安徽省合肥市2021届高三一模理科数学试题(含答案解析)

合集下载

安徽省合肥市2021届高三数学第一次教学质量检测试题理(含解析)

安徽省合肥市2021届高三数学第一次教学质量检测试题理(含解析)
取 的中点 ,过点 做平面 的垂线,
设 ,由几何关系可知:点 为四面体 外接球的球心,
△ABD是边长为2的等边三角形,那么 ,
二面角 的大小为 ,那么 ,
据此,在 中, ,
四面体 外接球的半径为 .
点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,肯定有关元素间的数量关系,并作出适宜的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.
结合二次函数的性质可得函数 的值域为 ,即: ,
结合交集的概念可得: .
此题选择B选项.
4. 假设双曲线 的一条渐近线方程为 ,该双曲线的离心率是〔 〕
A. B. C. D.
【答案】C
【解析】双曲线的核心位于 轴,那么双曲线的渐近线为 ,结合题意可得: ,
双曲线的离心率: ,
此题选择C选项.
5. 执行如图程序框图,假设输入的 等于10,那么输出的结果是〔 〕
又∵ ,∴平面 平面 .
〔2〕由, 平面 , 是正方形.
∴ 两两垂直,如图,成立空间直角坐标系 .
设 ,那么 ,从而 ,
∴ ,
设平面 的一个法向量为 ,
由 得 .
令 ,那么 ,从而 .
∵ ,设 与平面 所成的角为,那么

所以,直线 与平面 所成角的正弦值为 .
20. 在平面直角坐标系中,圆 交 轴于点 ,交 轴于点 .以 为极点, 别离为左、右核心的椭圆 ,恰好通过点 .
试题解析:
〔1〕由可得,椭圆 的核心在 轴上.
设椭圆 的标准方程为 ,焦距为 ,那么 ,
∴ ,∴椭圆 的标准方程为 .

2021届安徽省合肥市高三第一次模拟考试数学(理)试题Word版含解析

2021届安徽省合肥市高三第一次模拟考试数学(理)试题Word版含解析

2021届安徽省合肥市高三第一次模拟考试数学(理)试题一、选择题1.若集合,集合,则()A. B. C. D.【答案】D【解析】由,解得,故;由,解得,故,因此.故本题正确答案为点晴:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数、还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解对数不等式和一元二次不等式,在解对数不等式的过程中,要注意真数大于零.在求交集时注意区间端点的取舍. 并通过画数轴来解交集、并集和补集的题目.2.已知复数(为虚数单位),那么的共轭复数为()A. B. C. D.【答案】B【解析】因为,故的共轭复数为.故本题正确答案为3.要想得到函数的图像,只需将函数的图像()A. 向左平移个单位,再向上平移1个单位B. 向右平移个单位,再向上平移1个单位C. 向左平移个单位,再向下平移1个单位D. 向右平移个单位,再向下平移1个单位【答案】B【解析】因为,故只需将函数的图象向右平移个单位,再向上平移个单位,即可得到函数的图象.故本题正确答案为4.执行如图的程序框图,则输出的为()A. 9B. 11C. 13D. 15【答案】C【解析】由程序框图可知,,由,解得,故输出的的值为.故本题正确答案为5.已知双曲线的两条渐近线分别与抛物线的准线交于,两点.为坐标原点.若的面积为1,则的值为()A. 1B.C.D. 4【答案】B【解析】因为双曲线的渐近线方程为,与抛物线的准线相交于,所以的面积为,解得.故本题正确答案为6.的内角的对边分别为,若,,则的外接圆面积为()A. B. C. D.【答案】C【解析】因为,由正弦定理可得,(为外接圆半径).利用两角和公式得,即,因为,所以,所以.故的外接圆面积为.故本题正确答案为7.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设为两个同高的几何体,的体积不相等,在等高处的截面积不恒相等,根据祖暅原理可知,是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】设命题:“若,则”.可知命题是祖暅原理的逆否命题,由命题的性质可知必然成立.故是的充分条件;设命题:“若,则”,对此可以举出反例,若比在某些等高处的截面积小一些,在另一些等高处的截面积多一些,且多的总量与少的总量相抵,则它们的体积还是一样的.所以命题:“若,则”是假命题,即不是的必要条件.综上所述,是的充分不必要条件.故本题正确答案为8.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线的方程为)的点的个数的估计值为()A. 5000B. 6667C. 7500D. 7854【答案】B【解析】由图象可知,空白区域的面积,故阴影部分的面积;由几何概型可知,落入阴影部分的点的个数的估计值为故本题正确答案为9.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为()A. B. C. D.【答案】A【解析】根据如图所示的三视图,该几何体为一个正方体的一部分和四分之一个圆柱体,如图所示.则该几何体的表面积为.故本题正确答案为10.已知的展开式中项的系数与项的系数分别为135与-18,则展开式所有项系数之和为()A. -1B. 1C. 32D. 64【答案】D【解析】因为的展开式中项的系数为,所以;又因为的展开式中项的系数为,所以,解得,或,令,故展开式所有项系数之和为.故本题正确答案为11.已知函数在在上的最大值为,最小值为,则()A. 4B. 2C. 1D. 0【答案】A【解析】因为函数,所以,当时,;而,当时,,所以不是函数的极值点,即函数在上单调,函数在上的最值在端点处取得,因为,,故.故本题正确答案为点晴:本题考查的是导数在研究函数中的应用.解决本题的关键是先求导函数,通过判断导函数的正负,判断原函数的增减情况,得到函数的最值.在本题中当时,,但是当时,,所以不是函数的极值点,即函数在上单调,最值在端点处取到.12.已知函数,.方程有六个不同的实数解,则的取值范围是()A. B. C. D.【答案】D【解析】根据已知条件,作出函数的图象,如图所示.因为方程至多有两个实数解,,则方程有六个不同的实数解等价于存在四个实数,使得,同时存在两个实数使得,由图象可知,,,由韦达定理可知,,则,,故的取值范围是.故本题正确答案为D.点晴:本题考查的知识点是根的存在性及根的个数判断.解决本题首先根据已知中函数的解析式,画出函数的图象,结合方程有六个不同的实数解,并且方程至多有两个实数解,,得到,,再由由韦达定理可知,,可得的取值范围是.二、填空题13.命题:“”的否定为__________.【答案】,【解析】因为命题的否定是将命题的条件和结论全部否定,故原命题的否定为,.故本题正确答案为,.14.已知,,且,则实数__________.【答案】-6【解析】因为,且,,所以,解得.故本题正确答案为.15.已知,则__________.【答案】1或【解析】因为,且,解得,或,.当时,;当,,故或.故本题正确答案为或..16.已知直线与函数和分别交于两点,若的最小值为2,则__________.【答案】2【解析】设,则,所以,则,设,则,当时,.因为的最小值为,故将代入,解得,所以,得,故.故本题正确答案为.点晴:本题考查的是转化与化归思想及导数在研究函数中的应用.首先利用转化与化归思想把图象交点问题转化为新的函数为关于的函数的最值问题,再利用导数知识根据函数的最小值为求得,进而得到.三、解答题17.已知等差数列的前项和为,且满足,.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.【答案】(1) ;(2) .【解析】试题分析: (1)根据已知条件求出的首项和公差,即可求出数列的通项公式. (2)将(1)中求得的代入,利用等差数列和分组并项求和公式即可求出.试题解析:(Ⅰ)因为为等差数列,所以(Ⅱ)∵∴当时,,∴当时,,∴∴点晴:本题考查的是数列中的求通项和数列求和问题.第一问中关键是根据已知条件求出数列的通项公式;第二问中的通项,分成两组求和即可,一组是等比数列,一组是与的奇偶有关,采用分组并项求和即可.18.某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.(Ⅰ)求某员工选择方案甲进行抽奖所获奖金 (元)的分布列;(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?【答案】(Ⅰ)见解析;(2)方案甲较划算.【解析】试题分析: (1)计算出取值时的概率,画出分布列.(2)比较选择方案甲和方案乙进行抽奖所获奖金的均值,选择更大的一种方案.试题解析:,,所以某员工选择方案甲进行抽奖所获奖金(元)的分布列为0 500 1000(Ⅱ)由(Ⅰ)可知,选择方案甲进行抽奖所获奖金的均值若选择方案乙进行抽奖中奖次数,则抽奖所获奖金的均值故选择方案甲较划算.19.如图所示,在四棱台中,底面,四边形为菱形,,.(Ⅰ)若为中点,求证:平面;(Ⅱ)求直线与平面所成角的正弦值.【答案】(Ⅰ)见解析;(2).【解析】试题分析:(1)连接,可证,又因为底面,可得,即可得证.(2)如图建立空间直角坐标系,求出和平面的一个法向量的坐标,则直线与平面所成角的正弦值.试题解析:(Ⅰ)∵四边形为菱形,,连结,则为等边三角形,又∵为中点∴,由得∴∵底面,底面∴,又∵∴平面(Ⅱ)∵四边形为菱形,,,得,,∴又∵底面,分别以,,为轴、轴、轴,建立如图所示的空间直角坐标系、、、∴,,设平面的一个法向量,则有,令,则∴直线与平面所成角的正弦值.点晴:本题考查的空间的线面关系以及空间的角.第一问通过证明直线和平面内的两条相交直线垂直,证明平面;第二问中通过建立空间直角坐标系,求得和平面的一个法向量,结合得到结论.20.已知点为椭圆的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与轴交于,过点的直线与椭圆交于两不同点,若,求实数的取值范围.【答案】(Ⅰ);(2).【解析】试题分析:(1)根据已知条件得,,椭圆的方程与直线联立,根据求出的值,即可求出椭圆的方程。

