耿国华数据结构习题及答案

合集下载

耿国华大数据结构习题问题详解完整版

耿国华大数据结构习题问题详解完整版

第一章答案1.3计算下列程序中x=x+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/61.4试编写算法,求p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。

注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。

算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。

讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。

【解答】(1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。

缺点:形参须与实参对应,且返回值数量有限。

(2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)scanf(“%f ”,&a[i]); /*执行次数:n次 */p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /*执行次数:n次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)第二章答案2.7试分别以不同的存储结构实现单线表的就地逆置算法,即在原表的存储空间将线性表(a1,a2,…,a n)逆置为(a n,a n-1,…,a1)。

数据结构耿国华c语言版答案

数据结构耿国华c语言版答案

数据结构耿国华c 语言版答案【篇一:《数据结构——c语言描述》习题及答案耿国华 2】题一、问答题1.什么是数据结构?2.四类基本数据结构的名称与含义。

3.算法的定义与特性。

4.算法的时间复杂度。

5.数据类型的概念。

6.线性结构与非线性结构的差别。

7.面向对象程序设计语言的特点。

8.在面向对象程序设计中,类的作用是什么?9.参数传递的主要方式及特点。

10.抽象数据类型的概念。

二、判断题1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2.算法就是程序。

3.在高级语言(如 c、或 pascal )中,指针类型是原子类型。

三、计算下列程序段中x=x+1 的语句频度for(i=1;i=n;i++)for(j=1;j=i;j++)for(k=1;k=j;k++)x=x+1;[提示 ]:⋯f(n) = [ (1+2+3+⋯⋯+n) + (12 + 22 + 32 +⋯⋯+ n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:o(f(n)) = o(n3)四、试编写算法求一元多项式pn(x)=a0+a1x+a2x2+a3x3+ ⋯anxn的值 pn(x0) ,并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。

注意:本题中的输入 ai(i=0,1, ⋯,n), x和 n,输出为 pn(x0). 通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

试讨论这两种方法的优缺点,并在本题算法中以你认为较好的一种方式实现输入和输出。

[提示 ]: float polyvalue(float{ ⋯⋯}核心语句:p=1; (x的零次幂)s=0;i 从 0 到 n 循环s=s+a[i]*p;p=p*x;或:p=x; (x的一次幂)s=a[0];i 从 1 到 n 循环s=s+a[i]*p;p=p*x;a[ ], float x, int n)实习题设计实现抽象数据类型“有理数”。

《数据结构——C语言描述》习题及答案 耿国华

《数据结构——C语言描述》习题及答案 耿国华

第1章绪论习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。

3. 算法的定义与特性。

4. 算法的时间复杂度。

5. 数据类型的概念。

6. 线性结构与非线性结构的差别。

7. 面向对象程序设计语言的特点。

8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。

10. 抽象数据类型的概念。

二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2. 算法就是程序。

3. 在高级语言(如C、或PASCAL)中,指针类型是原子类型。

三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2 = (1+2)×2/2 = (2+22)/2i=3时:1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n = (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。

注意:本题中的输入a i(i=0,1,…,n), x和n,输出为P n(x0).通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

耿国华大数据结构习题问题详解完整版

耿国华大数据结构习题问题详解完整版

第一章答案1.3计算下列程序中x=x+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/61.4试编写算法,求p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。

注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。

算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。

讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。

【解答】(1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。

缺点:形参须与实参对应,且返回值数量有限。

(2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)scanf(“%f ”,&a[i]); /*执行次数:n次 */p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /*执行次数:n次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)第二章答案2.7试分别以不同的存储结构实现单线表的就地逆置算法,即在原表的存储空间将线性表(a1,a2,…,a n)逆置为(a n,a n-1,…,a1)。

数据结构C语言描述习题及答案耿国华

数据结构C语言描述习题及答案耿国华

数据结构C语言描述习题及答案耿国华数据结构C语言描述习题及答案耿国华The latest revision on November 22, 2020第1章绪论习题一、问答题1.什么是数据结构2.四类基本数据结构的名称与含义。

3.算法的定义与特性。

4.算法的时间复杂度。

5.数据类型的概念。

6.线性结构与非线性结构的差别。

7.面向对象程序设计语言的特点。

8.在面向对象程序设计中,类的作用是什么9.参数传递的主要方式及特点。

10.抽象数据类型的概念。

二、判断题1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2.算法就是程序。

3.在高级语言(如C、或 PASCAL)中,指针类型是原子类型。

三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2= (1+2)×2/2 = (2+22)/2i=3时:1+2+3= (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n= (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2 =[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…anx n的值Pn(x),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。

