专题1.3 代数式(第01期)-2018年中考数学试题分项版解析汇编(解析版)

合集下载

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编目录【中考汇编】2018版中考数学真题汇编:1.1实数【中考汇编】2018版中考数学真题汇编:1.2整式及其运算【中考汇编】2018版中考数学真题汇编:1.3因式分解【中考汇编】2018版中考数学真题汇编:1.4分式【中考汇编】2018版中考数学真题汇编:1.5二次根式【中考汇编】2018版中考数学真题汇编:2.1一元一次方程【中考汇编】2018版中考数学真题汇编:2.2一元二次方程【中考汇编】2018版中考数学真题汇编:2.3二元一次方程组【中考汇编】2018版中考数学真题汇编:2.4不等式与不等式组【中考汇编】2018版中考数学真题汇编:3.1平面直角坐标系【中考汇编】2018版中考数学真题汇编:3.2一次函数【中考汇编】2018版中考数学真题汇编:3.3二次函数【中考汇编】2018版中考数学真题汇编:3.4反比例函数【中考汇编】2018版中考数学真题汇编:4.1图形的初步认识【中考汇编】2018版中考数学真题汇编:4.2三角形【中考汇编】2018版中考数学真题汇编:4.3全等三角形【中考汇编】2018版中考数学真题汇编:4.4等腰三角形【中考汇编】2018版中考数学真题汇编:4.5多边形【中考汇编】2018版中考数学真题汇编:4.6矩形、菱形、正方形【中考汇编】2018版中考数学真题汇编:5.1圆的有关概念与性质【中考汇编】2018版中考数学真题汇编:5.2圆的有关计算【中考汇编】2018版中考数学真题汇编:5.3与圆有关的位置关系【中考汇编】2018版中考数学真题汇编:6.1视图与投影【中考汇编】2018版中考数学真题汇编:6.2轴对称、平移、旋转【中考汇编】2018版中考数学真题汇编:6.3图形的相似【中考汇编】2018版中考数学真题汇编:6.4锐角三角函数【中考汇编】2018版中考数学真题汇编:7.1统计【中考汇编】2018版中考数学真题汇编:7.2概率【中考汇编】2018版中考数学真题汇编专题(1)规律探索问题【中考汇编】2018版中考数学真题汇编专题(2)开放探究问题【中考汇编】2018版中考数学真题汇编专题(3)方案设计问题【中考汇编】2018版中考数学真题汇编专题(4)图表信息问题【中考汇编】2018版中考数学真题汇编专题(5)阅读理解问题【中考汇编】2018版中考数学真题汇编专题(6)运动变化问题第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)³3的结果是() A.-3 B.-2 C.2 D.3解析(-1)³3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6³1013元B.60³1011元C.6³10元D.6³10元解析6万亿=60 000³100 000 000=6³104³108=6³1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26³23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________.解析∵23=8,∴8的立方根是2.答案 211.(2015·浙江湖州,11,4分)计算:23³⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23 三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4³2-1. 解 原式=5+2³12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2³⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2³(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)³3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)³3=-2³3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为 ( )A .253.7³108B .25.37³109C .2.537 ³1010D .2.537 ³1011解析 253.7亿=253.7³10=2.537 ³10,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8³10-4.答案 8³10-13.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4³22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4³2-1-(2-1)0. 解 原式=3+4³12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3²x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3²2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·福建福州,6,3分)计算a·a-的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3²a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a 2b 2,故本选项正确;D.(a 2)3=a 6,故本选项错误.故选C. 答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是( )A .a ²a =aB .(x -2)(x +3)=x -6C .(x -2)2=x 2-4D .2a +3a =5a解析 A 中,a 2·a 4=a 6,∴A 错误;B 中,(x -2)(x +3)=x 2+x -6,∴B 错误;C 中,(x -2)2=x 2-4x +4,∴C 错误;D 中,2a +3a =(2+3)a =5a ,∴D 正确.故选D. 答案 D 二、填空题6.(2013·浙江台州,11,5分)计算:x 5÷x 3=________. 解析 根据同底数幂除法法则,∴x 5÷x 3=x 5-3=x 2. 答案 x 27.(2013·浙江义乌,12,4分)计算:3a ·a 2+a 3=________. 解析 3a ·a 2+a 3=3a 3+a 3=4a 3. 答案 4a 38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23³53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2³(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x+2x-1=(x-1)C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分 式A 组 2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x 可变形为( )A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·山东济南,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是 ( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A5.(2015·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析1a -1+a1-a =1-a a -1=-1. 答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n+n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________. 解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2²x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w=1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3²⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A. 答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1 B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2³a -1a +1 =1a -1,故选A.答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<b a <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析 m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________.解析 1a -1+a 1-a =1a -1-aa -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝ ⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x+2y =3³(-1)+2³3+2³(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )²a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ²x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)²x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5二次根式A组2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.6.(2015·江苏南京,12,3分)计算5³153的结果是________. 解析5³153=5³5=5. 答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析 原式=32-2=2 2. 答案 2 2 三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3³1tan 60°+|2-3|.解 -32+3³1tan 60°+|2-3|=-9+3³13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎝ ⎛⎭⎪⎫1+52-1-52=15³5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15³1³5=1.B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22³5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 ( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2错误;212=2³22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab²ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 1解析 原式=3³2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2. 解1x -y ÷⎝⎛⎭⎪⎫1y -1x =1x -y ²xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%³108 B.54-x=20%(108+x)C.54+x=20%³162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x2-1x+1=0的解是()A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x 的解x =________. 解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟; 第三种情况,乙达到5 cm 后,乙比甲高0.5 cm ,时间为17140分钟. 答案 35或3320或171408.(2015·湖北,13,3分)分式方程1x -5-10x 2-10x +25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22³2.3=50.6<71,∴x>22,∴22³2.3+(x-22)³(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·广东深圳,18,8分)解方程:x2x-3+53x-2=4.解去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x -2x +10x -15=24x -52x +24,即7x -20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5³20³(1+20%)³2 400y +2 400³(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意. 答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x +2=1的解是 ( )A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·浙江台州,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·浙江丽水,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·黑龙江齐齐哈尔,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46.∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x +70=3.答案 1 487x -1 487x +70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x -1-3x 2-1=0. 解 方程两边同乘x 2-1,得: x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1²x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94. 答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4³1³m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析 先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4³2³(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a³(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根。

2018年中考数学试题分项版解析汇编(第01期)专题1.3 代数式(含解析)

2018年中考数学试题分项版解析汇编(第01期)专题1.3 代数式(含解析)

专题1.3 代数式一、单选题1.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. a2与a1不是同类项,不能合并,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A点睛:本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.6.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B【点睛】本题考查了同底数幂乘法、合并同类项、同底数幂除法、二次根式加减,熟练掌握各运算的运算法则是解题的关键.7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.8.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.11.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.12.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 13.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D【点评】考查同底数幂的除法,合并同类项,同底数幂的乘法,熟记它们的运算法则是解题的关键. 14.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.15.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B点睛:本题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.17.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.18.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.19.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,符合题意;选项,故将、代入,输出结果为,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.25.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣1点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.30.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】4035【解析】【分析】整理得,从而可得a n+1-a n=2或a n=-a n+1,再根据题意进行取舍后即可求得a n的表达式,继而可得a2018.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n=2.32.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1【点评】考查代数式的求值,找出其中的规律是解题的关键.三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+12点睛: 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.35.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)【点睛】本题考查了整式的混合运算、解一元一次不等式,熟练掌握整式的运算法则、一元一次不等式的解法是关键.37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)【点评】本题考查了整式的混合运算、分式的混合运算,熟练掌握各运算的运算法则是解题的关键. 40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.【解析】【分析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得.(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】见解析.点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.。

2018年中考数学真题知识分类练习试卷:代数式(含答案)

2018年中考数学真题知识分类练习试卷:代数式(含答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。

2018年中考化学试题分项版解析汇编第01期专题8.1金属材料、金属资源的利用、保护(含解析)

2018年中考化学试题分项版解析汇编第01期专题8.1金属材料、金属资源的利用、保护(含解析)

专题8.1 金属材料、金属资源的利用、保护一、选择题1.【2018年江西省】常温下为液态的金属是A.汞 B.金 C.银 D.铝【答案】A【解析】常温下,铝、银、金等大多数金属都是固体,但金属汞熔点最低,常温下为液态。

故选A。

2.【2018年江苏省南京市】通常状况下,颜色呈紫红色的金属是A.铁 B.银 C.铜 D.铝【答案】C3.【2018年四川省成都市】科学家发现一种新金属。

根据右表信息推测其用途错误的是A.用于焊接金属 B.制造航天飞机C.制外科手术刀 D.用于通讯设备【答案】A【解析】A、该金属的熔点高,不能作为焊接金属,错误;B、该金属的硬度大,耐腐蚀,密度小,熔点高,故可以制作飞机,正确;C、该金属硬度大,耐腐蚀,可以制外科手术刀,正确;D、该金属具有导电性,故可用于通讯设备,正确。

故选A。

4.【2018年山东省威海市】材料是时代进步的标志。

下列关于材料的说法错误的是A.塑料属于有机合成高分子材料 B.玻璃属于硅酸盐材料C.制造芯片的硅属于非金属材料 D.铝镁合金属于复合材料【答案】D【解析】A.塑料属于有机合成高分子材料,正确;B.玻璃属于硅酸盐材料,正确;C.制造芯片的硅属于非金属材料,正确;D.铝镁合金属于金属材料,错误。

故选D。

5.【2018年山东省青岛市】下列实验现象描述错误的是A.鸡蛋清遇浓硝酸变黄 B.将镁条放入稀硫酸中,有大量气泡产生C.黄铜片和铜片互相刻划,铜片上留下的痕迹比黄铜片上的浅D.在氢氧化钠溶液中滴加酚酞试液,试液变红色【答案】C6.【2018年甘肃省平凉市】2017年春季,在张献忠沉银现场,考古安家发现了金币、银币、铜币和银锭,还有铁刀、铁矛等兵器,金币银币光亮如初,铁刀铁矛锈迹斑斑。

