=++ ⎪⎝⎭141955222b a a b ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝.当且仅当4b a a b=时,等号成立,∴41a b +的最小值为92.4.(2020·西藏城关拉萨那曲第二高级中学高三月考(理))选修4-5:不等式选讲已知函数()2f x x =-.(1)解不等式:()()124f x f x +++<;(2)已知2a >,求证:()(),2x R f ax af x ∀∈+>恒成立.【答案】(1)3522⎛⎫- ⎪⎝⎭,(2)详见解析【解析】:(1)解:(1)(2)4f x f x +++<,即14x x -+<,①当0x ≤时,不等式为14x x --<,即32x >-,302x ∴-<≤是不等式的解;②当01x <≤时,不等式为14x x -+<,即14<恒成立,01x ∴<≤是不等式的解;③当1x >时,不等式为14x x -+<,即52x <,512x ∴<<是不等式的解.综上所述,不等式的解集为3522⎛⎫- ⎪⎝⎭,.(2)证明:2a > ,()()22f ax af x ax a x ∴+=-+-22ax ax a =-+-22ax a ax =-+-≥22222ax a ax a -+-=->,()()2x R f ax af x ,∴∀∈+>恒成立.5.(2020·江苏高三其他)设x ,y ,z 均为正实数,且1x y z ++=,求222111x y z x y z+++++的最小值.【答案】14【解析】()()2222111111x y z x y z x y z x y z ⎛⎫+++++++≥++ ⎪+++⎝⎭因为1x y z ++=,即22241111x y z x y z ⎛⎫++≥ +++⎝⎭22211114x y z x y z ∴++≥+++,当13x y z ===时,等号成立,故222111x y z x y z+++++的最小值为14.6.(2020·四川德阳高三其他(理))已知函数()0f x m =-≥恒成立.(1)求m 的取值范围;(2)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.【答案】(1)4m ≤;(2)94.【解析】(1)函数()0f x m =+-≥恒成立,即+130x x m +--≥恒成立,设函数()+13g x x x =+-,则()min m g x ≤,又13(1)(3)4x x x x ++-≥+--=,即()g x 的最小值为4,所以4m ≤;(2)由(1)知4n =,正数a ,b 满足21432a b a b +=++,所以()1217474432a b a b a b a b ⎛⎫+=++ ⎪++⎝⎭()()121622432a b a b a b a b ⎛⎫=++++⎡⎤ ⎪⎣⎦++⎝⎭()()222315432a b a b a b a b ++⎡⎤=++⎢⎥++⎣⎦54944+≥=,当且仅当23a b a b +=+即3210b a ==时,等号成立,所以74a b +的最小值为94.7.(2020·河北长安石家庄一中高三月考(理))[选修4-5:不等式选讲]设函数()|1|f x x =+.(1)求不等式()5(3)f x f x ≤--的解集;(2)已知关于x 的不等式2()||4f x x a x ++≤+在[1,1]-上有解,求实数a 的取值范围.【答案】(1){}23x x -≤≤(2)24a -≤≤【解析】(1)不等式()()f x 5f x 3≤--,即x 1x 25++-≤等价于1,125,x x x <-⎧⎨---+≤⎩或12,125,x x x -≤≤⎧⎨+-+≤⎩或2,125,x x x >⎧⎨++-≤⎩解得2x 3-≤≤,所以原不等式的解集为{}x 2x 3-≤≤;(2)当[]x 1,1∈-时,不等式()2f x x a x 4++≤+,即x a 2x +≤-,所以x a 2x +≤-在[]1,1-上有解即2a 22x -≤≤-在[]1,1-上有解,所以,2a 4-≤≤.8.(2021·广西钦州一中高三开学考试(理))已知x ,y ,z 均为正实数,且222111149x y z ++=.证明:(1)1111263xy yz xz++≤;(2)222499x y z ++≥.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由基本不等式,可得221114x y xy +≥,22111493y z yz +≥,2211293x z xz +≥,所以22211111224933x y z xy yz xz ⎛⎫++≥++ ⎪⎝⎭.当且仅当11123x y z ==时等号成立,即22211111149263x y z xy yz xz ++≥++,又由222111149x y z ++=,所以1111263xy yz xz ++≤.(2)由题意知222111149x y z++=,可得()22222249491x y z x y z ++=++⨯()2222221114949x y z x y z ⎛⎫=++⋅++ ⎪⎝⎭()21119≥++=.当且仅当23x y z ==时等号成立,所以222499x y z ++≥.9.(2020·全国高三其他(理))已知变量x 、y 、a 、b 、c 且满足0x a ≥>,y b ≥,02c <≤.(1)解不等式280x x x a y b y a b ++-+--++-≤;(2)若x a c =+,y b c =+,试证明不等式232310x y a b +--≤.【答案】(1){}02x x <≤;(2)证明见解析.【解析】(1) 所给变量x 、y 、a 、b ,且满足0x a ≥>,y b ≥,故x a x a -=-,y b y b -=-,于是原不等式等价为280x x x a y b y a b ++-+--++-≤.整理为2280x x +-≥,即有20280x x x >⎧⎨+-≤⎩,则有042x x >⎧⎨-≤≤⎩,于是不等式的解为02x <≤,解集为{}02x x <≤;(2)x a c =+ ,y b c =+,根据已知条件有0x a c -=>,0y b c -=>.即有02c <≤.又()()23232323x y a b x a y b x a y b +--=-+-≤-+-()()2323510x a y b c c c =-+-=+=≤,即232310x y a b +--≤成立.10.(2020·广西七星桂林十八中高三月考(理))已知0m n >>,函数1()()f x x n m n =+-.(1)若4m =,1n =,求不等式()6f x >的解集;(2)求证:2()4f x x m --.【答案】(1)1719 33x x x ⎧⎫><-⎨⎬⎩⎭∣或;(2)证明见解析.【解析】(1)依题意,1()3f x x =+,则11()66633f x x x >⇔+>⇔+>或163x +<-,解得173x >或193x <-,故不等式()6f x >的解集为1719 33x x x ⎧⎫><-⎨⎬⎩⎭∣或.(2)依题意,221()44()f x x m x x m n m n --⇔++--,因为()222111()()()x x m x x m m n m n n m n n m n ++-+--=+---,()m n m n =+-,故214()n m n m -,故222144()m m n m n m ++-,当且仅当m =,2n =时等号成立.。
高三数学不等式选讲试题答案及解析
高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
2020年高考理科数学《不等式选讲》题型归纳与训练
12020年高考理科数学《不等式选讲》题型归纳与训练【题型归纳】题型一 解绝对值不等式例1、设函数f (x )=|x -1|+|x -2|.(1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【答案】(1)(-∞,0)∪(3,+∞);(2)(-∞,1).【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0;当1≤x ≤2时,f (x )>3无解;当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,【易错点】如何恰当的去掉绝对值符号【思维点拨】用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.题型二 利用绝对值的几何意义或图象解不等式例2、(1)若不等式|x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.【答案】(1)⎣⎢⎡⎦⎥⎤-1-174,-1+174. 【解析】(1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+12a +2≤3,解得-1-174≤a ≤-1+174. 即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1-174,-1+174. 【易错点】绝对值的几何意义和如何把恒成立问题转化为最值问题【思维点拨】解含参数的不等式存在性问题,只要求出存在满足条件的x 即可;不等式的恒成立问题,可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .题型三 不等式的证明与应用例3、设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.【答案】略.【解析】[证明] (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.【易错点】不等式的恒等变形.【思维点拨】分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.【巩固训练】题型一 解绝对值不等式1.不等式|x -1|+|x +2|≥5的解集为________【答案】{x |x ≤-3或x ≥2}.【解析】原不等式等价于⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5 或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥53或⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5, 解得x ≥2或x ≤-3.故原不等式的解集为{x |x ≤-3或x ≥2}.2.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围【答案】(1){x |x ≤1或x ≥4};(2)[-3,0].【解析】(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].3.设函数f (x )=|x +1|+|x -2|+a .(1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.【答案】(1)(-∞,-2]∪[3,+∞);(2)a ≥-3.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3.题型二 利用绝对值的几何意义或图象解不等式1.已知函数.(1)图中画出的图像;()123f x x x =+--()y f x =(2)求不等式的解集.【答案】(1)见解析(2). 【解析】⑴如图所示:(2)()()()()+∞⋃⋃⎪⎭⎫ ⎝⎛∞->∴><<<><≤∴<>>-≥<<<<-∴<>>-<<--≤∴<>>-≤>⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<---≤-=5,1,331,解集为1x f ,5x 或3x 1或31x 综上,5x 或3x 23,3x 或5x 解得14x ,23x 当23x 1或31x 131x 或1x 解得1,23x ,23x 1当1x ,3x 或5x 解得1,4x ,1x 当1,x f 23x x,423x 12,3x 1x 4,x f2.不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.【答案】(-∞,-3)【解析】解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于P A -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y =⎩⎪⎨⎪⎧ -3,x ≤-1,2x -1,-1<x <2,3,x ≥2,()1f x >()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.题型三不等式的证明与应用1.已知a、b、c∈R+,且a+b+c=1;求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).【答案】略.【解析】证明:因为a、b、c∈R+,且a+b+c=1,所以要证原不等式成立,即证[(a+b+c)+a][(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a][(a+b+c)-b][(a+b+c)-c],也就是证[(a+b)+(c+a)][(a+b)+(b+c)][(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).①因为(a+b)+(b+c)≥2(a+b)(b+c)>0,(b+c)+(c+a)≥2(b+c)(c+a)>0,(c+a)+(a+b)≥2(c+a)(a+b)>0,三式相乘得①式成立,故原不等式得证.2.设a、b、c、d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.【答案】略.【解析】证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,5即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.3.设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a≥1. 【答案】略.【解析】(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1.。
高考数学压轴专题新备战高考《不等式选讲》分类汇编及解析
【最新】数学《不等式选讲》高考复习知识点一、141.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .40【答案】B 【解析】 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.2.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。
