《二次函数与一元二次方程》(教师版)
4二次函数与一元二次方程——教师版
4.二次函数与一元二次方程难度:易1.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(72,0)B.(3,0)C.(52,0)D.(2,0)【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.2.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴ b2 2,解得:b=﹣4,∴关于x的方程为x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.3.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.1 1.2 1.3 1.4y﹣1﹣0.490.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.3【解答】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选:C.4.如图,以(1,﹣4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6【解答】解:∵二次函数y=ax2+bx+c的顶点为(1,﹣4),∴对称轴为x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是﹣3<x<﹣2,∴右侧交点横坐标的取值范围是4<x<5.故选:C.5.二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图所示,则方程ax2+bx+c=m 有实数根的条件是()A.m≥﹣4B.m≥0C.m≥5D.m≥6【解答】解:∵抛物线的顶点坐标为(6,﹣4),即x=6时,二次函数有最小值为﹣4,∴当m≥﹣4时,直线y=m与二次函数y=ax2+bx+c有公共点,∴方程ax2+bx+c=m有实数根的条件是m≥﹣4.故选:A.6.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.难度:中7.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项中正确的是()x 1.6 1.8 2.0 2.2 2.4y﹣0.80﹣0.54﹣0.200.220.72A.1.6<x1<1.8B.1.8<x1<2.0C.2.0<x1<2.2D.2.2<x1<2.4【解答】解:∵﹣0.20<0<0.22,∴2.0<x1<2.2.故选:C.8.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx 与直线y=t的交点的横坐标,由题意可知:m=4,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.9.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1B.x1=1,x2=3C.x1=﹣1,x2=3D.x1=﹣3,x2=1【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x 2a2a 1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.故选:C.10.若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<1【解答】解:∵函数y=x2﹣2x+b的图象与坐标轴有三个交点,如果b=0,那么此二次函数与两坐标轴的其中一个交点重合了,那么就只有2个交点,则于题意不符,∴△ 2 2 4b>0 b 0,解得b<1且b≠0.故选:A.11.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则1x11x2的值为.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2 42 2,x1•x212,∴1x11x2x1 x2x1⋅x24,故答案为:﹣4.12.已知抛物线y=x2﹣2x﹣a.(1)若抛物线与x轴有两个交点,求a的取值范围;(2)当代数式x2﹣2x﹣1的值为负整数时,求x的值;(3)设抛物线与y轴的交点A与顶点B所在直线与x轴交于点C,抛物线与x轴的右交点为D,是否存在C,D两点关于y轴对称的情况?如果不存在,说明理由;如果存在,求此时a的值.【解答】解:(1)∵抛物线与x轴有两个交点,∴Δ>0,∴4+4a>0,∴a>﹣1;(2)设y=x2﹣2x﹣1=(x﹣1)2﹣2,顶点为(1,﹣2),∴当y=﹣2时,x=1,当y=﹣1时,即y=x2﹣2x﹣1=﹣1,解得x=0或2,故x的值为1或0或2;∴x的值为﹣1;(3)∵抛物线解析式为y=x2﹣2x﹣a,∴对称轴为x 22 1,∴顶点坐标为(1,﹣a﹣1),∵x=0时,y=﹣a,∴点A坐标为(0,﹣a),设直线AB解析式为y=kx+b,代入A、B点得:k=﹣1,b=﹣a,∴直线AB解析式为y=﹣x﹣a,∴点C坐标为(﹣a,0),∵C,D两点关于y轴对称,∴点D坐标为(a,0),∵点D在抛物线上,代入点D得:a2﹣2a﹣a=0,解得:a=3,∵a>﹣1,∴a=3符合题意,∴此时a的值为3.难度:难13.