高二数学知识点总结大大全(必修)

合集下载

高二数学知识点总结大全

高二数学知识点总结大全

高二数学知识点总结大全一、集合与函数1. 集合的概念和表示方法2. 集合的运算:交集、并集、差集、补集3. 集合的基本性质和运算规律4. 函数的概念和表示方法5. 函数的性质:定义域、值域、单调性、奇偶性6. 函数的图像、反函数和复合函数二、平面几何1. 直线与射线的性质与关系2. 角的概念、性质和分类:锐角、直角、钝角3. 举例说明平行线和垂直线的判定方法4. 三角形的分类:按角度分类、按边长分类5. 三角形的面积与周长的计算方法6. 三角形内角和、外角和的计算与性质7. 三角形相似性质与判定8. 三角形的中线、高线和垂心、重心的概念与性质三、数列与数列的极限1. 数列的概念与表示方法2. 等差数列与等比数列的性质3. 数列的通项公式与前n项和的公式4. 数列极限的定义与性质5. 数列极限的计算方法:夹逼定理、单调有界准则6. 数列极限存在的判定7. 数列极限与数列的收敛性和发散性的关系四、函数的导数与应用1. 函数的导数与导数的基本性质2. 基本初等函数的导数3. 导数的四则运算法则与复合函数的求导法则4. 高阶导数与隐函数求导5. 函数的单调性与极值点的判定6. 函数的凹凸性与拐点的判定7. 泰勒公式与函数图像的描绘8. 最值问题与最速下降问题的应用五、概率统计1. 随机事件与样本空间的概念2. 概率的定义、性质和计算方法3. 条件概率和乘法定理4. 全概率公式和贝叶斯定理5. 随机变量与概率密度函数的概念6. 二项分布、正态分布和泊松分布的性质与应用7. 抽样调查与统计推断的方法六、立体几何1. 空间几何体的基本概念与性质:点、线、面、体2. 空间几何体的投影、截面和旋转3. 圆柱体、圆锥体、棱锥体、棱柱体的特征与计算4. 球的性质与计算5. 空间向量的概念与基本运算法则6. 向量与几何体的应用:平面的方程、直线的方程七、三角函数1. 弧度与角度的转化关系2. 基本三角函数的定义与性质3. 三角函数图像的性质与变换4. 和差化积公式、倍角公式、半角公式的推导与应用5. 三角方程的解法与求解区间以上为高二数学知识点总结的大致内容,希望对你的学习有所帮助。

高二数学知识点归纳总结

高二数学知识点归纳总结

高二数学知识点归纳总结一、函数1.1 点与直线•直线函数的基本性质和常用公式•直线的斜率和方向角的概念及其计算方法•直线的截距和截角的概念及计算方法1.2 一次函数•基本性质和常用公式•斜率与函数图像的关系•函数的单调性和范围1.3 二次函数•基本性质和常用公式•函数图像的性质•最值和顶点的计算方法•参数 a 的影响1.4 分段函数•函数的定义和表示方法•函数的连续性和间断点•绝对值函数的性质二、数列2.1 等差数列•基本概念和性质•求通项公式和前 n 项和•等差中项的性质2.2 等比数列•基本概念和性质•求通项公式和前 n 项和•等比中项的性质2.3 递推数列•数列的递推公式及求解方法•递推数列的收敛性和极限2.4 数列极限•数列极限的概念和性质•收敛数列和发散数列的判断方法•Stolz 定理的应用三、三角函数3.1 弧度制与角度制•弧度制与角度制的定义和相互转换•弧度弧长公式和扇形面积公式3.2 三角函数初步•正弦、余弦、正切等三角函数的定义•三角函数图像和周期•三角函数的通性3.3 三角函数的诱导公式•三角函数诱导公式的意义和基本公式•诱导公式的变形和推广•诱导公式的应用3.4 三角函数的图像与性质•三角函数图像的性质和特点•三角函数的奇偶性和周期性•三角函数的单调性和单调区间四、空间几何4.1 点、直线、平面•空间几何要素之间的关系•管理空间位置和方向的基本方法•基本的测量和计算方法4.2 曲面和曲线•空间曲面和曲线的定义和性质•常见的曲线和曲面的名称、特点和应用•曲面和曲线的参数方程和极坐标方程4.3 空间角•角的基本概念和性质•一般空间角和二面角的定义•空间角的计算方法和性质4.4 空间向量•向量的基本概念和性质•向量的表示和运算方法•向量的数量积和向量积的概念和计算方法五、微积分5.1 导数及其应用•导数的定义和计算方法•导数的几何意义和物理意义•导数在应用问题中的应用5.2 函数的极限•函数极限的概念和性质•函数单侧极限的概念和意义•极限的基本计算方法和判定方法5.3 函数的连续性•函数连续的定义和判定法•连续函数的基本性质和中值定理•函数间的连续性和复合函数的连续性5.4 微分学基本定理•微分学基本定理的概念和形式•复合函数求导的方法•链式法则和其他微分公式六、概率与统计6.1 概率初步•随机事件的基本概念和性质•概率的定义和计算方法•概率的性质和常见的概率分布6.2 统计基本概念•统计数据的意义和数据处理方法•统计分布和数据的度量•统计学的基本规律和方法6.3 正态分布和参数估计•正态分布的概念和性质•正态分布的计算方法和统计应用•参数估计的基本原理和方法6.4 假设检验•假设检验的概念和基本步骤•假设检验的标准误和 P 值的计算方法•假设检验的应用和限制。