安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷含答案

安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷含答案

安徽省合肥市2021-2022学年高三上学期第一次教学质量检测理科数学试卷(考试时间:120分钟 满分:150分)第I 卷 (满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的。

1.集合M={x|1<x<4},N={x|2≤x≤3},则M ∩N=A.{x|2≤x<4}B.{x|2≤x≤3}C.{x|1<x≤3}D.{x|1<x<4}2.复数1+i i(i 为虚数单位)在复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若向量a ,b 为单位向量,|a -2b ,则向量a 与向量b 的夹角为A.30°B.60°C.120°D.150°4.函数y=2sin|2x||1x +在[-π,π]的图象大致为5.在高一入学时,某班班委统计了本班所有同学中考体育成绩的平均分和方差.后来又转学来 一位同学。

若该同学中考体育的绩恰好等于这个班级原来的平均分,则下列说法正确的是A.班级平均分不变,方差变小B.班级平均分不变,方差变大C.班级平均分改变,方差变小D.班级平均分改变,方差变大6.若sin α=13,α=2ππ⎛⎫ ⎪⎝⎭,,则sin(α-32π)的值为A.- 13B.- 3C. 13D. 37.若直线l :x-2y-15=0经过双曲线M: 2222-x y a b =1的一个焦点,且与双曲线M 有且仅有一 个公共点,则双曲线M 的方程为A. 22-520x y =1B. 22-205x y =1C. 22-312x y =1D. 22-123x y 1 8.命题p: ∀x ∈R,e x >2x(e 为自然对数的底数);命题q: ∃x>1,1nx+1ln x≤2,则下列命题中,真命题是A. ⌝ (p ∨q)B.p ∧qC.p ∧ (⌝q)D.( ⌝p) ∧^q9.若数列{a n }的前n 项积b n =1-27n,则a,的最大值与最小值之和为 A-13 B. 57 C.2 D. 73 10.平行六面体ABCD-A 1B 1C 1D 1中,AB=AD=AA 1=2, ∠BAD=60°,点A 1在平面ABCD 内的射影是AC 与BD 的交点O,则异面直线BD,与AA,所成的角为A.90°B.60°C.45°D.30°11.椭圆E: 2222x y a b+=1(a>b>0)的左右焦点分别为F 1,F 2,点P 在椭圆E 上,ΔPF 1F 2的重心为 G.若ΔPF 1F 2的内切圆H 的直径等于121||2F F ,且GH//F 1F 2,则椭圆E 的离心率为 A.B. 23C. 2D. 12 12.若不等式e x -aln(ax-1)+1≥0对∀x ∈1,12⎡⎤⎢⎥⎣⎦恒成立(e 为自然对数的底数),则实数a 的最大值为A.e+1B.eC.e 2+1D.e 2第II 卷 (非选择题 共90分)本卷包括必考题和选考题两部分.第13题一第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分. 把答案填在答题卡上的相应位置。

2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)

2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)