注意:本题中的输入ai (i=0,1,…,n), x和n,输出为Pn(x).通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

《数据结构——C语言描述》习题及答案 耿国华

《数据结构——C语言描述》习题及答案 耿国华

第1章绪论之马矢奏春创作习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。

3. 算法的定义与特性。

4. 算法的时间复杂度。

5. 数据类型的概念。

6. 线性结构与非线性结构的不同。

7. 面向对象程序设计语言的特点。

8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。

10. 抽象数据类型的概念。

二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2. 算法就是程序。

3. 在高级语言(如C、或 PASCAL)中,指针类型是原子类型。

三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2 = (1+2)×2/2 = (2+22)/2i=3时:1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n = (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ]/ 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…anxn的值Pn(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不克不及使用求幂函数。

注意:本题中的输入ai(i=0,1,…,n), x和n,输出为Pn(x0).通常算法的输入和输出可采取下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

耿国华数据结构习题及答案

耿国华数据结构习题及答案

第一章习题答案2、××√3、(1)包含改变量定义的最小范围(2)数据抽象、信息隐蔽(3)数据对象、对象间的关系、一组处理数据的操作(4)指针类型(5)集合结构、线性结构、树形结构、图状结构(6)顺序存储、非顺序存储(7)一对一、一对多、多对多(8)一系列的操作(9)有限性、输入、可行性4、(1)A(2)C(3)C5、语句频度为1+(1+2)+(1+2+3)+…+(1+2+3+…+n)第二章习题答案1、(1)一半,插入、删除的位置(2)顺序和链式,显示,隐式(3)一定,不一定(4)头指针,头结点的指针域,其前驱的指针域2、(1)A(2)A:E、AB:H、L、I、E、AC:F、MD:L、J、A、G或J、A、G(3)D(4)D(5)C(6)A、C3、头指针:指向整个链表首地址的指针,标示着整个单链表的开始。

头结点:为了操作方便,可以在单链表的第一个结点之前附设一个结点,该结点的数据域可以存储一些关于线性表长度的附加信息,也可以什么都不存。

首元素结点:线性表中的第一个结点成为首元素结点。

4、算法如下:int Linser(SeqList *L,int X){ int i=0,k;if(L->last>=MAXSIZE-1){ printf(“表已满无法插入”);return(0);}while(i<=L->last&&L->elem[i]<X)i++;for(k=L->last;k>=I;k--)L->elem[k+1]=L->elem[k];L->elem[i]=X;L->last++;return(1);}5、算法如下:#define OK 1#define ERROR 0Int LDel(Seqlist *L,int i,int k){ int j;if(i<1||(i+k)>(L->last+2)){ printf(“输入的i,k值不合法”);return ERROR;}if((i+k)==(L->last+2)){ L->last=i-2;ruturn OK;}else{for(j=i+k-1;j<=L->last;j++)elem[j-k]=elem[j];L->last=L->last-k;return OK;}}6、算法如下:#define OK 1#define ERROR 0Int Delet(LInkList L,int mink,int maxk){ Node *p,*q;p=L;while(p->next!=NULL)p=p->next;if(mink<maxk||(L->next->data>=mink)||(p->data<=maxk)) { printf(“参数不合法”);return ERROR;}else{ p=L;while(p->next-data<=mink)p=p->next;while(q->data<maxk){ p->next=q->next;free(q);q=p->next;}return OK;}}9、算法如下:int Dele(Node *S){ Node *p;P=s->next;If(p= =s){printf(“只有一个结点,不删除”);return 0;}else{if((p->next= =s){s->next=s;free(p);return 1;}Else{ while(p->next->next!=s)P=p->next;P->next=s;Free(p);return 1;}}}第三章习题答案2、(1)3、栈有顺序栈和链栈两种存储结构。

数据结构课后习题答案(耿国华版

数据结构课后习题答案(耿国华版

第1章绪论2、(1)×(2)×(3)√3、(1)A(2)C(3)C5、计算下列程序中x=x+1得语句频度for(i=1;i<=n;i++)for(j=1;j〈=i;j++)for(k=1;k〈=j;k++)x=x+1;【解答】x=x+1得语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/66、编写算法,求一元多项式p n(x)=a0+a1x+a2x2+……、+a n x n得值p n(x0),并确定算法中每一语句得执行次数与整个算法得时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数.注意:本题中得输入为a i(i=0,1,…n)、x与n,输出为Pn(x0)。