下列说法不正确的是A.金银铜铁都是重要的金属资源 B.金银的化学性质比铜铁更稳定C.自然界中,金、银、铜、铁主要以単质的形式存在D.可以用银、铁、硫酸铜溶液验证银、铁、铜三种金属的活动性顺序【答案】C【解析】A、金银铜铁在生产生活中有着广泛的用途,都是重要的金属资源,正确;B、在金属活动顺序表中,金、银排在铜、铁的后面,金、银的化学性质比铜、铁更稳定,正确;C、除少数很不活泼的金属(如金、银等)以单质形式存在外,其余的都以化合物的形式存在,金属铁在自然界中主要以化合物的形式存在。

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。

选择题和填空题共计65分,解答题共计85分。

试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。

二、选择题分析选择题共计15道,每道2分,共计30分。

选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。

如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。

A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。

解答题部分难度适中,考查了学生的运算能力和理解能力。

基础题型占多数,部分题目需要思维拓展,需要学生多加思考。

如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。

2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。

如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

专题1.3 代数式(第04期)-2018年中考数学试题分项版解析汇编(解析版)

专题1.3 代数式(第04期)-2018年中考数学试题分项版解析汇编(解析版)

2018中考数学试题分项解析(第04期)一、单选题1.下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【来源】2018年甘肃省陇南市中考数学试卷【答案】D【点睛】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.2.下列计算或运算中,正确的是()A.B.C.D.【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】C【解析】【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【详解】A、a6÷a2=a4,此选项错误;B、(−2a2)3=−8a6,此选项错误;C、(a−3)(3+a)=a2−9,此选项正确;D、(a−b)2=a2−2ab+b2,此选项错误;故选:C.【点睛】本题主要考查整式的混合运算,解题的关键是掌握同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式.学&科网3.下列运算正确的是()A.(﹣a+b)(a﹣b)×a2﹣b2=a2﹣b2B.a3+a4=a7C.a3•a2=a5D.23=6【来源】【全国市级联考】贵州省毕节市2018届中考数学试卷【答案】C【点睛】本题考查了有理数的乘方和整式的混合运算,解题的关键是熟练掌握运算法则.4.下列各式计算正确的是()A.2x•3x=6x B.3x-2x=x C.(2x)2=4x D.6x÷2x=3x【来源】四川省泸州市2017年中考数学试题【答案】B【解析】【分析】计算得到结果,即可作出判断【点睛】考查整式的混合运算,熟练掌握运算法则是解本题的关键.5.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【来源】山东省济宁市2018年中考数学试卷【答案】C【解析】【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【详解】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有:故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.6.下列运算中,结果是的是( )A.B.a10÷a2C.(a2)3D.(-a)5【来源】山东省济南市2018年中考数学【答案】A【点睛】本题考查了有关幂的运算,熟练掌握幂的运算的相关法则是解题的关键.7.下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【来源】【全国区级联考】2018年山东省济南市天桥区中考数学模拟试卷(6月份)【答案】C【解析】【分析】根据幂的乘方、完全平方公式、同底数幂的除法、合并同类项法则依次计算各选项后即可解答.【详解】选项A,(a3)2=a6;选项B,(a﹣b)2=a2﹣2ab+b2;选项C,a6÷a2=a4;选项D,a2+a2=2a2.由此可得只有选项C正确,故选C.【点睛】本题主要考查了幂的乘方、完全平方公式、同底数幂的除法、合并同类项法则等知识点的理解和掌握,能根据这些性质正确进行计算是解此题的关键.8.下列计算正确的是A.B.C.D.【来源】甘肃省兰州市2018年中考数学试卷【答案】D【点睛】本题考查了单项式乘以单项式、积的乘方、和合并同类项,正确掌握相关运算法则是解题关键.9.下列运算正确的是A.B.C.D.【来源】黑龙江省绥化市2018年中考数学试卷【答案】D【解析】【分析】根据合并同类项法则、二次根式的化简、同底数幂的乘法法则、0次幂的运算法则逐项进行计算即可得. 【详解】A. =5a,故A选项错误;B. 5,故B选项错误;C. ,故C选项错误;D. ,故D选项正确,故选D.【点睛】本题考查了合并同类项法则、同底数幂乘法、不等于零的数的零次幂等于1、二次根式的性质等知识,解题的关键是熟练掌握各运算的运算法则以及相关的性质.10.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是()A.9999 B.10000 C.10001 D.10002【来源】广西壮族自治区梧州市2018年中考数学试题【答案】A【解析】∴可得奇数位置的数是序数的平方加1,偶数位置的数是序数的平方减1,∴第100个数是1002﹣1=9999,故选A.【点睛】本题考查了规律题——数字的变化类,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.学&科网11.下列计算正确的是()A.7a-a=6 B.a2·a3=a5C.(a3)3=a6D.(ab)4=ab4【来源】【全国市级联考】辽宁省锦州市2018届中考数学试题【答案】B【点睛】本题主要考查了合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方的运算法则,熟记法则是解题的关键.12.计算结果是()A.B.C.D.3【来源】四川省泸州市2016年中考数学试题【答案】C【解析】【分析】直接利用合并同类项的知识求解即可求得答案【详解】所以C答案正确13.下列运算正确的是()A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a4【来源】山东省济宁市2018年中考数学试卷【答案】B【点睛】此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.14.下列运算正确的是()A.m3×㎡=m5B.2m+3n=5mn C.m6÷㎡=m3D.(m-n)2=㎡-n2【来源】•内蒙古巴彦淖尔市2018年中考数学试题【答案】A【解析】【分析】根据同底数幂乘法、合并同类项、同底数幂除法、完全平方公式逐项进行计算即可判断.【详解】A. m3×㎡=m5,正确,符合题意;B. 2m与3n不是同类项,不能合并,故错误,不符合题意;C. m6÷㎡=m4,故错误,不符合题意;D. (m-n)2=㎡-2mn+n2,故错误,不符合题意,故选A.【点睛】本题考查了幂的相关运算、完全平方公式等,熟练掌握各运算的运算法则以及完全平方公式的结构特征是解题的关键.二、填空题15.观察以下一列数:3,,,,,…则第20个数是_____.【来源】广西百色市2018年中考数学试卷【答案】【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.16.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第个格子的数为_____.【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【点睛】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.17.观察下列运算过程:S=1+3+32+33+…+32017+32018①,①×3得3S=3+32+33+…+32018+32019②,②﹣①得2S=32019﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=____.【来源】甘肃省天水市2018年中考数学试卷【答案】【解析】【分析】首先根据已知设S=1+5+52+53+…+52017+52018①,再将其两边同乘5得到关系式②,②﹣①即可求得答案.【详解】设S=1+5+52+53+…+52018①,则5S=5+52+53+54…+52019②,②﹣①得:4S=52019﹣1,所以S=,故答案为:.【点睛】本题考查了规律型——数字的变化类,涉及了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.学&科网18.将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆按此规律排列下去,则前50行共有圆______个【来源】黑龙江省绥化市2018年中考数学试卷【答案】2550【解析】【分析】先找出规律,确定出第n行圆的个数为2n个,即:第50行为100个,进而求2+4+6+8+⋯+100即可得出结论.【点睛】本题考查了规律题——图形的变化类,解题的关键是根据题意得出每行点数为行数的2倍是解题的关键. 19.如图,下列图案是由火柴棒按某种规律搭成的,第个图案中有2个正方形,第个图案中有5个正方形,第个图案中有8个正方形,则第个图案中有______个正方形,第n个图案中有______个正方形.【来源】青海省2018年中考数学试卷【答案】14;【解析】【分析】由题意知,正方形的个数为序数的3倍与1的差,据此可得.【点睛】本题考查了规律题——图形的变化类,发现正方形的个数为序数的3倍与1的差是解题的关键.20.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.【来源】湖北省十堰市2018年中考数学试卷【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.三、解答题21.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)【来源】山东省济宁市2018年中考数学试卷【答案】﹣4y+1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷【来源】重庆市2018年中考数学试卷(b卷)【答案】(1)4xy+5y2;(2)【解析】【分析】(1)原式利用完全平方公式,平方差公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】(1)原式=x2+4xy+4y2﹣x2+y2=4xy+5y2;(2)原式=.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根【来源】四川省乐山市2018年中考数学试题【答案】原式==2(m2+m﹣1).=2.点睛:本题主要考查整式的化简求值,解题的关键是掌握平方差公式和完全平方公式、整式的混合运算顺序和运算法则、方程的解的定义.24.(1)计算:+|﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).【来源】湖北省咸宁市2018年中考数学试卷【答案】(1);(2)2a﹣6.【解析】【分析】(1)按顺序先化简二次根式、计算立方根、去绝对值符号,然后再按运算顺序进行计算即可得;(2)按顺序先利用多项式乘多项式、单项式乘多项式的法则进行展开,然后再合并同类项即可得.【详解】(1)+|﹣2|=2﹣2+2﹣=;(2)(a+3)(a﹣2)﹣a(a﹣1)=a2﹣2a+3a﹣6﹣a2+a=2a﹣6.【点睛】本题考查了实数的混合运算、整式的混合运算,熟练掌握各运算的运算顺序以及运算法则是解题的关键.25.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【来源】贵州省贵阳市2018年中考数学试卷【答案】(1)矩形的周长为4m;(2)矩形的面积为33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.26.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.【来源】湖南省长沙市2018年中考数学试题【答案】5.点睛:此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.学&科网27.(1)计算:2﹣1+(2018﹣π)0﹣sin30°;(2)化简:(a+1)2﹣a(a+1)﹣1.【来源】江苏省镇江市2018年中考数学试卷【答案】(1)1;(2)a.【解析】【分析】(1)先分别进行负指数幂的运算、0次幂的运算、代入特殊角的三角函数值,然后再按运算顺序进行计算即可;(2)利用完全平方公式、单项式乘多项式的运算法则进行展开,然后再进行合并同类项即可.【详解】(1)2﹣1+(2018﹣π)0﹣sin30°=+1-=1;(2)(a+1)2﹣a(a+1)﹣1=a2+2a+1﹣a2﹣a﹣1=a.【点睛】本题考查了实数的混合运算、整式的混合运算,熟练掌握各运算的运算法则以及特殊角的三角函数值是解题的关键.。