2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)一、选择题 1.已知复数A.表示复数的共轭复数,则 D.6()B.5 C.【答案】B.【解析】试题分析:考点:1.共轭复数的概念;2.复数模长的计算. 2.设集合A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A.【解析】试题分析:①当时,若,则“.综上得“”是“”是“”的充分条件;②”的充分不必要条件.则“”是“”的(),故选B.或考点:1.充分条件和必要条件的判断;2.一元二次不等式的解法;3.集合的包含关系. 3.过坐标原点O作单位圆使得(A.点B.点C.点的两条互相垂直的半径),则以下说法正确的是(),若在该圆上存在一点,一定在单位圆内一定在单位圆上一定在单位圆外时,点在单位圆上D.当且仅当【答案】B.【解析】试题分析:使用特殊值方法求解.设在单位圆上,故选B..在圆上,考点:1.平面向量基本定理;2.点和圆的位置关系. 4.过双曲线的一个焦点作实轴的垂线,交双曲线于两点,若线段的长度恰等于焦距,则双曲线的离心率为() A.B.C.D.【答案】A.【解析】试题分析:,又.考点:双曲线的标准方程及其几何性质(离心率的求法). 5.一个几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】C.【解析】试题分析:由三视图还原该几何体得它是一个直四棱柱等的等腰梯形,棱平面(如图),,其中为全梯形的高,,故选C.考点:1.几何体的三视图;2.几何体表面积的计算. 6.已知函数A.B.,则一定在函数图象上的点是()C.D.【答案】C.【解析】试题分析:根据的解析式,求出断四个选项是否在图象上.为奇函数,考点:函数的奇偶性.,判断函数的奇偶性,由函数.的奇偶性去判在图象上.故选C.7.执行如图所示的程序框图(算法流程图),输出的结果是()A.5 B.6 C.7 D.8 【答案】C.【解析】试题分析:由程序框图运算得的输出值为7,故选C.考点:算法初步与程序框图. 8.在中,已知,,则为()A.等边三角形B.等腰直角三角形 C.锐角非等边三角形 D.钝角三角形【答案】B.【解析】试题分析:由已知及正弦定理,得,,得.三角形,故选B.考点:综合应用正余弦定理及三角恒等变换判断三角形的形状.,.由为等腰直角9.已知满足时,的最大值为1,则的最小值为()A.7 B.8 C.9 D.10 【答案】D.【解析】试题分析:由线性规划将图画出,由的最大值为 1,找出的最大值时图上的点,进而求得在处有最大值.与矛盾,故不能用均值不等式求最值.设时,的最小值.由图象知,当且仅当,即.由对勾函数性质得,考点:线性规划参数最值问题.有最小值,.10.对于函数,若为某一三角形的三边长,则称为“可构造三角形函数”.已知函数A.B.C.是“可构造三角形函数”,则实数t的取值范围是() D.【答案】D.【解析】试题分析:由已知得当时,,由;当数”;当时,,则.,得时,显然是“可构造三角形函.综上所述:,故选D.考点:函数的性质(有界性、最大值和最小值).二、填空题 1.若随机变量【答案】0.8413.【解析】试题分析:由题意可知正态分布密度函数的图象关于.考点:正态分布密度函数的图象及其性质. 2.已知数列满足且,则.对称,得,且,则__________.【答案】2021.【解析】试题分析:由题意可知.考点:等差数列、等比数列通项公式的求法.3.某办公室共有6人,组织出门旅行,旅行车上的6个座位如图所示,其中甲、乙两人的关系较为亲密,要求在同一排且相邻,则不同的安排方法有种.是以为首项,2为公比的等比数列,【答案】144.【解析】试题分析:由题意可知满足条件的不同安排方法分两类:一类是并排坐在第二排,有种;一类是并排坐在第三排,有种,故共有种.考点:有限制条件的排列组合问题. 4.若展开式的各项系数绝对值之和为1024,则展开式中项的系数为_____________.【答案】-15.【解析】试题分析:,得展开式的各项系数绝对值之和与.设.令考点:二项式定理的应用. 5.已知直线:出下列命题:①当时,中直线的斜率为;(为给定的正常数,为参数,)构成的集合为,给展开式中含的项为第,得展开式的各项系数和相等,令项,则.,含项的系数为②中所有直线均经过一个定点;③当④当时,存在某个定点,该定点到中的所有直线的距离均相等;时,中的两条平行直线间的距离的最小值为;⑤中的所有直线可覆盖整个平面.其中正确的是(写出所有正确命题的编号).【答案】③④.【解析】试题分析:且把直线圆既满足直线的方程代入椭圆的切线.①当时,点在圆时,的方程,也满足椭圆的方程可得直线的方程,为椭①错;②为椭圆切线不经过定点,②错;③当上,圆心到圆上的距离相等,∴③正确;④当时,为椭圆切线,当中两直线分别与椭圆相切于的短轴两端点时,它们间的距离为,∴④正确;⑤为椭圆切线,不可覆盖整个平面.综上所述:③④正确.考点:1.椭圆的几何性质;2.直线和椭圆的位置关系.三、解答题 1.已知(1)(2)【答案】(1)【解析】试题分析:(1)利用两角和与差的余弦公式将已知式开化简,即可求得的值,再利用平方关系求的值,最后将拆成展;.;(2).求:,利用两角和与差的正弦公式求得的值,可先求出的值,再利用商关系将的值.的值;(2)利用平方关系,由(1)中中的正切化为正余弦,将,的值,代将入即可求得试题解析:(1)即,注意到2分,故,从而. 7分5分(2). 12分(或者,,==).,,=考点:1.三角恒等变换;2.两角和与差的三角函数公式;3.三角函数基本关系式. 2.如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF 中,,是锐角,且平面ACEF⊥平面ABCD.(1)求证:;的余弦值.(2)若直线DE与平面ACEF所成的角的正切值是,试求【答案】(1)详见试题解析;(2)【解析】.试题分析:(1)证明线线垂直,可转化为证明线面垂直.要证,只要证平面,由已知平面ACEF⊥平面ABCD,故由面面垂直的性质定理知,只要证.在等腰梯形ABCD中,由已知条件及平面几何相关知识易得;(2)连结交于,再连结EM,FM,易知四边形为菱形,∴DM⊥AC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF 所成的角.在中由锐角三角函数可求得的长,再在中由锐角三角函数即可求得的余弦值.试题解析:(1)证明:在等腰梯形ABCD中,∵AD=DC=CB=AB,∴AD、BC为腰,取AB得中点H,连CH,易知,四边形ADCH为菱形,则CH=AH=BH,故△ACB为直角三角形,. 3分平面,故平面,且平面平面. 6分,平面,而平面(2)连结交于,再连结EM,FM,易知四边形平面平面,故DM⊥平面.于是,角. 9分为菱形,∴DM⊥AC,注意到即为直线DE与平面ACEF所成的设AD=DC=BC=,则MD=中,,,.依题意,,∵,,在=AM,四边形AMEF为平行四边形,. 12分,考点:1.空间垂直关系的证明;2.空间角的计算. 3.已知函数(1)若函数的极小值是在,求处取得极小值.;上单调递(2)若函数的极小值不小于,问:是否存在实数,使得函数减?若存在,求出的范围;若不存在,说明理由.【答案】(1)【解析】试题分析:(1)对列出方程组实数k,使得函数.由得解这个方程组,可得在求导,得的值,从而求得;(2)存在实数,满足题意.,结合已知条件可以的解析式;(2)假设存在=0两根为,由,解得,则,上单调递减.设,的递减区间为的递减区间为在.由条件有有这个条件组可求得,即可求得的值.的值.利用函数上单调递减,列出不等式组试题解析:(1),由知,解得 4分. 6分上单调递减.设,.的递减区间为,由=0两根为,检验可知,满足题意.(2)假设存在实数,使得函数,则解得,.由的递减区间为由条件有,解得 10分函数在上单调递减.由.∴存在实数,满足题意. 12分考点:1.导数与函数的极值;2.导数与函数的单调性;3.含参数的探索性问题的解法. 4.已知椭圆,如图.的右焦点为,设左顶点为A,上顶点为B且(1)求椭圆的方程;(2)若,过的直线交椭圆于两点,试确定;(2)的取值范围..【答案】(1)椭圆的方程为【解析】的取值范围为试题分析:(1)首先写出,,,由运算,可得方程,又由椭圆中关系得及向量数量积的坐标,解这个方程组得的值,从,此时,,而得椭圆的标准方程;(2)先考虑直线斜率不存在的情况,=;若直线斜率存在,设,代入椭圆方程消去得关于的一元二次的取值方程,利用韦达定理,把范围.试题解析:(1)由已知,∵,∴表示成斜率的函数,求此函数的值域,即得,,解得,,∴,此时,则由,∴椭圆,,得:. 4分=;.(2)①若直线斜率不存在,则②若直线斜率存在,设,∴,,,则由,∴消去得:=,∴..∵,∴,∴综上,的取值范围为. 13分考点:1.椭圆的标准非常及其几何性质;2.直线和椭圆的位置关系;3.利用向量的数量积运算解决椭圆中的取值范围问题.5.某市质监部门对市场上奶粉进行质量抽检,现将9个进口品牌奶粉的样品编号为1,2,3,4,,9;6个国产品牌奶粉的样品编号为10,11,12,15,按进口品牌及国产品牌分层进行分层抽样,从其中抽取5个样品进行首轮检验,用表示编号为的样品首轮同时被抽到的概率.(1)求的值;的和.;(2)所有的的和为10.(2)求所有的【答案】(1)【解析】试题分析:(1)由分层抽样可知:首轮检验从编号为1,2,3,,9的洋品牌奶粉的样品中抽取3个,从编号为10,11,,15的国产品牌奶粉的样品中抽取2个,从而可求得的值;(2)采用分类讨论思想,分别求满足①当时,②当时,③当时的的值,最后求和即得所有的的和.试题解析:(1)由分层抽样可知:首轮检验从编号为1,2,3,,9的洋品牌奶粉的样品中抽取3个,从编号为10,11,,15的国产品牌奶粉的样品中抽取2个,故=. 4分(2)①当②当③当∴所有的时,时,时,==的和为==,而这样的有有=36个;=,而这样的=,而这样的×36+=15个;有=54个.×15+×54=10. 13分考点:1.分层抽样的基本思想;2.古典概型的概率计算. 6.已知函数,记函数(1)求;(2)求证:<(3)设为数列;的前项和,求证:<.来,(>0,图象与三条直线,以点为切点作函数图象的切线所围成的区域面积为.【答案】(1)【解析】试题分析:(1)先对;(2)详见试题分析;(3)详见试题分析.求导,根据切点坐标及导数的几何意义,求出切线的斜率,计算图象与三条直线写出切线的方程,最后利用定积分所围成的区域面积,可求得数列(≥0),求导可得递减,故,从而证得当>0时,,∴=<<的通项公式;(2)构造函数,从而函数成立,故(≥0)单调<,由放缩法得<;(3)由(2):<,再结合裂项相消法即可证明来<.试题解析:(1)易知即(2)构造函数,∴(≥0),则,(≥0)单调递减,而∴当>0时,<<.成立,∴知<,∴,等号在,∴=,切点为,则方程为=,即函数时取得,(3)<<<,∴当时,=<;当<.时,方法二:(1)(2)同方法一;(3)由(2)知<,(),,又综上所述:对一切,都有<.,,∴考点:1.导数的几何意义;2.定积分的计算;3.利用导数证明不等式;4.利用放缩法和裂项相消法证明不等式.感谢您的阅读,祝您生活愉快。