【详解】解:由绝对值不等式的性质可得,||1||2|||(1)(2)|3x x x x +--++-=„,即|1||2|3x x +---…. 因为|1||2|x x a +--<无实数解 所以3a ≤-, 故选C 。
【点睛】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。
3.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( ) A .45[,)33B .2112(,][,)3333--⋃ C .12[,)33⋃45(,]33D .随a 的值而变化【答案】C 【解析】试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=13,故函数()f x 的定义的定义域为22[,]33-,又当203x <≤时,()f x 单调递增,∴11113(1)()(1)(){23313x f x f f x f x ->->⇔->⇔-≤,解得1233x ≤<或4533x <≤,所以不等式(1)()f x f a ->的解集为12[,)33⋃45(,]33,故选C考点:本题考查了抽象函数的运用点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用4.若集合{}2540A x x x =-+<,{}1B x x a =-<,则“()2,3a ∈”是“B A ⊆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又不必要条件【答案】A 【解析】 【分析】解出集合A 、B ,由B A ⊆得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ⊆”的充分非必要条件. 【详解】解不等式2540x x -+<,解得14x <<,{}14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,{}11B x a x a ∴=-<<+.B A ⊆Q ,则有1114a a -≥⎧⎨+≤⎩,解得23a ≤≤.因此,“()2,3a ∈”是“B A ⊆”的充分非必要条件. 故选:A 【点睛】本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.5.不等式2124x x a a +--≥-的解集为R ,则实数a 的取值范围是( ) A .(][),13,-∞+∞U B .()(),13,-∞⋃+∞ C .[]1,3 D .()1,3【答案】C 【解析】 【分析】令()12f x x x =+--,通过对x 的取值范围的讨论,去掉绝对值符号,可求得()min 3f x =,依题意,即可求得实数a 的取值范围.【详解】令()12f x x x =+--,当1x <-时,()()123f x x x =----+=-;当12x -≤≤时,()()[]12213,3f x x x x =+--+=-∈-; 当2x >时,()()123f x x x =+--=; ∴()min 3f x =-.∵不等式2124x x a a +--≥-的解集为R , ∴()2min 43a a f x -≤=-,即实数a 的取值范围是[]1,3.故选C. 【点睛】本题考查绝对值不等式的解法,考查函数恒成立问题,解题方法是转化为求函数最值,然后解不等式.6.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.7.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.8.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.9.已知1a >,且函数()2224f x x x a x x a =-++-+.若对任意的()1,x a ∈不等式()()1f x a x ≥-恒成立,则实数a 的取值范围为( )A .[]4,25B .(]1,25C .(]1,16D .[]4,16【答案】C【解析】 【分析】由题目得已知函数和要求解的不等式中都含有待求的参数,且已知函数中含有两个绝对值符号,直接求解难度很大,因此考虑用排除法,代值验证可得解. 【详解】当25a =时,()22252425f x x x x x =-++-+且22250,4250x x x x -+≥-+≥ 所以()23975f x x x =-+,此时()()1f x a x ≥-化为()24f x x ≥,即2397524x x x -+≥,所以212250x x -+≥在()1,25x ∈不是恒成立的.故A 、B 不对;当3a =时,()223243f x x x x x =-++-+,当()1,3x ∈时,2230,430x x x x -+>-+<,所以()()222324373f x x x x x x x =-+--+=-+-,此时()()1f x a x ≥-化成()27331x x x -+-≥-,即2530x x -+-≥满足()1,3x ∈恒成立,所以当3a =时成立, 故D 不对,C 正确; 故选C. 【点睛】本题考查了含绝对值不等式恒成立的问题,考查了小题小做的技巧方法,属于中档题.10.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.11.若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A .5或8 B .1-或5C .1-或4-D .4-或8【答案】D 【解析】试题分析:由题意,①当12a->-时,即2a >,3(1),2(){1,123(1),1a x a x a f x x a x x a x --+≤-=+--<≤-++>-,则当2ax =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a -<-时,即2a <,3(1),1(){1,123(1),2x a x af x x a x ax a x --+≤-=-+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =(舍)或4a =-;③当12a-=-时,即2a =,()31f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.12.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .33()()f x f a a -≤+B .24()()f x f a a -≤+C .()()5f x f a a -≤+D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.13.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( ) A .1 B .13C .12D .3【答案】B 【解析】 【分析】利用柯西不等式得出()()()2222222111x y z x y z ++++≥++,于此可得出222x y z ++的最小值。
高考数学压轴专题最新备战高考《不等式选讲》知识点复习
高中数学《不等式选讲》知识点概括一、 141.不等式 x 8 x 4 2 的解集为 ()A . { x | x 4}B . { x | x 5}C . { x | 4 x 8}D . { x | 4 x 5}【答案】 B 【分析】 【剖析】分三种状况议论: x 4 , 4 < x < 8 以及 x8 ,去绝对值,解出各段不等式,即可得出所求不等式的解集 . 【详解】当 x4 时, x8 x 48 x x 44 2 建立,此时 x 4 ;当 4 < x < 8 时, x8x 48 xx 412 2x 2 ,解得 x 5 ,此时4x 5;当 x8 时, x8 x 4 x 8 x 4 4 2,原不等式不建立 .综上所述,不等式x 8 x 4 2 的解集为 x x 5 ,应选 B.【点睛】此题考察绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段议论,从而求解不等式,也能够采纳绝对值的几何意义来进行求解,考察分类议论数学思想,属于中等题.2.已知函数 f ( x) 是定义在 [ a1,2a] 上的偶函数 ,且当 x0 时 , f ( x) 单一递加,则对于 x的不等式 f ( x 1) f (a) 的解集为 ( )A .[ 4,5)B .( 2, 1][1,2) 33333 3C .[1,2)(4,5] D .随 a 的值而变化333 3【答案】 C【分析】试题剖析:∵函数f (x) 是定义在 [a 1,2 a] 上的偶函数,∴ 1-a=2a ,∴ a= 1,故函数 f ( x)3的定义的定义域为[ 2,2],又当 0 x 2 时 , f ( x) 单一递加,∴3 3 3x 1f (1)f ( 1) 1f ( x1)f ( x 1){ 3,解得1 x2 或 4 x5 ,所以33x2333313不等式 f ( x 1)f ( a) 的解集为 [ 1 , 2 )( 4 , 5 ],应选 C3 33 3考点:此题考察了抽象函数的运用评论:此类问题常常利用偶函数的性质f (x) f ( x ) 防止了议论,要注意灵巧运用3.设 a nsin1sin 2 sin n ,对随意正整数 m 、 n (m>n )都建立的是() .2222 nA . a n1B . a n a m1 C . a na m1 D . a na m1a m2m2n2n2m【答案】 C【分析】【剖析】先作差,再依据三角函数有界性放缩,从而依据等比数列乞降确立选项 .【详解】Q a nsin1sin 2sin na ma n sin( n 1) sin( n 2) sin m2 222n2n 12n 22m| a m a n | |sin( n 1)sin( n 2)sin m2 n 1n 22m |2sin( n 1) sin( n 2) sin m| |2 n 1 || 2 n 2 || 2 m112n 1 2n 2应选: C【点睛】111 2n 1(1 2m n)1 112m11 2n2m 2n2此题考察三角函数有界性、等比数列乞降以及放缩法,考察综合剖析求解与论证能力,属中档题 .4. 不等式 32x 5的解集是 ()A . { x | x1} B . { x | 1 x 4} C . { x | x1或x 4} D . { x | x 4}【答案】 C【分析】【剖析】依据绝对值定义化简不等式,求得解集 .【详解】 因为 3 2x5 ,所以 3 2x 5或 3 2 x5,即或,选 C.x1 x 4【点睛】此题考察含绝对值不等式解法,考察基本求解能力.5.已知 a + b + c = 1,且 a , b , c > 0,则2 22 的最小值为 ( )b b ca caA .1B . 3C . 6D . 9【答案】 D【分析】2222 a+b+c 11 1Q a b c 1,a b b c c aa b b c c aa bb c c a11 1 1 1 12a b b cc 9 ,当且仅当aa bc1D.时等号建立,应选3【易错点晴】此题主要考察利用基本不等式求最值,属于难题 .利用基本不等式求最值时,必定要正确理解和掌握 “一正,二定,三相等 ”的内涵:一正是,第一要判断参数能否为正;二定是,其次要看和或积能否为定值(和定积最大,积定和最小);三相等是,最后必定要考证等号可否建立(主要注意两点,一是相等时参数否在定义域内,二是多次用或 时等号可否同时建立).6.若对于 x 的不等式 ax 2 | x 1| 3a ≥ 0 的解集为 R ,则实数 a 的取值范围为A .[ 1,+ )B .[ 1,+ )63C .[ 1,+ )D .[1,+ )212【答案】 C【分析】【剖析】先将不等式 ax2x 1 3a 0 变形为 ax 1,由不等式 ax 2x 1 3a0 的解集x 23是,,可得 ax 1 恒建立,所以只要求出 x1的最大值即可 .x 23x 23【详解】解:不等式 ax 2 x 1 3a 0 的解集是,,即 x R , ax 2x 13a 0 恒建立,∴ ax 1 x 1 ,x 2 3x 2 3令g xx 1 ,x 23当 x1 时, g x 0 ;g xx 1 1当 x1 x 234时,,x 12x1若 x 10 ,则 x 14 2 2 x 1 ?42 2 ,x1x 1当且仅当4 ,即 x =1 “ ”x 1时上式 = 建立;x 1若 x 1<0 ,则 x 14 2 x 1422x 1 ?426 ,x 1x 1x1当且仅当x 14 ,即 x3 时上式 “= ”建立.x 1x 14 ,62,x 2.1gx 0,1.2a1 .2则实数 a 的取值范围是1 , .2应选 C .【点睛】此题主要考察不等式恒建立的问题,由不等式恒建立求参数的范围,往常用分别参数的方法,将不等式转变为参数与一个函数比较大小的形式,只要求出函数的最大值或最小值即可,属于常考题型 .7.若存在 x R , ,使 2x a 2 3 x 1 建立 ,则实数 a的取值范围是( )A .7,5B .C . 5,7D .【答案】 C【分析】【剖析】5,7,5 7,先利用绝对值三角不等式求2x a 2 3 x 的最小值,即得实数a 的取值范围 .【详解】由题得2x a 2 3x = 2x a 6 2x|6 a |,所以|6 a |1, 1 a 61,5a7 .应选C【点睛】此题主要考察绝对值三角不等式和绝对值不等式的能建立问题,意在考察学生对这些知识的理解掌握水平易剖析推理能力.8.已知命题 P: log2( x 1) 1;命题 q: x 2 1,则p是q的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件【答案】 C【分析】【剖析】先化简命题p 和 q,再利用充要条件的定义判断得解.【详解】由题得命题p:1 < x< 3,命题 q:1< x< 3.所以命题p 是命题 q 的充要条件 .应选 C【点睛】此题主要考察对数不等式和绝对值不等式的解法,考察充要条件的判断,意在考察学生对这些知识的理解掌握水平易剖析推理能力.9.不等式| x 1|| 2 x | a 无实数解,则a的取值范围是( )A. (,3)B.( 3,)C.(, 3]D.(, 3)【答案】 C【分析】【剖析】利用绝对值不等式的性质||a | | b || a b ,所以得出| a || b | 的范围,再依据无实数解得出 a 的范围。
高考数学复习:不等式选讲练习及答案
- 2<x<1, 或
-( x- 1)+( x+ 2) ≥5
x≤-2, 或
-( x-1)-( x+ 2) ≥5, 解得 x≥2或 x≤-3. 故原不等式的解集为 { x|x≤- 3 或 x≥2}. 答案 { x|x≤- 3 或 x≥2} 高频考点二 不等式的证明
例 2.【 2017 课标 II ,理 23】已知
.