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。

477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。

考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。

专题13 综合计算(第01期)-2016年中考化学试题分项版解析汇编(解析版)

专题13 综合计算(第01期)-2016年中考化学试题分项版解析汇编(解析版)

1.【2016年福建省泉州市】(6分)工厂烟气脱硫工艺,不仅能消除二氧化硫,还能将其转化为硫酸钙(CaSO4)等产品,实现“变废为宝”。

反应的化学方程式为:2CaCO3+O2+2SO2======2CaSO4+2CO2,现用1.25 t 含碳酸钙80%的石灰石吸收烟气中的二氧化硫。

求:(1)石灰石中碳酸钙的质量。

(2)可吸收二氧化硫的质量。

【答案】(1)1 t (2)0.64 t2.【2016年甘肃省白银市】(7分)某化学兴趣小组欲测定谋铁粉混合物中铁的质量分数,他们进行了如右图所示的实验。

请计算:(1)混合物中铁的质量;(2)反应后烧杯中稀硫酸无剩余,请计算所用稀硫酸中溶质的质量分数;(3)欲用98%的浓硫酸配制该浓度的稀硫酸200g需要水多少克?【答案】(1)5.6g (2)19.6%; (3)160g【解析】试题分析:(1)由图可知,滤渣4.4g为碳,故铁的质量为10g-4.4g=5.6g3.【2016年广东省】(9分)过氧化钙(CaO2)是一种环境友好的化工原料,工农业生产中用作漂白剂、种子消毒剂以及鱼类运输时的制氧剂等。

过氧化钙与水反应方程式为:2CaO2+2H2O=2Ca(OH)2+O2。

(1)若用150g某过氧化钙工业样品可制得氧气32g,请计算该过氧化钙样品的纯度(样品中CaO2的质量分数)是多少?(2)往150g上述过氧化钙工业样品中逐渐加入水至过量,在右图中画出产生氧气的曲线图。

(3)下表为市面上某种过氧化钙和过氧化钠(化学式为Na2O2,化学性质与CaO2类似)样品的一些数据:物质相对分子质量纯度价格(元/kg)Na2O278 98% 25CaO272 94% 24用3000元购买样品制氧气,请通过计算说明购买哪种产品可制得更多的O2(已知用3000元购买过氧化钙样品可制得26.1kg O2)?【答案】(1)96% (3)过氧化钙可制得更多的氧气4.【2016年湖南省郴州市】(7分)往100克含有盐酸和氯化钙的混合溶液中,加入21.2%的碳酸钠溶液,所得溶液的pH变化与加入碳酸钠溶液的质量关系如图,试分析计算:(1)a→b段表示碳酸钠与混合溶液中的反应;(2)反应到c点时,所得溶液的溶质质量分数是多少?(写出计算过程,精确到0.1%)【答案】(1)稀盐酸(2)15.6%【解析】试题分析:(1)盐酸和氯化钙的混合溶液中,滴加稀盐酸,盐酸会先于碳酸钠,溶液的pH值升高,然后碳酸钠再与氯化钙反应,溶液的pH值不变,反应结束,溶液的pH值会继续的增大,所以a→b段表示碳酸钠与混合溶液中的稀盐酸反应;(2)设盐酸和碳酸钠反应时,生成氯化钠质量为x,生成二氧化碳质量为y5.【2016年湖南省邵阳市】(8分)某化学兴趣小组参观了一个石灰厂时,带回了一些石灰石样品,同学们利用这些石灰石样品做了如下实验:取样品10g放入烧杯中,将50g稀盐酸分5次加入,实验过程所得的数据如表所示(已知石灰石样品中的杂质不参与反应,也不溶于水)。

2018年中考数学试题分项版解析汇编:专题02+代数式和因式分解(第01期)(东三省专版)

2018年中考数学试题分项版解析汇编:专题02+代数式和因式分解(第01期)(东三省专版)

【东三省部分】一、选择题1.(2015·黑龙江哈尔滨)下列运算正确的是( )(A )257()a a = (B )246a a a = (C )22330a b ab -= (D )2222a a ⎛⎫= ⎪⎝⎭2.(2015·辽宁营口)下列计算正确的是( ).A .22--=B .236a a a ⋅=C .()2139--=D= 3.(2015·辽宁大连)计算()2x 3-的结果是( ) A. 2x 6 B.2x 6- C.2x 9 D.2x 9-4.(2015·辽宁丹东)下列计算正确的是( ). A. 232a a a =+ B. C. 39±= D. ()623a a =5.(2015·辽宁沈阳)下列计算结果正确的是( )A.428a a a ⋅= B.527()a a = C.222()a b a b -=- D.222()ab a b =二、填空题有意义,则实数x 的取值范围是 . 2.(2015·辽宁葫芦岛)(3分)分解因式:2249m n -= .3.(2015·黑龙江哈尔滨)把多项式329a ab -分解因式的结果是4.(2015·辽宁营口)分解因式:22a c b c -+= .5.(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________. 6.(2015·辽宁大连)若a=49,b=109,则ab-9a 的值为:__________.7.(2015·辽宁丹东)分解因式:=+-121232x x .8.(2015·辽宁沈阳)分解因式:22ma mb -= .16142-=-三、解答题 1.(2015·辽宁葫芦岛)(10分)先化简,再求值:2121()1x x x x x x x ---÷-+,其中3x =.2.(2015·黑龙江哈尔滨)(本题 7分) 先化简,再求代数式2122()3x x y x xy x--?--的值,其中x=2+tan60°,y=4sin30°.3.(2015·黑龙江省黑河市、齐齐哈尔市、大兴安岭)(5分)先化简,再求值:221(1)11x x x ÷+--,其中x 是4.(2015·辽宁营口)先化简,再求值:2222111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭.其中m 满足一元二次方程2o o )12cos600m m +-=.5.(2015·黑龙江绥化)先化简 ,再求值.x x x x x x x 444122x 22-÷⎪⎭⎫ ⎝⎛+----+ , 其中 x=tan600+2 .(6分)6.(2015·辽宁丹东)先化简,再求值:212112+-÷⎪⎭⎫ ⎝⎛+-a a a ,其中,=a 3.。

2018年中考英语试题分项版解析汇编(第01期)专题12补全对话及短文填空(词或句子)或语法填空(含解析)

2018年中考英语试题分项版解析汇编(第01期)专题12补全对话及短文填空(词或句子)或语法填空(含解析)

专题12 补全对话及短文填空(词或句子)或语法填空1.【2018年江西中考】请先阅读下面短文,掌握其大意,然后用方框中所给词的适当形式填空,并将答案填写到答题卡的相应位置。

每个词限用一次。

know life different back and interesting sign real find theyThe planet Mars is the closest and most similar planet to Earth. It is very___24___to scientists. For example, Mars has seasons with___25___weather, but other planets have the same temperatures all year round. Was there___26___on Mars?To find out, scientists need___27___if Mars ever had water. In 2004. two robot explores (探测器), or 'rovers', called Spirit and Opportunity were sent to look for___28___of water. These rovers can drive over rocks___29___all kind of rough ground. They can also use cameras and send photos___30___ to Earth. First, the two rovers found chemicals and patterns (图文) in the rocks that were probably made by water. Then, they moved to another area and___31___other rocks which may have been created by water. Now scientists think there was probably water on the planet long ago. Today ___32___are still not sure if there was life on the mars. They___33___need more information to decide. The discoveries of the two rovers answered some old questions, but they also brought up many new ones.【答案】24. interesting25. different26. life 27. to know28. signs 29. and30. back 31. found32. they 33. really24. 句意:这对科学家来说是非常有趣的。

(完整版)2018中考数学真题汇编代数式

(完整版)2018中考数学真题汇编代数式

(完整版)2018中考数学真题汇编代数式2018中考数学真题汇编:代数式一.选择题(共25小题)1.(2018?齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.2.(2018?大庆)某商品打七折后价格为a元,则原价为()A.a元 B.a元 C.30%a元 D.a元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.3.(2018?河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.4.(2018?临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.5.(2018?枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.6.(2018?桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2018?安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a 万件和b万件,所以b=(1+22.1%)2a.故选:B.8.(2018?河北)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.9.(2018?贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.10.(2018?重庆)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.11.(2018?包头)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.12.(2018?武汉)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.13.(2018?淄博)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.14.(2018?台湾)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.15.(2018?随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33 B.301 C.386 D.571【分析】由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,据此得出最大的三角形数和正方形数即可得.【解答】解:由图形知第n个三角形数为1+2+3+…+n=,第n 个正方形数为n2,当n=19时,=190<200,当n=20时,=210>200,所以最大的三角形数m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数n=196,则m+n=386,故选:C.16.(2018?十堰)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故选:B.17.(2018?临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,D正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.18.(2018?绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1921 23 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633【分析】由三角形数阵,知第n行的前面共有1+2+3+…+(n﹣1)个连续奇数,再由等差数列的前n 项和公式化简,再由奇数的特点求出第n行从左向右的第m个数,代入可得答案.【解答】解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.19.(2018?宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.20.(2018?重庆)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【分析】根据第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3可得第④个图形中三角形的个数为2+2×7.【解答】解:∵第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3,……∴第⑦个图案中三角形的个数为2+2×7=16,故选:C.21.(2018?绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚) (1)(枚),11﹣1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.22.(2018?重庆)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.23.(2018?绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.24.(2018?济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.25.(2018?烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.【解答】解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.二.填空题(共17小题)26.(2018?岳阳)已知a2+2a=1,则3(a2+2a)+2的值为5.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.27.(2018?白银)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:128.(2018?菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是15.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.29.(2018?杭州)计算:a﹣3a=﹣2a.【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:a﹣3a=﹣2a.故答案为:﹣2a.30.(2018?成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.【分析】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.31.(2018?黔南州)根据下列各式的规律,在横线处填空:,,=,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.【解答】解:∵ +﹣1=, +﹣=, +﹣=, +﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.32.(2018?咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.【分析】根据数列得出第n个数为,据此可得前2018个数的和为++++…+,再用裂项求和计算可得.【解答】解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.33.(2018?孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24.【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.34.(2018?淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.35.(2018?荆门)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=, +2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.36.(2018?常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出的人心里想的数是9.来,若报出来的数如图所示,则报4【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.37.(2018?永州)对于任意大于0的实数x、y,满足:log2(x?y)=log2x+log2y,若log22=1,则log216= 4.【分析】利用log2(x?y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2?2?2?2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.38.(2018?桂林)将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)第1列第2列第3列第4列列行第1行 1 2 3 4第2行8 7 6 5第3行9 10 11 12第4行16 15 14 13……………第n行…………【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).39.(2018?泰安)观察“田”字中各数之间的关系:则c的值为270或28+14.【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+1440.(2018?枣庄)将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.41.(2018?自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.42.(2018?遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.三.解答题(共3小题)43.(2018?安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分字分别是1和n﹣1 【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n ﹣1故应填:证明:=∴等式成立44.(2018?河北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?。