高二知识点数学总结归纳五篇(高二学考数学知识点总结)

高二知识点数学总结归纳五篇(高二学考数学知识点总结)

高二知识点数学总结归纳五篇(高二学考数学知识点总结)高二同学要依据自己的条件,以及高中阶段学科学问交叉多、综合性强,以及考查的学问和思维触点广的特点,找寻一套行之有效的学习方法。

下面就是给大家带来的高二数学学问点总结,希望能关怀到大家!高二数学学问点总结1一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的挨次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点留意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)留意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

高二数学知识点总结_高二数学知识点

高二数学知识点总结_高二数学知识点

高二数学知识点总结_高二数学知识点高二数学是高中数学的重要阶段,主要学习内容包括函数、数列、三角函数、解析几何、概率论等。

以下是高二数学的主要知识点总结。

1. 函数(1) 函数及其表示:函数的定义、函数的自变量、因变量和函数值,函数的表示方法。

(2) 函数的性质:奇偶性、周期性、单调性、有界性等。

(3) 函数的运算:四则运算、复合函数、反函数等。

(4) 函数的图像:函数的平移、对称、伸缩等。

(5) 初等函数:指数函数、对数函数、幂函数、三角函数等。

(6) 函数的极值和最值:最大值、最小值、极值点、最值点等。

2. 数列(1) 定义和性质:数列的概念、数列的项、首项、公差、通项等。

(2) 常见数列:等差数列、等比数列、斐波那契数列等。

(3) 数列的运算:数列的加法、减法、数列的乘法和除法等。

(4) 数列的极限:数列的有界性、数列的单调性、数列的极限等。

3. 三角函数(1) 基本概念:角度、弧度、正弦、余弦、正切等。

(2) 基本关系式:正弦定理、余弦定理、正切定理等。

(3) 三角函数的图像与性质:正弦函数、余弦函数、正切函数等。

(4) 三角函数的运算:和差化积、积化和差等。

(5) 三角方程与三角不等式:解三角方程、解三角不等式、三角方程的应用等。

4. 解析几何(1) 平面直角坐标系:坐标轴、坐标、距离等。

(2) 直线与圆:直线的方程、直线的位置关系、圆的方程、圆的性质等。

(3) 曲线的方程与图像:二次函数、三次函数、指数函数、对数函数等的图像与性质。

(4) 平面向量:向量的概念、向量的运算、向量的线性相关与线性无关等。

(5) 空间几何:点、直线、平面的位置关系、立体图形的体积与表面积等。

5. 概率论(1) 随机事件与概率:随机事件的概念、概率的基本性质等。

(2) 事件的运算:事件的并、交、差、余等。

(3) 条件概率与独立事件:条件概率的概念、独立事件的概念等。

(4) 随机变量与概率分布:随机变量的概念、离散型随机变量、连续型随机变量等。

高二数学都学哪些知识点

高二数学都学哪些知识点

高二数学都学哪些知识点高二数学学习的知识点数学是一门重要的科学学科,对于高中学生来说,数学是必修的一门学科。

高二是数学学科的重要阶段,学生在这一年需要掌握并牢固基础知识,为高考做好准备。

下面将重点介绍高二数学学习的知识点。

一、函数与方程1.1 函数的概念和性质:自变量、因变量、定义域、值域、奇偶性、单调性等。

1.2 一次函数:直线的斜率和截距,两点确定一条直线等。

1.3 二次函数:顶点、对称轴、平移、拉伸等。

1.4 不等式与方程:一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等。

二、三角函数与解三角形2.1 三角函数的定义和性质:正弦、余弦、正切等。

2.2 三角函数的图像与性质:周期性、奇偶性等。