( 2)当 x 1,1 时, g x 2 .
所以
的解集包含 1,1 ,等价于当 x 1,1 时 f x 2 .
又 f x 在 1,1 的学科 & 网最小值必为 f 1 与 f 1 之一,所以 f 1 2 且 f 1 2 ,得 1 a 1 .
所以 a 的取值范围为 1,1 .
1.【 2016 高考新课标 1 卷】(本小题满分 10 分) ,选修 4—5:不等式选讲
4. ( 2018 年江苏卷) [ 选修 4—5:不等式选讲 ] 学 -科网
若 x, y, z 为实数,且 x+2 y+2z=6,求
的最小值.
【答案】 4
【解析】证明:由柯西不等式,得
.
,故当且仅当
因为
,所以
,
当且仅当
时,不等式取等号,此时
,
所以
的最小值为 4.
1.【 2017 课标 II ,理 23】已知
1. ( 2018 年全国 I 卷理数) [选修 4–5:不等式选讲 ]
已知
.
( 1)当 时,求不等式
的解集;
( 2)若
时不等式
成立,求 的取值范围 .
【答案】(1)
.
(2) . 【解析】 [来源 学科网 ZXXK]
高考数学压轴专题新备战高考《不等式选讲》知识点总复习附答案
新数学高考《不等式选讲》专题解析一、141.已知,,x y z ∈R ,2221x y z ++=,则22x y z ++的最大值为( ) A .9 B .3 C .1 D .27【答案】B 【解析】 【分析】由已知2221x y z ++=,可利用柯西不等式2222222()()()a b c e f g ae bf cg ++++≥++,构造柯西不等式,即可求解.【详解】由已知,可知,,x y z ∈R ,2221x y z ++=,利用柯西不等式2222222()()()a b c e f g ae bf cg ++++≥++, 可构造得2222222(122)()(22)x y x x y z ++++≥++, 即2(22)9x y z ++≤,所以22x y z ++的最大值为3,故选B . 【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.2.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C【点睛】本题主要考查基本不等式:()20,0a b ab ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.3.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.4.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.5.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D【解析】因为若,则,已知不等式不成立,所以,应选答案D 。
高三高考数学总复习《不等式选讲》题型归纳与训练
高考数学总复习题型分类汇《不等式选讲》篇经典试题大汇总目录【题型归纳1】题型一解绝对值不等式 (3)题型二解绝对值三角不等式 (4)题型三利用绝对值不等式求参数范围 (4)题型四用放缩法、反证法证明不等式 (5)【题型归纳2】题型一绝对值不等式、均值不等式 (6)题型二绝对值不等式的解法、柯西不等式,或均值不等式求最值,以及绝对值不等式解法 (7)题型三利用绝对值不等式求参数范围 (7)高考数学《不等式选讲》题型归纳与训练【题型归纳】题型一解绝对值不等式例1设函数()12f x x x =-+-(1)解不等式()3f x >.(2)若()f x a >对x R ∈恒成立,求实数a 的取值范围.【答案】(1)()()03∞∞ -,,+;(2)实数a 的取值范围是()1∞-,【解析】(1)因为()12f x x x =-+-=⎪⎩⎪⎨⎧-.>23,-22,≤≤1,1<1,,23x x x x x 所以当1x <时,323x ->,解得0x <;当12x ≤≤时,()3f x >无解;当2x >时,233x ->,解得3x >.所以不等式()3f x >的解集为()()03∞⋃∞-,,+.(2)因为()f x =⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以()f x min =1.因为()f x a >恒成立,所以1a <,即实数a 的取值范围是()1∞-,.【易错点】注意定义域取值范围.【思维点拨】试题以考查不等式的性质为目标,以绝对值不等式求解与证明问题为背景,所涉及到的知识均为考生熟悉的,易于入手,可从不同角度思考分析,使得不同基础和能力的考生都有所收获.题型二解绝对值三角不等式例1已知函数()12f x x x =-+-,若不等式||||||()a b a b a f x ≥++-对0a a b R ≠∈,、恒成立,求实数x 的范围.【答案】}15{|22x x ≤≤【解析】由()x f a b a b a ≥-++且0≠a 得()()x f ab a b a ≥-++.又因为()2=-++≥-++a ba b a ab a b a ,则有2()f x ≥.解不等式|12|2x x ≤-+-得1522x ≤≤.【易错点】注意等号成立的条件【思维点拨】1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.含有两个绝对值符号的不等式,如c b x a x ≥-+-和c b x a x ≤-+-型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.题型三利用绝对值不等式求参数范围例1设函数()212f x x x a a =++-+,R x ∈.(1)当3=a 时,求不等式()7>x f 的解集;(2)对任意R x ∈恒有()3≥x f ,求实数a 的取值范围.【答案】0|{<x x 或}2>x ,[)+∞,2【解析】(1)当3a =时,()174,2135,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩所以()7f x >的解集为{}02x x x <>或(2)()2122121f x x a x a x a x a a a=-+-+≥-+-+=-+由()3f x ≥恒成立,有13a a -+≥,解得2a ≥,所以a 的取值范围是[)2,+∞【易错点】本小题主要考查不等式的相关知识,具体涉及绝对值不等式及不等式证明等内容.本小题重点考查考生的化归与转化思想.【思维点拨】绝对值不等式的解法中,a x <的解集是()a a ,-;a x >的解集是()()+∞-∞-,,a a ,它可以推广到复合型绝对值不等式ax b c +≤,ax b c +≥的解法,还可以推广到右边含未知数x 的不等式.题型四用放缩法、反证法证明不等式例1已知a b R ∈,,且1a b +=,求证:2225(2)(2)2a b ≥+++【证明】方法一:(放缩法)因为1a b +=,所以左边=()22222(b 2)125(2)(2)2[][()4]222a ab a b +≥++++=++==右边.方法二:(反证法)假设2225(2)(2))2a b +++<,则22254()82a b a b ++++<.由1a b +=,得1b a =-,于是有2225(1)122a a +-+<.所以21()02a -<,这与21(02a ≥-矛盾.故假设不成立,所以2225(2)(2)2a b ≥+++.【思维点拨】根据不等式左边是平方和及1=+b a 这个特点,选用重要不等式2222(2a b a b ≥++来证明比较好,它可以将具备22a b +形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件1a b +=,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【题型归纳】题型一绝对值不等式、均值不等式1.【题干】已知函数()21----=x x m x f ,R m ∈,且()01≥+x f 的解集为[]1,0.(1)求m 的值;(2)若a ,b ,c ,x ,y ,R z ∈,且m c b a z y x =++=++222222,求证:1≤++cz by ax .【答案】(1)⎭⎬⎫⎩⎨⎧+≤≤-2121|m x m x (2)见解析【解析】(1)()mx x x f ≤-+⇒≥+|1|||01 当1<m 时, |1|1||≥-+x x ,1|1||<-+∴x x 的解集为空集,不符合题意当1≥m 时①021,210<≤-∴-≥<x mm x x 时,得②恒成立时,得1110≥∴≤-+≤≤m m x x x ③121,211>≥+∴+≤>x m m x x 时,得综上:⎥⎦⎤⎢⎣⎡+-≤-+21,21|1|||m m m x x 的解集为由题意得:1121021=⇒⎪⎪⎩⎪⎪⎨⎧=+=-m m m(2)zcc z by b y ax a x 2,2,2222222≥+≥+≥+ ()cz by ax c z b y a x ++≥+++++∴22222221222222=++=++c b a z y x ()22≤++∴cz by ax 1≤++∴cz by ax 题型二绝对值不等式的解法、柯西不等式,或均值不等式求最值,以及绝对值不等式解法1.【题干】.已知函数()12-=x x f .(1)求不等式()1+<x x f 的解集;(2)若1=+b a ,()()ba ab x f x f 221+>+-对任意正实数a ,b 恒成立,求实数x 的取值范围.【答案】(1){}02x x <<(2)14x x ⎧⎫<-⎨⎬⎩⎭【解析】(1)因为()1+<x x f 所以1121+<-<--x x x ,不等式()1+<x x f 的解集为:{}20|<<x x (2)因为1=+b a ,且a ,b 为正实数,()()1222=+≥+⎪⎪⎭⎫ ⎝⎛+b a b a b a a b 当且仅当b a =时等号成立.因为()()ba ab x f x f 221+>+-对任意正实数a ,b 恒成立,所以()()11>+-x f x f 当21≥x 时不等式不成立;当2121<<-x 时解集为⎭⎫⎩⎨⎧-<<-4121|x x ;当21-≤x 时不等式恒成立解集⎭⎬⎫⎩⎨⎧-≤21|x x .综上不等式解集为⎭⎫⎩⎨⎧-≤41|x x .题型三利用绝对值不等式求参数范围1.【题干】设函数()222f x x x =+--.(1)求不等式()2f x >的解集;(2)若27,()2x R f x t t ∀∈≥-,恒成立,求实数t 的取值范围.【答案】(1)40,3⎡⎤⎢⎥⎣⎦,(2)322t ≤≤【解析】(1)4,1()3,124,2x x f x x x x x --<-⎧⎪=-≤<⎨⎪+≥⎩,当1,42,6x x x <--->∴<-当12,x -≤<32x >,223x ∴<<当2x ≥,42,2x x +>∴≥。
高考不等式选讲专题复习(经典)
不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===•nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络§1 绝对值型不等式典例精析题型一解绝对值不等式【例1】设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>3;(2)若f(x)>a对x∈R恒成立,求实数a的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lga +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c2≥lg ac . 而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).(1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明: 设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22. 【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明. 【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54-4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k ; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++•+2b a a c a c b a ++++•+2c b ac a c c b ++++•=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4(当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1, 即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934⇒S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇。
第04讲 基本不等式高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
G ( x )万元,且 G ( x )=
2 + 120,0 < ≤ 50,
4 900
201+
− 2 100,50 < ≤ 100,
200万元,且全年内生产的该产品当年能全部销售完.