专题03 代数式及整式(45题)(解析版)--2024年中考数学真题分类汇编

专题03 代数式及整式(45题)(解析版)--2024年中考数学真题分类汇编

专题03代数式及整式(45题)一、单选题1.(2024·广东·中考真题)下列计算正确的是()A.a 2⋅a 5=a 10B.a 8÷a 2=a 4C.-2a +5a =7aD.a 2 5=a 10【答案】D【详解】解:A 、a 2⋅a 5=a 7,原式计算错误,不符合题意;B 、a 8÷a 2=a 6,原式计算错误,不符合题意;C 、-2a +5a =3a ,原式计算错误,不符合题意;D 、a 2 5=a 10,原式计算正确,符合题意;故选:D .2.(2024·四川内江·中考真题)下列单项式中,ab 3的同类项是()A.3ab 3B.2a 2b 3C.-a 2b 2D.a 3b【答案】A【详解】解:A .是同类项,此选项符合题意;B .字母a 的次数不相同,不是同类项,故此选项不符合题意;C .相同字母的次数不相同,不是同类项,故此选项不符合题意;D .相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A .3.(2024·湖北·中考真题)2x ⋅3x 2的值是()A.5x 2B.5x 3C.6x 2D.6x 3【答案】D【详解】解:2x ⋅3x 2=6x 3,故选:D .4.(2024·河南·中考真题)计算a ·a ·⋯·a �a 个3的结果是()A.a 5B.a 6C.a a +3D.a 3a【答案】D【详解】解:a ·a ·⋯·a �3a 个=a a 3=a 3a ,故选D5.(2024·浙江·中考真题)下列式子运算正确的是()A.x 3+x 2=x 5 B.x 3⋅x 2=x 6C.x 3 2=x 9D.x 6÷x 2=x 4【答案】D【详解】解:A、x3与x2不是同类项,不能合并,故本选项不符合题意;B、x3⋅x2=x5,故本选项不符合题意;C、x32=x6,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意.故选:D.6.(2024·河北·中考真题)下列运算正确的是()A.a7-a3=a4B.3a2⋅2a2=6a2C.(-2a)3=-8a3D.a4÷a4=a【答案】C【详解】解:A.a7,a4不是同类项,不能合并,故此选项不符合题意;B.3a2⋅2a2=6a4,故此选项不符合题意;C.-2a3=-8a3,故此选项符合题意;D.a4÷a4=1,故此选项不符合题意.故选:C.7.(2024·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A.4a2+2a2=6a4B.5a⋅2a=10aC.a6÷a2=a3D.-a22=a4【答案】D【详解】解:A、4a2+2a2=6a2≠6a4,故该选项不符合题意;B、5a⋅2a=10a2≠10a,故该选项不符合题意;C、a6÷a2=a4≠a3,故该选项不符合题意;D、-a22=a4,故该选项符合题意;故选:D8.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A.2a3⋅a2=2a6B.(-2a)3÷b×1b=-8a3C.a3+a2+a÷a=a2+a D.3a-2=3 a2【答案】D【详解】解:A、2a3⋅a2=2a5,故该选项是错误的;B、(-2a)3÷b×1b =-8a3b2,故该选项是错误的;C、a3+a2+a÷a=a2+a+1,故该选项是错误的;D、3a-2=3a2,故该选项是正确的;故选:D.9.(2024·云南·中考真题)按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,第n个代数式是()A.2x nB.n-1x n C.nx n+1 D.n+1x n【答案】D【详解】解:∵按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,∴第n个代数式是n+1x n,故选:D.10.(2024·云南·中考真题)下列计算正确的是()A.x3+5x3=6x4B.x6÷x3=x5C.a23=a7 D.ab3=a3b3【答案】D【详解】解:A、x3+5x3=6x3,选项计算错误,不符合题意;B、x6÷x3=x3,选项计算错误,不符合题意;C、a23=a6,选项计算错误,不符合题意;D、ab3=a3b3,选项计算正确,符合题意;故选:D.11.(2024·山东烟台·中考真题)下列运算结果为a6的是()A.a2⋅a3B.a12÷a2C.a3+a3D.a23【答案】D【详解】A.a2⋅a3=a2+3=a5,故选项不符合题意;B.a12÷a2=a12-2=a10,故选项不符合题意;C.a3+a3=2a3,故选项不符合题意;D.a23=a2×3=a6,故选项符合题意;故选:D.12.(2024·江苏盐城·中考真题)下列运算正确的是()A.a6÷a2=a4B.2a-a=2C.a3⋅a2=a6D.a32=a5【答案】A【详解】解:A、a6÷a2=a4,正确,符合题意;B、2a-a=a,错误,不符合题意;C、a3⋅a2=a5,错误,不符合题意;D、a32=a6,错误,不符合题意;故选:A.13.(2024·黑龙江牡丹江·中考真题)如图是由一些同样大小的三角形按照一定规律所组成的图形,第1个图有4个三角形.第2个图有7个三角形,第3个图有10个三角形⋯⋯按照此规律排列下去,第674个图中三角形的个数是()A.2022B.2023C.2024D.2025【答案】B【详解】解:第1个图案有4个三角形,即4=3×1+1,第2个图案有7个三角形,即7=3×2+1,第3个图案有10个三角形,即10=3×3+1,⋯,按此规律摆下去,第n个图案有3n+1个三角形,则第674个图案中三角形的个数为:3×674+1=2023(个).故选:B.14.(2024·江苏连云港·中考真题)下列运算结果等于a6的是()A.a3+a3B.a⋅a6C.a8÷a2D.-a23【答案】C【详解】解:A、a3+a3=2a3,不符合题意;B、a⋅a6=a7,不符合题意;C、a8÷a2=a6,符合题意;D、-a23=-a6,不符合题意;故选:C.15.(2024·江苏扬州·中考真题)下列运算中正确的是()A.(a-b)2=a2-b2B.5a-2a=3aC.a32=a5 D.3a2⋅2a3=6a6【答案】B【详解】解:A、a-b2=a2-2ab+b2,原选项错误,不符合题意;B、5a-2a=3a,正确,符合题意;C、a32=a6,原选项错误,不符合题意;D、3a2·2a3=6a5,原选项错误,不符合题意;故选:B.16.(2024·山东威海·中考真题)下列运算正确的是()A.x5+x5=x10B.m÷n2⋅1n =mnC.a6÷a2=a4D.-a23=-a5【答案】C【详解】A、x5+x5=2x5,运算错误,该选项不符合题意;B 、m ÷n 2⋅1n =m ∙1n 2∙1n=mn 3,运算错误,该选项不符合题意;C 、a 6÷a 2=a 6-2=a 4,运算正确,该选项符合题意;D 、-a 2 3=-a 6,运算错误,该选项不符合题意.故选:C17.(2024·河北·中考真题)若a ,b 是正整数,且满足2a +2a +⋅⋅⋅+2a 8个2a 相加=2b ×2b ×⋅⋅⋅×2b 8个2b 相乘,则a 与b 的关系正确的是()A.a +3=8bB.3a =8bC.a +3=b 8D.3a =8+b【答案】A【详解】解:由题意得:8×2a =2b 8,∴23×2a =28b ,∴3+a =8b ,故选:A .18.(2024·四川眉山·中考真题)下列运算中正确的是()A.a 2-a =aB.a ⋅a 2=a 3C.a 2 3=a 5D.2ab 2 3=6a 3b 6【答案】B【详解】解:a 2与-a 不是同类项,无法合并,则A 不符合题意;a ⋅a 2=a 3,则B 符合题意;a 2 3=a 6,则C 不符合题意;2ab 2 3=8a 3b 6,则D 不符合题意;故选:B .19.(2024·广东广州·中考真题)若a ≠0,则下列运算正确的是()A.a 2+a 3=a5B.a 3⋅a 2=a 5C.2a ⋅3a =5aD.a 3÷a 2=1【答案】B【详解】解:A 、a 2+a 3=3a 6+2a 6=5a6,原计算错误,不符合题意;B 、a 3⋅a 2=a 5,原计算正确,符合题意;C 、2a ⋅3a =6a 2,原计算错误,不符合题意;D 、a 3÷a 2=a ,原计算错误,不符合题意;故选:B .20.(2024·福建·中考真题)下列运算正确的是()A.a 3⋅a 3=a 9B.a 4÷a 2=a 2C.a 3 2=a 5D.2a 2-a 2=2【答案】B利用同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项计算后判断正误.【详解】解:a3⋅a3=a6,A选项错误;a4÷a2=a2,B选项正确;a32=a6,C选项错误;2a2-a2=a2,D选项错误;故选:B.21.(2024·湖南·中考真题)下列计算正确的是()A.3a2-2a2=1B.a3÷a2=a(a≠0)C.a2⋅a3=a6D.2a3=6a3【答案】B【详解】解:A、3a2-2a2=a2,故该选项不正确,不符合题意;B、a3÷a2=a(a≠0),故该选项正确,符合题意;C、a2⋅a3=a5,故该选项不正确,不符合题意;D、2a3=8a3,故该选项不正确,不符合题意;故选:B.22.(2024·贵州·中考真题)计算2a+3a的结果正确的是()A.5aB.6aC.5a2D.6a2【答案】A【详解】解:2a+3a=5a,故选:A.23.