算法得输入与输出采用下列方法(1)通过参数表中得参数显式传递(2)通过全局变量隐式传递。

讨论两种方法得优缺点,并在算法中以您认为较好得一种实现输入输出.【解答】(1)通过参数表中得参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。

缺点:形参须与实参对应,且返回值数量有限。

(2)通过全局变量隐式传递优点:减少实参与形参得个数,从而减少内存空间以及传递数据时得时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)scanf(“%f",&a[i]); /*执行次数:n次*/p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法得时间复杂度:T(n)=O(n)通过参数表中得参数显式传递float PolyValue(float a[],float x,int n){floatp,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p;/*执行次数:n次*/p=p*x;}return(p);}算法得时间复杂度:T(n)=O(n)第2章线性表习题1、填空:(1)在顺序表中插入或删除一个元素,需要平均移动一半元素,具体移动得元素个数与插入或删除得位置有关。

数据结构部分课后习题答案(耿国华)

数据结构部分课后习题答案(耿国华)

第一章绪论一、问答题1.什么是数据结构?2.叙述四类基本数据结构的名称与含义。

3.叙述算法的定义与特性。

4.叙述算法的时间复杂度。

5.叙述数据类型的概念。

6.叙述线性结构与非线性结构的差别。

7.叙述面向对象程序设计语言的特点。

8.在面向对象程序设计中,类的作用是什么?9.叙述参数传递的主要方式及特点。

10.叙述抽象数据类型的概念。

二、判断题(在各题后填写“√”或“×”)1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

()2.算法就是程序。

()3.在高级语言(如C或PASCAL)中,指针类型是原子类型。

()三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2 = (1+2)×2/2 = (2+22)/2i=3时:1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n = (1+n)×n/2 = (n+n2)/2x=x+1的语句频度为:f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2=[ (1+n)×n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法,求一元多项式P n(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。

注意:本题中的输入a i(i=0,1,…,n),x和n,输出为P n(x0)。

数据结构耿国华c语言版答案

数据结构耿国华c语言版答案

数据结构耿国华c 语言版答案【篇一:《数据结构——c语言描述》习题及答案耿国华 2】题一、问答题1.什么是数据结构?2.四类基本数据结构的名称与含义。

3.算法的定义与特性。

4.算法的时间复杂度。

5.数据类型的概念。

6.线性结构与非线性结构的差别。

7.面向对象程序设计语言的特点。

8.在面向对象程序设计中,类的作用是什么?9.参数传递的主要方式及特点。

10.抽象数据类型的概念。

二、判断题1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2.算法就是程序。

3.在高级语言(如 c、或 pascal )中,指针类型是原子类型。

三、计算下列程序段中x=x+1 的语句频度for(i=1;i=n;i++)for(j=1;j=i;j++)for(k=1;k=j;k++)x=x+1;[提示 ]:⋯f(n) = [ (1+2+3+⋯⋯+n) + (12 + 22 + 32 +⋯⋯+ n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:o(f(n)) = o(n3)四、试编写算法求一元多项式pn(x)=a0+a1x+a2x2+a3x3+ ⋯anxn的值 pn(x0) ,并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。

注意:本题中的输入 ai(i=0,1, ⋯,n), x和 n,输出为 pn(x0). 通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

试讨论这两种方法的优缺点,并在本题算法中以你认为较好的一种方式实现输入和输出。

[提示 ]: float polyvalue(float{ ⋯⋯}核心语句:p=1; (x的零次幂)s=0;i 从 0 到 n 循环s=s+a[i]*p;p=p*x;或:p=x; (x的一次幂)s=a[0];i 从 1 到 n 循环s=s+a[i]*p;p=p*x;a[ ], float x, int n)实习题设计实现抽象数据类型“有理数”。