若函数y=mx2+(m+2)x 12m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣2【解答】解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x 12m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(12m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.14.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2【解答】解:抛物线y=ax2+2ax+m的对称轴为直线x 2a2a 1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C .am 23D .点P 1(t ,y 1),P 2(t +1,y 2)在抛物线上,当实数t >13时,y 1<y 2【解答】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x b2a 1,∴b =﹣2a <0,∴ab <0,所以A 选项的结论正确;∵抛物线的对称轴为直线x =1,抛物线与x 轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x 轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax 2+bx +c =0的正实数根在2和3之间,所以B 选项的结论正确;把B (0,﹣2),A (﹣1,m )代入抛物线得c =﹣2,a ﹣b +c =m ,而b =﹣2a ,∴a +2a ﹣2=m ,∴am 23,所以C 选项的结论正确;∵点P 1(t ,y 1),P 2(t +1,y 2)在抛物线上,∴当点P 1、P 2都在直线x =1的右侧时,y 1<y 2,此时t ≥1;当点P 1在直线x =1的左侧,点P 2在直线x =1的右侧时,y 1<y 2,此时0<t <1且t +1﹣1>1﹣t ,即12<t <1,∴当12<t <1或t ≥1时,y 1<y 2,所以D 选项的结论错误.故选:D .16.已知关于x 的函数y =(m ﹣1)x 2+2x +m 图象与坐标轴只有2个交点,则m =.【解答】解:(1)当m ﹣1=0时,m =1,函数为一次函数,解析式为y =2x +1,与x 轴交点坐标为( 12,0);与y 轴交点坐标(0,1).符合题意.(2)当m ﹣1≠0时,m ≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m 12)2<54,解得m m将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m故答案为:1或0或1 5 2.17.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.【解答】解:如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线x=2m的左侧部分(包括点D),此时最低点P(m,﹣m2+m),当m=0时,显然不符合题意有两个交点,当m<0时,如图2中,图象G是抛物线在直线x=2m的左侧部分(包括点D)与x轴只要一个交点不符合题意,∴当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,△=4m2﹣4m=0,∴m=1或0(舍弃),∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,最低点P(m,﹣m2+m),所以顶点组成抛物线:y=﹣x2+x=﹣(m 12)2 14,且过定点(12,14),第11页(共11页)∴观察图象可知,当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是12<x 1<1,故答案为12<x 1<1.18.如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为.【解答】解:设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴过点(1,0),与x 轴的一个交点是P (4,0),∴与x 轴的另一个交点Q (﹣2,0),把(﹣2,0)代入解析式得:0=4a ﹣2b +c ,∴4a ﹣2b +c =0,故答案为:0.。
2.3二次函数与一元二次方程、不等式习题课课件(人教版)
思考:当a∈R时,变式1的解集又如何求解?
典例分析
变式1:求不等式(ax-2)(x-3)>0(a>0)的解集.
解:当
a
2 3
,即
2 a
3 时,不等式解集为
x
|
x
3或x
2
a
.
当a 2 ,即 2 3 时,不等式解集为x | x 3 .
4
目标检测
4 已知关于x的不等式 a2 4x2 a 2x 1≥ 0的解集为空集,则实数
a的取值范围是_________.
解析:②当a2-4≠0,即a≠±2. 因为关于x的不等式(a2-4)x2+(a-2)x-1≥0解集为空集,
所以
a2
4 0
0,
解得
5 6
<a<2.
综上可得:a的取值范围是
3a
当a
2 3
,即
2 a
3
时,不等式解集为 x
|
x
2 a
或x
3
.
典例分析
思考:当a∈R时,变式1的解集又如何求解?
解:当a=0时,不等式可化为x-3<0,解得x<3.
当a≠0时,方程(ax-2)(x-3)=0的根为 2 ,3. a
若a<0,则 2 3 ,不等式解为 2 x 3.
a
a
若a>0,则
之后与例2相同,略.
②对于x2-ax+1<0,Δ=a2-4, 所以当-2≤a≤2,
即Δ≤0时,不等式的解集为φ.
