函数与基本初等函数专题
专题02 函数概念与基本初等函数Ι(选填压轴题)(学生版)-备战2022年高考数学高分必刷必过题
专题02函数概念与基本初等函数Ι(选填压轴题)一、单选题1.(2021·全国)已知函数222,1()11,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,若对任意x ∈R ,()|2||1|0f x x k x ----≤恒成立,则实数k 的取值范围是()A.1,[1,)2⎛⎤-∞+∞ ⎥⎝⎦ B.11,,42⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭C.11,,84⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭D.(,1][2,)-∞+∞ 2.(2021·全国高三专题练习)设min{,}m n 表示,m n 二者中较小的一个,已知函数2()814f x x x =++,()221,log 42()min x g x x -⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭=(0x >),若1[5,](4)x a a ∀∈-≥-,2(0,)x ∃∈+∞,使得12()()f x g x =成立,则a 的最大值为A.-4B.-3C.-2D.03.(2021·和平·天津一中)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A.[]2,3B.[]1,3C.[]1,4D.[]2,44.(2021·河北·天津二中)已知函数01,()1,1.x f x x x ⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤ ⎥⎝⎦C.59,{1}44⎛⎤⎝⎦ D.59,{1}44⎡⎤⎢⎥⎣⎦5.(2021·全国高二课时练习)函数()()2,,x x a k a x a f x e x a a x ⎧----≤⎪=⎨>⎪-⎩,若(]0,x a ∃∈-∞,使得()1,x a ∀∈+∞都有()()10f x f x ≤,则实数k 的取值范围是A.(),1-∞B.[)1,+∞C.(],2-∞D.[)2,+∞6.(2021·奉新县第一中学)已知函数()()f x g x 、是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()22f x g x ax x +=++,若对于任意1212x x <<<,都有()()12122g x g x x x ->--,则实数a 的取值范围是()A.1(,[0,)2-∞-⋃+∞B.(0,)+∞C.1[,)2-+∞D.1[,0)2-7.(2021·全国高一专题练习)函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00=f ;②()11()f x f x -=-;③1()32x f f x ⎛⎫=⋅ ⎪⎝⎭,则12019f ⎛⎫ ⎪⎝⎭等于()A.116B.132C.164D.11288.(2021·全国高一专题练习)我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是()A.若()f x 为“Ω函数”,则(0)0f =不一定成立B.若()f x 为“Ω函数”,则()f x 在[0,)+∞上一定是增函数C.函数0,,()1,x Q g x x Q ∈⎧=⎨∉⎩在[0,)+∞上是“Ω函数”D.函数2()g x x x =+在[0,)+∞上是“Ω函数”9.(2021·全国)已知函数()y f x =,若给定非零实数a ,对于任意实数x M ∈,总存在非零常数T ,使得()()af x f x T =+恒成立,则称函数()y f x =是M 上的a 级T 类周期函数,若函数()y f x =是[0,)+∞上的2级2类周期函数,且当[0,2]x ∈时()2101()212x x f x f x x ⎧-≤≤⎪=⎨-<<⎪⎩,,,又函数21()2ln 2g x x x x m =-+++.若1[6,8]x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是()A.(﹣∞,112]B.(﹣∞,132]C.[112+∞,)D.[132+∞,)10.(2021·安徽省怀宁县第二中学高三月考(理))已知()'f x 是奇函数()()f x x R ∈的导函数,当(,0]x ∈-∞时,()1f x '>,则不等式(21)(2)3f x f x x --+≥-的解集为A.(3,)+∞B.[3,)+∞C.(,3]-∞D.(,3)-∞11.(2021·重庆北碚·西南大学附中高三月考)已知3142342,3,log 4,log 5a b c d ====,则a b c d,,,的大小关系为()A.b a d c>>>B.b c a d>>>C.b a c d>>>D.a b d c>>>12.(2021·全国高一专题练习)已知函数32()log (31x f x x =+-+,若()()22122f a f a -+-≤-,则实数a 的取值范围是()A.[]3,1-B.[]2,1-C.(]0,1D.[]0,113.(2021·黔西南州同源中学(文))设2log 3a =,3log 4b =,5log 8c =,则A.a b c>>B.a c b>>C.c a b>>D.c b a>>14.(2021·绥德中学高一月考)定义在R 上的函数()f x 满足()()121f x f x +=+,当[)0,1x ∈时,()()()2122x xf x --=,若()f x 在[),1n n +上的最小值为23,则n =A.4B.5C.6D.715.(2021·新密市第一高级中学高二期末(文))已知函数()12019ln 112019x x a xf x a x -+=+-+-,若定义在R 上的奇函数()g x 满足()()11g x g x -=+,且()()211log 255g f f ⎛⎫=+ ⎪⎝⎭,则()2019g =A.2B.0C.1-D.2-二、多选题16.(2021·江苏鼓楼·高二期末)已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A.105f ⎛⎫= ⎪⎝⎭B.m Z ∀∈,()30mf =C.函数()f x 的值域为[)0,+∞D.n Z ∃∈,()512019nf +=17.(2021·湖南岳阳·高三模拟预测)已知函数3()13xxf x =+,设(1,2,3)i x i =为实数,且1230x x x ++=.下列结论正确的是()A.函数()f x 的图象关于点10,2⎛⎫⎪⎝⎭对称B.不等式1(1)2f x ->的解集为{}1x x >C.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++<D.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++>18.(2021·全国)1837年,德国数学家狄利克雷(P.G.Dirichlet,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x QD x x Q ∈⎧=⎨∈⎩ð(Q 表示有理数集合),关于此函数,下列说法正确的是()A.()D x 是偶函数B.,(())1x R D D x ∀∈=C.对于任意的有理数t ,都有()()D x t D x +=D.存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC ∆为正三角形19.(2021·湖南华容·)设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有()A.()1.10.9f -=B.函数()f x 为奇函数C.()()11f x f x +=+D.函数()f x 的值域为[)0,120.(2021·浙江)定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间[],a b 的“复区间长度”为()2b a -,已知函数()21f x x =-,则()A.[]0,1是()f x 的一个“完美区间”B.1122⎡+⎢⎥⎣⎦是()f x 的一个“完美区间”C.()f x的所有“完美区间”的“复区间长度”的和为3D.()f x的所有“完美区间”的“复区间长度”的和为3+21.(2021·岳麓·湖南师大附中高二月考)德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为A.函数()f x 是偶函数B.1x ∀,2R x C Q ∈,()()()1212f x x f x f x +=+恒成立C.任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立D.不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形22.(2021·汕头市第一中学)已知函数f (x )满足:当30x -≤<时,|2|()32x f x +=-,下列命题正确的是()A.若f (x )是偶函数,则当03x <≤时,|2|()32x f x +=-B.若(3)(3)f x f x --=-,则()()1g x f x =-在(6,0)x ∈-上有3个零点C.若f (x )是奇函数,则()()1212,[3,3],14x x f x f x ∀∈--<D.若(3)()f x f x +=,方程2[()](2)()20f x k f x k -++=在[3,3]x ∈-上有6个不同的根,则k 的范围为11k -<<三、填空题23.(2021·全国高三专题练习)定义域为集合{1,2,3,,12}⋅⋅⋅上的函数()f x 满足:①(1)1f =;②|(1)()|1f x f x +-=(1,2,,11x =⋅⋅⋅);③(1)f 、(6)f 、(12)f 成等比数列;这样的不同函数()f x 的个数为________24.(2021·全国高三专题练习)已知函数1(31)0()2ln 0x x f x x x ⎧++≤⎪=⎨⎪>⎩,,,,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是____.25.(2021·江西上高二中高二月考(文))定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--,则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是______________.26.(2021·上海徐汇·位育中学)设()1f x x =-,4()g x x =-,若存在121,,,[,4]4n x x x ⋅⋅⋅∈,使得12()()f x f x ++⋅⋅⋅+1121()()()()()()n n n n f x g x g x g x g x f x --+=++⋅⋅⋅++成立,则正整数n 的最大值为________27.(2021·广东潮阳·)函数())22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.28.(2021·全国高一专题练习)下列说法中正确的是______.①函数32y x -=的定义域是{}0x x ≠;②方程()230x a x a +-+=的有一个正实根,一个负实根,则0a <;③函数1lg1xy x-=+在定义域上为奇函数;④函数()log 252a y x =--(0a >,且1a ≠)恒过定点()3,2-;⑤若33x x--=,则33x x -+的值为2.。
专题二 第1讲 函数、基本初等函数的图象与性质
函数,
所以由15<(15)b<(15)a<1 得 0<a<b<1,
所以0<
a b
<1.
所以y=ax,y=bx,y=( a )x在(-∞,+∞)上都是
b
递减函数,
从而ab<aa,( a)a<1得ba>aa, b
故ab<aa<ba,
答案选B.
答案 B
(2)已知函数 f(x)=2x-21x,函数 g(x)=ffx-,xx,≥x0<,0,
变式训练1
(1)(2013·重庆)已知函数f(x)=ax3+bsin x+4(a,b∈R),
f(lg(log210))=5,则f(lg(lg 2))等于( C )
A.-5
B.-1 C.3 D.4
解析
lg(log210)=lg
1 lg 2
=-lg(lg
2),
由f(lg(log210))=5,
得a[lg(lg 2)]3+bsin(lg(lg 2))=4-5=-1,
2
则实数a的取值范围是( )
A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)
思维启迪 可利用函数图象或分
类讨论确定a的范围;
解析 方法一 由题意作出y=f(x)的图象如图. 显然当a>1或-1<a<0时,满足f(a)>f(-a).故选C.