(2024·湖北武汉·中考真题)下列计算正确的是()A.a2⋅a3=a6B.a34=a12 C.3a2=6a2 D.a+12=a2+1【答案】B【详解】解:A. a2⋅a3=a5,故该选项不正确,不符合题意;B. a34=a12,故该选项正确,符合题意;C. 3a2=9a2,故该选项不正确,不符合题意;D. a+12=a2+2a+1,故该选项不正确,不符合题意;故选:B.24.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A.-3-2=19B.a+b2=a2+b2 C.9=±3 D.-x2y3=x6y3【答案】A【详解】解:A. -3-2=19,故该选项正确,符合题意;B. a+b2=a2+2ab+b2,故该选项不正确,不符合题意;C. 9=3,故该选项不正确,不符合题意;D. -x2y3=-x6y3,故该选项不正确,不符合题意;故选:A.25.(2024·重庆·中考真题)用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,⋯,按此规律,则第⑧个图案中,菱形的个数是()A.20B.21C.23D.26【答案】C【详解】解:第①个图案中有1+3×1-1+1=2个菱形,第②个图案中有1+3×2-1+1=5个菱形,第③个图案中有1+3×3-1+1=8个菱形,第④个图案中有1+3×4-1+1=11个菱形,⋮∴第n个图案中有1+3n-1+1=3n-1个菱形,∴第⑧个图案中菱形的个数为3×8-1=23,故选:C.26.(2024·黑龙江大兴安岭地·中考真题)下列计算正确的是()A.a3⋅a2=a6B.a25=a7C.-2a3b3=-8a9b3 D.-a+b=a2-b2a+b【答案】C【详解】解:A、a3⋅a2=a5≠a6,故选项A计算错误,此选项不符合题意;B、a25=a10≠a7,故选项B计算错误,此选项不符合题意;C、-2a3b3=-8a9b3,此选项计算正确,符合题意;D、-a+b=b2-a2,故选项D计算错误,此选项不符合题意;b+aa+b=b-a故选:C.27.(2024·内蒙古赤峰·中考真题)下列计算正确的是()A.a2+a3=a5B.(a+b)2=a2+b2C.a6÷a3=a2D.a32=a6【答案】D【详解】解:A、a2与a3不是同类项,不能合并,故此选项不符合题意;B、a+b2=a2+2ab+b2≠a2+b2,故此选项不符合题意;C、a6÷a3=a3≠a2,故此选项不符合题意;D、a32=a6,故此选项符合题意.故选:D.28.(2024·广东深圳·中考真题)下列运算正确的是()A.-m32=-m5 B.m2n⋅m=m3n C.3mn-m=3n D.m-12=m2-1【答案】B【详解】解:A、-m32=m6≠-m5,故该选项不符合题意;B、m2n⋅m=m3n,故该选项符合题意;C、3mn-m≠3n,故该选项不符合题意;D、m-12=m2-2m+1≠m2-1,故该选项不符合题意;故选:B.29.(2024·四川广元·中考真题)下列计算正确的是()A.a3+a3=a6B.a6÷a3=a2C.a+b2=a2b42=a2+b2 D.ab2【答案】D【详解】解:A.a3+a3=2a3,故该选项不正确,不符合题意;B.a6÷a3=a3,故该选项不正确,不符合题意;C.a+b2=a2+2ab+b2,故该选项不正确,不符合题意;D.ab22=a2b4,故该选项正确,符合题意.故选:D.30.(2024·四川凉山·中考真题)下列运算正确的是()A.2ab+3ab=5abB.ab23=a3b5 C.a8÷a2=a4 D.a2⋅a3=a6【答案】A【详解】解:A、2ab+3ab=5ab,该选项正确,符合题意;B、ab23=a3b6,该选项错误,不合题意;C、a8÷a2=a6,该选项错误,不合题意;D、a2⋅a3=a5,该选项错误,不合题意;故选:A.31.(2024·江苏扬州·中考真题)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,⋯⋯,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676B.674C.1348D.1350【答案】D【详解】这一列数为:1,1,2,3,5,8,13,21,34,⋯可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于2024÷3=674⋯2,即前2024个数共有674组,且余2个数,∴奇数有674×2+2=1350个.故选:D32.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为4100a+1025【答案】D【详解】解:设一个三位数与一个两位数分别为100x+10y+z和10m+n如图:则由题意得:mz=20,nz=5,ny=2,nx=a,∴mz=4,即m=4n,nz∴当n=2,y=1时,z=2.5不是正整数,不符合题意,故舍;当n=1,y=2时,则m=4,z=5,x=a,如图:,∴A、“20”左边的数是2×4=8,故本选项不符合题意;B、“20”右边的“□”表示4,故本选项不符合题意;∴a上面的数应为4a,如图:∴运算结果可以表示为:10004a+1+100a+25=4100a+1025,∴D选项符合题意,当a=2时,计算的结果大于6000,故C选项不符合题意,故选:D.二、填空题33.(2024·天津·中考真题)计算x8÷x6的结果为.【答案】x2【详解】解:x8÷x6=x2,故答案为:x2.34.(2024·河南·中考真题)请写出2m的一个同类项:.【答案】m(答案不唯一)【详解】解:2m的一个同类项为m,故答案为:m35.(2024·广东广州·中考真题)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3.当R1=20.3,R2=31.9,R3=47.8,I=2.2时,U的值为.【答案】220【详解】解:∵U=IR1+IR2+IR3,当R1=20.3,R2=31.9,R3=47.8,I=2.2时,U=20.3×2.2+31.9×2.2+47.8×2.2=20.3+31.9+47.8×2.2=220,故答案为:220.36.(2024·上海·中考真题)计算:4x23=.【答案】64x6【详解】解:4x23=64x6,故答案为:64x6.37.(2024·江西·中考真题)观察a,a2,a3,a4,⋯,根据这些式子的变化规律,可得第100个式子为.【答案】a100【详解】解:∵a,a2,a3,a4,⋯,∴第n个单项式的系数是1;∵第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,⋯,∴第n个式子是a n.∴第100个式子是a100.故答案为:a100.38.(2024·江苏苏州·中考真题)若a=b+2,则b-a2=.【答案】4【详解】解:∵a=b+2,∴b-a2=b-b+22=b-b-22=-22=4,故答案为:4.39.(2024·四川乐山·中考真题)已知a-b=3,ab=10,则a2+b2=.【答案】29【详解】解:由题意知,a2+b2=a-b2+2ab=32+2×10=29,故答案为:29.40.(2024·广东广州·中考真题)若a2-2a-5=0,则2a2-4a+1=.【答案】11【详解】解:∵a2-2a-5=0,∴a2-2a=5,∴2a2-4a+1=2a2-2a+1=2×5+1=11,故答案为:11.41.(2024·四川成都·中考真题)若m,n为实数,且m+42+n-5=0,则m+n2的值为.【答案】1【详解】解:∵m+42+n-5=0,∴m+4=0,n-5=0,解得m=-4,n=5,∴m+n2=-4+52=1,故答案为:1.42.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1∼n这n个自然数中,任取两数之和大于n的取法种数k进行了探究.发现:当n=2时,只有1,2一种取法,即k=1;当n=3时,有1,3和2,3两种取法,即k=2;当n=4时,可得k=4;⋯⋯.若n=6,则k的值为;若n=24,则k的值为.【答案】9144【详解】解:当n=2时,只有1,2一种取法,则k=1;当n=3时,有1,3和2,3两种取法,则k=2;当n=4时,有1,4,2,4,3,4,2,3四种取法,则k=3+1=4=42 4;故当n=5时,有1,5,2,5,3,5,4,5,2,4,3,4六种取法,则k=4+2=6;当n=6时,有1,6,2,6,3,6,4,6,5,6,2,5,3,5,4,5,3,4九种取法,则k=5+3+1=9=624;依次类推,当n为偶数时,k=n-1+n-3+⋯+5+3+1=n2 4,故当n=24时,k=23+21+19+⋯+5+3+1=2424=144,故答案为:9,144.三、解答题43.(2024·吉林·中考真题)先化简,再求值:a+1a-1+a2+1,其中a=3.【答案】2a2,6【详解】解:原式=a2-1+a2+1=2a2,当a=3时,原式=2×3 2=6.44.(2024·陕西·中考真题)先化简,再求值:x +y 2+x x -2y ,其中x =1,y =-2.【答案】2x 2+y 2,6【详解】解:x +y 2+x x -2y=x 2+2xy +y 2+x 2-2xy=2x 2+y 2;当x =1,y =-2时,原式=2×12+-2 2=2+4=6.45.(2024·甘肃·中考真题)先化简,再求值:2a +b 2-2a +b 2a -b ÷2b ,其中a =2,b =-1.【答案】2a +b ,3【详解】解:2a +b 2-2a +b 2a -b ÷2b=4a 2+4ab +b 2 -4a 2-b 2 ÷2b=4a 2+4ab +b 2-4a 2+b 2 ÷2b=4ab +2b 2 ÷2b=2a +b ,当a =2,b =-1时,原式=2×2+-1 =3.。