数据结构C语言描述耿国华习题及答案

数据结构C语言描述耿国华习题及答案

第一章习题答案2、××√3、(1)包含改变量定义的最小范围(2)数据抽象、信息隐蔽(3)数据对象、对象间的关系、一组处理数据的操作(4)指针类型(5)集合结构、线性结构、树形结构、图状结构(6)顺序存储、非顺序存储(7)一对一、一对多、多对多(8)一系列的操作(9)有限性、输入、可行性4、(1)A(2)C(3)C5、语句频度为1+(1+2)+(1+2+3)+…+(1+2+3+…+n)第二章习题答案1、(1)一半,插入、删除的位置(2)顺序和链式,显示,隐式(3)一定,不一定(4)头指针,头结点的指针域,其前驱的指针域2、(1)A(2)A:E、AB:H、L、I、E、AC:F、MD:L、J、A、G或J、A、G(3)D(4)D(5)C(6)A、C3、头指针:指向整个链表首地址的指针,标示着整个单链表的开始。

头结点:为了操作方便,可以在单链表的第一个结点之前附设一个结点,该结点的数据域可以存储一些关于线性表长度的附加信息,也可以什么都不存。

首元素结点:线性表中的第一个结点成为首元素结点。

4、算法如下:int Linser(SeqList *L,int X){ int i=0,k;if(L->last>=MAXSIZE-1){ printf(“表已满无法插入”);return(0);}while(i<=L->last&&L->elem[i]<X)i++;for(k=L->last;k>=I;k--)L->elem[k+1]=L->elem[k];L->elem[i]=X;L->last++;return(1);}5、算法如下:#define OK 1#define ERROR 0Int LDel(Seqlist *L,int i,int k){ int j;if(i<1||(i+k)>(L->last+2)){ printf(“输入的i,k值不合法”);return ERROR;}if((i+k)==(L->last+2)){ L->last=i-2;ruturn OK;}else{for(j=i+k-1;j<=L->last;j++)elem[j-k]=elem[j];L->last=L->last-k;return OK;}}6、算法如下:#define OK 1#define ERROR 0Int Delet(LInkList L,int mink,int maxk){ Node *p,*q;p=L;while(p->next!=NULL)p=p->next;if(mink<maxk||(L->next->data>=mink)||(p->data<=maxk)) { printf(“参数不合法”);return ERROR;}else{ p=L;while(p->next-data<=mink)p=p->next;while(q->data<maxk){ p->next=q->next;free(q);q=p->next;}return OK;}}9、算法如下:int Dele(Node *S){ Node *p;P=s->next;If(p= =s){printf(“只有一个结点,不删除”);return 0;}else{if((p->next= =s){s->next=s;free(p);return 1;}Else{ while(p->next->next!=s)P=p->next;P->next=s;Free(p);return 1;}}}第三章习题答案2、(1)3、栈有顺序栈和链栈两种存储结构。

耿国华数据结构习题答案全面版

耿国华数据结构习题答案全面版

1.3计算下列程序中x=x+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/61. 4试编写算法,求p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。

注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。

算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。

讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。

【解答】(1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。

缺点:形参须与实参对应,且返回值数量有限。

(2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)scanf(“%f ”,&a[i]); /*执行次数:n次*/p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /*执行次数:n次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)2.7试分别以不同的存储结构实现单线表的就地逆置算法,即在原表的存储空间将线性表(a1,a2,…,a n)逆置为(a n,a n-1,…,a1)。

耿国华大数据结构习题问题详解完整版

耿国华大数据结构习题问题详解完整版

第一章答案1.3计算下列程序中x=x+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/61.4试编写算法,求p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。

注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。

算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。

讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。

【解答】(1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。

缺点:形参须与实参对应,且返回值数量有限。

(2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)scanf(“%f ”,&a[i]); /*执行次数:n次 */p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /*执行次数:n次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)第二章答案2.7试分别以不同的存储结构实现单线表的就地逆置算法,即在原表的存储空间将线性表(a1,a2,…,a n)逆置为(a n,a n-1,…,a1)。

耿国华数据结构习题答案完整版

耿国华数据结构习题答案完整版

1.3 计算下列程序中x=x+1 的语句频度for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x=x+1;【解答】x=x+1 的语句频度为:T(n)=1+(1+2)+ (1+2+3 ) +……+ (1+2+……+n ) =n(n +1)(n+2)/61. 4试编写算法,求p n(x)=a o+a i x+a2X2+ ................ .+a n x n的值P n(x o),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幕函数。