当a>2或a<-2,即Δ>0时,
不等式的解集为{x | a
a2 4 x a
a2 4 }
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。
通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。
但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。
三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。
2.学会运用二次函数的性质解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。
2.如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。
2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。
3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。
4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的多媒体课件和教学素材。
2.准备一些实际问题,用于让学生运用二次函数解决。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。
例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。
2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。
高中数学必修一 (教案)二次函数与一元二次方程、不等式
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
初中数学《二次函数与一元二次方程》教案
教学设计如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x 轴交点情况判断下列函数的图象与x 只有一个交点的是( )A .y =x 2+2x -3B .y =x 2+2x +3C .y =x 2-2x +3D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点,故选D.【类型二】利用二次函数图象与x 轴交点坐标确定抛物线的对称轴如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x 轴交点情况确定字母取值范围若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-2解析:若m ≠0,二次函数与x 轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m =0,原函数是一次函数,图象与x 轴也有一个交点.由(m +2)2-4m (12m +1)=0,解得m =2或-2,当m =0时原函数是一次函数,图象与x 轴有一个交点,所以当m =0,2或-2时,图象与x 轴只有一个交点.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.。
2.3二次函数与一元二次方程、不等式(第一课时)课件(人教版)
(3)-x2-3x+4<0.
1
答案:(1){x|x<- ,或
2
x>2}
(3){x|x<-4,或x>1}
(2){x|x =2}
特别的,若一元二次不等式情势如下,则可直接写相
应解集:
1)(x-x1)(x-x2)>0(x1<x2)解集为 {x|x<x1 ,或 x>x2} ;
2)(x-a)2<b (b>0)解集为 {x|a- <x<a+ } .
数据分析
逻辑推理
数学运算
课堂小结
三、本节课训练的数学思想方法
函数结合
方程思想
转化与化归
分类讨论
基础作业:
.
02 能力作业:
.
01
03
拓展延伸:(选做)
例3. 求不等式-x2+2x-3 > 0 的解集 .
解:原不等式可化为x2-2x+3 < 0
因为判别式△=-8<0,
方程x2-2x+3 =0无实根.
原不等式的解集为.
方法总结:二次系数为负,先要化为正,再由判别式及函数
图像情况作出判断.
一元二次不等式求解流程图
练一练
求下列不等式的解集:
(1)2x2-3x>2;
a2-4<0,且判别式△=(a+2)2+4(a2-4)<0.
6
解得:-2≤a<
5
方
法
总
结
当二次系数含参变量时,要考虑它是否为零,
故需要分类讨论.
2.3.1 二次函数与一元二次方程、不等式
高中数学教案《二次函数与一元二次方程、不等式》
教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。
2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。
3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。
二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。
难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。
三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。
提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。
这实际上涉及到一元二次方程和不等式的求解问题。
明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。
2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。
一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。
一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。
强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。
人教版九年级数学上册22.2.1《二次函数与一元二次方程》教学设计
人教版九年级数学上册22.2.1《二次函数与一元二次方程》教学设计一. 教材分析人教版九年级数学上册第22.2.1节《二次函数与一元二次方程》是整个初中数学的重要内容,也是难点内容。