每台该产品的售价为
(1)写出年利润 W ( x )(单位:万元)关于年产量 x (单位:台)的函数解析式(利润=销售
2.几个重要的不等式
2ab
1a2+b2≥______a,b∈R;
b a
2
2a+b≥___a,b同号且不为零;
当且仅当a=b
2
a+b
3ab≤
时等号成立
a,b∈R;
2
2
2
2
a +b
a+b
4
a,b∈R.
≤
2
2
(2)[2024宁夏银川模拟]已知0< x <4,则 (4 − ) 的最大值为 2
[解析] 0< x <4,则0<4- x <4,由基本不等式可得 (4
.
+4−
− ) ≤
=2,
2
当且仅当 x =4- x ,即 x =2时,等号成立.故 (4 − ) 的最大值为2.
角度2 常数代换法
−4
8
−4
>0,因为 a >0,所以 a >4,所以8 a + b =8 a
+5]≥8×(2 4 +5)=72,当且仅当 a =6时取等号.故选C.
8
4
8
4
解法二 ∵8 a +4 b = ab , a >0, b >0,∴ + =1,∴8 a + b =(8 a + b )( + ) =
全国卷历年高考不等式选讲真题归类分析(含答案)
全国卷历年高考不等式选讲真题归类分析(含答案)一、绝对值函数及不等式(5题) 1.(2015年1卷)已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【解析】:(Ⅰ)当a=1时,不等式f (x )>1化为|x+1|-2|x-1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f (x )>1的解集为2{|2}3x x <<. (Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +.由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞).2.(2016年3卷)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集.(2)设函数g(x)=|2x-1|,当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围.【解析】(1)当a=2时,f(x)= |2x-2| +2,解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{}x 1x 3-≤≤.(2)当x ∈R 时,f(x)+g(x)=2x a - +a+12x -≥2x a 12x -+-+a=1a -+a, 所以当x ∈R 时,f(x)+g(x)≥3等价于1a -+a≥3, ① 当a 1时,①等价于 ≤1a 3,无解a -+≥当a 1时,①等价于 a 1a 3,解得a 2.>-+≥≥所以a 的取值范围是)2,∞.⎡+⎣ 3.(2016年1卷)已知函数f(x)=|x+1|-|2x-3|. (1)画出y=f(x)的图像.(2)求不等式|f(x)|>1的解集.【解析】(1)如图所示:(2)f(x)=x 4,x 1,33x 2,1x ,234x,x ,2⎧⎪-≤-⎪⎪--<<⎨⎪⎪-≥⎪⎩|f(x)|>1,当x≤-1时,|x-4|>1,解得x>5或x<3,∴x≤-1.当-1<x<32时,|3x-2|>1,解得x>1或x<13,∴-1<x<13或1<x<32. 当x≥32时,|4-x|>1,解得x>5或x<3,∴32≤x<3或x>5.综上,x<13或1<x<3或x>5,∴|f(x)|>1的解集为1∞,3⎛⎫- ⎪⎝⎭∪(1,3)∪(5,+∞).4.(2017年1卷)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】:将函数()11g x x x =++-化简可得()2121121xx g x x x x >⎧⎪=-≤≤⎨⎪-<-⎩(1) 当1a =时,作出函数图像可得()()f x g x ≥ 的范围在F 和G 点中间,联立224y xy x x =⎧⎨=-++⎩可得点1G ⎫-⎪⎪⎝⎭,因此可得解集为11,2⎡⎤-⎢⎥⎣⎦.(2)即()()f x g x ≥在[]1,1-内恒成立,故而可得22422x ax x ax -++≥⇒-≤恒成立,根据图像可得:函数y ax =必须在12,l l 之间,故而可得11a -≤≤.5.(2017年3卷)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围. 【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥; ③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.二、不等式证明(2题)6.(2015年2卷)设a 、b 、c 、d 均为正数,且a+b=c+d,证明: (1)若,ab cd >>(2>||||a b c d -<-的充要条件. 【证明】(1)因为(+)2=a+b+2,(+)2=c+d+2. 由题设a+b=c+d,ab>cd 得(+)2>(+)2.因此+>+.(2)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd. 因为a+b=c+d,a,b,c,d 均为正数,所以ab>cd.由(1)得+>+. (ii)若+>+,则(+)2>(+)2,即a+b+2>c+d+2.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件.7.(2017年2卷)已知330,0,2a b a b >>+=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤.【解析】(1)由柯西不等式得()()()2255334a b a b a b ++=+=≥,1a b ==时取等号.(2) 因为()()()()()33232233333232244a b a b a a b ab b ab a b a b a b ++=+++=+++++=+…,所以()38a b +≤,即2a b +≤,当且仅当1a b ==时等号成立 三、绝对值函数+不等式证明(1题) 8.(2016年2卷)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+, 则2222212a b ab a ab b +++>++,则()()221ab a b +>+, 即1a b ab +<+, 证毕.。
不等式选讲高考常考题型汇总(详解答案)
,1
上恒成立,
x 2 max a x 2 min ,
1 a 5 , 2
a
的取值范围为
1,
5 2
.
【点睛】本题主要考查了绝对值不等式的求解,以及绝对值三角不等式的应用,其中解答中熟 记含绝对值不等式的解法,以及合理应用绝对值的三角不等式求解最值是解答的关键,着重 考查了推理与运算能力,属于中档题.
2
8.已知函数 f (x) x2 1, g(x) | x a | | 2x 1|, a R .
(1)当 a 1 时,解不等式 g(x2 ) 7 ;
2
2
(2)对任意 x1, x2 R ,若不等式 f (x1) ≥ g(x2 ) 恒成立,求实数 a 的取值范围.
试卷第 2页,总 6页
9.选修 4-5:不等式选讲
故 a 的取值范围为 (,5] [7, )
【点睛】本题考查含有绝对值的不等式的解法,绝对值的三角不等式,恒成立问题,考查了 计算化简,分析求值的能力,属中档题. 7.【详解】
(2)当 m 1时,函数 g(x) f (x) | x m | 的图象与 x 轴围成一个三角形,求实数 m 的取值范围.
21.设函数 f x 2x 4 1. (1)画出函数 y f x 的图象; (2)若不等式 f x ax 的解集非空,求 a 的取值范围.
试卷第 6页,总 6页
参考答案
试卷第 5页,总 6页
19.已知函数 f (x) | 3x 1| 2 | x 1| .
(1)画出 y f (x) 的图像;
(2)求不等式 f (x) f (x 1) 的解集.