方法二 对a分类讨论:
当a>0时,log2a>log 1 a,即log2a>0,∴a>1. 2
当a<0时,log 1 (-a)>log2(-a),即log2(-a)<0,
题型专题九基本初等函数、函数与方程
• 基本初等函数 • 函数与方程 • 函数的应用
目录
Part
01
基本初等函数
一次函数
一次函数是形如$y=kx+b$的 函数,其中$k$和$b$是常数, 且$k neq 0$。
一次函数的图像是一条直线, 斜率为$k$,截距为$b$。
一次函数的单调性由斜率$k$ 决定,当$k>0$时,函数单调 递增;当$k<0$时,函数单调 递减。
函数的奇偶性和对称性是相互联 系的,它们在解决一些数学问题 时可以相互转化。
详细描述
在解决一些数学问题时,可以根 据奇偶性和对称性的定义进行相 互转化。例如,利用奇函数的性 质可以简化一些计算,或者利用 对称性来理解函数的图像和性质 。
函数的周期性与最值
• 总结词:函数的周期性描述了函数值重复出现的规律,而最值则是函数 在某个区间内的最大值或最小值。
指数函数的图像是单调递增或递 减的曲线。
指数函数的单调性由底数$a$决 定,当$a>1$时,函数单调递增; 当$0<a<1$时,函数单调递减。
对数函数
对数函数是形如$y=log_a x$的函数,其中$a>0$且$a neq 1$。
对数函数的图像是单调递增或递减的曲线。
对数函数的单调性由底数$a$决定,当$a>1$时,函数单调递增;当$0<a<1$时, 函数单调递减。
• 详细描述:周期函数是指函数在某个固定周期内重复变化的函数,例如正弦函数和余弦函数。最值则是函数在某个区间 内的最大值或最小值,可以通过求导数或者比较区间端点函数值的方法来求解。
• 总结词:函数的周期性和最值在解决一些数学问题时具有重要应用。 • 详细描述:在解决一些数学问题时,可以利用函数的周期性和最值进行求解。例如,利用周期性可以将一个复杂的问题
专题二:基本初等函数
专题二:函数、基本初等函数的图象与性质【知识链接】一、函数的有关概念:设A,B 非空的集合,如果按照某种确定的对应关系f 使对于集合A 中的任何一个数x ,在集合B 中都有唯一确定的是)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数。
1.函数的三要素:⎪⎩⎪⎨⎧对应法则值域定义域2.函数相等:如果两个函数的定义域和对应法则完全一致,则这两个函数相等。
3.函数的表示法:⎪⎩⎪⎨⎧关系式法图像法列表法4.函数的定义域: ①分式的分母不为0②根式的被开方数大于或等于0③对数的真数大于0,底数大于0且不等于1 ④零次幂的底数不等于0⑤三角函数中的正切x y tan =;)(2Z k k x ∈+≠ππ⑥已知函数)(x f 的定义域为D ,求函数)]([x g f 的定义域,只需D x g ∈)(⑦已知函数)]([x g f 的定义域,求函数)(x f 的定义域,只需{})(x g y y x =∈,即)(x g 的值域。
二、函数的基本性质⎪⎩⎪⎨⎧周期性奇偶性单调性注意:①若)()(x f a x f =+,则)(x f 是周期为a 的周期函数;若)()(x f a x f -=+则)(x f 是周期为a 2的周期函数;若)0()(1)(≠=+a x f a x f 恒成立,则)(x f 是周期为a 2的周期函数;若)0()(1)(≠-=+a x f a x f 恒成立,则)(x f 是周期为a 2的周期函数。
②若函数)(x f y =有两条对称轴)(,b a b x a x ≠==,则)(x f y =必是周期函数,且周期为b a T -=2③若)(x f y =图像有两个对称中心))(0,(),0,(b a b B a A ≠,则)(x f y =是周期函数,且周期为 b a T -=2④若)(x f y =的图像有一条对称中心)0,(a A 和一条对称轴)(b a b x ≠=,则函数必是周期函数且 周期为b a T -=4⑤若)()(x b f a x f -=+,则函数)(x f 的图像关于2ba x +=轴对称。
专题三 基本初等函数、函数与方程
专题复习《基本初等函数、函数与方程》例1、二次函数1、若定义在R 上的函数()225f x ax x =++在区间()2,+∞上是减函数,则实数a 的取值范围是__ __;【答案】[)0,+∞; 2、若函数()()231f x mx m x =+-+对于任意x R ∈恒有()()f x f m ≤(其中m 为常数),则函数()f x 的单调递增区间为 ; 【答案】3,2⎛⎤-∞- ⎥⎝⎦;3、已知函数()[]268,1,f x x x x a =-+∈,并且()f x 的最小值为()f a ,则实数a 的取值范围是 ;【答案】(]1,3; 4、设二次函数()221f x ax ax =++在区间[]3,2-上有最大值4,则实数a 值为 ;【答案】38或3-; 5、关于x 方程()2310mx m x +-+=的根均大于0,则实数m 的取值范围是_________。
【答案】01m ≤≤; 6、关于x 方程()22120x a x a +-+-=的一个根比1大,另一个根比1小,则有( )A 、11a -<<B 、2a <-或1a >C 、21a -<<D 、1a <-或2a > 【答案】C ; 7、(2014江苏)已知函数()21f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .【答案】⎛⎫ ⎪⎝⎭;8、已知关于x 的不等式240ax ax ++>的解集为R ,则实数a 的取值范围为 ;【答案】016a ≤<; 9、若关于x 的不等式2160x kx ++≥的解集为R ,则实数k 的取值范围为 ;【答案】88k -≤≤;例2、指数与指数函数1、()52-的5次方根是________; ()42-的4次方根是________; 【答案】-2;2±; 2、15a a-+=,则22a a-+的值为 ;1122a a-+的值为 ;【答案】由15a a-+=得()2125a a -+= 22225a a-∴++= 2223a a-∴+=【答案】由题可知110,0a a ->> 11220a a -∴+> 又21112227a a a a --+=++=⎛⎫ ⎪⎝⎭,1122a a -∴+=3、已知函数()24x f x a n -=+(0a >且1a ≠)的图像恒过定点(),2P m ,则m n += ; 【答案】3;4、函数y = )A 、1,2⎡⎫+∞⎪⎢⎣⎭B 、1,2⎛⎤-∞ ⎥⎝⎦C 、(),-∞+∞D 、(],1-∞ 【答案】A ;5、函数y = )A 、[)0,+∞B 、[]0,3C 、[)0,3D 、()0,3 【答案】C ;6、函数2412x xy +⎛⎫= ⎪⎝⎭的值域为 ; 【答案】(]0,16;7、设函数()()()x x f x x e ae x R =+∈是偶函数,则实数a 的值为 ; 【答案】1-;8、若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤⎪ ⎪⎝⎭⎩在R 上是增函数,则实数a 的取值范围是( )A 、()1,+∞B 、()1,8C 、()4,8D 、[)4,8 【答案】D ;例3、对数与对数函数1、求值:①13log = ; ②21log 32.51log 6.25lg2100+++= ; 【答案】①13-; ②132; 2、函数()22log 32y x =+-(0,1a a >≠且)的图象恒过定点P ,则P 点坐标为 ;【答案】()1,2; 3、函数()213log 32y x x =--的单调递增区间是( )A 、()3,1-B 、1,12⎛⎫⎪⎝⎭C 、()1,+∞D 、[)1,1- 【答案】D ;4、已知函数()()log ,121,1a x x f x a x x ⎧>⎪=⎨--≤⎪⎩在(),-∞+∞上单调递增,则实数a 的取值范围是 ; 【答案】(]2,3;5、已知函数()log 2a y ax =-在区间[]0,1上是关于x 的减函数,则实数a 的取值范围是( )A 、()0,1B 、()1,2C 、()0,2D 、[)2,+∞ 【答案】B ;6、已知函数()()212log 23f x x ax =-+在区间(],1-∞上是增函数,求实数a 的取值范围是 ;【答案】[)1,2;7、函数()22log 43y kx kx =++的定义域为R ,则实数k 的取值范围是_______;【答案】304k ≤<;8、已知函数()()2lg 1f x x mx =-+的值域为R ,则实数m 的取值范围为 ; 【答案】()(),22,-∞-+∞ ;9、【2014辽宁】已知132a -=,123log b =,1132log c =则( )A 、a b c >>B 、a c b >>C 、c a b >>D 、c b a >> 【答案】C ;10、函数()lg(f x x =是( )A 、奇函数B 、偶函数C 、既是奇函数又是偶函数D 、非奇非偶函数 【答案】A ;11、若函数()y f x =的反函数的图象经过点()1,5,则函数()y f x =的图象必过点( ) A 、()5,1 B 、()1,5 C 、()1,1 D 、()5,5 【答案】A ;例4、幂函数1、已知点⎝在幂函数()f x 的图象上,则( ) A 、()3f x x = B 、()3f x x -= C 、()12f x x = D 、()12f x x-= 【答案】B ;2、当()0,x ∈+∞时,幂函数()()121m f x m m x-+=--为减函数,则实数m = ; 【答案】2;3、若函数2223()(1)m m f x m m x --=--是幂函数,且是偶函数,则实数m 的值为_______;【答案】1-;4、(2016全国III )已知432a =,233b =,1325c =,则( )A 、b a c <<B 、a b c <<C 、b c a <<D 、c a b << 【答案】A ;例5、函数与方程 1、函数()()1ln 3x xf x x -=-的零点个数为( )A 、1B 、2C 、3D 、0 【答案】A ;2、已知实数1,01a b ><<,则函数()xf x a x b =+-的零点所在的一个区间是( )A 、()2,1--B 、()1,0-C 、()0,1D 、()1,2 【答案】B ;3、若函数()()()251f x x x =---有两个零点12,x x ,且12x x <,则( )A 、122,25x x <<<B 、122,5x x >>C 、122,5x x <>D 、1225,5x x <<> 【答案】C ; 4、若函数()215f x x ax =-+-(a 是常数,且a R ∈)恰有两个不同的零点,则a 的取值范围是 ; 【答案】()2,2-;5、(2012北京)函数()1212xf x x ⎛⎫=- ⎪⎝⎭的零点个数为( )A 、0B 、1C 、2D 、3 【答案】B ;6、已知函数()221,02,0x x f x x x x ⎧⎪->=⎨⎪⎩--≤,若函数()y f x m =-有3个不同的零点,则实数m 的取值范围是 ;【答案】()0,1;7、已知函数()()21,01,0x x f x f x x -⎧-≤⎪=⎨->⎪⎩,若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是( )A 、(],0-∞B 、[)0,1C 、(),1-∞D 、[)0,+∞ 【答案】C ; 8、若关于x 的方程31x k -=有一解,则实数k 的取值范围为 ; 【答案】[){}1,0+∞ ; 9、(2016山东)已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩(其中0m >),若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则实数m 的取值范围是 ; 【答案】()3,+∞;提示:由题2224m m m m -+<;10、若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,()f x x =,则方程()2log 0f x x -= 的根的个数是( )A 、6B 、4C 、3D 、2 【答案】B ;11、已知定义在R 上的奇函数()y f x =的图象关于直线1x =对称,当01x <≤时,()12log f x x =,则方程()10f x -=在()0,6内所有根之和为( )A 、8B 、10C 、12D 、16 【答案】C ;12、已知函数()[]ln 23f x x x =-+,其中[]x 表示不大于x 的最大整数(如[][]1.61, 2.13=-=-),则函数()f x 的零点个数是( )A 、1B 、2C 、3D 、4 【答案】B ; 13、已知函数()1312,132,1x x f x x x x -⎧-≥⎪=⎨⎪-+<⎩,则方程()21f x =的根的个数为( )A 、1B 、2C 、3D 、4【答案】C ;提示:由题()12f x =;当1x ≥时,11122x--= 2x ∴= 当1x <时,3132x x -+=即3330x x -+= 令()333g x x x =-+ ()233g x x '∴=-令()0g x '=得1x =或1x =-()g x ∴在(),1-∞-上是增函数,在()1,1-上是减函数 又()712g -=,()112g =- ()g x ∴在区间(),1-∞上有2个零点 综上方程()21f x =的根的个数为3.14、已知函数()()12,12ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,若函数()()g x f x ax =-恰有两个零点,则实数a 的取值范围是( )A 、10,e ⎛⎫ ⎪⎝⎭B 、10,3⎛⎫ ⎪⎝⎭C 、11,3e ⎡⎫⎪⎢⎣⎭D 、1,3e ⎡⎫⎪⎢⎣⎭【答案】C ;15、已知定义在(]0,2上的函数()(](]113,0,121,1,2x x x f x x -⎧-∈⎪=⎨⎪-∈⎩,且()()g x f x mx =-在(]0,2内有且仅有两个不同的零点,则实数m 的取值范围是( )A 、91,20,42⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦B 、111,20,42⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦C 、92,20,43⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦D 、112,20,43⎛⎤⎛⎤-- ⎥⎥⎝⎦⎝⎦ 【答案】A ; 16、设函数()2lg ,02,0x x f x x x x ⎧>⎪=⎨--≤⎪⎩,若函数()()2221y f x bf x ⎡⎤=++⎣⎦有8个不同的零点,则实数b 的取值范围是 ;【答案】3,2⎛- ⎝;【解析】令()f x t =,则2221y t bt =++ 由()f x 图象知,当()0,1t ∈时,函数()t f x =有4个交点故22210t bt ++=有两个不等实根12,t t 且()12,0,1t t ∈令()2221g x t bt =++ 则()()2480010123020122b g g b b ⎧∆=->⎪⎪=>⎪⎨=+>⎪⎪<-<⎪⎩⨯解得32b -<< 17、已知定义在R 的函数()y f x =满足1322f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,当11x -<≤时,()f x x =;若方程()log a f x x =恰好有6个根,则实数a 的取值范围是( )A 、11,75⎡⎤⎢⎥⎣⎦B 、[)11,5,775⎡⎫⎪⎢⎣⎭C 、[)11,3,553⎡⎫⎪⎢⎣⎭D 、11,53⎡⎤⎢⎥⎣⎦【答案】B ;18、设函数()[](),01,0x x x f x f x x ⎧-≥⎪=⎨+<⎪⎩,其中[]x 表示不超过x 的最大整数,如[][][]1.22,1.21,11-=-==,若直线()0y kx k k =+>与函数()y f x =的图象恰有三个不同的交点,则实数k 的取值范围是( )A 、11,43⎡⎫⎪⎢⎣⎭B 、10,4⎛⎤ ⎥⎝⎦C 、11,43⎡⎤⎢⎥⎣⎦D 、11,43⎛⎫⎪⎝⎭【答案】A ;19、已知函数()(),11,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,()1g x kx =+,若方程()()0f x g x -=有两个不等的实根,则实数k 的取值范围是 ; 【答案】(]1,11,12e e -⎛⎫- ⎪⎝⎭;。
函数概念与基本初等函数(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题