2.3 解三角形:正弦定理、余弦定理、面积公式等。

三、向量与坐标系3.1 向量的定义和性质:向量的模、方向、垂直、平行、共线等。

3.2 平面直角坐标系:直角坐标系的表示、距离公式等。

3.3 向量的运算:向量的加法、减法、数量积、向量积等。

四、数列与数列的极限4.1 数列的概念和性质:通项、公比、和等。

4.2 等差数列与等比数列:首项、公差、公比等。

4.3 数列求和:等差数列求和公式、等比数列求和公式等。

4.4 数列的极限:极限的定义、收敛与发散等。

五、导数与微分5.1 导数的概念和性质:导数的定义、导数的几何意义、导数的运算法则等。

5.2 常见函数的导数:常数函数、幂函数、指数函数、对数函数等。

5.3 函数的最值和单调性:极值点、临界点、函数单调性的判断等。

5.4 微分:微分的定义、微分的应用等。

六、概率与统计6.1 概率的基本概念:随机事件、样本空间、几何概率等。

6.2 条件概率与独立性:条件概率的计算、独立事件与互斥事件等。

6.3 统计与频率分布:频数、频率、频率分布表等。

6.4 统计图表的应用:条形图、折线图、饼图、直方图等。

以上是高二数学学习中的主要知识点,这些知识点涵盖了数学的基本理论和应用技巧,对于学生的数学学习和解题能力的提升至关重要。

数学高二的知识点有哪些

数学高二的知识点有哪些

数学高二的知识点有哪些在高二数学学习中,学生将继续深入探索数学的各个领域。

下面将介绍高二数学的主要知识点。

一、函数与方程1. 函数的概念与性质:变量、函数的定义域和值域、函数图像、奇偶函数、周期函数等。

2. 一次函数与二次函数:定义、性质、图像、方程、不等式等。

3. 指数与对数函数:指数函数的性质、图像、指数方程与指数不等式;对数函数的性质、图像、对数方程与对数不等式。

4. 三角函数:正弦、余弦、正切函数的性质、图像、周期、相反三角函数、三角方程与三角恒等式。

5. 逆函数:函数的反函数、求反函数、反函数图像。

二、立体几何1. 空间几何体:立体的面、棱和顶点的性质,如正方体、长方体、正六面体等。

2. 空间图形的计算与性质:体积、表面积的计算公式,球、圆柱、锥等的性质与计算。

3. 空间坐标与方程:空间中的坐标系、坐标平面、空间直线、球面的方程。

三、概率与统计1. 随机事件与概率:基本概念、性质、计算方法;加法原理、乘法原理、区间型随机事件。

2. 排列组合与二项式定理:排列、组合的计算、性质与应用;二项式展开与二项式系数。

3. 样本调查与统计:统计指标的计算和比较、频率分布表与频率直方图、统计图的制作与分析。

四、数列与数学归纳法1. 数列的概念与性质:等差数列、等比数列的定义、通项公式、前n项和等的计算公式。

2. 递推关系与解法:递归定义、常用数列的递推关系,如斐波那契数列等。

3. 数学归纳法:数学归纳法的基本思想、证明方法与应用。

五、导数与函数的应用1. 导数的概念与性质:导数的定义、求导法则、导数的应用。

2. 函数的最值与最值问题:函数的增减性与极值、最值问题的应用。

3. 函数与曲线图像:函数图像的特征、一阶导数与函数的增减性、二阶导数与曲线的凹凸性。

六、三角函数与向量1. 三角函数的图像与性质:正弦、余弦、正切函数的周期、对称轴等性质。

2. 三角函数的运用:角度的换算、解三角方程、证明与运用三角恒等式。

高二数学知识点总结大大全(必修)

高二数学知识点总结大大全(必修)

高二数学知识点总结大全(必修)第1章空间几何体11 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=(二)空间几何体的体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面222rrlSππ+=D CBAαAC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