20.[选修 4-5:不等式选讲]
已知函数 f x 2x 2 5 . (1)解不等式: f x | x 1| ;
高中数学题型全面归纳 不等式选讲
第三节 不等式选讲(选修4-5)考纲解读1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值.2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位.3.了解基本不等式,会用它来证明不等式和求最值.4.会用综合法、分析法、反证法及数学归纳法证明不等式.命题趋势探究本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 知识点精讲一、不等式的性质1.同向合成(1),a b b c a c >>⇒>;(2),c a b d a c b d >>⇒+>+;(3)0,c 0a b d ac bd >>>>⇒>.(合成后为必要条件)2.同解变形(1)a b a c b c >⇔+>+;(2)0,0,a b c ac bc c ac bc >⇔>>⇔<<;(3)11000a b b a>>⇔>>⇔>>. (变形后为充要条件)3.作差比较法0,0a b a b a b a b >⇔>-><⇔-<二、含绝对值的不等式(1)0,||a x a a x a ><⇔>-<<;0,||,a x a x a x a >>⇔>><-或(2)22||||a b a b >⇔>(3)||||x a x b c +++<零点分段讨论 三、基本不等式(1)222a b ab +>(当且仅当等号成立条件为a b =)(2)0,0,2a b a b +>>≥a b =);0,0,0,3a b c a b c ++>>>≥(当且仅当a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号)①几何意义:||ad bc ⋅⇔+≤a b a b ||||||≤②推广:222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++.当且仅当向量12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.四、不等式的证明(1)作差比较法、作商比较法.(2)综合法——由因到果.(3)分析法——执果索因.(4)数学归纳法.(5)构造辅助函数利用单调性证明不等式.(6)反证法.(7)放缩法.题型归纳即思路提示题型201 含绝对值的不等式一、解含绝对值的不等式思路提示对于含绝对值的不等式问题,首先要考虑的是根据绝对值的意义去掉绝对值.常用的去绝对值方法是零点分段法.特别用于多个绝对值的和或差不等式问题.若单个绝对值的不等式常用以下结论:|()|()()()()f x g x g x f x g x <⇔-<<;|()|()()()()()f x g x f x g x f x g x >⇔><-或;22|()||()|()()(()())(()())0f x g x f x g x f x g x f x g x >⇔>⇔+->.有时去绝对值也可根据22||x x =来去绝对值.例16.14 (2015·山东)解不等式|x -1|-|x -5|<2的解集.变式1 不等式|5||3|10x x -++≥的解集是( )A. [5,7]-B. [4,6]-C. (,5][7,)-∞-+∞D. (,4][6,)-∞-+∞变式2 已知函数()|2||5|f x x x =---.(1)证明:3()3f x -≤≤;(2)求不等式2()815f x x x ≥-+的解集二、含绝对值不等式恒成立,求参数问题例16.15 若不等式|2x -1|+|x +2|≥a2+12a +2对任意实数x 恒成立,则实数a 的取值范围为________.变式1 不等式⎪⎪⎪⎪⎪⎪x +1x ≥|a -2|+sin y 对一切非零实数x ,y 均成立,求实数a 的取值范围.变式2 若不等式|kx -4|≤2的解集为{x|1≤x ≤3},则实数k =________.变式3 (2017·石家庄调研)设函数f(x)=|x-3|-|x+1|,x∈R.(1)解不等式f(x)<-1;(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.三、含绝对值(方程)不等式有解,求参数问题例16.16 (2016·深圳模拟)若关于x的不等式|2 014-x|+|2 015-x|≤d有解,求d的取值范围.变式2 已知a∈R,关于x的方程21||||04x x a a++-+=有实根,求a的取值范围.四、已知含绝对值不等式的解集,求参数的值或范围例16.17 (全国卷 I卷(理))已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.变式1 设函数()||3f x x a x =-+,其中0a >.(1) 当1a =时,求不等式()32f x x ≥+的解集;(2)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.变式2 (2017·开封模拟)设函数f(x)=|x -a|,a<0.(1)证明:f(x)+f ⎝ ⎛⎭⎪⎫-1x ≥2; (2)若不等式f(x)+f(2x)<12的解集非空,求a 的取值范围.变式3 (2012山东理13) 若不等式|4|2kx -≤的解集为{}|13x x ≤≤,则实数k = .题型202 不等式的证明一、比较法(差值法和比值法)思路提示将待比较的两个代数式通过作差或作商,与0与1进行比较,得到大小关系. 例16.18 (2014·常州期末)已知x ≥1,y ≥1,求证:x 2y+xy 2+1≤x 2y 2+x+y.变式1 (2015·徐州、连云港、宿迁三检)已知a ,b ,c 都是正数,求证:222222a b b c c a a b c ++++≥abc.二、利用函数的单调性证明思路提示使用对象:在某区间成立的函数不等式、数值不等式的证明通常是通过辅助函数完成的.解题程序:(1)移项(有时需要作简单的恒等变形),使不等式一端为0,另一端为所作辅助函数()f x .(2)求()f x 并验证()f x 在指定区间上的单调性.(3)求出区间端点的函数值(或极限值),其中至少有一个为0或已知符号,作比较即得所证.例16.19 已知01x <<,求证:31sin 6x x x -<.变式1 证明:当02x π<<时,2sin xx x π<<.三、综合法与分析法思路提示字母12,,,,,n A A A A B 分别表示一组不等式,其中B 为已知不等式,A 为待证不等式.若有12n A A A A B ⇐⇐⇐⇐⇐,综合法是由B 前进式地推导A ,分析法是由A 倒退式地分析到B .用分析法时,必须步步可逆.例16.20 已知a,b,c>0且互不相等,abc=1.试证明:a+b+c<1a+1b+1c.变式1 已知a,b,c,d均为正数,且ad=bc.(1)证明:若a+d>b+c,则|a-d|>|b-c|;(2)t·a2+b2c2+d2=a4+c4+b4+d4,求实数t的取值范围..16.21(2017·沈阳模拟)设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥3;(2)abc+bac+cab≥3(a+b+c).c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2)abc+bac+cab=a+b+cabc.变式1 已知a>b>c,且a+b+c=0,求证:b2-ac<3a.四、反证法 思路提示从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的.它的依据是原命题与逆否命题同真假.例16.22 设二次函数f (x )=x 2+px+q ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.变式1 已知,,a b ∈R ,332a b +=,求证:2a b +≤.五、放缩法 思路提示预证A B ≥,可通过适当放大或缩小,借助一个或多个中间量,使得112,,,K B B B B B A ≤≤≤或112,,,K A A A A A B ≥≥≥,再利用传递性,达到证明目的,常见的放缩途径有“添舍”放缩、“分母”放缩和“单调”放缩.例16.23 (2015·安徽卷)设n ∈N *,x n 是曲线y=x 2n+2+1在点(1,2)处的切线与x 轴交点的横坐标.(1) 求数列{x n }的通项公式; (2) 记T n =2213x x ·…·22-1n x ,求证:T n ≥14n .变式1 证明:1(1)(2,)n n n n n n -*>+≥∈N .变式2 若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.例16.24 求证:12(,,,)b c d aa b c d a b c b c d c d a d a b+<+++<∈++++++++R .例16.25 设,,,a b c m +∈R ,且满足m m ma b c =+,问m 取何值时,以,,a b c 为边可构成三角形,并判断该三角形的形状.六、三角换元法 思路提示若221x y +=,2212y x +=等为已知条件,求证不等式时,利用三角换元法较容易,但是务必注意换元前后参数的范围变化.例16.26 (2017江苏卷) 已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac +bd ≤8.变式1 设,x y ∈R ,221x y +=,求证:5||3412x y +≤. 七、构造法 思路提示一般说来,用构造法证明不等式,常见的构造方法如下: (1)构造辅助函数. (2)构造辅助数列. (3)构造几何图形.例16.27 设,x y ∈R ,0b ≠,若10a b <<,求证:211b b a -<+..例16.28 已知,,a b c 为三角形的三边长,求证:111a b ca b c<++++.变式1 证明:||||||1||1||1||a b a b a b a b +<+++++.变式2 已知0x >且1x ≠,0m n >>,求证:11mnm nx x x x +>+.例16.29 证明:当1x >-且0x ≠时,有(1)1(N )nx nx n *+≥+∈.例16.30 设,,a b c +∈R)a b c ≥++.变式1 设,x y +∈R≥八、利用柯西不等式证明不等式 思路提示柯西不等式不仅具有优美的代数表现形式及向量表现形式,而且有明显的几何意义,它与基本不等式具有密切的关系,其作用类似于基本不等式可用来求最大(小)值或证明不等式,不过它的特点更明显应用更直接. 1.二维形式的柯西不等式设1212,,,x x y y ∈R ,2222211221212()()()x y x y x x y y ++≥+.等号成立1221x y x y ⇔=.2.一般形式的柯西不等式 设12,,,n a a a 及12,,,n b b b 为任意实数,则21122()n n a b a b a b +++≤2222221212()()n n a a a b b b ++++++,当且仅当1212nna a ab b b ===(规定0i a =时0i b =,1,2,,i n =)时等号成立.证法一:当i a 全为0时,命题显然成立. 否则210nii a=>∑,考查关于x 的二次函数21()()ni i i f x a x b ==-∑,显然()0f x ≥恒成立.注意到222111()()2()nn n ii i ii i i f x ax a b x b ====-+∑∑∑,而()0f x ≥恒成立,且210ni i a =>∑,故()f x 的判别式不大于零,即2221114()40nn ni i i i i i i a b a b ===∆=-⋅≤∑∑∑,整理后得222111()nnniii i i i i a b a b ===⋅≥∑∑∑.证法二:向量的内积证法. 令12(,,,)n a a a =a ,12(,,,)n b b b =b ,θ为a 与b 的夹角.因为|cos ⋅=a b a ||b |a,b ,且|cos |1≤a,b ,所以|cos ||⋅=≤|a b |a ||b ||a,b a ||b |222|⇒⋅≤|a b |a ||b |,即21122()n n a b a b a b +++≤2222221212()()n n a a a b b b ++++++,等号成立0θ⇔=︒或180︒⇔a,b 平行1212nna a ab b b ⇔===. 柯西不等式提示了任意两组实数积之和的平方与平方和之间的关系,应用它可以简单地证明许多复杂的不等式,下面举例说明. 例16.31 已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x2+y2+z2的最小值.变式1 已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.变式2 已知0,0,0a b c >>>,22cos sin a b c θθ+<.22θθ<例16.32 设实数,,a b c 满足2223232a b c ++=,求证:39271a b c---++≥.变式1 已知n *∈N ,且2n ≥,求证:11111117234212n n <-+-++-<-.变式2 已知正实数,,a b c 满足1abc =,求证:3331113()()()2a b c b c a c a b ++≥+++.最有效训练题61(限时45分钟)1.不等式|21|23x x -<-的解集是( )A. 1|2x x ⎧⎫<⎨⎬⎩⎭ B. 13|25x x ⎧⎫≤<⎨⎬⎩⎭ C. 3|5x x ⎧⎫<⎨⎬⎩⎭ D. 3|5x x ⎧⎫>⎨⎬⎩⎭ 2.设,,(,0)a b c ∈-∞,则111,,a b c b c a+++( ) A. 都不大于2- B. 都不小于2- C. 至少有一个不大于2- D. 至少有一个不小于2-3.若P =0)Q a =+≥,则,P Q 的大小关系是( )A. P Q >B. P Q =C. P Q <D. 由a 的取值决定 4.用数学归纳法证明某不等式,左边111111234212n n=-+-++--,“从n k =到1n k =+”应将左边加上( )A. 11k +B. 112124k k -++C. 122k -+D. 112122k k -++5. ()f x = )A. 5 6.若正数,a b 满足3ab a b =++,则①ab 的取值范围是 ;②a b +的取值范围是 .7.在实数范围内,不等式|21||21|6x x -++≤的解集为 .8.若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .9.已知0,0,0a b c >>>,a b c +>.求证:111a b c a b c +>+++. 10.已知函数()|||2|f x x a x =++-.(1) 当3a =-时,求不等式()3f x ≥的解集;(2)若()|x 4|f x ≤-的解集包含[]1,2,求a 的取值范围.11. 已知函数()|2|,f x m x m =--∈R ,且(2)0f x +≥的解集为[1,1]-. ①求m 的值;②若,,a b c +∈R ,且11123m a b c ++=,求证:239a b c ++≥.12.已知函数3()(1)1x f x x x +=≠-+.设数列{}n a 满足11a =,1()n n a f a +=,数列{}n b 满足|n n b a =,12n n S b b b =+++ ()n *∈N .(1)用数学归纳法证明:n b ≤(2)证明:3n S <.。
高三数学不等式选讲知识点和练习
a b 0, 1 a b;
b
②证明步骤:作商→变形→判断与 2.综合法
1 的大小关系→得出结论。
( 1)定义:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、 论证而得到命题成立,这种证明方法叫做综合法。综合法又叫做推证法或由因导果法。
( 2)思路:综合法的思索路线是 “由因导果” ,也就是从一个 (组) 已知的不等式出发, 不断地用必要条件代替前面的不等式,直至推导出要求证明的不等式。
由于 x 2 x 3 ( x 2) ( x 3) 5 ,故只要 m 5 。 所以 m 的取值范围是 ( ,5) 。
【不等式证明习题】
【例 1】若 a, b, c 为不全相等的正数,求证:
a+ b
b+ c
a+ c
lg 2 +lg 2 + lg 2 > lg a + lg b + lg c.