中考化学专题 氧气及其制取(第01期)-2018年中考化学试题分项版解析汇编(解析版)

中考化学专题 氧气及其制取(第01期)-2018年中考化学试题分项版解析汇编(解析版)

一、选择题目1.【2018年安徽省】实验室可通过加热高锰酸钾固体制取氧气,下列实验操作正确的是A.组装好装置后,检查装置的气密性B.加入药品后,直接将酒精灯火焰对准药品加热C.水槽中有气泡冒出时,立即收集气体D.实验结束时,先移走酒精灯再从水槽中移出导管【答案】A2.【2018年四川省达州市】下列图像不能正确反映具对应变化关系的是( )A.盛有空气的密闭容器中点燃红磷B.用二氧化锰和过氧化氢溶液制氧气C.向氯化镁和盐酸的混合溶液中,连滴加入氢氧化钡溶液D.分别向等质量的锌粉和铁粉中,加入足量等质量分数的稀盐酸【答案】A【解析】A、红磷只与空气中的氧气反应,反应后密闭容器中仍含有氮气等气体,故压强不可能降为0,故错误;B、用过氧化氢和二氧化锰制取氧气的实验中,二氧化锰是催化剂,反应前后二氧化锰的质量和化学性质不变,故正确;C、向氯化镁和盐酸的混合溶液中,连滴加入氢氧化钡溶液,氢氧化钡先与稀盐酸反应,故刚开始没有沉淀生成,当稀盐酸反应完全后,氢氧化钡与氯化镁反应生成氢氧化镁沉淀,当氯化镁反应完全后,生成氢氧化镁的质量不变,故正确;D、锌比铁活泼,相等的时间内锌生成的氢气多,等质量的锌和铁与足量的酸反应,铁生成的氢气多,故D正确;故选A。

学%科网3.【2018年四川省成都市】下列各组物质的鉴别方法与结论均正确的是【答案】B4.【2018年山东省德州市】下列有关氧气的描述正确的是( )A.氧气参与燃烧是高能燃料 B.氧气能使带火星木条复燃C.红磷与氧气反应产生浓厚白雾 D.低温下氧气可以变成无色液体【答案】B【解析】A、氧气能支持燃烧,所以氧气可作助燃剂,不具有可燃性,不可作燃料,故A说法不正确B、氧气具有助燃性,能使带火星的木条复燃,故B说法正确;C、红磷在氧气中燃烧,产生浓厚的白烟,故C说法不正确;D、低温下氧气可以变成淡蓝色液体,故D说法不正确。

故选B。

5.【2018年山东省临沂市】下列实验现象的描述中,正确的是A.铁丝在空气中燃烧,火星四射,生成黑色固体B.硫在氧气中燃烧,发出蓝紫色火焰C.镁条在空中燃烧,产生大量的白雾D.向石蕊溶液中滴加稀硫酸后,溶液由紫色变成蓝色【答案】B【解析】A.铁丝在空气中不能燃烧,故错误;B.硫在氧气中燃烧,发出蓝紫色火焰,正确;C.镁条在空中燃烧,放出耀眼的白光,生成白色固体,故错误;D.石蕊遇酸变红,故向石蕊溶液中滴加稀硫酸后,溶液由紫色变成红色,故错误。

中考数学专题练习 代数式(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 代数式(含解析)-人教版初中九年级全册数学试题

代数式一、选择题1.一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是()A.﹣3y2B.2x2+y2C.3y2﹣2x2D.3y22.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.3.下列各组代数式中,属于同类项的是()A.b与B.a2b与a2cC.22与34D.p与q4.下列计算正确的是()A.3x2﹣x2=3 B.3a2﹣2a2=1 C.3x2+5x3=8x5D.3a2﹣a2=2a25.如果a=255,b=344,c=433,则a、b、c的大小关系是()A.a>c>b B.b>a>c C.b>c>a D.c>b>a6.一个两位数,十位数字是x,个位数字是y,如果在它们中间加上一个0得到的数是()A.10x+y B.100x+y C.100y+x D.x+10y7.如果=0,则下列等式成立的是()A.a=b=0 B.a=b C.a+b=0 D.ab=08.设A、B均为实数,且,,则A、B的大小关系是()A.A>B B.A=B C.A<B D.A≥B9.下列多项式属于完全平方式的是()A.x2﹣2x+4 B.x2+x+C.x2﹣xy+y2 D.4x2﹣4x﹣110.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+1二、填空题11.一台电视机的成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为元.12.已知=0 则a+b=.13.如果最简二次根式与是同类二次根式,则a=.14.把a3+ab2﹣2a2b分解因式的结果是.15.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.三、解答下列各题16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.17.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.18.已知a、b、c为△ABC三边,利用因式分解说明b2﹣a2+2ac﹣c2的符号.19.某餐厅中1X餐桌可坐六人,有以下两种摆放方式(如图1和2).一天中午,餐厅要接待98位顾客共同就餐,但餐厅只有25X这样的餐桌,若你是这个餐厅的经理,你应该选择哪种拼接方式来摆餐桌?请说明理由.20.计算:.代数式参考答案与试题解析一、选择题1.一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是()A.﹣3y2B.2x2+y2C.3y2﹣2x2D.3y2【考点】整式的加减.【分析】先根据题意列出式子,再去括号后合并同类项即可.【解答】解:这个代数式是(x2+2y2)+(x2﹣y2)=x2+2y2+x2﹣y2=2x2+y2,故选B.【点评】本题考查了整式的加减的应用,解此题的关键是能根据题意列出算式.2.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.3.下列各组代数式中,属于同类项的是()A.b与B.a2b与a2cC.22与34D.p与q【考点】同类项.【分析】根据字母相同且相同的字母的指数也相同是同类项,可得答案.【解答】解:A、相同字母的指数不同,故A不是同类项;B、字母不同,故B不是同类项;C、常数也是同类项,故C是同类项;D、字母不同,故D不是同类项;故选:C.【点评】本题考查了同类项,注意常数也是同类项.4.下列计算正确的是()A.3x2﹣x2=3 B.3a2﹣2a2=1 C.3x2+5x3=8x5D.3a2﹣a2=2a2【考点】合并同类项.【分析】先判断是否是同类项,如果是同类项,根据合并同类项法则合并即可.【解答】解:A、结果是2x2,故本选项错误;B、结果是a2,故本选项错误;C、不是同类项,不能合并,即结果是3x2+5x3,故本选项错误;D、结果是2a2,故本选项正确;故选D.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5.如果a=255,b=344,c=433,则a、b、c的大小关系是()A.a>c>b B.b>a>c C.b>c>a D.c>b>a【考点】幂的乘方与积的乘方.【分析】a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,从而可得出a、b、c的大小关系.【解答】解:∵a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,∴b>c>a.故选C.【点评】本题考查了幂的乘方和积的乘方,解答本题关键是掌握幂的乘方法则.6.一个两位数,十位数字是x,个位数字是y,如果在它们中间加上一个0得到的数是()A.10x+y B.100x+y C.100y+x D.x+10y【考点】列代数式.【分析】中间加上一个0得到的数是三位数.百位数字是x,十位数字是0,个位数字是y,这个数表示为(100x+y),由此得出答案.【解答】解:百位数字是x,十位数字是0,个位数字是y,这个数表示为(100x+y).故选:B.【点评】此题考查列代数式,关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.7.如果=0,则下列等式成立的是()A.a=b=0 B.a=b C.a+b=0 D.ab=0【考点】立方根.【分析】根据立方根的和为0,可得被开方数互为相反数,可得答案.【解答】解:∵=0,∴a+b=0.故选:C.【点评】本题考查了立方根,立方根的和为0,被开方数的和为0.8.设A、B均为实数,且,,则A、B的大小关系是()A.A>B B.A=B C.A<B D.A≥B【考点】实数大小比较.【分析】根据算术平方根的定义得出A是一个非负数,且m﹣3≥0,推出3﹣m≤0,得出B≤0,即可得出答案,【解答】解:∵,∴A是一个非负数,且m﹣3≥0,∴m≥3,∵,∵3﹣m≤0,即B≤0,∴A≥B,故选D.【点评】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.9.下列多项式属于完全平方式的是()A.x2﹣2x+4 B.x2+x+C.x2﹣xy+y2 D.4x2﹣4x﹣1【考点】完全平方式.【分析】根据完全平方公式的公式结构对各选项分析判断利用排除法求解.【解答】解:A、x2﹣2x+4不是完全平方式,故本选项错误;B、x2+x+=(x+)2,故本选项正确;C、x2﹣xy+y2,不是完全平方式,故本选项错误;D、4x2﹣4x﹣1,不是完全平方式,故本选项错误.故选B.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.10.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+1【考点】根据实际问题列一次函数关系式;规律型:图形的变化类.【分析】由图可知:第一图:有花盆3个,每条边有2盆花,那么3=3×(2﹣1);第二图:有花盆6个,每条边有3盆花,那么6=3×(3﹣1);第三图:有花盆9个,每条边有4盆花,那么9=3×(4﹣1);…由此可知S与n的关系式为S=3(n﹣1).【解答】解:根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以S=3n﹣3,即S=3(n﹣1).故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.本题要注意给出的图片中所包含的规律,然后根据规律列出函数关系式.二、填空题11.一台电视机的成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为元.【考点】列代数式.【分析】每台实际售价=销售价×70%.根据等量关系直接列出代数式即可.【解答】解:a(1+25%)×70%=70%(1+25%)a=元.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意销售价比成本价增加25%后,再按销售价的70%出售.12.已知=0 则a+b=.【考点】分式的值为零的条件;非负数的性质:绝对值;非负数的性质:偶次方;二次根式有意义的条件.【专题】计算题.【分析】分式的值为零,则分子为零,且分母不为零、二次根式的被开方数是非负数;据此列出关于a、b的方程组,通过解该方程组即可求得a、b的值.【解答】解:根据题意,得,解得,,则a+b=2+=;故答案是:.【点评】本题考查了分式的值为零的条件、非负数的性质以及二次根式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如果最简二次根式与是同类二次根式,则a= 5 .【考点】同类二次根式;最简二次根式.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.14.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式继续进行二次因式分解.【解答】解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.【点评】本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.15.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.【考点】规律型:数字的变化类.【分析】通过观察可以看出两个数的和等于两个数的积,分数的分母比分子小一,而相乘的整数和相加的整数也比分母大一,由此规律得出答案即可.【解答】解:由所给的各式可知,不妨设分母为n,则分子为n+1,另一个因数和加数也为n+1,因此可知律为.故答案为:.【点评】此题考查数字的变化规律,找出式子之间的联系,由特殊找出一般规律解决问题.三、解答下列各题16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.【考点】整式的混合运算.【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【解答】解:S剩下=S大圆﹣S小圆1﹣S小圆2=π•()2﹣π•()2﹣π•()2==;答:剩下的钢板的面积是.【点评】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.17.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.【考点】因式分解的应用;整式的加减.【专题】分类讨论.【分析】计算B﹣A后结论,从而判断A与B的大小;同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)B﹣A=(a﹣1)2+2>0,所以B>A;(2)C﹣A=a2+5a﹣19﹣a﹣2,=a2+4a﹣21,=(a+7)(a﹣3).因为a>2,所以a+7>0,从而当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.18.已知a、b、c为△ABC三边,利用因式分解说明b2﹣a2+2ac﹣c2的符号.【考点】因式分解的应用;三角形三边关系.【分析】原式后三项提取﹣1变形后,利用完全平方公式分解因式,再利用平方差公式分解因式;由a,b及c为三角形的三边,利用两边之和大于第三边即可判断出因式分解后积的正负.【解答】解:原式=b2﹣(a2+c2﹣2ac)=b2﹣(a﹣c)2=(a+b﹣c)(﹣a+b+c);∵a,b,c为△ABC的三边长,∴(a+b﹣c)(﹣a+b+c)中,(a+b﹣c)>0,(﹣a+b+c)>0,∴(a+b﹣c)(﹣a+b+c)>0.【点评】此题考查了因式分解的应用,以及三角形的三边关系,灵活运用完全平方公式及平方差公式是解本题的关键.19.某餐厅中1X餐桌可坐六人,有以下两种摆放方式(如图1和2).一天中午,餐厅要接待98位顾客共同就餐,但餐厅只有25X这样的餐桌,若你是这个餐厅的经理,你应该选择哪种拼接方式来摆餐桌?请说明理由.【考点】规律型:图形的变化类.【分析】能够根据桌子的摆放发现规律,分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.【解答】解:∵第一种中,只有一X桌子是6人,后边多一X桌子多4人.即有nX桌子时是6+4(n ﹣1)=4n+2.第二种中,有一X桌子是6人,后边多一X桌子多2人,即6+2(n﹣1)=2n+4.∴当n=25时,4n+2=4×25+2=102>98,当n=25时,2n+4=2×25+4=54<98,所以,选用第一种摆放方式.【点评】此题主要考查了图形的变化类,关键是通过归纳与总结,得到其中的规律.20.计算:.【考点】分式的乘除法.【分析】分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.【解答】解:原式==.【点评】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.。