注意:本题中的输入为a i(i=0,1,…n) x和n,输出为P n(x o)。

算法的输入和输出采用下列方法( 1)通过参数表中的参数显式传递( 2)通过全局变量隐式传递。

讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。

【解答】( 1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。

缺点:形参须与实参对应,且返回值数量有限。

( 2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf( “nn=” );scanf( “%f”,&n);printf( “nx=” );scanf( “ %f” ,&x);for(i=0;i<n;i++)scanf( “%f ”,&a[i]); /*执行次数:n 次*/p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n 次*/x=x*x;}printf( “%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /* 执行次数:n 次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)2.7试分别以不同的存储结构实现单线表的就地逆置算法,即在原表的存储空间将线性表 (a i ,a 2,…,a )逆置为(a n ,a n-1,…,ai)o【解答】(1)用一维数组作为存储结构 void in vert(SeqList *L, int *num){int j;ElemType tmp;for(j=0;j<=(* nu m-1)/2;j++) { tmp=L[j];L[j]=L[* nu m-j-1]; L[* num-j-1]=tmp;} }(2 )用单链表作为存储结构L) return; /*链表为空*//*摘下第一个结点,生成初始逆置表 *//*从第二个结点起依次头插入当前逆置表 */C=(a1,b1, an,bn,an+1, a m)当m>n 时,线性表 A 、B 、C 以单链表作为存储结构,且C 表利用A 表和B 表中的结点空间构成。

《数据结构——C语言描述》习题及答案解析耿国华

《数据结构——C语言描述》习题及答案解析耿国华

第1章绪论习题一、问答题1.什么是数据结构?2.四类基本数据结构的名称与含义。

3.算法的定义与特性。

4.算法的时间复杂度。

5.数据类型的概念。

6.线性结构与非线性结构的差别。

7.面向对象程序设计语言的特点。

8.在面向对象程序设计中,类的作用是什么?9.参数传递的主要方式及特点。

10.抽象数据类型的概念。

二、判断题1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2.算法就是程序。

3.在高级语言(如C、或 PASCAL)中,指针类型是原子类型。

三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时: 1 = (1+1)×1/2 = (1+12)/2i=2时: 1+2= (1+2)×2/2 = (2+22)/2i=3时: 1+2+3= (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n= (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。

注意:本题中的输入a i(i=0,1,…,n), x和n,输出为P n(x0).通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

《数据结构-C语言描述》习题及答案耿国华

《数据结构-C语言描述》习题及答案耿国华

第1章绪论习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。

3. 算法的定义与特性。

4. 算法的时间复杂度。

5. 数据类型的概念。

6. 线性结构与非线性结构的差别。

7. 面向对象程序设计语言的特点。

8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。

10. 抽象数据类型的概念。

二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。

2. 算法就是程序。

3. 在高级语言(如C、或PASCAL)中,指针类型是原子类型。

三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:1/2 = = (1+12)/2i=1时:1 = (1+1)×1/22/2 = = (2+22)/2i=2时:1+2= (1+2)×2/23/2 = = (3+32)/2i=3时:1+2+3= (1+3)×3/2…n/2 = = (n+n2)/2i=n时:1+2+3+……+n= (1+n)×n/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2请浏览后下载,资料供参考,期待您的好评与关注!=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。

注意:本题中的输入a i(i=0,1,…,n), x和n,输出为Pn(x)通常算法的输入和输出可采用下列两种方式之一:法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题答案2、××√3、(1)包含改变量定义的最小范围(2)数据抽象、信息隐蔽(3)数据对象、对象间的关系、一组处理数据的操作(4)指针类型(5)集合结构、线性结构、树形结构、图状结构(6)顺序存储、非顺序存储(7)一对一、一对多、多对多(8)一系列的操作(9)有限性、输入、可行性4、(1)A(2)C(3)C5、语句频度为1+(1+2)+(1+2+3)+…+(1+2+3+…+n)第二章习题答案1、(1)一半,插入、删除的位置(2)顺序和链式,显示,隐式(3)一定,不一定(4)头指针,头结点的指针域,其前驱的指针域2、(1)A(2)A:E、AB:H、L、I、E、AC:F、MD:L、J、A、G或J、A、G(3)D(4)D(5)C(6)A、C3、头指针:指向整个链表首地址的指针,标示着整个单链表的开始。