专题02函数概念与基本初等函数(选填压轴题)一、函数及其表示①抽象函数定义域②复合函数定义域③根式型、分式型求值域④抽象函数的值域⑤复合函数的值域⑥根据值域求参数二、函数的基本性质①单调性(复合函数的单调性)②函数的值域(复合函数的值域)③恒成立(能成立)问题④奇偶性⑤周期性⑥对称性⑦函数奇偶性+单调性+对称性联袂三、分段函数①分段函数求值域或最值②根据分段函数的单调性求参数四、函数的图象①特殊值②奇偶性③单调性④零点⑤极限联袂五、二次函数①二次函数的单调性②二次函数的值域(最值)六、指对幂函数①单调性②值域③图象④复合型七、函数与方程①函数的零点(方程的根)的个数②已知函数的零点(方程的根)的个数,求参数③分段函数的零点(根)的问题④二分法八、新定义题①高斯函数②狄利克雷函数③劳威尔不动点④黎曼函数⑤纳皮尔对数表⑥同族函数⑦康托尔三分集⑧太极图一、函数及其表示1.(2022·浙江·高三专题练习)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是()A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .2.(2022·北京师大附中高一期末)已知函数()f x x =,()2g x ax x =-,其中0a >,若[]11,3x ∀∈,[]21,3x ∃∈,使得()()()()1212f x f x g x g x =成立,则=a ()A .32B .43C .23D .123.(2022·河南南阳·高一期末)若函数()f x 的定义域为[]0,2,则函数()()lg g x f x =的定义域为______.4.(2022·全国·高三专题练习)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.5.(2022·全国·高三专题练习)设2()lg2xf x x+=-,则2(()2x f f x +的定义域为_______.6.(2022·江西·赣州市赣县第三中学高一开学考试)函数()f x =______.7.(2022·上海·高三专题练习)函数y =_____.8.(2022·上海·模拟预测)若函数()y f x =的值域是1[,3]2,则函数1()(21)(21)F x f x f x =+++的值域是________.9.(2022·全国·高一)函数2y =的值域是________________.10.(2021·全国·高一专题练习)已知函数22y x x =+在闭区间[,]a b 上的值域为[1,3]-,则⋅a b 的最大值为________.二、函数的基本性质1.(2021·江苏·海安高级中学高一阶段练习)已知函数()()2ln 122x xf x x -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是A .()(),11,-∞-+∞U B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭ D .()(),21,-∞-⋃+∞2.(2021·江苏·高一单元测试)已知函数()f x 的定义域是()0+∞,,且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,不等式()()32f x f x -+-≥-的解集为()A .[)(]1034-⋃,,B .112⎡⎤--⎢⎥⎣⎦,C .[)43--,D .[)10-,3.(2022·吉林·梅河口市第五中学高一期末)已知函数()22ln 1f x x x x =-+-,若实数a 满足()()121f a f a ->-,则实数a 的取值范围是()A .40,3⎛⎫ ⎪⎝⎭B .(),0∞-C .41,3⎛⎫ ⎪⎝⎭D .()40,11,3⎛⎫⎪⎝⎭4.(2022·北京·高三专题练习)已知函数()f x 的定义域为R ,当[2x ∈,4]时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<⎪⎩ ,()1g x ax =+,若对1[2x ∀∈,4],2[2x ∃∈-,1],使得21()()g x f x ,则正实数a 的取值范围为()A .(0,2]B .(0,7]2C .[2,)+∞D .7[2,)+∞5.(2022·全国·高三专题练习)已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x=-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦6.(多选)(2022·湖北·沙市中学高一期末)定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值可以为()A .12-B .14-C .18-D .187.(2022·河北·高三阶段练习)函数()212x ax bf x -+⎛⎫= ⎪⎝⎭的最大值为2,且在1,2⎛⎤-∞ ⎥⎝⎦上单调递增,则a 的范围是______,4b a+的最小值为______.8.(2022·全国·模拟预测)已知函数()f x 的定义域()(),00,D =-∞⋃+∞,对任意的1x ,2x D ∈,都有()()()12123f x x f x f x =+-,若()f x 在()0,∞+上单调递减,且对任意的[)9,t ∈+∞,()f m >m 的取值范围是______.9.(2022·河北省唐县第一中学高一期中)设函数()()20.5log 23f x x x =--,则()f x 的单调递增区间为_________.10.(2022·山西吕梁·高一期末)已知函数2231()2--=ax x y 在区间(-1,2)上单调递增,则实数a 的取值范围是_________.11.(2022·安徽省舒城中学高一阶段练习)已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是________.12.(2022·上海·曹杨二中高一期末)已知常数0a >,函数()y f x =、()y g x =的表达式分别为()21x f x ax =+、()3ag x x =-.若对任意[]1,x a a ∈-,总存在[]2,x a a ∈-,使得()()21f x g x ≥,则a 的最大值为______.13.(2022·全国·高三专题练习)设函数()123f x ax b x=--,若对任意的正实数a 和实数b ,总存在[]01,4x ∈,使得()0f x m >,则实数m 的取值范围是______.14.(2022·上海·高三专题练习)已知t 为常数,函数22y x x t =--在区间[0,3]上的最大值为2,则t =_____________15.(2022·重庆市万州第二高级中学高二阶段练习)已知函数2()(1)ln 1f x a x ax =+++(1a <-)如果对任意12,(0,)x x ∈+∞,1212()()4|f x f x x x -≥-,则a 的取值范围为_____________.16.(2022·浙江宁波·高一期末)已知()()()e 1ln 21x af x x a -=-+-,若()0f x ≥对()12,x a ∈-+∞恒成立,则实数=a ___________.17.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.18.(2022·上海·高三专题练习)已知函数()800x x f x x x a x ⎧-<⎪=⎨⎪-≥⎩,若对任意的[)12,x ∈+∞,都存在[]22,1x ∈--,使得()()12f x f x a ⋅≥,则实数a 的取值范围为___________.19.(2022·全国·高三专题练习)设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.三、分段函数1.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∀x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是()A .(-1,+∞)B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭2.(2022·河南·二模(理))已知函数1,01()ln ,1x x f x x x -≤≤⎧=⎨>⎩,若()()f a f b =,且a b ¹,则()()bf a af b +的最大值为()A .0B .(3ln 2)ln 2-⋅C .1D .e3.(2022·宁夏·银川一中三模(文))已知()242,01,0x x m x f x x x x +⎧-+≤⎪=⎨+>⎪⎩的最小值为2,则m 的取值范围为()A .(],3-∞B .(],5-∞C .[)3,+∞D .[)5,+∞4.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.(2022·四川攀枝花·二模(文))已知函数()()222,1e ,1xx ax a x f x a R ax x ⎧-+≤=∈⎨->⎩,若关于x 的不等式()0f x ≥恒成立,则实数a 的取值范围为()A .[]0,1B .[]0,2C .[]1,e D .[]0,e6.(2022·浙江·高三专题练习)已知函数()22,,14,,xx a f x x x x x a ⎧<⎪=+⎨⎪-+≥⎩则当5a =时,函数()f x 有______个零点;记函数()f x 的最大值为()g a ,则()g a 的值域为______.7.(2022·北京市十一学校高三阶段练习)已知函数()2ln ,021,0x x f x kx x x ⎧>=⎨+-≤⎩,给出下列命题:(1)无论k 取何值,()f x 恒有两个零点;(2)存在实数k ,使得()f x 的值域是R ;(3)存在实数k 使得()f x 的图像上关于原点对称的点有两对;(4)当1k =时,若()f x 的图象与直线1y ax =-有且只有三个公共点,则实数a 的取值范围是()0,2.其中,所有正确命题的序号是___________.8.(2022·贵州·遵义市南白中学高一期末)已知函数1,0()lg ,0x x f x x x ⎧+<=⎨>⎩,()g x ²222x x λ=-+-,若关于x 的方程(())f g x λ=(R λ∈)恰好有6个不同的实数根,则实数λ的取值范围为_______.9.(2022·河南·鹤壁高中模拟预测(文))已知(),01e ,1x x xf x x <<⎧=⎨≥⎩,若存在210x x >>,使得()()21e f x f x =,则()12x f x ⋅的取值范围为___________.四、函数的图象1.(2022·全国·高三专题练习)已知函数2sin 62()41x x x f x π⎛⎫⋅+ ⎪⎝⎭=-,则()f x 的图象大致是()A.B .C .D .2.(2021·浙江省三门中学高三期中)已知函数()f x 的图像如图,则该函数的解析式可能是()A .ln xe x⋅B .ln xx e C .ln xx e +D .ln xe x-3.(2022·江西·景德镇一中高一期中)已知函数()f x =()A .B .C .D .4.(多选)(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为()A .B .C .D .5.(多选)(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是()A .B .C .D .6.(多选)(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是()A .B .C .D .五、二次函数1.(2022·江西景德镇·三模(理))已知二次函数()2f x ax bx c =++(其中0ac <)存在零点,且经过点()1,3和()1,3-.记M 为三个数a ,b ,c 的最大值,则M 的最小值为()A .32B .43C .54D .652.(2022·浙江·高三专题练习)设I M 表示函数()242f x x x =-+在闭区间I 上的最大值.若正实数...a 满足[][]0,,22a a a M M ≥,则正实数a 的取值范围是()A .122⎡⎤⎢⎥⎣⎦B .2⎡⎤⎣⎦C .2,2⎡⎣D .24⎡⎤+⎣⎦3.(2022·安徽·界首中学高一期末)已知函数()()212f x x mx x =++∈R ,且()y f x =在[]0,2x ∈上的最大值为12,若函数()()2g x f x ax =-有四个不同的零点,则实数a 的取值范围为()4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.5.(2022·浙江·高三专题练习)对于函数()()y f x y g x ==,,若存在0x ,使()()00 f x g x =-,则称()()()()0000M x f x N x g x --,,,是函数()f x 与()g x 图象的一对“雷点”.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,恒有()()1f x f x +=,且当10x -<≤时,()f x x =.若()()()2120g x x a x =++-<<,函数()f x 与()g x 的图象恰好存在一对“雷点”,则实数a 的取值范围为____________________.6.(2022·江西·贵溪市实验中学高二期末)函数21()43f x ax ax =++的定义域为(,)-∞+∞,则实数a 的取值范围是___________.7.(2022·湖北·一模)若函数()f x 的定义域为R ,对任意的12,x x ,当12x x D -∈时,都有()()12f x f x D -∈,则称函数f (x )是关于D 关联的.已知函数()f x 是关于{4}关联的,且当[)4,0x ∈-时,()26f x x x =+.则:①当[)0,4x ∈时,函数()f x 的值域为___________;②不等式()03f x <<的解集为___________.六、指对幂函数1.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a <<2.(2022·山东·模拟预测)若282log 323log +=⋅+a b a b ,则()A .12b a b<<B .2<<+b a b C .23b a b<<D .1132b a b<<3.(2022·广东·模拟预测)已知()222022log f x x x =+,且()60.20.2log 11,lg ,4102022a f b f c f -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 之间的大小关系是__________.(用“<”连接)4.(2022·上海·华东师范大学附属东昌中学高三阶段练习)若关于x 的不等式()14log 321x x λ+⋅≤对任意的[)0,x ∈+∞恒成立,则实数λ的取值范围是______.5.(2022·云南·曲靖一中高二期中)函数()21949192120212049x f x x x x=--+,[]1949,2022α∃∈,对[],2049m β∀∈,()()f f αβ<都成立,则m 的取值范围(用区间表示)是_______6.(2022·江西宜春·模拟预测(文))若1,22x ⎡⎤∀∈⎢⎥⎣⎦,不等式2122log 0x x x ax -+<恒成立,则实数a 的取值范围为___________.7.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.8.(2022·陕西·榆林市第十中学高二期中(文))要使函数124x x y a =++⋅在(],1x ∈-∞时恒大于0,则实数a 的取值范围是______.七、函数与方程1.(2022·天津·南开中学模拟预测)已知函数()2221,12810,1x x x f x x x x ⎧++≤=⎨-+>⎩,若函数()()1g x f x x a =+--恰有两个零点则实数a 的取值范围是()A .()723,4,48∞⎛⎫⋃+ ⎪⎝⎭B .23,48⎛⎫ ⎪⎝⎭C .23,8∞⎛⎫+ ⎪⎝⎭D .7,4⎛⎫+∞ ⎪⎝⎭2.(2022·安徽·蚌埠二中模拟预测(理))已知1120xx +=,222log 0x x +=,3233log 0x x --=,则()A .123x x x <<B .213x x x <<C .132x x x <<D .231x x x <<3.(2022·甘肃·临泽县第一中学高二期中(文))若函数2()(1)1x f x m x x =--+在区间(1,1)-上有2个零点()1212,x x x x <,则21e xx +的取值范围是()A .(1,e 1)-B .(2,e 1)+C .(1,)+∞D .(e 1,)-+∞4.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a<<5.