本节主要介绍二次函数的性质,以及如何从二次函数图像上找到一元二次方程的根。
教材通过实例引导学生探究二次函数与一元二次方程之间的关系,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了函数和方程的基础知识,具备一定的逻辑思维能力和探究能力。
但是对于二次函数与一元二次方程之间的联系,还需要通过实例和操作来进一步理解和掌握。
学生在学习过程中可能对一些概念和性质的理解存在困难,需要教师耐心引导和讲解。
三. 教学目标1.理解二次函数的性质,掌握二次函数与一元二次方程之间的关系。
2.能够从二次函数图像上找到一元二次方程的根。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.二次函数的性质和图像。
2.二次函数与一元二次方程之间的关系。
3.如何从二次函数图像上找到一元二次方程的根。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数与一元二次方程之间的关系。
2.利用多媒体课件和实物模型,直观展示二次函数的图像和性质。
3.采用小组合作学习的方式,让学生在讨论和操作中掌握知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和答案。
3.小组合作学习的指导方案。
七. 教学过程1.导入(5分钟)利用多媒体课件展示二次函数的图像,引导学生观察和描述二次函数的性质。
2.呈现(10分钟)提出问题:二次函数与一元二次方程之间有什么关系?如何从二次函数图像上找到一元二次方程的根?3.操练(10分钟)让学生分组操作,利用实物模型和多媒体课件进行探究,尝试解答问题。
4.巩固(10分钟)教师引导学生总结二次函数的性质和一元二次方程的解法,加深学生对知识的理解。
5.拓展(10分钟)出示一些有关二次函数与一元二次方程的应用题,让学生小组合作解决问题,提高学生的应用能力。
优质课 精品教案 (省一等奖)《二次函数与一元二次方程(第1课时)》公开课教案
22.2 二次函数与一元二次方程教学时间课题22.2 二次函数与一元二次方程课型新授课教 学 目 标知 识 和能 力 通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。
过 程 和方 法 使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。
情 感 态 度 价值观进一步培养学生综合解题能力,渗透数形结合思想。
教学重点 使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题教学难点 进一步培养学生综合解题能力,渗透数形结合的思想 教学准备教师多媒体课件学生“五个一〞课 堂 教 学 程 序 设 计设计意图一、引言 在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。
本节课,请同学们共同研究,尝试解决以下几个问题。
二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水。
连喷头在内,柱高为。
水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。
根据设计图纸:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y =-x 2+2x +45。
(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教学要点1.让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y =-x 2+2x +45最大值,问题(2)就是求如图(2)B 点的横坐标;2.学生解答,教师巡视指导; 3.让一两位同学板演,教师讲评。
问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB =时,涵洞顶点与水面的距离为。
这时,离开水面处,涵洞宽ED 是多少?是否会超过1m?教学要点1.教师分析:根据条件,要求ED 的宽,只要求出FD 的长度。
北师大版数学九年级下册 二次函数与一元二次方程的关系教案与反思
5 二次函数与一元二次方程知己知彼,百战不殆。
《孙子兵法·谋攻》原创不容易,【关注】店铺,不迷路!第1课时二次函数与一元二次方程的关系【知识与技能】1.体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法.2.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图象特征.【过程与方法】经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想.【情感态度】培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质.【教学重点】经历“类比—观察—发现—归纳”而得出二次函数与一元二次方程的关系的探索过程.【教学难点】准确理解二次函数与一元二次方程的关系.一、情景导入,初步认知我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数Y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.【教学说明】让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生形成解决一类问题的通用方法的思维品质.二、思考探究,获取新知探究:画出y=x2+2x、y=x2-2x+1、y=x2-2x+2的图象,观察并解答:1.每个图象与x轴有几个交点?2.一元二次方程x2+2x=0、x2-2x+1=0、x2-2+2=有几个根?用判别式验证.3.函数y=ax2+bx+c的图象与x轴交点坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】引起学生的认知冲突,激发学生的求知欲望,大胆猜想,通过交流寻求解决类似问题的方法.【归纳结论】二次函数y=ax2+bx+c的图象与x轴交点有三种情况:有两个交点、一个交点、没有交点.当二次函数y=ax2+x+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、运用新知,深化理解1.