高二数学知识点必修总结

高二数学知识点必修总结

高二数学知识点必修总结高二数学是中学阶段的重要学科之一,也是理科学生必修的一门课程。

在高二数学学习过程中,我们需要掌握一系列的知识点,下面将对这些知识点进行必修总结,并提供一些学习建议。

一、函数与方程1. 函数与映射函数是数学中一种重要的关系,可以用来描述两个变量之间的对应关系。

在函数的学习过程中,我们需要了解函数的定义、函数的性质以及函数的图像等相关内容。

2. 一次函数与二次函数一次函数是一种最简单的函数形式,可以表示为y = kx + b的形式,其中k和b为常数。

二次函数是一种常见的函数形式,可以表示为y = ax^2 + bx + c的形式,其中a、b和c为常数。

我们需要学习一次函数和二次函数的性质、图像以及应用等内容。

3. 线性方程与二次方程线性方程与二次方程是常见的数学方程形式。

线性方程可以表示为ax + b = 0的形式,其中a和b为常数。

二次方程可以表示为ax^2 + bx + c = 0的形式,其中a、b和c为常数。

我们需要学习解线性方程和二次方程的方法以及应用。

二、平面几何1. 直线与曲线直线是最简单的几何图形,可以通过两点确定。

我们需要学习直线的性质、方程以及直线的相关定理和推论。

曲线是指不是直线的线段,常见的曲线包括圆、椭圆、双曲线等。

我们需要学习曲线的定义、性质以及相关定理和推论。

2. 三角形与多边形三角形是平面几何中最基本的多边形,我们需要学习三角形的性质、分类以及相关定理,如勾股定理、正弦定理、余弦定理等。

多边形是指边数大于三的几何图形,我们需要学习多边形的性质、分类以及相关定理,如多边形的内角和定理等。

三、立体几何1. 空间几何体空间几何体包括球体、圆柱体、锥体、棱柱体等。

我们需要学习这些几何体的性质、表面积、体积以及相关定理,如球的体积公式、圆柱体的表面积公式等。

2. 空间坐标与向量空间坐标系统是用来描述空间位置的一种方法,我们需要学习三维坐标的表示方法以及空间点的坐标计算。

高中高二上册数学知识点

高中高二上册数学知识点

高中高二上册数学知识点
一、集合与函数
1. 集合的定义与表示
2. 集合的运算与性质
3. 集合的应用
二、数列与数列的极限
1. 数列的概念与表示
2. 数列的性质与分类
3. 数列的极限及其计算
三、三角函数
1. 弧度制与角度制
2. 基本三角函数的定义与性质
3. 三角函数的图像与性质
四、平面向量
1. 向量的概念与表示
2. 向量的运算与性质
3. 向量的坐标与平移
五、解析几何
1. 平面与直线的方程
2. 圆与抛物线的方程
3. 解析几何中的应用问题
六、数学推理与证明
1. 数学语言与符号的运用
2. 命题与命题的逻辑运算
3. 数学证明方法与证明思路
七、立体几何
1. 空间中的点、线、面
2. 立体图形的性质与分类
3. 空间几何中的应用问题
八、概率与统计
1. 随机事件与概率
2. 概率的计算方法与性质
3. 统计与统计图表的应用
以上列举了高中高二上册数学的一些重要知识点。