(2022·全国·模拟预测)已知函数()()22,22cos π,24xx f x x x ⎧-≤⎪=⎨<≤⎪⎩,实数123,,x x x ,4x 是函数()y f x m =-的零点,若1234x x x <<<,则132314242222x x x x x x x x +++++++的取值范围为()A .[)16,20B .()C .[)64,80D .()6.(2022·浙江·效实中学模拟预测)已知函数()2222x xf x --=+,对任意的实数a ,b ,c ,关于x 的方程()()20a f x bf x c ++=⎡⎤⎣⎦的解集不可能是()A .{}1,3B .{}1,2,3C .{}0,2,4D .{}1,2,3,47.(2022·陕西·模拟预测(理))已知1x 是方程32x x ⋅=的根,2x 是方程3log 2x x ⋅=的根,则12x x ⋅的值为()A .2B .3C .6D .108.(2022·福建南平·三模)已知函数()2e 9e 42x a a xf x x x --=++--有零点,则实数=a ___________.9.(2022·内蒙古呼和浩特·二模(文))若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________.八、新定义题1.(2022·广东·梅州市梅江区梅州中学高一阶段练习)设x ∈R ,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[][]3, 5.1π=-6=-.已知函数()221xf x x =+,则函数()]y f x ⎡=⎣的值域为()A .{0,1-}B .{1-,1}C .{0,1}D .{1-,0,1}2.(2022·广东·华南师大附中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数()()2134142f x x x x =-+<<,则函数()y f x ⎡⎤=⎣⎦的值域为()A .13,22⎡⎫⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,23.(2022·上海民办南模中学高三阶段练习)德国数学家狄利克雷是解析数论的创始人之一,以其名命名狄利克雷函数的解析式为()0,1,x Qf x x Q ∉⎧=⎨∈⎩,关于狄利克雷函数()f x ,下列说法不正确的是().A .对任意x ∈R ,()()1f f x =B .函数()f x 是偶函数C .任意一个非零实数T 都是()f x 的周期D .存在三个点()()11,A x f x 、()()22,B x f x 、()()33,C x f x ,使得ABC 为正三角形4.(2022·新疆·一模(理))德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一.以其命名的函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,称为狄利克雷函数,则关于函数()f x ,下列说法正确的是()A .()f x 的定义域为{}0,1B .()f x 的值域为[]0,1C .x R ∃∈,()()0f f x =D .任意一个非零有理数T ,()()f x T f x +=对任意x ∈R 恒成立5.(2022·河南·鹤壁高中模拟预测(文))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式为:()[]1,,,0,0,10,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数.若函数()f x 是定义在实数集上的偶函数,且对任意x 都有()()20f x f x ++=,当[]0,1x ∈时,()()f x R x =,则()2022ln 20225f f ⎛⎫--= ⎪⎝⎭()A .15B .25C .25-D .15-6.(2022·吉林长春·模拟预测(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是()1T ℃,空气的温度是()0T ℃,经过t 分钟后物体的温度T (℃)可由公式1034log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却约5分钟后,物体的温度是30℃,若根据对数尺可以查询出3log 20.6309=,则空气温度约是()A .5℃B .10℃C .15℃D .20℃7.(2022.安徽.淮南第二中学高二阶段练习)纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.012345678910124816326412825651210241112...19202122232425 (2048)4096…52428810485762097152419430483886081677721633554432…如5121024⨯,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算91019+=.那么接下来找到19对应的数524288,这就是结果了.若()4log 202112261314520x =⨯,则x 落在区间()A .()1516,B .()22,23C .()42,44D .()44,468.(2022·内蒙古·赤峰红旗中学松山分校高一期末(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是1T (℃),空气的温度是0T (℃),经过t 分钟后物体的温度T (℃)可由公式3104log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出3log 20.6309=,则空气温度是()A .5℃B .10℃C .15℃D .20℃9.(2022·山西·朔州市平鲁区李林中学高一阶段练习)16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知ln 20.6931≈,ln 3 1.0986≈,设536N =,则N 所在的区间为(e 2.71828= 是自然对数的底数)()A .()1718,e eB .()1819,e eC .()1920,e eD .()2122,e e10.(2022·新疆石河子一中高三阶段练习(理))16、17世纪之交,苏格兰数学家纳皮尔发明了对数,在此基础上,布里格斯制作了第一个常用对数表,在科学技术中,还常使用以无理数e 为底数的自然对数,其中e 2.71828=⋅⋅⋅称之为“欧拉数”,也称之为“纳皮尔数”对数)x1.3102 3.190 3.797 4.71557.397ln x0.27000.69311.1600 1.33421.550 1.60942.001A .3.797B .4.715C .5D .7.39711.(2022·福建泉州·模拟预测)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成一段,去掉中间的一段,剩下两个闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦;第二步,将剩下的两个闭区间分别平均分为二段,各自去掉中间的一段,剩下四段闭区间:10,9⎡⎤⎢⎥⎣⎦,21,93⎡⎤⎢⎥⎣⎦,27,39⎡⎤⎢⎥⎣⎦,8,19⎡⎤⎢⎥⎣⎦;如此不断的构造下去,最后剩下的各个区间段就构成了二分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是()A .7B .8C .9D .1012.(2022·全国·高三专题练习)广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”如图是放在平面直角坐标系中的“太极图”整个图形是一个圆形区域224x y +≤.其中黑色阴影区域在y 轴左侧部分的边界为一个半圆.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则当224x y +≤时,下列不等式能表示图中阴影部分的是()A .()22(sgn())10x x y x +--≤B .()22(sgn())10y x y y -+-≤C .()22(sgn())10x x y x +--≥D .()22(sgn())10y x y y -+-≥13.(多选)(2022·安徽·高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[][]1.61, 2.13=-=-,设函数()[]1f x x x =+-,则下列关于函数()f x 叙述正确的是()A .()f x 为奇函数B .()1f x =⎡⎤⎣⎦C .()f x 在()01,上单调递增D .()f x 有最大值无最小值14.(多选)(2022·贵州贵阳·高一期末)历史上第一个给出函数一般定义的是19世纪数学家秋利克需(Dirichlet ),他是最早倡导严格化方法的数学家之一,狄利克雷在1829年给出了著名的狄利克雷函数:1,()0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集),狄利克雷函数的出现表示数学家们对数学的理解发生了深刻的变化,从研究“算”转变到了研究“概念、性质、结构”.一般地,广文的秋利克雷函数可以定义为:,,(),,a x Q D x b x Q ∈⎧=⎨∉⎩(其中,a b ∈R ,且a b ¹).以下对()D x 说法正确的有()A .()D x 的定义域为RB .()D x 是非奇非偶函数C .()D x 在实数集的任何区间上都不具有单调性D .任意非零有理数均是()D x 的周期15.(多选)(2022·吉林·农安县教师进修学校高一期末)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可以应用到有限维空间并构成了一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单地讲就是对于满足一定条件的连续函数()f x ,如果存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点函数”,下列为“不动点函数”的是()A .()sin f x x x=+B .()23f x x x =--C .()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()1f x x x=-16.(多选)(2021·吉林油田高级中学高一期中)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A .()2xf x x=+B .()23f x x x =--C .()x f x x=-D .()ln 1f x x =+17.(多选)(2022·山东·广饶一中高一开学考试)中国传统文化中很多内容体现了数学的“对称美”,如图所示的太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:圆O 的圆心在原点,若函数的图像将圆O 的周长和面积同时等分成两部分,则这个函数称为圆O 的一个“太极函数”,则()A .对于圆O ,其“太极函数”有1个B .函数()()()2200x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩是圆O 的一个“太极函数”C .函数()33f x x x =-不是圆O 的“太极函数”D .函数())lnf x x =是圆O 的一个“太极函数”18.(2022·山东·德州市教育科学研究院二模)十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第1次操作;再将剩下的两个区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第2次操作...;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段:操作过程不断地进行下去,剩下的区间集合即是“康托三分集”,第三次操作后,依次从左到右第三个区间为___________,若使前n 次操作去掉的所有区间长度之和不小于2627,则需要操作的次数n 的最小值为____________.(lg 20.30=,lg 30.47=)19.(2022·江苏常州·高一期末)德国数学家康托(Cantor )创立的集合论奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的产物,具有典型的分形特征,其构造的操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第1次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第2次操作;以此类推,每次在上一次操作的基础上,将剩下的各个区间分别均分为3段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的元素构成的集合为“康托三分集”.定义区间(,)a b 长度为b a -,则构造“康托三分集”的第n 次操作去掉的各区间的长度之和为______,若第n 次操作去掉的各区间的长度之和小于1100,则n 的最小值为______.(参考数据:lg 20.3010=,lg30.4771=)20.(2022·浙江·乐清市知临中学高二期中)黎曼函数(Riemannfunction )是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[]0,1上,其定义为()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是不可以再约分的真分数或者上的无理数,则1R π⎛⎫= ⎪⎝⎭________.21.(2022·河南新乡·三模(理))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式如下:()[]1,,,0,0,10,1.q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩都是正整数,是既约真分数或上的无理数若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()220f x f x ++-=,当[]0,1x ∈时,()()f x R x =,则()202220225f f ⎛⎫+-= ⎪⎝⎭___________.22.(2021·全国·高一单元测试)黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数定义在[0,1]上,其定义为:()1,(,00,101q q x p q p p p R x x ⎧=⎪=⎨⎪=⎩都是正整数,是既约真分数),或(,)上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x +=-,当[0,1]x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭________.23.(2021·湖北·荆门市龙泉中学高一阶段练习)解析式相同,定义域不同的两个函数称为“同族函数”.对于函数21y x =+,值域为{1,2,4}的“同族函数”的个数为______个.24.(2022·江苏省苏州实验中学高二阶段练习)十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,),33记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于9,10则需要操作的次数n 的最小值为____.(参考数据:lg 2=0.3010,lg 3=0.4771)25.(2022·四川省南充高级中学高三阶段练习(文))太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,设圆22:1O x y +=,则下列说法中正确的序号是______.①函数()3f x x =是圆O 的一个太极函数;②圆O 的所有非常数函数的太极函数都不能为偶函数;③函数()sin f x x =是圆O 的一个太极函数;④函数()f x 的图象关于原点对称是()f x 为圆O 的太极函数的充要条件.26.(2022·广东·惠来县第一中学高一阶段练习)布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续实函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点"函数,而称0x 为该函数的一个不动点.现新定义:若0x 满足()00f x x =-,则称0x 为()f x 的次不动点.(1)判断函数()22f x x =-是否是“不动点”函数,若是,求出其不动点;若不是,请说明理由(2)已知函数()112g x x =+,若a 是()g x 的次不动点,求实数a 的值:(3)若函数()()12log 42x xh x b =-⋅在[]0,1上仅有一个不动点和一个次不动点,求实数b 的取值范围.。