知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=-1,x2=3C.2a-b=0D.当x>0时,y随x的增大而减小解析:根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断:A.∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故选项错误;B.∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C.∵抛物线对称轴为x=1,∴2a+b=0,故本选项错误;D.∵抛物线对称轴为x=1,开口向下,∴当x>1时y随x的增大而减小,故本选项错误.答案:B.2.如图,已知二次函数y=ax2+bx+c的部分图象,由象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=()A.-1.6B.3.2C.4.4D.以上都不对解析:根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图形和已知条件即可求出x2:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图形,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的个根分别是x1,x2那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.答案:C.3.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.8<x<9B.9<x<10C.10<x<11D.11<x<12解析:根据表格知道8<x<12,y随x的增大而增大,而-0.38<0<1.2,由此即可推方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围:依题意得当8<x<12,y随x的增大而增大,而-0.38<0<1.2,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是10<x<11.答案:C.【教学说明】学生独立完成3个小题,小组交流所做结果,练习巩固,加深理解.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表迸行总结,教师作以补充.1.布置作业:教材“习题2.10”中第2、3、4题.2.完成练习册中本课时的练习.本节课主要是向学生渗透两种思想:函数与方程互相转化的思想;数形结合思想.三种题型:函数图象与x轴交点的横坐标、方程根的个数、函数图象的交点坐标.【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
2020九年级数学上册 第二十二章 二次函数 22.2 二次函数与一元二次方程教案 (新版)新人教版
二次函数与一元二次方程课题:22.2 二次函数与一元二次方程.课时 1 课时教学设计课标要求从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.教材及学情分析1、教材分析:本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
2、学情分析知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系,利用类比的方法让学生进行交流合作学习应该不是难题;学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
课时教学目标1. 从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.2. 探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.3. 通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.重点二次函数的最大值,最小值及增减性的理解和求法.难点二次函数的性质的应用.教法学法指导启发法归纳法练习法教具准备课件教学过程提要二次方程ax+bx+c=0的关系角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:(3)小球的飞行高度能否达到20.5 m?为什函数解析式,得到关于t的一元二次方程.如果方程数形结合,的横坐标时,函数值是多少?由此,你能得出相应的3、判断抛物线与(1)抛物线y=x+x-2与x轴有两个公共点,小结从二次函数y=ax2+bx+c的图象可以得出如下结论:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x =x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根.(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.板书设计22.2 二次函数与一元二次方程.一、丛数的角度看:求一元二次方程ax2+bx+c=0的根,已知二次函数y=ax2+bx+c的值为0时,求自变量x的值。
课件《二次函数与一元二次方程》优秀课件完美版_人教版1
新知讲解
由上面的结论,我们可以利用二次函数的图象求 一元二次方程的根。由于作图或观察可能存在误差, 由图象求得的根,一般是近似的.
一元二次方程ax2+bx+c= 0根的判别式Δ=b2-4ac (2)由(1)知,该抛物线与x轴的交点坐标是(1,0)和(3,0).
(2)当x=3时,函数的值是0.由此得出方程 (1)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.
(2)方程x2-x+1=0没有实数根.
x -6x+9=0有两个相等的实数根3. 2 所以与 x 轴有交点,有两个交点。
有关系:h=20t-5t2,考虑以下问题: (1)解:当y=0时,x2+x-2=0 (1)抛物线y=x2-x+1与x轴没有公共点.
(1)抛物线y=x2-x+1与x轴没有公共点.
与一元二次方程 小颖用几何画板软件探索方程ax2+bx+c=0的实数根,作出了如图所示的图象,观察得一个近似根为x1=-4.
x1≈0.7,x2≈2.7.
课堂练习
1.二次函数y=ax2+bx+c(a≠0)的图象如图所示
,其对称轴为x=1,下列结论中错误的是( (2)正确作出点M,N;
(2)方程x2-x+1=0没有实数根. (3)球的飞行高度能否达到20.