希望这些知
识点能够帮助你更好地学习与掌握数学。

在学习过程中,要结合
教材上的具体例题进行练习,同时多进行思考与思维训练,灵活
应用所学知识解决实际问题。

数学需要坚实的基础与不断的练习,相信只要你用心去学,一定能够取得优异的成绩!。

高二第一学期数学知识点

高二第一学期数学知识点

高二第一学期数学知识点高二数学是学生在高中数学中的一个重要阶段,本学期包括了多个重要的数学知识点。

在本文中,我们将总结和介绍高二第一学期数学的主要知识点。

一、函数与方程1. 一次函数:函数的定义、函数图像、求解一次方程等。

2. 二次函数:函数的定义、函数图像、求解二次方程等。

3. 指数函数与对数函数:指数函数的定义、性质、图像及应用;对数函数的定义、性质、图像及应用等。

二、三角函数与解三角形1. 三角函数的定义与性质:正弦函数、余弦函数、正切函数等。

2. 角的变化与三角函数的图像:角度制与弧度制的转化,三角函数的周期与图像变化等。

3. 解三角形:根据已知条件,利用三角函数的关系来求解三角形的各个要素。

三、平面几何1. 向量与坐标:平面向量的定义与性质,向量的坐标表示,向量的数量积与向量的夹角等。

2. 二次曲线与圆:抛物线、椭圆、双曲线及圆的定义与性质。

3. 平面向量与几何应用:平面向量的共线、垂直、平行等关系的判定与应用,三角形重心、垂心、外心、内心的坐标等。

四、概率论与数理统计1. 随机事件与概率:随机事件的概念、基本性质、计算概率的方法等。

2. 第一、第二类试验与概率:基于组合数的概率计算方法。

3. 随机变量与概率分布:离散型随机变量、连续型随机变量的定义与性质。

4. 统计与抽样:总体、样本与统计量的概念,抽样方法与抽样分布的基本性质。

五、解析几何1. 平面解析几何:直线的方程、与直线的位置关系等。

2. 空间解析几何:平面方程、直线方程、直线与平面的位置关系等。

以上是高二第一学期数学的主要知识点。

学生们应该通过理论学习、教师讲解、练习题与应用题的反复训练来掌握这些知识。

在学习过程中,要注重理论与实际的结合,灵活运用数学知识解决实际问题。

同时,要注意培养数学思维和逻辑推理能力,提高解题的思维能力和创新能力。

通过对高二第一学期数学知识点的学习和掌握,可以为学生的数学素养的提高奠定基础,也为以后的学习打下坚实的数学基础。

高二数学全册重要知识点整理

高二数学全册重要知识点整理

高二数学全册重要知识点整理高二数学全册重要知识点集合一、集合概念(1)集合中元素的特征:确定性,互异性,无序性。

(2)集合与元素的关系用符号=表示。

(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。

(4)集合的表示法:列举法,描述法,韦恩图。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。

f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

高二数学知识点总结大大全(必修)

高二数学知识点总结大大全(必修)

高二数学知识点总结大全(必修)第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R Sπ=(二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内222r rl Sππ+= D CBAα符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

高二数学学科知识点汇总

高二数学学科知识点汇总

高二数学学科知识点汇总一、函数与方程1. 实数与复数1.1 实数的性质和运算法则1.2 复数的定义和运算法则2. 一元二次函数2.1 一元二次函数的定义和性质2.2 一元二次方程的解法及应用3. 二次函数与二次方程3.1 二次函数的图像与性质3.2 二次函数的最值和零点3.3 二次方程的解法和应用4. 指数与对数函数4.1 指数函数的定义和性质4.2 对数函数的定义和性质4.3 指数方程和对数方程的解法5. 三角函数与三角方程5.1 三角函数的定义和性质5.2 三角函数的图像和变换5.3 三角方程的解法及应用二、空间与立体几何1. 空间几何基本概念1.1 空间几何的公理与定理1.2 点、线、面及其相互关系2. 空间图形的性质与分类2.1 线段、角的性质与分类2.2 三角形的性质与分类2.3 四边形的性质与分类3. 空间立体图形3.1 平行线与平面的关系3.2 空间中的立体图形与四面体3.3 空间中的立体图形与棱柱、棱锥、圆锥、球等4. 空间的解析几何4.1 三维坐标系的表示和应用4.2 空间点、线、面的位置关系和距离计算4.3 空间几何问题的解析几何方法三、概率与统计1. 随机事件与概率1.1 随机事件的概念与性质1.2 概率的定义和计算1.3 互斥事件与对立事件2. 随机变量与概率分布2.1 随机变量的定义和分类2.2 离散型随机变量及其概率分布2.3 连续型随机变量及其概率密度3. 统计与抽样调查3.1 总体与样本的概念3.2 随机抽样与抽样分布3.3 参数估计与假设检验4. 统计图与图表解读4.1 统计图的图示和构造4.2 图表解读与数据分析四、解析几何与向量代数1. 平面解析几何1.1 平面的一般方程和法线方程1.2 点、直线和圆的位置关系1.3 直线与平面的交线问题2. 空间解析几何2.1 空间的一般方程和法线方程2.2 空间曲线的方程和参数方程2.3 空间的平面与直线的位置关系3. 向量代数基础知识3.1 向量的概念与性质3.2 向量的坐标表示和运算法则3.3 向量的数量积和向量积4. 向量的应用4.1 向量与几何运动4.2 向量与平面图形的性质4.3 向量与立体几何的应用五、数列与数学归纳法1. 数列的基本概念1.1 数列的定义和性质1.2 数列的分类和常用记号2. 等差数列与等比数列2.1 等差数列的性质和通项公式2.2 等比数列的性质和通项公式2.3 等差数列与等比数列的应用3. 数学归纳法3.1 数学归纳法的基本原理3.2 利用数学归纳法证明不等式和恒等式3.3 利用数学归纳法解决应用问题文章到此结束,内容涵盖了高二数学学科的重要知识点,通过对每个知识点的介绍和讲解,使读者能够全面了解和掌握这些知识,提升数学学科的学习效果和成绩。