证明: 由 a, b, c 为正数,得
和与点( -3 )的距离之和,其距离之和的最小值为 8,结合数轴,选项 D 正确
【例 2】 已知集合 A x R | x 3 x 4 9 , B 则集合 A B =________. 【答案】 x R | 2 x 5
x R | x 4t 1,t (0, t
),
【解析】∵ A x R || x 3 | | x 4 | 9 x R | 4 x 5 ,
a
b4
证法三 ( 综合法 )
∵ a+b=1, a > 0, b> 0,∴ a+b≥ 2 ab ,∴ ab≤ 1 4
13 1 ab 1
(1 ab)2
9
44
16
(1 ab)2 1 25 16
1 4
ab
(1 ab)2 1 25
专题13 不等式选讲-高考数学(理)二轮专项复习
专题13 不等式选讲不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法以及数学归纳法在不等式中的应用等,命题的热点是绝对值不等式的解法,以及绝对值不等式与函数的综合问题的求解.本部分命题形式单一、稳定,是三道选考题目中最易得分的,所以可重点突破.【知识要点】1.含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想; 2.绝对值三角不等式|a |-|b |≤|a ±b |≤|a |+|b |.此性质可用来解不等式或证明不等式. 3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a nn ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 4.柯西不等式(1)设a ,b ,c ,d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)若a i ,b i (i ∈N *)为实数,则(∑n i =1a 2i )(∑n i =1b 2i )≥(∑ni =1a i b i )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|a |·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立. 【复习要求】(1)理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:① ;b a b a +≤+② ;b c c a b a -+-≤-(2)会利用绝对值的几何意义求解以下类型的不等式:c b ax ≤+ c b ax ≥+ a b x c x ≥-+-(3)会用不等式①和②证明一些简单问题。
选修不等式选讲》知识点详解+例题+习题含详细答案
选修4-5不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a;(2)|f(x)|<a(a>0)⇔-a<f(x)<a;(3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a|-|b|≤|a±b|≤|a|+|b|.问题探究:不等式|a|-|b|≤|a±b|≤|a|+|b|中,“=”成立的条件分别是什么?提示:不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.3.基本不等式定理1:设a,b∈R,则a2+b2≥2ab.当且仅当a=b时,等号成立.定理2:如果a、b为正数,则a+b2≥ab,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则a+b+c3≥3abc,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则(∑i =1n a 2i )(∑i =1n b 2i )≥(∑i =1n a i b i )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1.判断正误(在括号内打“√”或“×”)(1)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( )(2)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )(3)|ax +b |≤c (c >0)的解等价于-c ≤ax +b ≤c .( )(4)不等式|x -1|+|x +2|<2的解集为Ø.( )(5)若实数x 、y 适合不等式xy >1,x +y >-2,则x >0,y >0.( )[答案] (1)× (2)√ (3)√ (4)√ (5)√2.不等式|2x -1|-x <1的解集是( )A .{x |0<x <2}B .{x |1<x <2}C .{x |0<x <1}D .{x |1<x <3}[解析] 解法一:x =1时,满足不等关系,排除C 、D 、B ,故选A.解法二:令f (x )=⎩⎪⎨⎪⎧ x -1,x ≥12,1-3x ,x <12,则f (x )<1的解集为{x |0<x <2}.[答案] A3.设|a |<1,|b |<1,则|a +b |+|a -b |与2的大小关系是( )A .|a +b |+|a -b |>2B .|a +b |+|a -b |<2C .|a +b |+|a -b |=2D .不能比较大小[解析] |a +b |+|a -b |≤|2a |<2.[答案] B4.若a ,b ,c ∈(0,+∞),且a +b +c =1,则a +b +c 的最大值为( )A .1B . 2 C. 3 D .2 [解析] (a +b +c )2=(1×a +1×b +1×c )2≤ (12+12+12)(a +b +c )=3.当且仅当a =b =c =13时,等号成立.∴(a +b +c )2≤3. 故a +b +c 的最大值为 3.故应选C.[答案] C5.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[解析] 利用数轴及不等式的几何意义可得x 到a 与到1的距离和小于3,所以a 的取值范围为-2≤a ≤4.[答案] -2≤a ≤4考点一 含绝对值的不等式的解法解|x -a |+|x -b |≥c (或≤c )型不等式,其一般步骤是:(1)令每个绝对值符号里的代数式为零,并求出相应的根.(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)(2)(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -53<x <13,则a =________.[解题指导] 切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析] (1)当x <1时,不等式可化为-(x -1)+(x -5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1+(x -5)<2,即2x -6<2,解得x <4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.(2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-1a <x <5a ,与已知条件不符;当a =0时,x ∈R ,与已知条件不符;当a <0时,5a <x <-1a ,又不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,故a =-3. [答案] (1)A (2)-3用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.对点训练已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.[解] (1)当a =-3时,f (x )=⎩⎨⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].考点二 利用绝对值的几何意义或图象解不等式对于形如|x -a |+|x -b |>c 或|x -a |+|x -b |<c 的不等式,利用绝对值的几何意义或者画出左、右两边函数的图象去解不等式,更为直观、简捷,它体现了数形结合思想方法的优越性.|x -a |+|x -b |的几何意义是数轴上表示x 的点与点a 和点b 的距离之和,应注意x 的系数为1.(1)(2014·重庆卷)若不等式|x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.(2)不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.[解题指导] 切入点:绝对值的几何意义;关键点:把恒成立问题转化为最值问题.[解析] (1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+12a +2≤3,解得-1-174≤a ≤-1+174. 即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1-174,-1+174. (2)解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于P A -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y =⎩⎨⎧ -3,x ≤-1,2x -1,-1<x <2,3,x ≥2,要使|x +1|-|x -2|>k 恒成立,从图象中可以看出,只要k <-3即可.故k <-3满足题意.[答案] (1)⎣⎢⎡⎦⎥⎤-1-174,-1+174 (2)(-∞,-3) 解含参数的不等式存在性问题,只要求出存在满足条件的x 即可;不等式的恒成立问题,可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .对点训练(2015·唐山一模)已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值;(2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围.[解] (1)g (x )≤5⇔|2x -1|≤5⇔-5≤2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3.依题意有,a -3≤-2,a ≤1.故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a ,当且仅当(2x -a )(2x -1)≤0时等号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).考点三 不等式的证明与应用不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.[解题指导]切入点:不等式的性质;关键点:不等式的恒等变形.[证明](1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.对点训练(2014·新课标全国卷Ⅱ)设a、b、c均为正数,且a+b+c=1.证明:(1)ab+bc+ac≤1 3;(2)a2b+b2c+c2a≥1.[证明](1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca.由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.———————方法规律总结————————[方法技巧]1.绝对值不等式求解的根本方向是去除绝对值符号.2.绝对值不等式在求与绝对值运算有关的最值问题时需灵活运用,同时还要注意等号成立的条件.3.在证明不等式时,应根据命题提供的信息选择合适的方法与技巧.如在使用柯西不等式时,要注意右边为常数.[易错点睛]1.对含有参数的不等式求解时,分类要完整.2.应用基本不等式和柯西不等式证明时要注意等号成立的条件.课时跟踪训练(七十)一、填空题1.不等式|2x -1|<3的解集为__________.[解析] |2x -1|<3⇔-3<2x -1<3⇔-1<x <2.[答案] (-1,2)2.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.[解析] ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2.[答案] 23.不等式|2x +1|+|x -1|<2的解集为________.[解析] 当x ≤-12时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-23,此时-23<x ≤-12.当-12<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,此时-12<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <23,此时不等式无解,综上,原不等式的解为-23<x <0,即原不等式的解集为⎝ ⎛⎭⎪⎫-23,0. [答案] ⎝ ⎛⎭⎪⎫-23,0 4.已知关于x 的不等式|x -1|+|x |≤k 无解,则实数k 的取值范围是__________.[解析] ∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1.[答案] (-∞,1)5.(2015·西安统考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.[解析] |x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8.[答案] (-∞,8]6.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =__________.[解析] 当a =-1时,f (x )=3|x +1|≥0,不满足题意;当a <-1时,f (x )=⎩⎨⎧ -3x -1+2a ,x ≤a ,x -1-2a ,a <x ≤-1,3x +1-2a ,x >-1,f (x )min =f (a )=-3a -1+2a =5,解得a =-6;当a >-1时,f (x )=⎩⎨⎧ -3x -1+2a ,x ≤-1,-x +1+2a ,-1<x ≤a ,3x +1-2a ,x >a ,f (x )min =f (a )=-a +1+2a =5,解得a =4.[答案] -6或4 7.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是__________.[解析] ∵f (x )=|x +1|+|x -2|=∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,∴|a |≥3,即a ≤-3或a ≥3.[答案] (-∞,-3]∪[3,+∞)8.已知关于x 的不等式|x -a |+1-x >0的解集为R ,则实数a 的取值范围是__________.[解析] 若x -1<0,则a ∈R ;若x -1≥0,则(x -a )2>(x -1)2对任意的x ∈[1,+∞)恒成立,即(a -1)[(a +1)-2x ]>0对任意的x ∈[1,+∞)恒成立,所以⎩⎨⎧ a -1>0,a +1>2x ,(舍去)或⎩⎨⎧a -1<0,a +1<2x ,对任意的x ∈[1,+∞]恒成立,解得a <1.综上,a <1. [答案] (-∞,1)9.设a ,b ,c 是正实数,且a +b +c =9,则2a +2b +2c 的最小值为__________.[解析] ∵(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c =[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫2b 2+⎝ ⎛⎭⎪⎫2c 2≥⎝⎛⎭⎪⎫a ·2a +b ·2b +c ·2c 2=18, ∴2a +2b +2c ≥2,∴2a +2b +2c 的最小值为2.[答案] 210.(2014·陕西卷)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.