)
(3)写出方程的根为-0. t2-4t+4=0,解得:t1=t2=2. 解:(1) 当h=15m时,
所以与 x 轴有交点,有两个交点。
(1)y=x2+x-2;
北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1
北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版九年级数学下册2.5《二次函数与一元二次方程》这一节主要介绍了二次函数与一元二次方程之间的关系。
通过学习,学生能够理解二次函数的图像与一元二次方程的解法,以及如何将一元二次方程转化为二次函数的问题。
教材通过具体的例子和练习题,帮助学生掌握这一知识点。
二. 学情分析九年级的学生已经学习过一次函数和二次函数的基本概念,对函数的图像和解法有一定的了解。
然而,对于二次函数与一元二次方程之间的联系,他们可能还不太清楚。
因此,在教学过程中,我需要通过具体的例子和练习题,帮助学生理解和掌握这一知识点。
三. 说教学目标1.知识与技能目标:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。
2.过程与方法目标:通过观察、分析和解决实际问题,学生能够培养自己的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂讨论,培养自己的合作意识和团队精神,增强对数学学习的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。
2.教学难点:学生能够理解二次函数的图像与一元二次方程的解法之间的联系,能够运用二次函数的知识解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、讨论法和练习法等教学方法。
同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引出二次函数与一元二次方程之间的关系,激发学生的兴趣和好奇心。
2.讲解:通过讲解和示例,引导学生理解和掌握二次函数与一元二次方程之间的关系,以及如何将一元二次方程转化为二次函数的问题。
3.练习:通过课堂练习和小组讨论,巩固学生对二次函数与一元二次方程之间关系的理解,培养学生的思考能力和解决问题的能力。
【教案】二次函数与一元二次方程、不等式说课稿-高一上学期数学人教A版(2019)必修第一册
《2.3二次函数与一元二次方程、不等式》说课稿尊敬的各位评委老师:大家好!我说课的题目是《二次函数与一元二次方程、不等式》,内容选自人教A版普通高中教科书必修第一册第二章第3节,以下我将从教学分析与处理、学情分析、教学目标、教学重难点确定、教学过程与教学策略、教学效果与教学反思、练习、作业和板书设计等九个方面对我的教学设计进行阐述。
第一方面:教学分析与处理函数、方程和不等式都是中学数学中非常重要的内容,用函数理解方程和不等式是数学的基本思想方法。
用二次函数观点看一元二次方程、一元二次不等式,可以让学生在初中的相关内容的基础上,进一步理解函数、方程与不等式之间的联系,逐步形成用函数统领方程和不等式的意识,进而体会数学的整体性。
作为高中数学课程中的预备知识,本章起着衔接初高中数学的作用,在教学中,应引导学生结合本章知识的学习,从知识与技能、方法与习惯、能力和素养等方面实现从初中到高中数学学习的过渡。
第二方面:学情分析1.知识掌握上,学生对二次函教的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题.2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣,进而由一次函数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。
第三、四方面:教学目标、教学重难点确定根据以上对教材和学生的分析,我确定了本节课的教学目标为:(1)经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。
(2)借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系,体会数学的整体性.(3)能够借助二次函数,求解一元二次不等式,并利用一元二次不等式解决一些实际应用问题,提升数学运算素养.借助二次函数的图象研究一元二次方程与一元二次不等式,使研究方程和不等式的方法更具一般性和代表性,因此,从函数的角度来研究方程和不等式,体现数学的整体性,凸显函数的重要地位,其中涉及的数形结合、函数思想等都是数学中重要的思想方法。
《二次函数与一元二次方程》word教案 (公开课获奖)2022苏教版
二次函数和方程课型:新授一、学习目标:1、使学生能熟练地画出二次函数y=ax2+bx+c(a≠0)的图象,并能结合图象初步能判断a、b、c的符号。
2、结合二次函数y=ax2+bx+c(a≠0)的图象感受二次函数与不等式、方程的关系。
二、〔一〕复习旧知:1、二次函数y=ax2+bx+c(a≠0)的对称轴是_______,顶点坐标是___________。
2、无论x取任何实数,函数y=x2+2x-3中,函数值y的取值范围是〔〕A、y≥-4B、y≤-4C、y≥-3D、取任何实数3、当0≤x≤5时,函数y=3x2-12x+5的取值范围是________________4、在右图中:〔1〕当x满足_________时,y=0 〔2〕当x满足_________时,y>0〔3〕当x满足_________时,y<0〔二〕自主探究问题1:想一想,如何根据图象确定二次函数y=ax2+bx+c(a≠0)中a、b、c的符号,〔1〕a的符号与抛物线的___________有关,有什么结论?______________________________________〔2〕抛物线y=ax2+bx+c(a≠0)与y轴的交点坐标是________因此抛物线与y轴的交点:①在y轴正半轴上时,c与0的大小关系是___________;②在y轴负半轴上时,c与0的大小关系是___________;③在原点时,c与0的大小关系是___________。