2021届安徽省合肥市高三上学期期初调研性检测数学(理)试题(解析版)

2021届安徽省合肥市高三上学期期初调研性检测数学(理)试题(解析版)

2021届安徽省合肥市高三上学期期初调研性检测数学(理)试题一、单选题1.若复数z 满足1zi -=,其中i 是虚数单位,则复数z 的模为( )A B C .D .3【答案】B【解析】首先根据题意得到z i =,再计算模长即可.【详解】因为1zi -=,所以===z i .所以==z 故选:B 【点睛】本题主要考查复数的除法运算,同时考查了复数的模长,属于简单题.2.若集合{}1A xx =>∣,{}2230B x x x =--≤∣,则A B =( )A .(1,3]B .[1,3]C .[1,1)-D .[1,)-+∞【答案】A【解析】化简集合B ,根据交集的定义,即可求解. 【详解】{}2230[1,3]B x x x =--≤=-∣, {}1(1,)A x x =>=+∞∣,(1,3]A B ∴=。

故选:A. 【点睛】本题考查集合的运算,属于基础题.3.若变量x ,y 满足约束条件1133x y x y x y -≤⎧⎪+≥-⎨⎪-≥⎩,则目标函数3z x y =+的最小值为( )A .92-B .4-C .3-D .1【答案】D【解析】根据变量x ,y 满足1133x y x y x y -≤⎧⎪+≥-⎨⎪-≥⎩,画出可行域,然后平移直线30x y +=,当直线在y 轴上截距最小时,目标函数取得最小值. 【详解】由变量x ,y 满足1133x y x y x y -≤⎧⎪+≥-⎨⎪-≥⎩,画出可行域如图所示:平移直线30x y +=,当直线在y 轴上截距最小时,经过点1,0A ,此时目标函数取得最小值,最小值是1, 故选:D 【点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.4.为了保障广大人民群众的身体健康,在新冠肺炎疫情防控期间,有关部门对辖区内15家药店所销售的A 、B 两种型号的口罩进行了抽检,每家药店抽检10包口罩(每包10只),15家药店中抽检的A、B型号口罩不合格数(Ⅰ、Ⅱ)的茎叶图如图所示,则下列描述不正确...的是()A.估计A型号口罩的合格率小于B型号口罩的合格率B.Ⅰ组数据的众数大于Ⅱ组数据的众数C.Ⅰ组数据的中位数大于Ⅱ组数据的中位数D.Ⅰ组数据的方差大于Ⅱ组数据的方差【答案】D【解析】根据茎叶图中的数据计算出两种型号口罩的合格率,可判断A选项的正误;求出两组数据的众数,可判断B选项的正误;求出两组数据的中位数,可判断C选项的正误;利用排除法可判断D选项的正误.【详解】对于A选项,由茎叶图可知,A型号口罩的不合格数为658210124131416202130199++⨯++⨯++++++=,B型口罩的不合格数为245682101131416212528180++++⨯++⨯+++++=,A型号口罩的合格率为1991301115001500-=,B型口罩的合格率为1801320115001500-=,所以,A型口罩的合格率小于B型口罩的合格率,A选项正确;对于B选项,Ⅰ组数据的众数为12,Ⅱ组数据的众数11,B选项正确;对于C选项,Ⅰ组数据的中位数为12,Ⅱ组数据的11,C选项正确;由排除法可知D选项不正确.故选:D.【点睛】本题考查茎叶图的应用,考查众数、中位数、以及方差的大小比较,考查数据分析能力,属于基础题.5.设数列{}n a的前n项和为n S,若3122n nS a=-,则5S=()A.81 B.121 C.243 D.364【答案】B【解析】利用递推式与等比数列求和的通项公式即可得出.【详解】31,22n n S a =-∴当2n ≥时,113122n n S a --=-,∴111313133222222n n n n n n n a S S a a a a ---⎛⎫=-=---=- ⎪⎝⎭, 化简可得:13n n a a -=, 当1n =时,1113122a S a ==-,解得:11a =. ∴数列{}n a 是等比数列,首项为1,公比为3,()()55151113121113a q S q-⨯-∴===--.故选:B. 【点睛】本题考查了递推式的应用、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.6.函数cos ()x xx xf x e e-=+在[],ππ-上的图象大致是( ) A . B .C .D .【答案】A【解析】先由函数的奇偶性定义,判断()f x 为奇函数,排除B ,D ,再由()f x 在(0,),(,)22πππ函数值的正负值判断,即可得出结论.【详解】cos (),[,]x x x xf x x e e ππ-=∈-+定义域关于原点对称,cos ()(),()x xx xf x f x f x e e---==-∴+是奇函数, 图象关于原点对称,排除选项B ,D ,(0,),()0,,()022x f x x f x ππ∈>==,(,),()02x f x ππ∈<,所以选项C 不满足,选项A 满足.故选:A. 【点睛】本题考查函数图象的识别,根据函数的性质是解题的关键,属于基础题.7.周六晚上,小红和爸爸、妈妈、弟弟一起去看电影,订购的4张电影票恰好在同一排且连在一起,为安全起见,每个孩子至少有一侧有家长陪坐,则不同的坐法种数为( ) A .8 B .12 C .16 D .20【答案】C【解析】先计算出4个人的全排列,再减去不符合情况的种数即可. 【详解】4个人坐四个座位,共有4424A =种坐法,当孩子坐在一起并且坐在最边上时,有一个孩子没有大人陪伴,共有222228A A =种,所以每个孩子旁边必须有大人陪着共有24-8=16种坐法. 故选:C . 【点睛】本题主要考查排列,间接法有时更容易求出结果.8.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的单调递减区间为( )A .32,2()88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .3,()88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ C .372,2()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .37,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】D【解析】由图可知,0,18822f f ππππωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫=+==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,338288T πππ=-=,从而可求出2,4πωϕ==-,())4f x x π=-,进而由3222,242k x k k Z πππππ+≤-≤+∈可求得答案 【详解】解:由图可知,0,18822f f ππππωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫=+==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以18k πωϕπ+=,1k Z ∈,2224k ππωϕπ+=+或2232,24k k Z ππωϕπ+=+∈,因为338288T πππ=-=,所以T π=,所以2ππω=, 因为0>ω,所以2ω=, 所以14k πϕπ=-,1k Z ∈,2324k πϕπ=-+或222,4k k Z πϕπ=-+∈ 因为||2ϕπ<,所以4πϕ=-,所以())4f x x π=-,由3222,242k x k k Z πππππ+≤-≤+∈, 解得37,88k x k k Z ππππ+≤≤+∈, 所以()f x 的单调递减区间为37,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 故选:D 【点睛】此题考查由三角函数的部分图像求解析式,考查三角函数的图像和性质,属于中档题 9.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的体积为( )A .32B .16C .83D .163【答案】C【解析】根据三视图可知原几何体为一个三棱锥A BCD -,根据条件求出体积即可. 【详解】由三视图可知,几何体为一个三棱锥A BCD -, 如下图所示:根据三视图可知,4DB =,2DC =,高为2,1182323A BCD V DC DB -∴=⨯⨯⨯⨯=,∴所求几何体体积:83,故选:C . 【点睛】本题考查三视图、多面体体积的求解问题,关键是能够找出原来几何体进行求解. 10.在ABC 中,D 、E 、F 分别是边BC 、CA 、AB 的中点,AD 、BE 、CF 交于点G ,则:①1122EF CA BC =-; ②1122BE AB BC =-+;③AD BE FC +=;④0GA GB GC ++=. 