专题1.3 代数式(第01期)-2018年中考数学试题分项版解析汇编(原卷版)

专题1.3 代数式(第01期)-2018年中考数学试题分项版解析汇编(原卷版)

学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列运算正确的是()A. B. C. D.2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣13.下列运算正确的是()A. B. C. D.4.下列计算正确的是()A. B.C. D.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 96.下列运算正确的是( )A. B. C. D.7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=8.下列计算正确的是()A. B.C. D.9.下列计算正确的是( )A. B. C. D.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a411.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 412.计算的结果是()A. B. C. D.13.下列计算结果等于的是()A. B. C. D.14.下列运算正确的是()A. B.C. D.15.下列运算正确的是()A. B. C. D.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 2817.下列运算正确的是()A. B. C. D.18.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.19.下列运算正确的是()A. B. C. D.20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 1822.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.25.若a-=,则a2+值为_______________________.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.27.计算的结果等于__________.28.若是关于的完全平方式,则__________.29.化简(x﹣1)(x+1)的结果是_____.30.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.32.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)35.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?36.(1)计算:;(2)解不等式:37.计算或化简.(1);(2).38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.39.计算:(1)(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:。

中考化学专题31 构成物质的微粒(第01期)-2016年中考化学试题分项版解析汇编(解析版)

中考化学专题31 构成物质的微粒(第01期)-2016年中考化学试题分项版解析汇编(解析版)

一、选择题目(本题包括26各小题,每题3分,共78分)1.【2016年安徽省】近年,我国科学家首次拍摄到水分子团簇图像,模型如下图。

下列说法正确的是()A.氢氧两种元素只能组成水 B.团簇中的水分子不再运动C.水蒸气冷凝成水,分子间隔减小 D.可燃冰和冰都是由水分子构成的【答案】C【解析】A、氢氧两种元素还能组成双氧水,错误;B、微粒都在不停地运动,错误;C、气态物质分子间隔最大,水蒸气冷凝成水,分子间隔减小,正确;D、可燃冰和冰属于不同种物质,错误。

故选C 2.【2016年福建省福州市】下列关于“酒精温度计遇冷读数下降”的微观解释正确的是()A.分子停止运动 B.分子体积缩小 C.分子间间隔减小 D.分子种类发生了变化【答案】C【解析】酒精温度计遇冷读数下降,说明温度降低微粒之间的间隔变小的原因,故答案选择C3.【2016年广东省广州市】下列客观事实的微观解释正确的是()4.【2016年河北省】下列化学用语与所表达的意义对应错误的是()【答案】B【解析】A是元素符号,镁元素属金属元素,由原子直接构成,A正确;B中镁原子失去了2个电子,故是镁离子,B错误;C表示的是氧化镁中镁元素为+2价,C正确;化学式右下角的数字表示的是分子中原子的数目,故D表示的是一个氮分子中含有2个氮原子,D正确。

故选B。

5.【2016年河北省】下列事实能够说明分子在不断运动的是()A.公路上大雾弥漫 B.花棚里香气扑鼻C.湖面上柳絮飘扬 D.氧气被压缩进钢瓶【答案】B【解析】分子很小,不能用肉眼看到,故选B。

6.【2016年湖北省孝感市】下列有关“一定”的叙述正确的是()A.构成物质的分子、原子等粒子一定在不停地运动 B.灭火一定要同时破坏燃烧的三个条件C.硬水经过滤后一定会变成软水 D.铁制品与氧气或水接触一定会锈蚀【答案】A【解析】A、微粒都在不停地运动,正确;B、三个燃烧条件只要不具备一个就能灭火,错误;C、过滤只是除去不溶性的杂质,硬水是溶解较多的钙、镁化合物,故错误;D铁制品生锈的条件是与氧气、水同时接触,错误。

中考化学专题31 构成物质的微粒(第01期)-2018年中考化学试题分项版解析汇编(原卷版)

中考化学专题31 构成物质的微粒(第01期)-2018年中考化学试题分项版解析汇编(原卷版)

一、选择题目1.【2018年江西省】氧气在降温加压变成液态氧的过程中,下列说法正确的是A.分子之间的间隔变小 B.分子质量变小 C.分子体积变大 D.分子运动速率变大2.【2018年江苏省扬州市】下列物质由分子组成的是A.铁 B.氯化钠 C.水 D.硝酸钾3.【2018年四川省成都市】咏梅诗句“二十里中香不断,青羊宫到浣花溪”。

诗人间到香味的原因是A.分子很轻 B.分子不断运动 C.分子体积小 D.分子间有间隙4.【2018年四川省成都市】下列化学用语正确的是A.2个氢原子: H2 B.2个氮分子: 2N C.氧化铁: FeO D.氯酸钾: KClO35.【2018年山东省泰安市】下列物质由离子构成的是A.二氧化碳 B.氯化钾 C.铜 D.氧气6.【2018年四川省乐山市】类推是学习化学的重要方法之一,但盲目类推又可能得出错误结论。

下列类推正确的是A.原子和分子均是微观粒子,原子在化学变化中不能再分,则分子在化学变化中也不能再分B.锌和铜均是金属,锌能与稀硫酸反应放出氢气,则铜也能与稀硫酸反应放出氢气C.金刚石和石墨均是碳的单质,金刚石十分坚硬,则石墨也十分坚硬D.H2SO4与HCl均是酸,H2SO4在水溶液中能电离出H+,则HCl在水溶液中也能电离出H+ 7.【2018年四川省乐山市】A、B、C三只小烧杯内分别依次盛有一定体积的浓氨水、酚酞溶液、酚酞溶液,按下图所示进行探究活动,不能得到的结论是()A.氨水能使酚酞溶液变红 B.碱能使酚酞溶液变红C.空气不能使酚酞溶液变红 D.浓氨水易挥发,氨气易溶于水8.【2018年山东省泰安市】下列化学用语的使用及其表示的意义,正确的是A.H2O——一个水分子中含有一个氢分子和一个氧原子 B.4H——4个氢元素C.Ca+2——一个钙离子带二个单位正电荷 D.2CO2——两个二氧化碳分子9.【2018年山东省青岛市】下列物质由原子直接构成的是A.铜 B.氧气 C.水 D.氯化钾10.【2018年山东省临沂市】从分子的角度解释下列事实,错误的是A.酒香不怕巷子深——分子在不断地运动B.1滴水大约有1.67×1021个水分子——分子很小C.醋酸是酸的,蔗糖是甜的——不同种分子性质不同D.将空气液化,体积变小——分子体积变小11.【2018年江苏省盐城市】下列客现事实对应的微观解释正确的是A.把液化气压缩进钢瓶——分子体积变小B.公园里闻到花的香味——分子不断运动C.电解水得到氢气和氧气——水由氢分子和氧分子构成D.金刚石和石墨的物理性质差异大——碳原子结构不同12.【2018年山东省聊城市】“归纳推理”是化学学习过程中常用的思维方法,以下类推结果正确的是A.Na+、Cl-的最外层电子数均为8,则最外层电子数为8的粒子都是离子B.化合物是由两种或两种以上元素组成的物质,则由两种或两种以上元素组成的物质一定是化合物C.通常情况下,pH<7的溶液呈酸性,则pH<7的雨水是酸雨D.化学变化中分子种类发生改变,则分子种类发生改变的变化一定是化学变化13.【2018年江苏省南京市】下列粒子结构示意图中,表示阳离子的是14.【2018年甘肃省平凉市】元素观、微粒观是化学的重要观念。