〔3〕对称轴与_____ 有关,如何确定b的符号?〔4〕二次函数y=ax2+bx+c(a≠0)的图象如下图,那么〔〕A、a<0,b>0,c<0B、a<0,b<0,c>0,C、a<0,b<0,c<0,D、a<0,b>0,c>0三、例1、〔1〕二次函数y=ax2+bx+c(a≠0)的图象如下图,那么你能判断出以下量的符号吗?a___0;b___0;c____0;abc___0、2a+b___0、a+b+c___0、a-b+c___0、b2-4ac___0 、4a+2b+c____0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数与一元二次方程》同步练习题第1题. 抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的情况为 .答案:092-<没有实数根.第2题. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( )A.0个 B.1个C.2个D.1个或2个答案:C第3题. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a-;④当0b =时,函数的图像关于y 轴对称. 其中正确命题的个数是( )A.1个 B.2个 C.3个D.4个答案:C第4题. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于点,此时m =.答案:一4第5题. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移 个单位.答案:4或9第6题. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )A.116m <-B.116m -≥且0m ≠ C.116m =-D.116m >-且0m ≠ 答案:B第7题. 已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是h 和k 的值.答案:21()3y x h k =--+,顶点()h k ,在2y x =上,2h k ∴=,22221122()3333y x h h x hx h ∴=--+=-++.又它与x轴两交点的距离为12x x a∴-==== 求得2h =±,4k =,即2h =,4k =或2h =-,4k =. 第8题. 已知函数22y x mx m =-+-.(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点; (2)若函数y 有最小值54-,求函数表达式. 答案:(1)222()4(2)48(2)4m m m m m ∆=---=-+=-+,不论m 为何值时,都有0∆>, 此时二次函数图像与x 轴有两个不同交点.(2)2244(2)5444ac b m m a ---==- ,2430m m -+=,1m ∴=或3m =,所求函数式为21y x x =--或231y x x =-+.第9题. 下图是二次函数2y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于A 点. (1)根据图像确定a ,b ,c 的符号,并说明理由;(2)如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数的函数表达式.答案:(1)抛物线开口向上,0a >;图像的对称轴在y 轴左侧,02ba-<,又0a >, 0b ∴>;图像与y 轴交点在x 轴下方,0c ∴<.0a ∴>,0b >,0c <.(2)(03)A -,,3OA =,45ABC ∠= ,60ACB ∠= ,3tan OA OB ABC==∠,tan 60OA OC ==(30)B ∴-,,C.设二次函数式为(3)(y a x x =+,把(03)-,代入上式,得a =∴所求函数式为23)(1)3y x x x x =+=+-. 第10题. 已知抛物线222m y x mx =-+与抛物线2234m y x mx =+-在直角坐标系中的位置如图所示,其中一条与x 轴交于A ,B 两点.(1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点的距离AO ,OB 满足条件1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式.答案:(1)抛物线不过原点,0m ≠,令2202m x m x -+=,2221()402m m m ∆=--⨯=-<,222m y x mx =-+∴与x 轴无交点,∴抛物线2234y x mx m =+-经过A ,B 两点. (2)设1(0)A x ,,2(0)B x ,,1x ,2x 是方程22304x mx m +-=的两根12x x m +=-,21234x x m =-,A 在原点左边,B 在原点右边,则1AO x =-,2OB x =.123OB OA 1-=.211123x x ∴+=,121223x x x x +=,22334m m -=-,得2m =,∴所求函数式为223y x x =+-. 