上述结论中,正确的是( ) A .①② B .②③C .②③④D .①③④【答案】C【解析】作出图形,利用平面向量的加法法则可判断①②③④的正误. 【详解】 如下图所示:对于①,F 、E 分别为AB 、AC 的中点,111222FE BC CA BC ∴=≠-,①错误; 对于②,以BA 、BC 为邻边作平行四边形ABCO ,由平面向量加法的平行四边形法则可得2BE BO BA BC AB BC ==+=-+,1122BE AB BC ∴=-+,②正确;对于③,由②同理可得2AD AB AC =+,1122AD AB AC ∴=+,同理可得1122CF CA CB =+,()102AD BE CF AB AC BA BC CA CB ∴++=+++++=,AD BE CF FC ∴+=-=,③正确;对于④,易知点G 为ABC 的重心,所以,23GA AD =-,23GB BE =-,23GC CF =-,因此,()203GA GB GC AD BE CF ++=-++=,④正确. 故选:C. 【点睛】本题考查平面向量加法运算的相关判断,考查平面向量加法法则的应用,考查计算能力,属于中等题.11.双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,M 为C 的渐近线上一点,直线2F M 交C 于点N ,且20F M OM ⋅=,2232F M F N =(O 为坐标原点),则双曲线C 的离心率为( ) A .5 B .2C .3D .2【答案】A【解析】设点M 为第一象限内的点,求出直线2F M 的方程,可求得点M 的坐标,由2232F M F N =可求得点N 的坐标,再将点N 的坐标代入双曲线C 的方程,进而可求得双曲线C 的离心率. 【详解】设点M 为第一象限内的点,可知直线OM 的方程为by x a=,()2,0F c ,2F M OM ⊥,所以,直线2F M 的方程为()ay x c b=--, 联立()b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩,解得2a x c ab y c ⎧=⎪⎪⎨⎪=⎪⎩,即点2,a ab M c c ⎛⎫ ⎪⎝⎭,设点(),N x y ,()222,,0,a ab b ab F M c c c c c ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,()2,F N x c y =-, 2232F M F N =,()23232b x c c ab y c ⎧-=-⎪⎪∴⎨⎪=⎪⎩,解得222323a c x c aby c ⎧+=⎪⎪⎨⎪=⎪⎩,即点2222,33a c ab N c c ⎛⎫+ ⎪⎝⎭,将点N 的坐标代入双曲线C 的方程得22222222331a c ab c c a b ⎛⎫+⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=, 可得22249e e e⎛⎫+-= ⎪⎝⎭,整理得25e =,1e >,解得e =故选:A. 【点睛】本题考查双曲线的离心率为求解,解题的关键就是求出点N 的坐标,考查计算能力,属于中等题.12.已知a 、b R ∈,函数()()3210f x ax bx x a =+++<恰有两个零点,则+a b 的取值范围( ) A .(),0-∞ B .(),1-∞-C .1,4⎛⎫-∞-⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】D【解析】利用导数分析函数()y f x =的单调性,可得出该函数的极小值()10f x =,由题意得出()()2111321111321010f x ax bx f x ax bx x ⎧=++=⎪⎨=+++='⎪⎩,进而可得23112111223a x x b x x ⎧=+⎪⎪⎨⎪=--⎪⎩,可得出32111222a b x x x +=--,令110t x =<,由0a <可得出12t <-,构造函数()32222g t t t t =--,求得函数()y g t =在区间1,2⎛⎫-∞- ⎪⎝⎭上的值域,由此可求得+a b 的取值范围.【详解】()321f x ax bx x =+++且0a <,()2321f x ax bx '=++,24120b a ∆=->,则方程()0f x '=必有两个不等的实根1x 、2x ,设12x x <, 由韦达定理得1223bx x a+=-,12103x x a=<,则必有120x x <<,且()21113210f x ax bx '=++=,①当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>.所以,函数()y f x =的单调递增区间为()12,x x ,单调递减区间为()1,x -∞和()2,x +∞. 由于()010f =>,若函数()y f x =有两个零点,则()32111110f x ax bx x =+++=,②联立①②得21132111321010ax bx ax bx x ⎧++=⎨+++=⎩,可得23112111223a x x b x x ⎧=+⎪⎪⎨⎪=--⎪⎩,所以,32111222a b x x x +=--, 令110t x =<,令()32222g t t t t =--,则()a b g t +=, ()3222210a t t t t =+=+<,解得12t <-,()()()()2264223212311g t t t t t t t '=--=--=+-.当12t <-时,()0g t '>,此时,函数()y g t =单调递增,则()321111122222224a b g t g ⎛⎫⎛⎫⎛⎫⎛⎫+=<-=⨯--⨯--⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】本题考查利用三次函数的零点个数求代数式的取值范围,将代数式转化为函数是解答的关键,考查化归与转化思想的应用,属于难题.二、填空题13.若命题:p 若直线l 与平面α内的所有直线都不平行,则直线l 与平面α不平行;则命题p ⌝是________命题(填“真”或“假”). 【答案】假【解析】先写出p ⌝,再判断真假即可. 【详解】命题:p 若直线l 与平面α内的所有直线都不平行,则直线l 与平面α不平行; 命题p ⌝:若直线l 与平面α内的所有直线都不平行,则直线l 与平面α平行,假命题. 故答案为:假命题. 【点睛】本题考查命题的否定及判断真假,属于基础题.14.若直线l 经过抛物线24x y =-的焦点且与圆22(1)(2)1x y -+-=相切,则直线l 的方程为________.【答案】0x =或4330x y --=【解析】先根据抛物线方程24x y =-,求得焦点坐标()0,1F-,再分直线的斜率不存在和直线的斜率存在时,两种情况设直线方程,然后利用圆心到直线的距离等于半径求解. 【详解】因为抛物线方程为24x y =-, 所以焦点坐标为:()0,1F-,当直线的斜率不存在时,设直线方程为:0x =, 圆心到直线的距离为1dr ,符合题意,当直线的斜率存在时,设直线方程为:1y kx =-,即10kx y --=,圆心到直线的距离为1d r ===,解得43k =, 所以直线方程为4330x y --=, 故答案为:0x =或4330x y --= 【点睛】本题主要考查抛物线的几何性质以及直线与圆的位置关系,还考查了运算求解的能力,属于基础题.15.已知函数()cos ()f x x x x R =-∈,α,β是钝角三角形的两个锐角,则(cos )f α________(sin )f β (填写:“>”或“<”或“=”).【答案】>【解析】对函数()f x 求导判断其单调性,再由钝角三角形内角判断cos ,sin αβ的大小. 【详解】由()1sin 0f x x '=+≥,可得()f x 在R 上单调递增, 因为α,β是钝角三角形的两个锐角,所以2παβ+<,022ππβα<<-<,sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调增,sin sin 2πβα⎛⎫∴<- ⎪⎝⎭,sin cos βα<,所以()(cos )sin f f αβ> 故答案为:> 【点睛】此题考查导函数,三角函数的单调性,属于中档题.16.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若2ABC OBC PBC S S S ⋅=△△△,且三棱锥P ABC -的外接球半径为3,则PAB PBC PAC S S S ++△△△的最大值为________.【答案】18【解析】连AO 交BC 于D ,由顶点P 在底面的射影O 为ABC 的垂心,得AD BC ⊥,进而证明,,BC PA PC AB PD BC ⊥⊥⊥,由2ABC OBC PBC S S S ⋅=△△△。