高中数学【基本初等函数、函数的应用】专题练习
高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。
专题检测-函数概念与基本初等函数
专题二 函数概念与基本初等函数2.1 函数及其性质一、选择题1.(2022届广西玉林育才中学10月月考,8)函数g(x)=2x-√x +1的最小值为( ) A.-178 B.-2 C.-198 D.-94答案 A 设t=√x +1(t ≥0),则x=t 2-1,则原函数可化为y=2(t 2-1)-t=2t2-t-2=2(t -14)2-178(t ≥0),当t=14时,有最小值-178.故选A.2.(2022届湖北襄阳五中10月月考,2)已知函数y=f(x)的定义域为(-1,1),则函数F(x)=f(|2x -1|)的定义域为( )A.(-∞,1)B.(-1,1)C.(0,+∞)D.[0,1)答案 A ∵y=f(x)的定义域为(-1,1),∴-1<|2x -1|<1,即-1<2x -1<1,∴0<2x <2,解得x<1,∴F(x)=f(|2x -1|)的定义域为(-∞,1).3.(2022届广东普通高中10月质检,3)函数f(x)=1x +4x 在[1,2)上的值域是( ) A.[5,172) B.[4,172)C.(0,172) D.[5,+∞)答案 A 因为f '(x)=-1x 2+4=(2x+1)(2x -1)x 2,所以当x ∈[1,2)时, f '(x)>0, f(x)是增函数,所以f(1)≤f(x)<f(2),即5≤f(x)<172.故选A. 4.(2022届山东鱼台一中月考一,2)已知函数f(x)={(12)x,x≤0,x -2,x >0,设f(1)=a,则f(a)=( )A.2B.12 C.-12 D.-32 答案 A 因为f(x)={(12)x,x ≤0,x -2,x >0,所以f(1)=1-2=-1,所以a=-1,所以f(-1)=(12)-1=2.5.(2022届广东深圳七中月考,7)定义在R 上的函数f(x)满足f(x)={log 9(1-x),x ≤0,f(x -10),x >0,则f(2 018)=( )A.12 B.-12 C.-1 D.1答案A∵f(x)={log9(1-x),x≤0,f(x-10),x>0,∴f(2018)=f(2008)=f(1998)=…=f(8)=f(-2),∴f(2018)=log93=1 2 .故选A.6.(2022届河北保定重点高中月考,7)设定义在R上的函数f(x)=x·|x|,则f(x)()A.既是奇函数,又是增函数B.既是偶函数,又是增函数C.既是奇函数,又是减函数D.既是偶函数,又是减函数答案A∵f(-x)=-x·|-x|=-x·|x|=-f(x),且f(x)的定义域关于原点对称,∴函数f(x)为奇函数,∵f(x)=x·|x|={x2,x≥0,-x2,x<0,∴函数f(x)为增函数,故选A.7.(2022届广东深圳六校联考,3)若定义在R上的函数f(x)不是偶函数,则下列命题正确的是()A.∀x∈R,f(x)+f(-x)=0B.∃x∈R,f(x)+f(-x)=0C.∃x∈R,f(x)≠f(-x)D.∀x∈R,f(x)≠f(-x)答案C∵定义在R上的函数f(x)不是偶函数,∴∃x∈R,f(x)≠f(-x).故选C.8.(2022届北京一六一中学10月月考,3)下列函数中,值域为R的是()A.y=1x B.y=1+1xC.y=x+1x D.y=x-1x答案D对于函数y=1x,因为x≠0,所以y≠0,故它的值域不是R,所以A不满足题意;对于函数y=1+1x,因为x≠0,所以y≠1,故它的值域不是R,所以B不满足题意;对于函数y=x+1x,由对勾函数的性质可知值域为(-∞,-2]∪[2,+∞),所以C不满足题意;对于函数y=x-1x =x2-1x,可得关于x的方程x2-yx-1=0有解,∵Δ=y2+4>0,∴y可以取任意实数,即y∈R,故D满足条件.故选D.9.(2022届北京大峪中学10月月考,2)设函数f(x)={log2(2-x),x<1,2x,x≥1,则f(-2)+f(log26)=()A.2B.6C.8D.14答案C f(-2)+f(log26)=log2(2+2)+2log26=log24+6=2+6=8.故选C.10.(2022届北京一六一中学10月月考,4)已知函数f(x)为奇函数,当x>0时,f(x)=log2(x+1)+ax,且f(-3)=a,则a=()A.12 B.-12C.log23D.2答案B∵函数f(x)为奇函数,∴f(-3)=-f(3)=a.从而f(3)=log24+3a=-a,解得a=-12.故选B.11.(2022届北京九中10月月考,7)已知函数f(x)是定义在R上周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-52)+f(1)等于()A.-2B.0C.2D.1答案A∵函数f(x)是定义在R上的奇函数,且周期为2,∴f(1)=-f(-1)=-f(-1+2)=-f(1),∴f(1)=0,f(-52)=f(-12)=-f(12)=-412=-2,∴f(-52)+f(1)=-2.故选A.12.(2022届人大附中10月月考,9)已知函数f(x)={|2x-1|,x≤2,-x+4,x>2,若实数a,b,c满足a<b<c且f(a)=f(b)=f(c),则2a+b+2b+c的取值范围为()A.(4,8)B.(4,16)C.(8,32)D.(16,32)答案D作出函数f(x)的图象,如图所示.当x<0时,f(x)=|2x-1|=1-2x∈(0,1),由图可知,f(a)=f(b)=f(c)∈(0,1),所以a<0<b<1,3<c<4,则8<2c<16,由f(a)=f(b),得|2a-1|=|2b-1|,即1-2a=2b-1,可得2a+2b=2,因此,2a+c+2b+c=2c(2a+2b)=2×2c∈(16,32).故选D.13.(2022届华中师大琼中附中月考,8)已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f(1)=0,则不等式f(log2x)>0的解集为()A.(0,12)∪(2,+∞) B.(12,1)∪(2,+∞)C.(0,12) D.(2,+∞)答案 A 因为函数f(x)是定义在R 上的偶函数,所以不等式f(log 2x)>0等价于f(|log 2x|)>0,因为函数f(x)在[0,+∞)上是增函数,且f(1)=0,所以f(|log 2x|)>f(1),即|log 2x|>1,即log 2x>1或log 2x<-1,解得x>2或0<x<12.故选A.二、填空题14.(2022届江西新余第一中学二模,13)已知函数f(x)的定义域为(-1,1),则函数g(x)=f (x2)+f(x-1)的定义域是 . 答案 (0,2)解析 由题意得{-1<x2<1,-1<x -1<1,解得0<x<2,∴函数g(x)的定义域为(0,2).15.(2022届北京四中10月月考,12)函数f(x)=√2-x +ln(x+3)的定义域是 . 答案 (-3,2]解析 ∵f(x)=√2-x +ln(x+3), ∴{2-x ≥0,x +3>0,解得-3<x ≤2, ∴函数f(x)的定义域为(-3,2].16.(2022届河南重点中学调研一,14)已知f(x)={x 2-ax,x >0,-x +a +1,x ≤0,若方程f(x)=-x 有实根,则a 的取值范围是 . 答案 {a|a=-1或a>1}解析 当x>0时,由f(x)=-x 得x 2=(a-1)x,所以x=a-1>0,即a>1;当x ≤0时,由f(x)=-x 得a+1=0,所以a=-1,所以a 的取值范围是{a|a=-1或a>1}. 17.(2022届广东深圳三中月考,15)已知函数f(x)={13x 3-ax +1,0≤x <1,alnx,x ≥1,若f(x)≥f(1)恒成立,则正实数a 的取值范围是 . 答案 (0,43]解析 ∵a>0,∴当x ≥1时, f(x)=aln x ≥f(1),当0≤x<1时, f(x)=13x 3-ax+1, f '(x)=x 2-a. (1)若a ≥1,则f '(x)<0, f(x)单调递减, f(x)≥f(1)成立,则13-a+1≥0,解得a ≤43,∴1≤a ≤43,(2)若0<a<1,则当0<x<√a时,f'(x)<0,f(x)单调递减,当√a<x<1时,f'(x)>0,f(x)单调递增,因此x=√a时,f(x)min=f(√a)=13(√a)3-(√a)3+1=-23a32+1,所以-23a32+1≥0,显然成立,∴0<a<1.综上,a的取值范围是(0,43].18.(2022届北京一六一中学10月月考,12)已知函数f(x)=e|x-1|在区间[a,+∞)上是增函数,则实数a的取值范围是.答案[1,+∞)解析将函数y=e|x|的图象向右平移1个单位长度,可得函数f(x)=e|x-1|的图象,因为y=e|x|在[0,+∞)上单调递增,所以函数f(x)在[1,+∞)上单调递增,因为函数f(x)=e|x-1|在区间[a,+∞)上是增函数,所以[a,+∞)⊆[1,+∞),解得a≥1,所以实数a的取值范围是[1,+∞).19.(2022届北京师大附中10月月考,14)已知函数f(x)是定义域为R的奇函数,且x≤0时,f(x)=ae x-1,则a=,f(x)的值域是.答案1;(-1,1)解析因为函数f(x)是定义域为R的奇函数,所以f(0)=ae0-1=a-1=0,所以a=1.当x≤0时,f(x)=e x-1,在(-∞,0]上单调递增,所以f(x)∈(-1,0],因为函数f(x)是定义域为R的奇函数,所以当x>0时,f(x)∈(0,1),综上,f(x)的值域是(-1,1).20.(2022届广东汕头金山中学期中,13)已知函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m,则f(-2)=.答案-3解析因为f(x)为定义在R上的奇函数,所以f(0)=20+m=0,m=-1,所以x≥0时,f(x)=2x-1.则f(-2)= -f(2)=-(22-1)=-3.21.(2022届华中师范大学琼中附中月考,15)已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2010)+f(2011)的值为.答案1解析∵当x≥0时,都有f(x+2)=f(x),∴函数的周期T=2,又f(x)是R上的偶函数,且当x∈[0,2)时, f(x)=log2(x+1),∴f(-2010)+f(2011)=f(2010)+f(2011)=f(0)+f(1)=log21+log2(1+1)=1.三、解答题22.(2022届北京师大附中10月月考,16)已知函数f(x)=ax2+bx+1(a、b为实数,a≠0,x∈R),函数f(x)的图象与x轴有且只有一个交点(-1,0).(1)求f(x)的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.解析(1)由题意可知f(x)=a(x+1)2=ax2+2ax+a.又f(x)=ax2+bx+1,所以{b=2a,a=1,可得{a=1,b=2,故f(x)=x2+2x+1.(2)g(x)=f(x)-kx=x2+(2-k)x+1(-2≤x≤2),其图象开口向上,对称轴为直线x=k-22.若函数g(x)在[-2,2]上为增函数,则k-22≤-2,解得k≤-2;若函数g(x)在[-2,2]上为减函数,则k-22≥2,解得k≥6.综上所述,实数k的取值范围是(-∞,-2]∪[6,+∞).思路分析(1)分析可知f(x)=a(x+1)2,对比f(x)=ax2+bx+1可求得a、b的值,即可得出函数f(x)的表达式;(2)分两种情况讨论:函数g(x)在[-2,2]上为增函数或函数g(x)在[-2,2]上为减函数.根据g(x)的图象特征可得出关于实数k的不等式,由此可解得实数k的取值范围.23.(2022届北京九中10月月考,16)已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=lo g12(-x+1).(1)求f(3)+f(-1)的值;(2)求函数f(x)的解析式;(3)若f(a-1)<-1,求实数a的取值范围.解析(1)∵f(x)是定义在R上的偶函数,且x≤0时,f(x)=lo g12(-x+1),∴f(3)+f(-1)=f(-3)+f(-1)=lo g124+lo g122=-2-1=-3.(2)当x>0时,-x<0,f(-x)=lo g12(x+1).∴x>0时,f(x)=f(-x)=lo g12(x+1),则f(x)={log12(-x+1),x≤0, log12(x+1),x>0.(3)∵f(x)为定义在R上的偶函数,且f(x)=lo g12(x+1)在(0,+∞)上单调递减,f(1)=-1,∴f(a-1)<-1=f(1),∴|a-1|>1,解得a>2或a<0.∴实数a的取值范围是(-∞,0)∪(2,+∞).24.(2022届福建长汀一中月考二,20)已知a,b∈R且a>0,函数f(x)=4x+b4x-a是奇函数.(1)求a,b的值;(2)对任意x∈(0,+∞),不等式mf(x)-f(x2)>0恒成立,求实数m的取值范围.解析(1)因为f(x)是奇函数,所以f(-x)=-f(x),即2-2ab+(b-a)(4x+4-x)=0恒成立,∴{b-a=0,2-2ab=0,又a>0,所以解得a=b=1.(2)不等式mf(x)-f(x2)>0⇔m(1+24x-1)-(1+24x2-1)>0对任意x∈(0,+∞)恒成立,令2x=t(t>1),则m>t+1t-1t2+1t2-1=(t+1)2t2+1=t2+1+2tt2+1=1+2tt2+1=1+2t+1t对t>1恒成立,∵y=2t+1t在(1,+∞)上单调递减,∴y=1+2t+1t<2,∴m≥2,∴m的取值范围为[2,+∞).。
专题02 函数的概念与基本初等函数(解析版)
专题02函数的概念与基本初等函数1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1] B.[0,2] C.[0,e] D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0 B.a<﹣1,b>0 C.a>﹣1,b<0 D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2] B.[,] C.[﹣2,2] D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减; 当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2 B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3?f log 3-= ∵320log 21,log 31,< f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a <-<<<<<a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==--- 故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误; 当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误; ()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4 又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .()()0,11,4【答案】D 【解析】 解:y 211111111x x x x x x x -+-⎧==⎨----⎩,>或<,<<, 画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪ ⎪⎝⎭⎝⎭充分性成立, 若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。
高中数学专题 微专题2 基本初等函数、函数的应用
A.y=1.002x
1
C.y= x 3-5
√B.y=log7x+1
D.y=5+sin x
由题意,函数在(10,1 000)上单调递增,故D不符合题意,排除D;
1
因为当x∈(10,125)时,y=x 3-5<0,故C不符合题意,排除C;
当x=1 000时,1.0021 000≈7.37>5,故y=1.002x不符合题意,排除A;
1 2 3 4 5 6 7 8 9 10 11 12
对于D选项,当T=360,P=729时,lg P= lg 729∈(lg 102,lg 103),即lg P∈(2,3),根 据图象可知,二氧化碳处于超临界状态.