第11题. 已知二次函数2224y x mx m =-+.(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC的面积为表达式.答案:(1)22222(4)421688m m m m m ∆=--⨯⨯=-=.0m ≠ ,280m ∴>,∴这个抛物线与x 轴有两个不同交点.(2)设1(0)A x ,,212(0)()B x x x >,,则1x ,2x 是方程22240x mx m -+=两根,122x x m +=,2122m x x =,21AB x x =-====, C 点纵坐标22224816442c ac b m m y m a --===-⨯, ∴△ABC 中AB 边上的高22h m m =-=.212ABC S AB h m m === ,2m =,2m =±, 2284y x x ∴=++或2284y x x =-+.第12题.如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x =.答案:第13题. 已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=. (1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标;(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)由122(1)x x m +=-,2127x x m =-,22222121212()24(1)2(7)10x x x x x x m m +=+-=---=,得2m =,11x ∴=-,23x =,(10)A -,,(30)B ,.(2) 抛物线过A ,B 两点,其对称轴为1x =,顶点纵坐标为4-,∴抛物线为2(1)4y a x =--. 把1x =-,0y =代入得1a =,∴抛物线函数式为223y x x =--,其中(03)C -,.(3)存在着P 点.(10)A - ,,(03)C -,,(14)M -,,(30)B ,,∴9ACMB S =四形,18ABP S = , 即1182P y AB =.4AB = ,9P y ∴=.把9y =代入抛物线方程得11x =,21x =+,(1P ∴-或(1P +.第14题. 二次函数269y x x =-+-的图像与x 轴的交点坐标为 . 答案:(3,0)第15题. 二次函数25106y x x =-+的图像与x 轴有 个交点. 答案:0第16题. 对于二次函数2135y x x =++,当12x =时,y = . 答案:11320第17题. 如图是二次函数2246y x x =--的图像,那么方程22460x x --=的两根之和 0. 答案:>第18题. 求下列函数的图像与x(1)25166y x x =-+; (2)2336y x x =+-. 答案:(1)(13,0),(12,0),图略 (2)(1,0),(2-,0),图略第19题. 一元二次方程20ax bx c ++=的两根为1x ,2x ,且214x x +=,点(38)A -,在抛物线2y ax bx c =++上,求点A 关于抛物线的对称轴对称的点的坐标.答案:(1,8-)第20题. 若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )A.a c + B.a c - C.c - D.c 答案:D第21题. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A.2y x =B.24y x =+ C.2325y x x =-+D.2351y x x =+-答案:D第22题. 二次函数256y x x =-+与x 轴的交点坐标是( )A.(2,0)(3,0) B.(2-,0)(3-,0) C.(0,2)(0,3) D.(0,2-)(0,3-) 答案:A第23题. 试说明一元二次方程2441x x -+=的根与二次函数244y x x =-+的图像的关系,并把方程的根在图象上表示出来.答案:一元二次方程2441x x -+=的根是二次函数244y x x =-+与直线1y =的交点的横坐标,图略. 第24题. 利用二次函数图象求一元二次方程的近似根.210x x +-=答案:1 1.6x ≈-,20.6x ≈第25题. 利用二次函数图象求一元二次方程的近似根.24834x x --=-答案:1 1.9x ≈,20.1x ≈第26题. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A.有两个不相等的实数根 B.有两个异号的实数根 C.有两个相等的实数根D.没有实数根答案:C第27题. 利用二次函数的图象求一元二次方程的近似值.2530x x --=答案:1 5.5x ≈,20.5x ≈-第28题. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是( )A.没有交点B.只有一个交点 C.有且只有两个交点D.有且只有三个交点答案:A第29题. 已知二次函数212y x bx c =-++,关于x 的一元二次方程2102x bx c -++=的两个实 根是1-和5-,则这个二次函数的解析式为 答案:215322y x x =--- 第30题. 已知二次函数2(0)y ax bx c a =++≠的顶点坐标(1 3.2)--,及部分图象(如图4所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x = .答案: 3.3-y。