安徽省合肥市2021届高三一模数学试题及答案(理科)

安徽省合肥市2021届高三一模数学试题及答案(理科)

合肥市2021年高三第一次教学质量检测数学试题(理科)(解析版) (考试时间:120 分钟满分:150分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数2i1iz -=+(i 为虚数单位),则z 的共轭复数为( ) A.33i 22+ B.33i 22-C.13i 22+ D.13i 22- 【答案】C 【详解】()()()()=-+--=+-=i i i i i i z 111212i 2321-,所以i z 2321+=, 故选:C.2.已知集合{}2xA y y ==,{B x y ==,则A B ⋂=( )A.∅B.[]0,1C.()0,1D.(]0,1【答案】D 【详解】{}x y y A 2==()∞+=,0,{}(]1,1∞-=-==x y x B ,所以(]1,0=B A , 故选;D.3.某商场2020年部分月份销售金额如下表:若用最小二乘法求得回归直线方程为6.171.38ˆ-=x y,则a =( ) A.198.2 B.205 C.211 D.213.5 【答案】B 【详解】 由题意知,5108642++++=x 6=,5850536828613264aa y +=++++=, 因为样本中心点()y x ,在回归直线方程6.171.38ˆ-=x y上, 所以6.1761.385850-⨯=+a,解得205=a , 故选:B.4.若数列{}n a 的前n 项和n S 满足321n n S a =-,则5a =( )A.32B.321C.116- D.16- 【答案】D 【详解】当1=n 时,12311-=a a ,11-=a ,当2≥n 时,12311--=-n n a S ,又123-=n n a S ,两式相减,得1-223n n n a a a -=, 即1-2n n a a -=()2≥n ,所以数列{}n a 为以1-为首项,以2-为公比的等比数列, 所以()()162145-=-⨯-=a ,故选:D.5.已知F 是椭圆E :()222210x y a b a b+=>>的左焦点,椭圆E 上一点()2,1P 关于原点的对称点为Q ,若PQF △的周长为则a b -=( )B.2【答案】A 【详解】取椭圆E 的右焦点F ',连接F P ',F Q ',则四边形F QFP '为平行四边形,则QF F P =',因为PQF ∆的周长为5224+,所以5224+=++PQ QF PF ,所以52242+=+'+PO F P PF ,由椭圆定义知,a F P PF 2='+,因为()1,2P ,所以51222=+=PO ,所以5224522+=+a ,解得22=a , 又点()1,2P 在椭圆E 上,所以11422=+ba , 解得2=b ,所以2222=-=-b a ,故选:A.6.自2019年1月1日起,我国个人所得税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个人所得税税额=应纳税所得额⨯税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除.其中,“基本减除费用”(免征额)为每年60000元.部分税率与速算扣除数见下表:若某人全年综合所得收入额为249600元,专项扣除占综合所得收入额的20%,专项附加扣除是52800元,依法确定其他扣除是4560元,则他全年应缴纳的个人所得税应该是()A.5712元B.8232元 C.11712元 D.33000元【答案】A 【详解】由题意知,应纳税所得额为()-%20-12496008232060000456052800=--, (]144000,3600082320∈,所以税率为%10,则此人全年应缴纳个人所得税应该为57122520%1082320=-⨯, 故选:A.7.在ABC △中,2AB =,3AC =,2BD DC =,AE EB =,则AD CE ⋅=( )A.76-B.76C.163- D.163【答案】C 【详解】+=+=AB BD AB AD ()AC AB AB AC AB BC 32313232+=-+=+,AC AB AC AE CE -=-=21, 所以=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⋅AC AB AC AB CE AD 21323131633226132612222-=⨯-⨯=-AC AB ,故选:C. 【点睛】关键点睛:⑴用向量AB ,AC 作基底表示向量AD ,CE ;⑵用平面向量的数量积运算公式计算CE AD ⋅的值.8.设函数()21log 20,0x x f x x ⎧⎛⎫+>⎪ ⎪=⎝⎭⎨⎪≤⎩.若14,2x ⎛⎫∈- ⎪⎝⎭时,方程()1f x k +=有唯一解,则实数k 的取值范围为( )A.(B.⎡⎣C.()0,2D.[)1,2【答案】B 【详解】因为⎪⎩⎪⎨⎧≤->⎪⎭⎫ ⎝⎛+=0,0,21log )(2x x x x x f ,所以()⎪⎩⎪⎨⎧-≤+-->⎪⎭⎫ ⎝⎛+=+1,11,23log )1(2x x x x x f , 方程k x f =+)1(在⎪⎭⎫ ⎝⎛-21,4上有唯一解,即函数)1(+=x f y 与函数k y =的图象在⎪⎭⎫ ⎝⎛-21,4上有唯一交点,画出)1(+=x f y 在⎪⎭⎫ ⎝⎛-21,4的图象,如图所示,由图象可知31<≤k ,故选:B.【点睛】关键点睛:⑴准确画出函数)1(+=x f y 在⎪⎭⎫ ⎝⎛-21,4的图象;⑵方程k x f =+)1(在⎪⎭⎫ ⎝⎛-21,4上有唯一解,即函数)1(+=x f y 与函数k y =的图象在⎪⎭⎫ ⎝⎛-21,4上有唯一交点.9.我国古代数学名著《九章算术》第五卷“商功”中,把底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”.今有“阳马”P ABCD -,PA AB AD ==,E ,F 分别为棱PB ,PD 的中点.以下四个结论:①PB ⊥平面AEF ;②EF ⊥平面PAC ;③平面PBD ⊥平面AEF :④平面AEF ⊥平面PCD .其中正确的是( ) A.①③ B.①④ C.②③ D.②④【答案】D 【详解】因为AD AB =,四边形ABCD 为矩形,所以四边形ABCD 为正方形, 因为四棱锥ABCD P -有一条侧棱与底面垂直,且AB PA =AD =, 所以⊥PA 平面ABCD ,所以AP AD AB ,,两两互相垂直,如图建立空间直角坐标系xyz A -,则()0,0,0A ,()0,0,2B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,0,1E ,()1,1,0F ,对①:因为()2,0,2-=PB ,()1,1,0=AF ,()0212-1002≠-=⨯+⨯+⨯=⋅AF PB , 所以PB 和AF 不垂直,所以PB 与平面AEF 不垂直,故①错误; 对②:()0,1,1-=EF ,()2,0,0=AP ,()0,2,2=AC ,因为()200101⨯+⨯+⨯-=⋅AP EF 0=,()0002121=⨯+⨯+⨯-=⋅AC EF , 所以AP EF ⊥,AC EF ⊥,A AC AP = ,所以⊥EF 平面PAC ,故②正确; 对③:()2,0,2-=PB ,()0,2,2-=BD ,()1,1,0=AF ,()0,1,1-=EF ,设平面PBD 的法向量为()z y x m ,,= ,由⎪⎩⎪⎨⎧=⋅=⋅0BD m PB m ,得⎩⎨⎧=+-=-022022y x z x ,令1=x ,则()1,1,1=m,设平面AEF 的法向量为()z y