[解析] 由柯西不等式,得(a 2+b 2)(m 2+n 2)≥(am +bn )2, 即5(m 2+n 2)≥25,∴m 2+n 2≥5,当且仅当an =bm 时,等号成立.∴m 2+n 2的最小值为 5.[答案] 5 11.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为__________.[解析] ∵|x -1|+|x |+|y -1|+|y +1|=(|1-x |+|x |)+(|1-y |+|1+y |)≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3,当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时等号成立, ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.[答案] 312.若不等式|x +1|-|x -4|≥a +4a ,对任意的x ∈R 恒成立,则实数a 的取值范围是________.[解析] 只要函数f (x )=|x +1|-|x -4|的最小值不小于a +4a 即可.由于||x +1|-|x -4||≤|(x+1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +4a 即可.当a >0时,将不等式-5≥a +4a 整理,得a 2+5a +4≤0,无解;当a <0时,将不等式-5≥a +4a 整理,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,实数a 的取值范围是(-∞,-4]∪[-1,0).[答案] (-∞,-4]∪[-1,0)二、解答题13.已知不等式2|x -3|+|x -4|<2a .(1)若a =1,求不等式的解集;(2)若已知不等式的解集不是空集,求a 的取值范围.[解] (1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,∴舍去;若3<x <4,则x -2<2,∴3<x <4;若x ≤3,则10-3x <2,∴83<x ≤3.综上,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 83<x <4. (2)设f (x )=2|x -3|+|x -4|,则f (x )=⎩⎨⎧ 3x -10,x ≥4,x -2,3<x <4,10-3x ,x ≤3.作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,∴2a >1,a >12,即a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. 14.(2015·新课标全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 23<x <2. (2)由题设可得,f (x )=⎩⎨⎧ x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2. 由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).15.设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.[解] (1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=⎩⎨⎧ -2x ,x <-1,2,-1≤x ≤1,2x ,x >1.作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式f (x )≥3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-32或x ≥32. (2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=⎩⎨⎧-2x +a +1,x ≤a ,1-a ,a <x <1,2x -a +1,x ≥1,f (x )的最小值为1-a ; 若a >1,f (x )=⎩⎨⎧ -2x +a +1,x ≤1,a -1,1<x <a ,2x -a +1,x ≥a ,f (x )的最小值为a -1. ∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,∴a 的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值;(2)求14a 2+19b 2+c 2的最小值.[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得 ⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥ ⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87.当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立. 故14a 2+19b 2+c 2的最小值为87.。
高考数学压轴专题最新备战高考《不等式选讲》知识点训练及答案
【最新】高考数学《不等式选讲》练习题一、141.已知集合||1|2,}M x x x R =〈-∈„,集合5|1,1P x x R x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P ⋃等于( )。
A .{|13}x x -<≤B .{|14}x x -<≤C .{}|4x x ≤D .{|14}x x -≤≤( ) 【答案】D 【解析】 【分析】根据绝对值不等式及分式不等式,化简集合M,P ,根据并集运算求解即可. 【详解】Q |1|2x -„,∴ 13x -≤≤,即[1,3]M =-,511x ≥+Q, 14x ∴-<≤,即(1,4]P =-,[1,4]M P ∴=-U ,故选:D 【点睛】本题主要考查了集合的并集运算,分式不等式,绝对值不等式,属于中档题.2.已知()f x 是定义域为R 的偶函数,当0x „时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x „时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.3.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+, 即3223x x ax a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.4.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.5.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立, ∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()41221x x ++-≥=+, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<,则()()()441212611x x x x ⎡⎤++-=--++-≤-=-⎢⎥+-+⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.6.在平面内,已知向量(1,0)a =v,(0,1)b =v,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =v ,()0,1b =v ,()1,1c=v, 所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v==5≥==≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.7.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞ B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A 【解析】 【分析】利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案. 【详解】由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >, 即实数x 的取值范围是(7,)+∞,故选A. 【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.8.设集合{}|22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B I 等于 A .R B .{}|,0x x R x ∈≠ C .{}0D .∅【答案】B 【解析】解:[0,2]A =,[4,0]B =-,所以(){}0R R C A B C ⋂=,故选B 。
高中数学不等式选修题型全归纳
6.不等式选讲6.1均值不等式在证明中的应用1. (1)已知,,,a b R x y R +∈∈,求证:()222x y x y a b a b++≥+;(2(12x a (29。
2. a 的取值解析:分别作出函数()y f x =与||y a x =的图像, 由图知,0a <时,函数()y f x =与||y a x =无交点,0a =时,函数()y f x =与||y a x =有三个交点,故0.a >当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点,当0x >,02a <<时,函数()y f x =与||y a x =有两个交点, 当0x <时,若y ax =-与254,(41)y x x x =----<<-相切, 则由0∆=得:1a =或9a =(舍),因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点, 当0x <,1a =时,函数()y f x =与||y a x =有三个交点, 当x <3. 成立,则实数令1y =22y =则1y 两种临界情况,①当0t ≤时,1y 的右半部分和2y 在第二象限相切:1y 的右半部分即1y x t =-,联列方程22y x ty x =-=-,只有一个解;即22x t x -=-,即220x x t +--=,1480t ∆=++=?,得:94t =-; 此时1y 恒大于等于2y ,所以94t =-取不到;所以904t -<≤;②当0t >时,要使1y 和2y 在第二象限有交点, 即1y 的左半部分和2y 的交点的位于第二象限; 无需联列方程,只要1y 与y 轴的交点小于2即可;1y t x =-与y 轴的交点为(0,)t ,所以2t <,(1(2(1作出函数图像可知,当(0,2)x ∈时,0y <, 故原不等式的解集为}{02x x <<; (2)依题意,原不等式化为13a x +≤+,故2x a ≥-对1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22aa -≥-, 故43a ≤,故a 的取值范围是41,3⎛⎤- ⎥⎝⎦.考点:同系数绝对值相加型不等式6. 设函数()212f x x x =+--(1)求不等式()2f x >的解集; (2)若()211,2x R f x t t ∀∈≥-恒成立,求实数t 的取值范围.(1)由题意得13,21()31,223,2x x f x x x x x ⎧--<-⎪⎪⎪=--≤<⎨⎪+≥⎪⎪⎩? 当12x <-时,不等式化为32x -->,解得55x x <-∴<-, 当122x -≤<时,不等式化为312x ->,解得112x x >∴<<, 当x ≥(2(1)当(2)(1)当1a =时,()32f x x ≥+可化为|1|2x -≥。
高中数学不等式选修知识点和常考题型归纳
选修4-5不等式选讲1、基础知识梳理2、常考题型归纳3、强化训练一、基础知识梳理【复习指导】本讲复习时,紧紧抓住含绝对值不等式的解法,以及利用重要不等式对一些简单的不等式进行证明.该部分的复习以基础知识、基本方法为主,不要刻意提高难度,以课本难度为宜,关键是理解有关内容本质.基础梳理1.含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a;(2)|f(x)|<a(a>0)⇔-a<f(x)<a;(3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a|-|b|≤|a±b|≤|a|+|b|.3.基本不等式定理1:设a,b∈R,则a2+b2≥2ab.当且仅当a=b时,等号成立.定理2:如果a、b为正数,则a+b2≥ab,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则a+b+c3≥3abc,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术-几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.5.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.双基自测1.不等式1<|x +1|<3的解集为________. 答案 (-4,-2)∪(0,2)2.不等式|x -8|-|x -4|>2的解集为________.解析令:f (x )=|x -8|-|x -4|=⎩⎨⎧4,x ≤4,-2x +12,4<x ≤8,-4,x >8,当x ≤4时,f (x )=4>2;当4<x ≤8时,f (x )=-2x +12>2,得x <5, ∴4<x <5;当x >8时,f (x )=-4>2不成立. 故原不等式的解集为:{x |x <5}. 答案 {x |x <5}3.已知关于x 的不等式|x -1|+|x |≤k 无解,则实数k 的取值范围是________. 解析 ∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)若a i ,b i (i ∈N *)为实数,则(∑i =1na 2i )(∑i =1nb 2i )≥(∑i =1na ib i )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =k b i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.k<1. 答案 k <14.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.解析 由|3x -b |<4,得b -43<x <b +43, 即⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,解得5<b <7.答案 (5,7)5.(2011·南京模拟)如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是________.解析 在数轴上,结合实数绝对值的几何意义可知a ≤-5或a ≥-3. 答案 (-∞,-5]∪[-3,+∞)考向一 含绝对值不等式的解法【例1】►设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.[审题视点] 第(1)问:采用分段函数解不等式;第(2)问:画出函数f (x )的图象可求f (x )的最小值.解 (1)f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5 ⎝ ⎛⎭⎪⎫x <-12,3x -3 ⎝ ⎛⎭⎪⎫-12≤x <4,x +5 (x ≥4).当x <-12时,由f (x )=-x -5>2得,x <-7.∴x <-7;当-12≤x <4时,由f (x )=3x -3>2,得x >53,∴53<x <4;当x ≥4时,由f (x )=x +5>2,得x >-3,∴x ≥4.