2018年中考数学试题分项版解析汇编(第02期)专题1.3代数式(含解析)

2018年中考数学试题分项版解析汇编(第02期)专题1.3代数式(含解析)

专题1.3 代数式一、单选题1.【四川省内江市2018年中考数学试卷】下列计算正确的是( )A .B .C .D .【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A ,a+a=2a≠a 2,故该选项错误; B ,(2a )3=8a 3≠6a 3,故该选项错误C ,(a ﹣1)2=a 2﹣2a+1≠a 2﹣1,故该选项错误; D ,a3÷a=a 2,故该选项正确, 故选:D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.2.【湖北省恩施州2018年中考数学试题】下列计算正确的是( ) A . a 4+a 5=a 9B . (2a 2b 3)2=4a 4b 6C . ﹣2a (a+3)=﹣2a 2+6a D . (2a ﹣b )2=4a 2﹣b 2【答案】B点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.【湖北省宜昌市2018年中考数学试卷】下列运算正确的是( ) A . x 2+x 2=x 4B . x 3•x 2=x 6C . 2x 4÷x 2=2x 2D . (3x )2=6x 2【答案】C【解析】分析:根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论. 详解:A 、x 2+x 2=2x 2,选项A 错误; B 、x 3•x 2=x 3+2=x 5,选项B 错误; C 、2x 4÷x 2=2x4﹣2=2x 2,选项C 正确;D 、(3x )2=32•x 2=9x 2,选项D 错误. 故选:C .点睛:本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.4.【湖北省宜昌市2018年中考数学试卷】1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A . a=1,b=6,c=15B . a=6,b=15,c=20C . a=15,b=20,c=15D . a=20,b=15,c=6 【答案】B点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.【山东省威海市2018年中考数学试题】已知5x=3,5y=2,则52x ﹣3y=( )A .B . 1C .D . 【答案】D【解析】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x ﹣3y的值为多少即可.详解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y=.故选:D.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.【湖南省张家界市2018年初中毕业学业考试数学试题】观察下列算式: , , ,,, , , …,则…的未位数字是( )A. 8 B. 6 C. 4 D. 0【答案】B点睛:本题考查的是尾数特征,根据题意找出数字循环的规律是解答此题的关键.7.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.8.【湖北省武汉市2018年中考数学试卷】计算(a﹣2)(a+3)的结果是()A. a2﹣6 B. a2+a﹣6 C. a2+6 D. a2﹣a+6【答案】B【解析】【分析】根据多项式的乘法法则进行解答即可.【详解】(a﹣2)(a+3)=a2+3a-2a-6=a2+a﹣6,故选B.【点睛】本题考查了多项式的乘法,熟练掌握多项式乘法的运算法则是解题的关键.【湖北省随州市2018年中考数学试卷】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”9.(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A. 33 B. 301 C. 386 D. 571【答案】C【点睛】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n=,第n个正方形数为n2.10.【湖北省随州市2018年中考数学试卷】下列运算正确的是()A. a2•a3=a6 B. a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2 D.(﹣a2)3=﹣a6【答案】D【解析】【分析】根据同底数幂的乘法、同底数幂的除法、完全平方公式、幂的乘方逐一进行计算即可得.【详解】A、a2•a3=a5,故A选项错误;B、a3÷a﹣3=a6,故B选项错误;C、(a﹣b)2=a2﹣2ab+b2,故C选项错误;D、(﹣a2)3=﹣a6,故D选项正确,故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.11.【山东省烟台市2018年中考数学试卷】如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A. 28 B. 29 C. 30 D. 31【答案】C点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.12.【湖北省黄石市2018年中考数学试卷】下列计算中,结果是a7的是()A. a3﹣a4 B. a3•a4 C. a3+a4 D. a3÷a4【答案】B【解析】分析:根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.详解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=.故选:B.点睛:本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.13.【江苏省盐城市2018年中考数学试题】下列运算正确的是()A. B. C. D.【答案】C点睛:本题考查合并同类项、同底数幂的乘除法以及幂的乘方运算,解答本题的关键是熟悉并灵活运用各法则进行计算.14.【四川省内江市2018年中考数学试题】下列计算正确的是()A.a+a=a2 B.(2a)3=6a3 C.(a﹣1)2=a2﹣1 D.a3÷a=a2【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a-1)2=a2-2a+1≠a2-1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.15.【浙江省宁波市2018年中考数学试卷】在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2a B. 2b C. D.【答案】B【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题16.【山东省菏泽市2018年中考数学试题】若,,则代数式的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为:点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.17.【江苏省泰州市2018年中考数学试题】计算:x•(﹣2x2)3=_____.【答案】﹣4x7【解析】分析:直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.详解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.点睛:此题主要考查了积的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.18.【浙江省杭州市临安市2018年中考数学试卷】已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.【答案】109【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.19.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】根据下列各式的规律,在横线处填空:,,,…,﹣_____=.【答案】【解析】分析:根据给定等式的变化,可找出变化规律“(n为正整数)”,依此规律即可得出结论.详解:∵,,,…,∴(n为正整数).∵2018=2×1009,∴.故答案为:.点睛:本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“(n为正整数)”是解题的关键.20.【江苏省淮安市2018年中考数学试题】(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).21.【山东省淄博市2018年中考数学试题】将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【答案】2018点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.22.【四川省达州市2018年中考数学试题】已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵a m=3,∴a2m=32=9,∴a2m-n==4.5.故答案为:4.5.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.23.【湖北省孝感市2018年中考数学试题】我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.24.【广西壮族自治区桂林市2018年中考数学试题】将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.25.【黑龙江省大庆市2018年中考数学试卷】若2x=5,2y=3,则22x+y=_____.【答案】75【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案即可.【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.【点睛】本题考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解题的关键.26.【广西壮族自治区玉林市2018年中考数学试卷】已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.【答案】2【解析】【分析】将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.27.【上海市2018年中考数学试卷】某商品原价为a元,如果按原价的八折销售,那么售价是_____元.(用含字母a的代数式表示).【答案】0.8a【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.28.【上海市2018年中考数学试卷】计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.【详解】(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为:2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键. 29.【吉林省长春市2018年中考数学试卷】计算:a2•a3=_____.【答案】a5.【解析】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为:a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.30.【云南省昆明市2018年中考数学试题】若m+=3,则m2+=_____.【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.31.【广西钦州市2018年中考数学试卷】观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是_____.【答案】3【点睛】本题考查了规律题——数字的变化类,正确得出尾数变化规律是解题关键.32.【湖北省荆门市2018年中考数学试卷】将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,…,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=_____.【答案】63【解析】【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【详解】∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点睛】本题考查了规律型——数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.33.【湖北省黄冈市2018年中考数学试题】若a-=,则a2+值为_______________________.【答案】8点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.34.【四川省成都市2018年中考数学试题】已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【答案】【解析】分析:根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.详解:S1=,S2=-S1-1=--1=-,S3=,S4=-S3-1=-1=-,S5=,S6=-S5-1=(a+1)-1=a,S7=,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=-.故答案为:-.点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.三、解答题35.【山东省淄博市2018年中考数学试题】先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【答案】2ab﹣1,=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.36.【湖南省邵阳市2018年中考数学试卷】先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.【答案】4ab,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【详解】(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣4.【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键.37.【江苏省无锡市2018年中考数学试题】计算:(1)(﹣2)2×|﹣3|﹣()0;(2)(x+1)2﹣(x2﹣x)【答案】(1)11;(2)3x+1.点睛:本题主要考查了整式的运算与实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值、完全平方公式、去括号法则、合并同类项等考点的运算.38.【湖北省襄阳市2018年中考数学试卷】先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【答案】3【解析】【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x、y的值代入化简后的式子即可解答本题.【详解】(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)×(2﹣)=3.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.39.【湖北省宜昌市2018年中考数学试卷】先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【答案】点睛:本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.40.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单选题1.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. a2与a1不是同类项,不能合并,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A点睛:本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.学科*网6.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B【点睛】本题考查了同底数幂乘法、合并同类项、同底数幂除法、二次根式加减,熟练掌握各运算的运算法则是解题的关键.7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.8.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.11.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.12.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.13.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D【点评】考查同底数幂的除法,合并同类项,同底数幂的乘法,熟记它们的运算法则是解题的关键. 14.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.15.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B点睛:本题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.学科*网17.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.18.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.19.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,符合题意;选项,故将、代入,输出结果为,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.25.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣1点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.学科*网30.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】4035【解析】【分析】整理得,从而可得a n+1-a n=2或a n=-a n+1,再根据题意进行取舍后即可求得a n的表达式,继而可得a2018.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n=2.32.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1【点评】考查代数式的求值,找出其中的规律是解题的关键.三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+12点睛: 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.35.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)【点睛】本题考查了整式的混合运算、解一元一次不等式,熟练掌握整式的运算法则、一元一次不等式的解法是关键.37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.学科*网39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)【点评】本题考查了整式的混合运算、分式的混合运算,熟练掌握各运算的运算法则是解题的关键. 40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.【解析】【分析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得.(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】见解析.点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.。

相关文档
最新文档