x n ,,= ,由⎪⎩⎪⎨⎧=⋅=⋅0EF n AF n ,得⎩⎨⎧=+-=+00y x z y ,令1=x ,则()1,1,1-=n,因为01≠=⋅n m,所以平面PBD 与平面AEF 不垂直,故③错误;对④:()2,2,0-=PD ,()0,0,2-=CD ,设平面PCD 的法向量为()z y x a ,,=,由⎪⎩⎪⎨⎧=⋅=⋅0CD a PD a ,得⎩⎨⎧=-=-02022x z y ,令1=y ,则()1,1,0=a , 又平面AEF 的法向量为()1,1,1-=n,且()0111110=-⨯+⨯+⨯=⋅n a,所以平面⊥AEF 平面PCD ,故④正确; 故②④正确, 故选:D.10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若sin 2sin 2sin cos a A c C b C A +=,则角A 的最大值为( )A.6π B.4π C.3πD.23π 【答案】A【详解】由正弦定理和余弦定理得R a A 2sin =,R b B 2sin =,RcC 2sin =,bc a c b A 2cos 222-+=,由A C b C c A a cos sin 2sin 2sin =+,得⋅⋅=⋅+⋅R c b R c c R a a 22222bc a c b 2222-+, 化简得2222b c a =+,即2222c b a -=,代入bca cb A 2cos 222-+=,得bcc b c b A 22cos 2222--+=234324322=⋅⋅≥+=bc c b bc c b ,当且仅当c b 3=时等号成立,所以⎥⎦⎤⎝⎛∈30π,A ,所以A 的最大值为3π, 故选:A.11.设双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,曲线C 上一点P到x 轴的距离为2a ,12120F PF ∠=︒,则双曲线C 的离心率为( )B.1+C.2+D.4【答案】C 【详解】因为双曲线C 上一点P 到x 轴的距离为a 2, 由等面积法得,212121sin 21221PF F PF PF a F F ∠⋅⋅⋅=⋅⋅, 即︒⋅⋅⋅=⋅⋅120sin 21222121PF PF a c ,所以ac PF PF 3821=, 由余弦定理得,+=21221PF F F ︒-120cos 22122PF PF PF ,即()()22122PF PF c -=213PF PF +,即()2122122212PF PF PF PF PF PF +-=+,即()()2222a c =ac 383⨯+,整理得-+ac c 232032=a , 两边同时除以2a ,得03232=-+e e ,解得23+=e 或23-=e (舍),故选:C.12.若两个正四面体的顶点都是一个棱长为1的正方体的顶点,则这两个正四面体公共部分的体积为( ) A.516 B.14 C.524D.16【答案】D 【详解】如图,在正方体中作出两个四面体,结合立体图形可知,两个四面体的公共部分是以正方体六个面的中心为顶点的正八面体, 将该正八面体分为上、下两个完全相同的正四棱锥,且每个正四棱锥的棱长均为22,高为21,所以该正八面体的体积21223122⨯⎪⎪⎭⎫⎝⎛⨯⨯=V61=,故选:D.【点睛】关键点睛:本题考查空间几何体的特征、多面体体积的求解.解题关键是:⑴在正方体中作出两个正四面体;⑵结合立体图形知,两个四面体的公共部分是以正方体六个面的中心为顶点的正八面体.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上的相应位置.13.若实数x,y满足条件10,10,220,x yx yx y+-≥⎧⎪-+≥⎨⎪+-≤⎩则32x y-的最小值为 .【答案】2-【详解】由线性约束条件画出可行域,如图中阴影部分,设yxz23-=,则223zxy-=,画出直线23xy=,平移直线,当直线经过()1,0A时,直线的纵截距最大,则yxz23-=取得最小值,所以()2120323min -=⨯-⨯=-y x . 故答案为:2-. 14.若函数()ln a xf x x=的图象在点()()1,1f 处的切线与直线410x y +-=垂直,则a 的值等于 . 【答案】 4 【详解】2ln )(x x a a x f -=',因为直线014=-+y x 的斜率为41-, 所以4)1(='f ,即4=a . 故答案为:4.15.在521x x ⎛⎫- ⎪⎝⎭的展开式中,x 的偶次项系数之和是 .【答案】16- 【详解】521⎪⎭⎫ ⎝⎛-x x 的展开式的第1+r 项为()rr r rr r r x C x x C T 355255111--+-=⎪⎭⎫ ⎝⎛-=,所以当5,3,1=r 时,对应的项为偶次项,所以x 的偶次项系数之和为16553515-=---C C C .故答案为:16-.16. 百善孝为先,孝敬父母是中华民族的传统美德.因父母年事渐高,大张与小张兄弟俩约定:如果两人在同一天休息就一起回家陪伴父母,并把这一天记为“家庭日”.由于工作的特殊性,大张每工作三天休息一天,小张每周星期一与星期五休息,除此之外,他们没有其它休息日.已知2021年1月1日(星期五)是他们约定的“家庭日”,则2021年全年他们约定的“家庭日”共有 个. 【答案】27【详解】 2021年共有365天,记2021年1月1日为第一天,大张三天休息一天,小张每周一或周五休息,他俩同时在2021年1月1日休息, 记集合{}3651,,14≤≤∈+==x Z k k x x A ,{}3651,4717≤≤∈+=+==y Z k k y k y y B ,或,则集合B A 中的元素的个数即为他们约定的“家庭日”的个数.①当171421+=+k k ,则2174k k =()Z k k ∈21,,所以()Z k k k ∈=3317, 因为3651411≤+≤k ,所以9101≤≤k ,则91703≤≤k ,即()Z k k ∈≤≤33130, 所以符合条件的3k 有14个;②当471421+=+k k ,则37421+=k k ()Z k k ∈21,,所以()()134221+=-k k k , 所以()132+k 是4的倍数,所以()Z k k k ∈=+33241,所以()Z k k k ∈-=33214,因为3654712≤+≤k ,所以7361732≤≤-k ,则736114733≤-≤-k ,即()Z k k ∈≤≤3379271,所以符合条件的3k 有13个. 综上,2021年“家庭日”的个数为271314=+. 故答案为:27【点睛】本题考查等差数列的通项、集合的运算.关键点睛:⑴将大张和小张的休息日用等差数列的通项公式表示并用集合的形式表示;⑵集合B A 中的元素的个数即为他们约定的“家庭日”的个数;⑶利用3651411≤+≤k 和3654712≤+≤k ,得到3k 的范围.三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某厂将一种坯件加工成工艺品需依次经过A 、B 、C 三道工序,三道工序相互独立.工序A 的加工成本为70元/件,合格率为78,合格品进入工序B ;工序B 的加工成本为60元/件,合格率为67,合格品进入工序C :工序C 的加工成本为30元/件,合格率为56.每道工序后产生的不合格品均为废品.(1)求一个坯件在加工过程中成为废品的概率;(2)已知坯件加工成本为A 、B 、C 三道工序加工成本之和,求每个坯件加工成本的期望.