1 2 3 4 5 6 7 8 9 10 11 12
(1,+∞)上单调递减,所以由复合函数的单调性可知,f(x)在(-∞,
1)上单调递增,在(1,+∞)上单调递减.易知f(x)的图象关于直线x=1
对称,所以
c=f
6
2
=
f
2-
6
2
,
又
2 2
<2 -
6 2<
3 2
<1 ,
所以
f
2
2
<f
2-
26<f
23,所以
b>c>a.
跟则实踪数训a练的1取值(1)范(2围02是3·广东联考)已知函数f(x)=2-x,12xx≥,0x<,0,若f(a)<f(6-a),
PART TWO
热点突破
1.(2023·通州模拟)下列函数中,是奇函数且在定义域内单调递增的是
A.y=1x C.y=ex+e-x
√B.y=x3
专题02 函数概念与基本初等函数(新定义,高数观点,选填压轴题)(学生版)-2024年高考压轴专题复
专题02 函数概念与基本初等函数
(新定义,高数观点,选填压轴题)
目录
一、函数及其表示 (1)
二、函数的基本性质 (2)
三、分段函数 (4)
四、函数的图象 (5)
五、二次函数 (7)
六、指对幂函数 (7)
七、函数与方程 (8)
八、新定义题 (9)
一、函数及其表示
二、函数的基本性质
三、分段函数
四、函数的图象..
..
2023春·广东韶关·高二统考期末)
e3
cosπ
e2
x
x
x
⎫
-⎛⎫
⋅+
⎪ ⎪
+⎝⎭
⎭
部分图象大致是(
..
. .
2023春·云南楚雄·高二统考期末)函数)32e e 1
x
x x =-的部分图象大致为( )
2023春·湖北武汉·高一华中师大一附中校考期末)下列四个函数中的某个函数在区间致图象如图所示,则该函数是(
A .322x
x
x x
y --=+B .cos222x
x
x x
y -=+5.(2023春·河北沧州·高二统考期中)函数. .
. .
2023·内蒙古赤峰·统考二模)函数2
1
sin x x -
在()π,0-
A.B.
C.D.
五、二次函数
六、指对幂函数
七、函数与方程
八、新定义题A.2
=-B.
4
y x x。
函数概念与基本初等函数题型归纳与习题含详解
(2)因为 f x ax2 bx c(a 0) 的图像上任意一点都不在直线 y=x 的下方,取相同 x, 二次函数值总大于一次函数值,所以 f x x ,即 ax2 bx c x ,得 ax2 (b 1)x c 0 ,
对任意 x∈R 成立.
解析 f x 1 = x 1 2 2 ,又 x 1 2 或 x 1 ―2,故 f x x2 2
x x
x
x
(x>2 或 x<―2) 评注 求函数解析式要注意定义域
变式 1
已知
f x 1 x
x2 1 x2
1 x
求
f x 的解析式
三、方程组法
例 2.7 已知函数 f x 满足: f x 2 f 1 3x x 0 ,求函数 f x 的解析式.
(2) y x 2 的定义域为{ x x 0 }; y x2 的定义域为 R,故该组的两个函数不是同一函
数;
(3)两个函数的定义域均为{ x x ≠0},且对应法则也相同,故该组的两个函数是同一函数
故为同一函数的一组是(3)
评注 由函数概念的三要素容易看出,函数的表示法只与定义域和对应法则有关,而与用什
(1) p : x 1, 2, x2 a 0 ;
(2) A N , B Z , f : x y (1)x ;
(3)A={x|是平面内的三角形},B={y|y 是平面内的圆},f:x→y 是 x 的外接圆; (4)设集合 A={x|是平面内的圆},B={y|y 是平面内的矩形},f:x→y 是 x 的内接矩形 其中能构成映射的是_______ 变式 2 已知函数 y=f(x),定义域为 A={1,2,3,4}值域为 C={5,6,7},则满足该条件的函数共 有多少个?
专题03函数的概念与基本初等函数(含答案解析)
专题03函数的概念与基本初等函数学校:___________姓名:___________班级:___________考号:___________.....函数()cos f x x x =+的部分图像大致为().....已知函数()ln ,e ,x xx f x x x x ⎧⎪=⎨⎪⎩)的图象大致是().....函数2cos ()xf x x x =+的大致图象为(.....已知函数()2,x f x ⎧⎪=⎨⎛-⎪ ⎝⎩)a -,则实数a 的取值范围是(.()3,-+∞B ()3,+∞D .已知函数5()2f x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪⎩()f x x =-的零点个数为(.13二、多选题.已知函数()f x ⎧=⎨⎩则下列结论正确的是().()f x 是偶函数312f f π⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭()f x 是增函数()f x 的值域为[-三、填空题8.已知函数()()211log 2,12,1x x x f x x -⎧+-<=⎨≥⎩,则()()2f f -=__________.四、单选题五、多选题13.已知定义在R 上的函数()f x ,对于给定集合A ,若12,R x x ∀∈,当12x x A -∈时都有()()12f x f x A -∈,则称()f x 是“A 封闭”函数.则下列命题正确的是()A .()2f x x =是“[]1,1-封闭”函数B .定义在R 上的函数()f x 都是“{}0封闭”函数C .若()f x 是“{}1封闭”函数,则()f x 一定是“{}k 封闭”函数()*N k ∈D .若()f x 是“[],a b 封闭”函数()*,N a b ∈,则()f x 不一定是“{}ab 封闭”函数14.对于定义在区间D 上的函数()f x ,若满足:1x ∀,2x D ∈且12x x <,都有()()12f x f x ≤,六、单选题15.已知函数()f x 的定义域为R ,且()21f x +为偶函数,()()()12f x f x f x =+-+,若()12f =,则()18f =()A .1B .2C .1-D .2-八、单选题18.已知函数()f x 的定义域为R ,若函数()21f x +为奇函数,且()()4f x f x -=,2023 1()1kf k ==∑,则()0f=()A.1-B.0C.1D.2九、多选题十、单选题十一、多选题十二、单选题十三、多选题27.已知2336x y ==,则下列说法正确的是()A .()2xy x y =+B .16xy >C .9x y +<D .2232x y +<参考答案:由图象可知,函数()y f x =与即函数()g x 有3个零点,故选:C.7.BD【分析】利用反例可判断AC 选项.【详解】()12f =,而()1f -因为77cos 33f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭()3012f f f π⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,故当0x <时,()[]1,1f x ∈-,当故()f x 的值域为[1,)-+∞,故故选:BD.8.4【分析】根据分段函数的定义求解即可【详解】由()(211log 22,1x f x x -⎧+=⎨≥⎩所以()()(221log 22f -=+--所以()()()31232f f f --===【点睛】本题考查分段函数的单调性,小是关键,属于中档题.10.C【分析】根据已知可得{min sin 的单调性,可得()()12g g >>而得到实数m 的取值范围,即可得出答案【详解】当sin cos x x ≥时,原不等式可化为cos x mx >;所以,()333sin cos sin x x x =>,即()33sin cos sin 0x x ->.令()()sin cos sin F x x x =-,()0,1x ∈,因为函数sin y x =在()0,1上单调递增,cos y x =在()0,1上单调递减,且0cos 1x <<,根据复合函数的单调性可知,函数()sin cos y x =在()0,1上单调递减,所以()F x 在()0,1上单调递减.又()10F x =,()()310F x F x >=,所以31x x <.因为cos y x =在()0,1上单调递减,22sin x x <,所以()22cos sin cos x x >.又()22cos sin x x =,所以22cos x x >,即22cos 0x x -<.令()cos G x x x =-,()0,1x ∈,则()sin 10G x x '=--<恒成立,所以,()G x 在()0,1上单调递减.又()111cos 0G x x x =-=,()()2221cos 0G x x x G x =-<=,所以21x x >.综上可得,213x x x >>.故选:C.【点睛】关键点点睛:证明sin x x >在()0,1上恒成立.然后即可采用放缩法构造函数,进而根据函数的单调性得出大小关系.13.BC【分析】A 特殊值124,3x x ==判断即可;B 根据定义及函数的性质即可判断;C 根据定义得到R x ∀∈都有(1)()1f x f x +=+,再判断所给定区间里是否有22()()f x k f x k +-=成立即可判断,D 选项可判断出其逆否命题的正误,得到D 选项的正误.【详解】A :当124,3x x ==时,121[1,1]x x -=∈-,而12()()1697[1,1]f x f x -=-=∉-,A 错误;B :对于区间{}0,12,R x x ∀∈使120x x -=,即12x x =,必有12()()0f x f x -=,所以定义在R 上的函数()f x 都是“{}0封闭”函数,B 正确;C :对于区间{}1,12,R x x ∀∈使{}121x x -∈,则121x x =+,而()f x 是“{}1封闭”函数,则22(1)()1f x f x +-=,即R x ∀∈都有(1)()1f x f x +=+,对于区间{}k ,12,R x x ∀∈使{}12x x k -∈,则12x x k =+,*N k ∈,而22()(1)1f x k f x k +=+-+,22(1)(2)1f x k f x k +-=+-+,...,22(1)()1f x f x +=+,所以222222()(1)...(1)(1)(2)...()1f x k f x k f x f x k f x k f x k +++-+++=+-++-+++-,即22()()f x k f x k +=+,故22()()f x k f x k +-=,()f x 一定是“{}k 封闭”函数()*N k ∈,C正确;D 选项,其逆否命题为,若()f x 是“{}ab 封闭”函数,则()f x 不是“[],a b 封闭”函数()*,N a b ∈,只需判断出其逆否命题的正误即可,12,R x x ∀∈使12x x ab -=,则12()()f x f x ab -=,若[],ab a b ∈,则ab a ab b a b ≥⎧⎪≤⎨⎪<⎩,由ab b ≤解得1a ≤,因为*N a ∈,所以1a =,即12,R x x ∀∈使[]12,x x ab b a b -==∈,则[]12()(),f x f x ab b a b -==∈,满足()f x 是“[],a b 封闭”函数()*,N a b ∈,故逆否命题为假命题,故原命题也时假命题,D 错误.故选:BC【点睛】关键点点睛:对于C ,根据给定的条件得到R x ∀∈都有(1)()1f x f x +=+,R x ∀∈有()()f x a f x b +=+恒成立,利用递推关系及新定义判断正误.14.ACD【分析】利用已知条件和函数的性质对选项逐一判断即可得正确答案.【详解】A.因为()()22f x f x +-=,所以令1x =得()()1212f f +-=,所以()11f =,故A 正确;()1y f x =+为()y f x =向左平移1个单位得到,是偶函数,故()3y f x =+为()y f x =向左平移3个单位得到,是奇函数,故由lg y x =在(,0)-∞上递减,且lg 101-=,lg 10-=;在(0,结合图象:看出()y f x =和lg y x =的图象有10个交点,即故C 错误:由()10f =,()21f =,()30f =,()41f =-,()50f =,则()()()1280f f f ++⋅⋅⋅+=,所以()()()()2023125201271k f k f f f ==⨯+++⋅⋅⋅+=-⎡⎤⎣⎦∑,故故选:AB17.ABD。
函数的概念与基本初等函数(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
专题02函数的概念与基本初等函数I1.【2022年全国甲卷】函数=3−3−cos在区间−π2)A.B.C.D.【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令op=(3−3−)coss∈[−2,2],则o−p=(3−−3)cos(−p=−(3−3−)cos=−op,所以op为奇函数,排除BD;又当∈(0,2)时,3−3−>0,cos>0,所以op>0,排除C.故选:A.2.【2022年全国甲卷】已知9=10,=10−11,=8−9,则()A.>0>B.>>0C.>>0D.>0>【答案】A【解析】【分析】根据指对互化以及对数函数的单调性即可知=log910>1,再利用基本不等式,换底公式可得>lg11,log89>,然后由指数函数的单调性即可解出.【详解】由9=10可得=log 910=lg10lg9>1,而lg9lg11<=<1=lg102,所以lg10lg9>lg11lg10,即>lg11,所以=10−11>10lg11−11=0.又lg8lg10<=<lg92,所以lg9lg8>lg10lg9,即log 89>,所以=8−9<8log 89−9=0.综上,>0>.故选:A.3.【2022年全国乙卷】如图是下列四个函数中的某个函数在区间[−3,3]的大致图像,则该函数是()A .=−3+32+1B .=3−2+1C .=2vos 2+1D .=2sin2+1【答案】A 【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设op =3−2+1,则o1)=0,故排除B;设ℎ(p =2vos2+1,当∈(0,π2)时,0<cos <1,所以ℎ(p =2vos 2+1<22+1≤1,故排除C;设op =2sin 2+1,则o3)=2sin310>0,故排除D.故选:A.4.【2022年全国乙卷】已知函数op,op 的定义域均为R ,且op +o2−p =5,op −o −4)=7.若=op 的图像关于直线=2对称,o2)=4,则 J122op =()A .−21B .−22C .−23D .−24【答案】D 【解析】【分析】根据对称性和已知条件得到op +o −2)=−2,从而得到3+5+…+21=−10,4+6+…+22=−10,然后根据条件得到o2)的值,再由题意得到3=6从而得到1的值即可求解.【详解】因为=op的图像关于直线=2对称,所以2−=+2,因为op−o−4)=7,所以o+2)−o−2)=7,即o+2)=7+o−2),因为op+o2−p=5,所以op+o+2)=5,代入得op+7+o−2)=5,即op+o−2)=−2,所以3+5+…+21=−2×5=−10,4+6+…+22=−2×5=−10.因为op+o2−p=5,所以o0)+o2)=5,即0=1,所以o2)=−2−0=−3.因为op−o−4)=7,所以o+4)−op=7,又因为op+o2−p=5,联立得,2−++4=12,所以=op的图像关于点3,6中心对称,因为函数op的定义域为R,所以3=6因为op+o+2)=5,所以1=5−3=−1.所以 J122op=1+2+3+5+...+21+4+6+ (22)−1−3−10−10=−24.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.5.【2022年新高考2卷】已知函数op的定义域为R,且o+p+o−p= opop,o1)=1,则J122 op=()A.−3B.−2C.0D.1【答案】A【解析】【分析】根据题意赋值即可知函数的一个周期为6,求出函数一个周期中的1,2,⋯,6的值,即可解出.【详解】因为++−=,令=1,=0可得,21=10,所以0=2,令=0可得,+−=2,即=−,所以函数为偶函数,令=1得,+1+−1=1=,即有+2+=+1,从而可知+2=−−1,−1=−−4,故+2=−4,即=+6,所以函数的一个周期为6.因为2=1−0=1−2=−1,3=2−1=−1−1=−2,4=−2=2=−1,5=−1=1=1,6=0=2,所以一个周期内的1+2+⋯+6=0.由于22除以6余4,所以J122=1+2+3+4=1−1−2−1=−3.故选:A .6.【2021年甲卷文科】下列函数中是增函数的为()A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x=D .()f x =【答案】D 【解析】【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x R 上的增函数,符合题意,故选:D.7.【2021年甲卷文科】青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为() 1.259≈)A .1.5B .1.2C .0.8D .0.6【答案】C 【解析】【分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解.【详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-,则10.110110100.81.259V --===≈.故选:C.8.【2021年甲卷文科】设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭()A .53-B .13-C .13D .53【答案】C 【解析】【分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.9.【2021年甲卷理科】设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭()A .94-B .32-C .74D .52【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.10.【2021年乙卷文科】设函数1()1xf x x-=+,则下列函数中为奇函数的是()A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++【答案】B 【解析】【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得12()111x f x x x-==-+++,对于A ,()2112f x x--=-不是奇函数;对于B ,()211f x x-=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数;对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数.故选:B 【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.【2021年乙卷理科】设2ln1.01a =,ln1.02b =,1c =.则()A .a b c <<B .b c a<<C .b a c<<D .c a b<<【答案】B 【解析】【分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =++,()()ln 121g x x =++,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系.【详解】()()2222ln1.01ln1.01ln 10.01ln 120.010.01ln1.02a b ===+=+⨯+>=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =++,则()00f =,()2121x f x x -='=+由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x +-+>,()1x >+,()0f x '>,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.011>-,即a c >;令()()ln 121g x x =++,则()00g =,()212212x g x x -==+',由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.021<,即b <c ;综上,b c a <<,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.12.