头结点:为了操作方便,可以在单链表的第一个结点之前附设一个结点,该结点的数据域可以存储一些关于线性表长度的附加信息,也可以什么都不存。

首元素结点:线性表中的第一个结点成为首元素结点。

4、算法如下:int Linser(SeqList *L,int X){ int i=0,k;if(L->last>=MAXSIZE-1){ printf(“表已满无法插入”);return(0);}while(i<=L->last&&L->elem[i]<X)i++;for(k=L->last;k>=I;k--)L->elem[k+1]=L->elem[k];L->elem[i]=X;L->last++;return(1);}5、算法如下:#define OK 1#define ERROR 0Int LDel(Seqlist *L,int i,int k){ int j;if(i<1||(i+k)>(L->last+2)){ printf(“输入的i,k值不合法”);return ERROR;}if((i+k)==(L->last+2)){ L->last=i-2;ruturn OK;}else{for(j=i+k-1;j<=L->last;j++)elem[j-k]=elem[j];L->last=L->last-k;return OK;}}6、算法如下:#define OK 1#define ERROR 0Int Delet(LInkList L,int mink,int maxk){ Node *p,*q;p=L;while(p->next!=NULL)p=p->next;if(mink<maxk||(L->next->data>=mink)||(p->data<=maxk)) { printf(“参数不合法”);return ERROR;}else{ p=L;while(p->next-data<=mink)p=p->next;while(q->data<maxk){ p->next=q->next;free(q);q=p->next;}return OK;}}9、算法如下:int Dele(Node *S){ Node *p;P=s->next;If(p= =s){printf(“只有一个结点,不删除”);return 0;}else{if((p->next= =s){s->next=s;free(p);return 1;}Else{ while(p->next->next!=s)P=p->next;P->next=s;Free(p);return 1;}}}第三章习题答案2、(1)3、栈有顺序栈和链栈两种存储结构。

在顺序栈中,栈顶指针top=-1时,栈为空;栈顶指针top=Stacksize-1时,栈为满。

在带头结点链栈中,栈顶指针top-〉next=NULL,则代表栈空;只要系统有可用空间,链栈就不会出现溢出,既没有栈满。

5、#include<seqstack1.h>#include "stdio.h"void main( ){char ch,temp;SeqStack s;InitStack(&s);scanf("%c",&ch);while(ch!='@'&&ch!='&'){Push(&s,ch);scanf("%c",&ch);}while(ch!='@'&&!IsEmpty(&s)){Pop(&s,&temp);scanf("%c",&ch);if(ch!=temp)break;}if(!IsEmpty(&s))printf("no!\n");else{scanf("%c",&ch);if(ch=='@') printf("yes!\n");else printf("no!\n");}}12、(1)功能:将栈中元素倒置。

(2)功能:删除栈中的e元素。

(3)功能:将队列中的元素倒置。

第四章习题答案1、StrLength(s)操作结果为14;SubString(sub1,s,1,7)操作结果为sub1=’I AM A ’;SubString(sub2,s,7,1)操作结果为sub2=’’;StrIndex(s,’A’,4) 操作结果为5;StrReplace(s,’STUDENT’,q) 操作结果为’I AM A WORKER’;StrCat(StrCat(sub1,t), StrCat(sub2,q)) 操作结果为’I AM A GOOD WORKER’;2、int StrReplace(SString S,Sstring T,SString V){int i=1; //从串S的第一个字符起查找串Tif(StrEmpty(T)) //T是空串return ERROR;do{i=Index(S,T,i); //结果i为从上一个i之后找到的子串T的位置if(i) //串S中存在串T{StrDelete(S,i,StrLength(T)); //删除该串TStrInsert(S,i,V); //在原串T的位置插入串Vi+=StrLength(V); //在插入的串V后面继续查找串T }}while(i);return OK;}第五章习题答案1、(1)数组A共占用48*6=288个字节;(2)数组A的最后一个元素的地址为1282;(3)按行存储时loc(A36)=1000+[(3-1)*8+6-1]*6=1126(4)按列存储时loc(A36)=1000+[(6-1)*6+3-1]*6=11929、(1)(a,b)(2)((c,d))(3)(b)(4)b(5)(d)10、D第六章习题答案1、三个结点的树的形态有两个;三个结点的二叉树的不同形态有5个。

2、略3、证明:分支数=n1+2n2+…+kn k(1)n= n0+n1+…+n k (2)∵n=分支数+1 (3)将(1)(2)代入(3)得n0= n2+2n3+3n4+…+(k-1)n k+14、注:C结点作为D的右孩子(画图的时候忘记了,不好意思)5、n0=50,n2=n0-1=49,所以至少有99个结点。