高二数学知识点总结大全(必修)69032

高二数学知识点总结大全(必修)69032

高二数学知识点总结大全(必修)第1章空间几何体11 三视图:画三视图的原则:长对齐、高对齐、宽相等直观图:斜二测画法2空间几何体的表面积与体积表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系222rrlSππ+=1直线、平面之间的位置关系 2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据3 直线与直线之间的位置关系空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; LA αCBA αPαLβ共面直平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

公理4:平行于同一条直线的两条直线互相平行。

2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa∥b 2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

高二数学必考知识点总结分享【5篇】

高二数学必考知识点总结分享【5篇】

高二数学知识点1一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

高二数学课程必背知识点总结(3篇)

高二数学课程必背知识点总结(3篇)

高二数学课程必背知识点总结1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1kk!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

高二数学知识点总结大全必修

高二数学知识点总结大全必修

高二数学几何部分知识点总结大全(必修)第1章空间几何体1 1三视图:画三视图的原则:长对齐、高对齐、宽相等直观图:斜二测画法2空间几何体的表面积与体积表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系1直线、平面之间的位置关系2 三个公理:(1)公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面222rrlSππ+=符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据3 直线与直线之间的位置关系空间的两条直线有如下三种关系:相交直线:同一平面,有且只有一个公共点;平行直线:同一平面,没有公共点;异面直线: 不同在任何一个平面,没有公共点。

公理4:平行于同一条直线的两条直线互相平行。

2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a ∥α a ∥b2.2.2 平面与平面平行的判定LA ·α C ·B·A· α P· αLβ共面直线1、两个平面平行的判定定理:一个平面的两条交直线与另一个平面平行,则这两个平面平行。

高二数学必修课重点知识点总结(8篇)

高二数学必修课重点知识点总结(8篇)

高二数学必修课重点知识点总结(8篇)高二数学必修课重点知识点总结(8篇)高二数学必修课知识点总结怎么写才能发挥它的作用呢总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,下面是小编给大家整理的高二数学必修课重点知识点总结,仅供参考希望能帮助到大家。

高二数学必修课重点知识点总结篇1(1)总体和样本:①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查高二数学必修课重点知识点总结篇21、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等、4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点总结大全(必修)第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积 2r rlS ππ+=4 圆台的表面积 22R Rl r rl S ππππ+++= 5 球的表面积 24R S π=(二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内222r rl S ππ+= D C B A α符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a ∩α=A a ∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a ∥α a ∥bL A· α C ·B· A · α P · α Lβ 共面直线=>a ∥c 22.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:a βb βa ∩b = P β∥α a ∥α b ∥α2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理;(3)垂直于同一条直线的两个平面平行。

2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a ∥αa β a ∥b α∩β= b作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:α∥βα∩γ= a a ∥b β∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定 1、定义如果直线L 与平面α内的任意一条直线都垂直,我们就说直线L 与平面α互相垂直,记作L ⊥α,直线L 叫做平面α的垂线,平面α叫做直线L 的垂面。

如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。

L pα2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。

2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图第三章 直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围: 0°≤α<180°.当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直的斜率::缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k)(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0L1:2x+y +2=0解:解方程组 34202220x y x y +-=⎧⎨++=⎩得 x=-2,y=2所以L1与L2的交点坐标为M (-2,2)3.3.2 两点间距离 两点间的距离公式12PP =3.3.3 点到直线的距离公式 1.点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=2、两平行线间的距离公式:已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=第四章圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离; (2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 内切; (5)当||21r r l -<时,圆1C 与圆2C 内含; 4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. 4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。

相关文档
最新文档