【2021年新高考2卷】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A .c b a <<B .b a c<<C .a c b<<D .a b c<<【答案】C 【解析】【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论.【详解】55881log 2log log log 32a b =<==<=,即a c b <<.故选:C.13.【2021年新高考2卷】已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B 【解析】【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.14.【2020年新课标1卷理科】若242log 42log a ba b +=+,则()A .2a b >B .2a b <C .2a b >D .2a b <【答案】B 【解析】【分析】设2()2log x f x x =+,利用作差法结合()f x 的单调性即可得到答案.【详解】设2()2log x f x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+所以()(2)f a f b -=2222log (2log 2)a b a b +-+=22222log (2log 2)b bb b +-+21log 102==-<,所以()(2)f a f b <,所以2a b <.2()()f a f b -=22222log (2log )a b a b +-+=222222log (2log )b b b b +-+=22222log b b b --,当1b =时,2()()20f a f b -=>,此时2()()f a f b >,有2a b >当2b =时,2()()10f a f b -=-<,此时2()()f a f b <,有2a b <,所以C 、D 错误.故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.15.【2020年新课标1卷文科】设3log 42a =,则4a -=()A .116B .19C .18D .16【答案】B 【解析】【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.16.【2020年新课标2卷理科】设函数()ln |21|ln |21|f x x x =+--,则f (x )()A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.17.【2020年新课标2卷理科】若2233x y x y ---<-,则()A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.18.【2020年新课标2卷文科】设函数331()f x x x =-,则()f x ()A .是奇函数,且在(0,+∞)单调递增B .是奇函数,且在(0,+∞)单调递减C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】【分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-,所以函数()f x 为奇函数.又因为函数3y x =在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x-==在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数()331f x x x =-在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.19.【2020年新课标3卷理科】Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A .60B .63C .66D .69【答案】C 【解析】【分析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.【详解】()()0.23531t K I t e--=+ ,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.20.【2020年新课标3卷理科】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A .a <b <cB .b <a <cC .b <c <aD .c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.21.【2020年新课标3卷文科】设3log 2a =,5log 3b =,23c =,则()A .a c b <<B .a b c <<C .b c a <<D .c a b<<【答案】A 【解析】【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<.故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.22.【2020年新高考1卷(山东卷)】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A .1.2天B .1.8天C .2.5天D .3.5天【答案】B 【解析】【分析】根据题意可得()0.38rt tI t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,根据10.38()0.382t t t e e +=,解得1t 即可得结果.【详解】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt tI t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.23.【2020年新高考1卷(山东卷)】若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.24.【2020年新高考2卷(海南卷)】已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是()A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞【答案】D 【解析】【分析】首先求出()f x 的定义域,然后求出2()lg(45)f x x x =--的单调递增区间即可.【详解】由2450x x -->得5x >或1x <-所以()f x 的定义域为(),1(5,)-∞-⋃+∞因为245y x x =--在(5,)+∞上单调递增所以2()lg(45)f x x x =--在(5,)+∞上单调递增所以5a ≥故选:D 【点睛】在求函数的单调区间时一定要先求函数的定义域.25.【2019年新课标1卷理科】已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a<<【答案】B 【解析】【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.26.【2019年新课标2卷理科】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为ABCD【答案】D 【解析】【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查.【详解】由rRα=,得r R α=因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=,所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.27.【2019年新课标2卷理科】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.【详解】(0,1]x ∈ 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.28.【2019年新课标2卷文科】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+【答案】D 【解析】【分析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x .【详解】()f x 是奇函数,0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.29.【2019年新课标3卷理科】函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .【答案】B 【解析】【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.30.【2019年新课标3卷理科】设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.31.【2018年新课标1卷理科】已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)【答案】C 【解析】【详解】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)x e x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,x y e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程()f x x a =--有两个解,也就是函数()g x 有两个零点,此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.32.【2018年新课标1卷文科】设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】【分析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.【详解】33.【2018年新课标2卷理科】函数()2e e x x f x x --=的图像大致为()A .B .C .D .【答案】B【解析】【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴ 为奇函数,舍去A,1(1)0f e e -=->∴ 舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'> ,所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.34.【2018年新课标2卷理科】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50【答案】C【解析】【详解】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+,所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++ ,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴= ,从而(1)(2)(3)(50)(1)2f f f f f ++++== ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.35.【2018年新课标3卷理科】函数422y x x =-++的图像大致为A .B .C .D .【答案】D【解析】【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<,得x <0x <<C ,故选D.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.36.【2018年新课标3卷理科】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab+<<D .0ab a b<<+【答案】B【解析】【详解】分析:求出0.2211log0.3,0.3log a b ==,得到11a b +的范围,进而可得结果.详解:.0.30.3log0.2,2a b log == 0.2211log0.3,0.3log a b∴==0.3110.4log a b∴+=1101a b ∴<+<,即01a b ab+<<又a 0,b 0>< ab 0∴<即ab a b 0<+<故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.37.【2022年新高考1卷】已知函数op 及其导函数'(p 的定义域均为,记op ='(p ,若−2,o2+p 均为偶函数,则()A .o0)=0B .−=0C .o −1)=o4)D .o −1)=o2)【答案】BC【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为o 32−2p ,o2+p 均为偶函数,所以o 32−2p =o 32+2p 即o 32−p =o 32+p ,o2+p =o2−p ,所以o3−p =op ,o4−p =op ,则o −1)=o4),故C 正确;函数op ,op 的图象分别关于直线=32,=2对称,又op ='(p ,且函数op 可导,所以o 32)=0,o3−p =−op ,所以o4−p =op =−o3−p ,所以o +2)=−o +1)=op ,所以o −12)=o 32)=0,o −1)=o1)=−o2),故B 正确,D 错误;若函数op 满足题设条件,则函数op +(C 为常数)也满足题设条件,所以无法确定op的函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.38.【2021年新高考2卷】设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则()A .()()2n n ωω=B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21n n ω-=【答案】ACD【解析】【分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【详解】对于A 选项,()01k n a a a ω=+++ ,12101122222k k k k n a a a a +-=⋅+⋅++⋅+⋅ ,所以,()()012k n a a a n ωω=+++= ,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=,而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01852k n a a a ω+=++++ ,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01432k n a a a ω+=++++ ,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++ ,故()21n n ω-=,D 选项正确.故选:ACD.39.【2022年全国乙卷】若=ln +是奇函数,则=_____,=______.【答案】−12;ln2.【解析】【分析】根据奇函数的定义即可求出.【详解】因为函数=ln +为奇函数,所以其定义域关于原点对称.由+11−≠0可得,1−+1−B ≠0,所以=r1=−1,解得:=−12,即函数的定义域为−∞,−1∪−1,1∪1,+∞,再由0=0可得,=ln2.即=ln −12++ln2=ln −=−,符合题意.故答案为:−12;ln2.40.【2021年新高考1卷】已知函数()()322x x x a f x -=⋅-是偶函数,则=a ______.【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322x x x a f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:141.【2021年新高考1卷】函数()212ln f x x x =--的最小值为______.【答案】1【解析】【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x '=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.42.【2021年新高考2卷】写出一个同时具有下列性质①②③的函数():f x _______.①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【解析】【分析】根据幂函数的性质可得所求的()f x .【详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①,()34f x x '=,0x >时有()0f x '>,满足②,()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)43.【2019年新课标2卷理科】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则=a __________.【答案】-3【解析】【分析】当0x >时0x -<,()()ax f x f x e -=--=代入条件即可得解.【详解】因为()f x 是奇函数,且当0x >时0x -<,()()ax f x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e -=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.【点睛】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.44.【2018年新课标1卷文科】已知函数()()22log f x x a =+,若()31f =,则=a ________.【答案】-7【解析】【详解】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-.点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.45.【2018年新课标3卷文科】已知函数())ln 1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】【分析】发现()()f x f x 2+-=,计算可得结果.【详解】因为()()))()22f x f x ln x 1ln x 1ln 122x x +-=-+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x2+-=是关键,属于中档题.。
基本初等函数、函数与方程及函数的应用(题型归纳)
基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。
题型专题八基本初等函数函数与方程
3.(2016·郑州质检)已知定义在 R 上的奇函数 y=f(x)的图象关 于直线 x=1 对称,当 0<x≤1 时,f(x)=log1x,则方程 f(x)-1=0
2 在(0,6)内的所有根之和为( )
A.8 B.10 C.12 D.16
解析:选 C ∵奇函数 f(x)的图象关于直线 x=1 对称,∴f(x)=f(2-x)=-f(-x),即 f(x)= -f(x+2)=f(x+4),∴f(x)是周期函数,其周期 T =4.当 0<x≤1 时,f(x)=log1x,故 f(x)在(0,6)
200-200=1 000,当且仅当 x=10x000,即 x=100 时,L(x)取得最大值 1
000 万元.由于 950<1 000,∴当产量为 100 千件时,该工厂在这一产品
的生产中所获年利润最大,最大年利润为 1 000 万元.故选 B.