6、(1)前序和后序相同:只有一个结点的二叉树(2)中序和后序相同:只有左子树的二叉树(3)前序和中序相同:只有右子树的二叉树7、证明:∵n个结点的K叉树共有nk个链域,分支数为n-1(即非空域)。

∴空域=nk-(n-1)=nk-n+18、对应的树如下:9、(答案不唯一)哈夫曼树如下图所示:哈夫曼编码如下:频率编码0.07 00100.19 100.02 000000.06 00010.32 010.03 000010.21 110.10 001111、对应的二叉树如下:12、求下标分别为i和j的两个桔点的最近公共祖先结点的值。

typedef int ElemType;void Ancestor(ElemType A[],int n,int i,int j){while(i!=j)if(i>j) i=i/2;else j=j/2;printf("所查结点的最近公共祖先的下标是%d,值是%d",i,A[i]);}15、编写递归算法,对于二叉树中每一个元素值为X的结点,删去以它为根的子树,并释放相应的空间。

void Del_Sub(BiTree T){ if(T->lchild) Del_Sub(T->lchild);if(T->rchild) Del_Sub(T->rchild);free(T);}void Del_Sub_x(BiTree T,int x){ if(T->data==x) Del_Sub(T);else{if(T->lchild) Del_Sub_x(T->lchild,x);if(T->rchild) Del_Sub_x(T->rchild,x);}}22、int Width(BiTree bt){if (bt==NULL) return (0);else{BiTree p,Q[50];int front=1,rear=1,last=1;int temp=0, maxw=0;Q[rear]=bt;while(front<=last){p=Q[front++]; temp++;if (p->lchild!=NULL) Q[++rear]=p->lchild;if (p->rchild!=NULL) Q[++rear]=p->rchild;{last=rear;if(temp>maxw) maxw=temp;temp=0;}}return (maxw);}}第七章习题答案1、(1)顶点1的入度为3,出度为0;顶点2的入度为2,出度为2;顶点3的入度为1,出度为2;顶点4的入度为1,出度为3;顶点5的入度为2,出度为1;顶点6的入度为2,出度为3;(2)邻接矩阵如下:0 0 0 0 0 01 0 0 1 0 00 1 0 0 0 10 0 1 0 1 11 0 0 0 0 01 1 0 0 1 0(3)邻接表(4)逆邻接表2、答案不唯一(2)深度优先遍历该图所得顶点序列为:1,2,3,4,5,6边的序列为:(1,2)(2,3)(3,4)(4,5)(5,6)(3)广度优先遍历该图所得顶点序列为:1,5,6,3,2,4边的序列为:(1,5)(1,6)(1,3)(1,2)(5,4)3、(1)每个事件的最早发生时间:ve(0)=0,ve(1)=5,ve(2)=6, ve(3)=12, ve(4)=15, ve(5)=16,ve(6)=16, ve(7)=19, ve(8)=21, ve(9)=23每个事件的最晚发生时间::vl(9)=23, vl(8)=21, vl(7)=19, vl(6)=19, vl(5)=16, vl(4)=15,vl(3)=12, vl(2)=6, vl(1)=9, vl(0)=0(2)每个活动的最早开始时间:e(0,1)=0, e(0,2)=0, e(1,3)=5, e(2,3)=6, e(2,4)=6, e(3,4)=12, e(3,5)=12,e(4,5)=15, e(3,6)=12, e(5,8)=16, e(4,7)=15, e(7,8)=19, e(6,9)=16, e(8,9)=21 每个活动的最迟开始时间:l(0,1)=4, l(0,2)=0, l(1,3)=9, l(2,3)=6, l(2,4)=12, l(3,4)=12, l(3,5)=12, l(4,5)=15, l(3,6)=15, l(5,8)=16, l(4,7)=15, l(7,8)=19, l(6,9)=19, l(8,9)=21(3)关键路径如下图所示:4、顶点1到其余顶点的最短路经为:1-〉3最短路经为1,3;长度为151-〉2最短路经为1,3,2;长度为191-〉5最短路经为1,3,5;长度为251-〉4最短路经为1,3,2,4;长度为291-〉6最短路经为1,3,2,4,6;长度为4413、A(7)B(3)C(2)D(11)E(8)14、略15、略第八章查找1、画出对长度为10的有序表进行折半查找的判定树,并求其等概率时查找成功的平均查找长度。

相关文档
最新文档