故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. (2)画出f (x )的图象如图: ∴f (x )min =-92.(1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法,数形结合可以求解含有绝对值的不等式,使得代数问题几何化,即通俗易懂,又简洁直观,是一种较好的方法. 【训练1】 设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 解 (1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=⎩⎨⎧-2x , x <-1,2, -1≤x ≤1,2x , x >1.作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32. (2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=⎩⎨⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1,f (x )的最小值为1-a .若a >1,f (x )=⎩⎨⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -(a +1),x ≥a ,f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2, ∴a 的取值范围是(-∞,-1]∪[3,+∞).考向二 不等式的证明【例2】►证明下列不等式:(1)设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2; (2)a 2+4b 2+9c 2≥2ab +3ac +6bc ; (3)a 6+8b 6+127c 6≥2a 2b 2c 2.[审题视点] (1)作差比较;(2)综合法;(3)利用柯西不等式. 证明 (1)3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )-2b 2(a -b ) =(a -b )(3a 2-2b 2).∵a ≥b >0,∴a -b ≥0,3a 2-2b 2>0. ∴(a -b )(3a 2-2b 2)≥0. ∴3a 2+2b 3≥3a 2b +2ab 2. (2)∵a 2+4b 2≥2a 2·4b 2=4ab , a 2+9c 2≥2a 2·9c 2=6ac , 4b 2+9c 2≥24b 2·9c 2=12bc , ∴2a 2+8b 2+18c 2≥4ab +6ac +12bc , ∴a 2+4b 2+9c 2≥2ab +3ac +6bc .(3)a 6+8b 6+127c 6≥3 3827a6b 6c 6=3×23a 2b 2c 2=2a 2b 2c 2, ∴a 6+8b 6+127c 6≥2a 2b 2c 2.(1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤是:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力. (2)注意观察不等式的结构,利用基本不等式或柯西不等式证明.【训练2】 (2010·辽宁)已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明 法一 因为a ,b ,c 均为正数,由基本不等式得,a 2+b 2+c 2≥3(abc )23,①1a +1b +1c ≥3(abc )-13,所以⎝ ⎛⎭⎪⎫1a +1b +1c 2≥9(abc )-23,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥3(abc )23+9(abc )-23. 又3(abc )23+9(abc )-23≥227=63,③ 所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立. 当且仅当3(abc )23=9(abc )-23时,③式等号成立. 故当且仅当a =b =c =314时,原不等式等号成立.法二 因为a ,b ,c 均为正数,由基本不等式得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .① 同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥ab +bc +ac +3ab +3bc +3ac ≥6 3.③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.故当且仅当a=b=c=314时,原不等式等号成立.考向三利用基本不等式或柯西不等式求最值【例3】►已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.[审题视点] 先将(3a+1+3b+1+3c+1)平方后利用基本不等式;还可以利用柯西不等式求解.解法一利用基本不等式∵(3a+1+3b+1+3c+1)2=(3a+1)+(3b+1)+(3c+1)+23a+1·3b+1+23b+1·3c+1+23a+1·3c+1≤(3a+1)+(3b+1)+(3c+1)+[(3a+1)+(3b+1)]+[(3b+1)+(3c+1)]+[(3a+1)+(3c+1)]=3[(3a+1)+(3b+1)+(3c+1)]=18,∴3a+1+3b+1+3c+1≤32,∴(3a+1+3b+1+3c+1)max=3 2.法二利用柯西不等式∵(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]≥(1·3a+1+1·3b+1+1·3c+1)2∴(3a+1+3b+1+3c+1)2≤3[3(a+b+c)+3].又∵a+b+c=1,∴(3a+1+3b+1+3c+1)2≤18,∴3a+1+3b+1+3c+1≤3 2.当且仅当3a+1=3b+1=3c+1时,等号成立.∴(3a+1+3b+1+3c+1)max=3 2.利用基本不等式或柯西不等式求最值时,首先要观察式子特点,构造出基本不等式或柯西不等式的结构形式,其次要注意取得最值的条件是否成立.【训练3】已知a+b+c=1,m=a2+b2+c2,求m的最小值.解法一∵a+b+c=1,∴a2+b2+c2+2ab+2bc+2ac=1,又∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc , ∴2(a 2+b 2+c 2)≥2ab +2ac +2bc ,∴1=a 2+b 2+c 2+2ab +2bc +2ac ≤3(a 2+b 2+c 2). ∴a 2+b 2+c 2≥13.当且仅当a =b =c 时,取等号,∴m min =13. 法二 利用柯西不等式∵(12+12+12)(a 2+b 2+c 2)≥(1·a +1·b +1·c )=a +b +c =1. ∴a 2+b 2+c 2≥13,当且仅当a =b =c 时,等号成立. ∴m min =13如何求解含绝对值不等式的综合问题从近两年的新课标高考试题可以看出,高考对《不等式选讲》的考查难度要求有所降低,重点考查含绝对值不等式的解法(可能含参)或以函数为背景证明不等式,题型为填空题或解答题.【示例】► (本题满分10分)(2011·新课标全国)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.第(2)问解不等式|x -a |+3x ≤0的解集,结果用a 表示,再由{x |x ≤-1}求a .[解答示范] (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1. (3分)故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.(5分) (2)由f (x )≤0得,|x -a |+3x ≤0.此不等式化为不等式组⎩⎨⎧ x ≥a ,x -a +3x ≤0或⎩⎨⎧x ≤a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x ≤a ,x ≤-a2.(8分)因为a >0,所以不等式组的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-a2. 由题设可得-a2=-1,故a =2.(10分)本题综合考查了含绝对值不等式的解法,属于中档题.解含绝对值的不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数),利用实数绝对值的几何意义求解较简便.【试一试】 (2011·辽宁)已知函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.[尝试解答](1)f (x )=|x -2|-|x -5|=⎩⎨⎧-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}. 综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.二、常考题型归纳6.1均值不等式在证明中的应用1. (1)已知,,,a b R x y R +∈∈,求证:()222x y x y a b a b++≥+;(2)已知实数,x y 满足:2221x y +=,试利用(1)求2221x y+的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学题型归纳与训练高考理科数学《不等式选讲》题型归纳与训练【题型归纳】题型一 解绝对值不等式例1、设函数f (x )=|x -1|+|x -2|.(1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【答案】(1)(-∞,0)∪(3,+∞);(2)(-∞,1).【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0;当1≤x ≤2时,f (x )>3无解;当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,【易错点】如何恰当的去掉绝对值符号【思维点拨】用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.题型二 利用绝对值的几何意义或图象解不等式例2、(1)若不等式|x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.【答案】(1)⎣⎢⎡⎦⎥⎤-1-174,-1+174. 【解析】(1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+12a +2≤3,解得-1-174≤a ≤-1+174. 即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1-174,-1+174. 【易错点】绝对值的几何意义和如何把恒成立问题转化为最值问题【思维点拨】解含参数的不等式存在性问题,只要求出存在满足条件的x 即可;不等式的恒成立问题,可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .题型三 不等式的证明与应用例3、设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.【答案】略.【解析】[证明] (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.【易错点】不等式的恒等变形.【思维点拨】分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.【巩固训练】题型一 解绝对值不等式1.不等式|x -1|+|x +2|≥5的解集为________【答案】{x |x ≤-3或x ≥2}.【解析】原不等式等价于⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5 或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5高考数学题型归纳与训练或⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5, 解得x ≥2或x ≤-3.故原不等式的解集为{x |x ≤-3或x ≥2}.2.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围【答案】(1){x |x ≤1或x ≥4};(2)[-3,0].【解析】(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].3.设函数f (x )=|x +1|+|x -2|+a .(1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.【答案】(1)(-∞,-2]∪[3,+∞);(2)a ≥-3.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3.题型二 利用绝对值的几何意义或图象解不等式1.已知函数()123f x x x =+--.(1)图中画出()y f x =的图像;(2)求不等式()1f x >的解集.【答案】(1)见解析(2)()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.【解析】⑴如图所示:(2)()()()()+∞⋃⋃⎪⎭⎫ ⎝⎛∞->∴><<<><≤∴<>>-≥<<<<-∴<>>-<<--≤∴<>>-≤>⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<---≤-=5,1,331,解集为1x f ,5x 或3x 1或31x 综上,5x 或3x 23,3x 或5x 解得14x ,23x 当23x 1或31x 131x 或1x 解得1,23x ,23x 1当1x ,3x 或5x 解得1,4x ,1x 当1,x f 23x x,423x 12,3x 1x 4,x f2.不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.【答案】(-∞,-3)【解析】解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于PA -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y =⎩⎪⎨⎪⎧ -3,x ≤-1,2x -1,-1<x <2,3,x ≥2,要使|x +1|-|x -2|>k 恒成立,从图象中可以看出,只要k <-3即可.故k <-3满足题意.高考数学题型归纳与训练题型三不等式的证明与应用1.已知a、b、c∈R+,且a+b+c=1;求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c). 【答案】略.【解析】证明:因为a、b、c∈R+,且a+b+c=1,所以要证原不等式成立,即证[(a+b+c)+a][(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a][(a+b+c)-b][(a+b+c)-c],也就是证[(a+b)+(c+a)][(a+b)+(b+c)][(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).①因为(a+b)+(b+c)≥2(a+b)(b+c)>0,(b+c)+(c+a)≥2(b+c)(c+a)>0,(c+a)+(a+b)≥2(c+a)(a+b)>0,三式相乘得①式成立,故原不等式得证.2.设a、b、c、d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.【答案】略.【解析】证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.3.设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a≥1. 【答案】略.【解析】(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1.。