高考变的是题目,不变的是知识,交汇创新题只不过是载体的改变而已
能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是
() A.1 150 万元
B.1 000 万元
C.950 万元
D.900 万元
解析:选 B ∵每件产品的售价为 0.05 万元,∴x 千件产品的销售
额为 0.05×1 000x=50x 万元.①当 0<x<80 时,年利润 L(x)=50x-31x2
A.b<a<c
B.a<c<b
C.c<b<a
D.c<a<b
解析:选 D 1=log33<a=log37<log39=2,b=21.1>21=2, c=0.83.1<0.80=1,所以 c<a<b.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[答案] A[解析] ①错误,如函数f (x )=1x2是偶函数,但其图像与y 轴没有交点;②错误,因为奇函数的定义域可能不包含x =0;③正确;④错误,既是奇函数又是偶函数的函数可以为f (x )=0,x ∈(-a ,a ).3.(2011·上海宝山模拟)已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .a =13,b =0B .a =-1,b =0C .a =1,b =0D .a =3,b =0[答案] A[解析] 由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴(a -1)+2a =0,∴a =13.4. (2009·重庆理)若f (x )=12x -1+a 是奇函数,则a =______.[答案]12[解析] 考查函数的奇偶性.∵f (x )为奇函数,∴f (-1)=-f (1),即12-1-1+a =-12-1-a ,∴a =12. (四)典型例题1.命题方向:奇偶性的判定 [例1] 判断下列函数的奇偶性 (1)f (x )=(x -1)1+x 1-x ; (2)f (x )=lg (1-x 2)|x -2|-2; (3)f (x )=⎩⎪⎨⎪⎧x 2+xx <0x 2-xx >0; (4)f (x )=3-x 2+x 2-3;(5)f (x )=x 2-|x -a |+2.[解析] (1)由1+x1-x≥0,得定义域为[-1,1),关于原点不对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2>0|x -2|-2≠0得定义域为(-1,0)∪(0,1),这时f (x )=lg (1-x 2)-(x -2)-2=-lg(1-x2)x,∵f (-x )=-lg[1--x2]-x=lg 1-x2x=-f (x ).∴f (x )为奇函数.(3)当x <0时,-x >0,则f (-x )=(-x )2-(-x )=x 2+x =f (x )当x >0时,-x <0则f (-x )=(-x )2+(-x )=x 2-x =f (x )∴对任意x ∈(-∞,0)∪(0,+∞)都有f (-x )=f (x ),故f (x )为偶函数.另解:1°画函数f (x )=⎩⎪⎨⎪⎧x 2+x x <0x 2-xx >0的图像.图像关于y 轴对称,故f (x )为偶函数.2°f (x )还可写成f (x )=x 2-|x |,故为偶函数.(4)由⎩⎪⎨⎪⎧3-x 2≥0x 2-3≥0得x =-3或x = 3 ∴函数f (x )的定义域为{-3,3}又∵对任意的x ∈{-3,3},f (x )=0. ∴f (-x )=f (x )=-f (x ) (5)函数f (x )的定义域为R当a =0时 f (x )=f (-x ) ∴f (x )是偶函数 当a ≠0时 f (a )=a 2+2,f (-a )=a 2-2|a |+2f (a )≠f (-a ) 且f (a )+f (-a )=2(a 2-|a |+2)=2(|a |-12)2+72≠0∴f (x )是非奇非偶函数.[点评] 第一,求函数定义域,看函数的定义域是否关于原点对称,若不对称,则该函数为非奇非偶函数.第二,若定义域关于原点对称,函数表达式能化简的,则对函数进行适当的化简,以便于判断,化简时要保持定义域不改变;第三,利用定义进行等价变形判断.第四,分段函数应分段讨论,要注意据x 的范围取相应的函数表达式或利用图像判断. 跟踪练习1判断函数f (x )=16-x2|x +5|-5的奇偶性.[解析] 由题意知⎩⎪⎨⎪⎧16-x 2≥0|x +5|-5≠0解得-4≤x <0或0<x ≤4,∴函数的定义域关于原点对称.∵f (x )=16-x 2|x +5|-5=16-x2x,∴f (-x )=16-(-x )2-x =-16-x2x=-f (x ).∴f (x )是奇函数.2.命题方向:奇偶性的应用[例2] 已知定义域为R 的函数f (x )=-2x+b2x +1+a是奇函数.(1)求a 、b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. [解析] (1)∵f (x )是奇函数,∴f (0)=0, 即-1+b 2+a =0,∴b =1.∴f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a,∴a =2.(2)解法1:由(1)知f (x )=-2x+12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,∴t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.解法2:由(1)知f (x )=-2x+12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0, 即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)·(-22t 2-k +1)<0.整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.跟踪练习2已知函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数.(1)求a 的值;(2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0. 即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x=1+y 1-y ,由2x>0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t2x+1≥2x-2.即:(2x )2-(t +1)·2x+t -2≤0.设2x=u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-t +1×1+t -2≤022-t +1×2+t -2≤0,解得t ≥0.(五)思想方法点拨1.判断函数奇偶性时首先要看其定义域是否关于原点对称.如函数y =x 2(x ∈(-1,1])并不具备奇偶性.因此, 一个函数是奇函数或偶函数,其定义域必须关于原点对称. ★函数奇偶性的判定方法:(1)定义法:第一步先看函数f (x )的定义域是否关于原点对称,若不对称,则为非奇非偶函数. 第二步直接或间接利用奇偶函数的定义来判断.即若有:f (-x )=-f (x )或f (-x )+f (x )=0或f (x )-f (-x )=2f (x )或f (x )·f (-x )=-f 2(x )或f (x )/f (-x )=-1为奇函数.若有f (-x )=f (x )或f (-x )-f (x )=0或f (x )+f (-x )=2f (x )或f (x )·f (-x )=f 2(x )或f (x )/f (-x )=1为偶函数.(2)图像法:利用“奇函数的图像关于原点对称,偶函数的图像关于y 轴对称”来判断. (3)复合函数奇偶性的判断若复合函数由若干个函数复合而成,则复合函数可依若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”. (4)性质法(3)0.50.2和0.30.4[分析] 比较幂值的大小,一般可以借助幂函数和指数函数的单调性,有时也要借助中间值.[解析](1)-131()9=139--由于幂函数13y x-=在(0,)+∞上是减函数,所以138->139-,因此138--<139--,即138--<-131()9(2)由于254.1>1,0<253.8-<1,35(1.9)--,0,因此254.1>253.8->35(1.9)--.(3)由于指数函数0.2xy=在R上是减函数,所以0.50.2<0.30.2。
又由于幂函数0.3y x=在(0,)+∞上是增函数,所以0.30.2<0.30.4,故有0.50.2<0.30.4.跟踪练习3当0﹤a﹤b﹤1时,下列不等式正确的是()[答案] D[解析] 由0<a<b<1,可知a<b,0<a<1,∴0<1-b<1-a<1,∴(1-a)b<(1-a)a,∴(1-a)a>(1-b)b.(五)思想方法点拨幂函数性质的理解1.当α>0时,幂函数y=xα有下列性质:①图像都过点(0,0)(1,1);②在第一象限内,函数值随x的增大而增大;③在第一象限内,过(1,1)点后,图像向右上方无限伸展.2.当α<0时,幂函数y=xα有下列性质:①图像都通过点(1,1);②在第一象限内,图像向上与y轴无限地接近,向右与x轴无限地接近;③在第一象限内,过(1,1)点后,|α|越大,图像下落的速度越快.3.(1)幂函数中既有奇函数,又有偶函数,也有非奇非偶函数.(2)作函数y=xα的图像时,一般依据上述性质作出第一象限的图像,而后依据函数的奇偶性作出x<0的图像即可.(3)幂函数的图像无论α取何实数,其必经过第一象限,且一定不不经过第四象限.(六)课后强化作业一、选择题1.如图所示函数图像中,表示23y x=的是( )[答案] D[解析] 因为23∈(0,1),所以23y x=的图像是抛物线型,且在第一象限图像上凸,又函数23y x=是偶函数,故图像应为D.2.(2011·中山模拟)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(x+y)=f(x)+f(y),下列函数中不满足任何一个等式的是( )A.f(x)=3x B.f(x)=xα C.f(x)=log2x D.f(x)=kx(k≠0)[答案] B[解析] f(x)=3x满足f(x+y)=f(x)·f(y);f(x)=log2x满足f(xy)=f(x)+f(y);f(x)=kx满足f(x+y)=f(x)+f(y),而f(x)=xα不满足任何一个等式.3.函数y=(m2-m-1)xm2-2m-3是幂函数且在x∈(0,+∞)上为减函数,则实数m的值为( )A.-1或2 B.1±52C.2 D.-1[答案] C[解析] 因为y=(m2-m-1)xm2-2m-3是幂函数且在(0,+∞)上是减函数,所以⎩⎪⎨⎪⎧m2-m-1=1,m2-2m-3<0,解得m=2.4.设n∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使得f(x)=x n为奇函数,且在(0,+∞)上单调递减的n的个数是( )A.0 B.1 C.2 D.3[答案] B[解析] 只有当n=-1时,f(x)=x n为奇函数,且在(0,+∞)上单调递减.5.(2010·安徽文)设253()5a=,352()5b=,252()5c=则a,b,c的大小关系是( )A.a>c>b B.a>b>c C.c>a>b D.b>c>a [答案] A[解析] 该题考查幂函数和指数函数的性质.对b和c,考查指数函数y=(25)x,单调递减.故352()5<252()5,即b<c.对a和c,考查幂函数.y=25x,在(0,+∞)上单调递增,∴253()5<252()5,即a>c,∴a>c>b,故选A.6.若集合A={y︳y=13x,-1≤x≤1},B=⎩⎨⎧⎭⎬⎫y|y=⎝⎛⎭⎪⎫12x,x≤0,则A∩B=( )A.(-∞,1) B.[-1,1] C.∅D.{1} [答案] D[解析] y=13x在-1≤x≤1时,有-1≤y≤1;y=⎝ ⎛⎭⎪⎫12x,在x≤0时,有y≥1,∴A∩B={1}.7.(文)(09·山东)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图像不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3 B.2 C.1 D.0[答案] C[解析] 原命题正确,故其逆否命题正确,逆命题是假命题,故否命题也为假.所以真命题个数为1.(理)函数9ny x= (n∈N且n>9)的图像可能是( )[答案] C[解析] ∵f(-x)=9nx-=9n x=f(x),∴函数为偶函数,图像关于y轴对称,故排除A、B.令n=18,则y=12x,当x≥0时,y=12x,由其在第一象限的图像知选C.8.把函数f(x)=x3-3x的图像C1向右平移u个单位长度,再向下平移v个单位长度后得到图像C2,若对任意u>0,曲线C1与C2至多只有一个交点,则v的最小值为( )A.2 B.4 C.6 D.8[答案] B[解析] ∵f(x)=x3-3x,∴f′(x)=3(x2-1),令f′(x)=0,得x=±1.∴x∈(-∞,-1)时,f′(x)>0,f(x)在(-∞,-1)上为增函数;x ∈(-1,1)时,f ′(x )<0,f (x )在(-1,1)上为减函数; x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上为增函数.故f (x )极大值=f (-1)=2,f (x )极小值=f (1)=-2.图像C 2是由图像C 1向右平移u 个单位长度,向下平移v 个单位长度所得到.当图像C 2的极大值点与C 1的极小值点重合时,v 有最小值,如图所示,即v 的最小值为4.二、填空题9.(2011·南通模拟)已知幂函数f (x )=k ·x α的图像过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.[答案]32[解析] f (x )=k ·x α是幂函数,所以k =1,由幂函数f (x )的图像过点⎝ ⎛⎭⎪⎫12,22,得α=12,则k +α=32.10.若,则它们的大小关系是________.[答案] c <b <a [解析],即c <b <a .11.当x ∈(0,1)时,y =x p(p ≥0)的图像在直线y =x 上方,则p 的取值范围是________. [答案] [0,1)[解析] 结合幂函数y =x α在第一象限的图像,当0<α<1时,y =x α在(0,+∞)上是增函数,且x ∈(0,1)时,图像在y =x 上方,x ∈(1,+∞)时,图像在y =x 下方; 又p =0时,y =x 0=1(x ≠0)也满足. 故p 的取值范围是0≤p <1.。