【答案】(1)83;(2)答案见解析 【详解】⑴ 每道工序生产的都是合格品的概率为85657687=⨯⨯, 则一个坯件在加工过程中成为废品的概率83851=-=P ; ⑵设每个坯件的加工成本为ξ元,则ξ的可能取值为70,130,160()8187170=-==ξP ;()8176187130=⎪⎭⎫ ⎝⎛-⨯==ξP ;()437687160=⨯==ξPξ∴的分布列为14543160811308170=⨯+⨯+⨯=∴ξE ,所以每个坯件加工成本的期望为145. 18.(本小题满分12分)如图,在平面直角坐标系xOy 中,角ϕ的终边与单位圆的交点为A ,圆C :223x y +=与x 轴正半轴的交点是0P .若圆C 上一动点从0P 开始,以rad /s π的角速度逆时针做圆周运动,t 秒后到达点P .设()2f t AP =.(1)若3πϕ=且()0,2t ∈,求函数()f t 的单调递增区间;(2)若123f ⎛⎫= ⎪⎝⎭,536ππϕ<<,求56f ⎛⎫ ⎪⎝⎭. 【答案】(1)⎥⎦⎤⎢⎣⎡34,31;(2)22-4【详解】由已知条件和三角函数的定义得,()ϕϕsin ,cos A ,()t t Pππsin 3,cos 3,则()()222sin 3sin cos 3cos )(t tAP t f πϕπϕ-+-==t t πϕπϕsin sin 32cos cos 324--=()ϕπ--=t cos 324⑴若3πϕ=,则⎪⎭⎫⎝⎛--=3cos 324)(ππt t f 令()Z k k t k ∈+≤-≤πππππ232,解得()Z k k t k ∈+≤≤+234231 又()2,0∈t ,)(t f ∴的单调递增区间为⎥⎦⎤⎢⎣⎡34,31. ⑵由2)31(=f ,653πϕπ<<,得23cos 324=⎪⎭⎫ ⎝⎛--ϕπ 即333cos =⎪⎭⎫⎝⎛-ϕπ, 032<-<-ϕππ , 所以 363sin -=⎪⎭⎫⎝⎛-ϕπ 2243sin 32465cos 324)65(-=⎪⎭⎫⎝⎛-+=⎪⎭⎫ ⎝⎛--=ϕπϕπf . 19.(本小题满分12分)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,AB BC ==AD =E ,F 分别是线段AD ,CD 的中点.以EF 为折痕把DEF △折起,使点D 到达点P 的位置,G 为线段PB 的中点.(I )证明:平面//GAC 平面PEF ;(2)若平面PEF ⊥平面ABCFE ,求直线AG 与平面PAC 所成角的正弦值.【答案】(I )答案见解析;(2)105【详解】⑴连接BE 交AC 于点M ,连接GM ,CE由已知可得,四边形ABCE 是正方形,M ∴是线段BE 的中点,G 为线段PB 的中点,GM PE ∥∴⊂GM 平面GAC ,⊄PE 平面GAC ,∥PE ∴平面GAC ,F E , 分别为线段CD AD ,的中点,AC EF ∥∴,⊂AC 平面GAC ,⊄EF 平面GAC ,∥EF ∴平面GAC ,又E EF PE = ,⊂EF PE ,平面PEF ,∴平面∥GAC 平面PEF .⑵ 平面⊥PEF 平面ABCFE ,平面 PEF 平面EF ABCFE =,EF PF ⊥,⊥∴PF 平面ABCFE ,FP FC FE ,,∴两两垂直.以点F 为原点,FP FC FE ,,分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,0,0P ,()0,1,0C ,()0,2,1B ,()0,1,2A ,⎪⎭⎫⎝⎛21,1,21G , ⎪⎭⎫⎝⎛-=∴21,0,23AG ,()1,1,0-=CP ,()0,0,2=CA设平面PAC 的法向量()z y x n ,,=由⎪⎩⎪⎨⎧=⋅=⋅00CA n CP n ,得⎩⎨⎧==+-020x z y ,令1=y , 则()1,1,0=n, 设直线AG 与平面PAC 所成角为θ,则10522521cos sin =⨯===nθ 所以直线AG 与平面PAC 所成角的正弦值为105. 20.(本小题满分12分)已知F 是抛物线E :()220y px p =>的焦点,直线l :()()0y k x m m =->与抛物线E 交于A ,B 两点,与抛物线E 的准线交于点N .(1)若1k =时,AB =求抛物线E 的方程;(2)是否存在常数k ,对于任意的正数m ,都有2FA FB FN =⋅?若存在,求出k 的值:若不存在,说明理由.【答案】(1)x y 42=;(2)1±=k 【详解】⑴设()11,y x A ,()22,y x B由()⎩⎨⎧-==m x k y px y 22,消去y 得,()0222222=++-m k x p m k x k , l 与抛物线E 交于两点,0≠∴k ,又0,0>>p m ,04822>+=∆∴p mp k 恒成立,⎪⎩⎪⎨⎧=+=+∴22122122m x x k p m x x ,当1=k 时,22122421p mp x x k AB +=-+=, 因为224+=m AB ,所以2242422+=+m p mp , 整理得,()()0222=-++p m p ,0,0>>p m ,2=∴p ,所以抛物线E 的方程为x y 42=; ⑵假设存在常数k 满足题意.抛物线E 的方程为px y 22=,其焦点为⎪⎭⎫⎝⎛0,2p F ,准线方程为2p x -=,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--∴2,2p m k p N ,从而22222⎪⎭⎫ ⎝⎛++=p m k p FN 由抛物线的定义得,21p x FA +=,22px FB += , ()222221212124222k p p m p x x p x x p x p x FB FA +⎪⎭⎫ ⎝⎛+=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∴由2FN FB FA =得,22222222⎪⎭⎫ ⎝⎛++=+⎪⎭⎫ ⎝⎛+p m k p k p p m ,即()0212222=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+-k p p m k因为022>⎪⎭⎫ ⎝⎛+p m ,022>k p ,012=-∴k ,即1±=k .所以存在1±=k ,使得2FN FB FA =对于任意的正数m 都成立. 21.(本小题满分12分) 已知函数()ln 1af x x x=++有两个零点. (1)求实数a 的取值范围;(2)记()f x 的两个零点分别为1x ,2x ,求证:1241e x x <(e为自然对数的底数). 【答案】(1)20-<<e a ;(2)答案见解析 【详解】⑴)(x f 的定义域为()∞+,0,2)(xax x f -=' ①当0≤a 时,0)(>'x f 恒成立,)(x f 在()∞+,0上单调递增,)(x f 至多有一个零点,不符合题意;②当0>a 时,0)(='a f ,且当()a x ,0∈时,0)(<'x f ;当()+∞∈,a x 时,0)(>'x f ,)(x f ∴在()a ,0上单调递减,在()+∞,a 上单调递增,从而)(x f 的最小值为2ln )(+=a a f .(i )若0)(≥a f ,即2-≥e a ,此时)(x f 至多有一个零点,不符合题意;(ii )(ii )若0)(<a f ,即20-<<e a ,)(x f 在()+∞,a 上单调递增,0)(<a f ,01)1(>+=a f ,根据零点存在性定理得,)(x f 在()+∞,a 内有且只有一个零点.又 )(x f 在()a ,0上单调递减,且0)(<a f ,考虑11ln 2)(2++=a a a f 的正负. 令11ln 2)(++=xx x g ,()2,0-∈e x , 则012)(2<-='xx x g ,)(x g ∴在()2,0-e 上单调递减, 03)()(22>-=>∴-e e g x g ,即011ln 2)(2>++=aa a f , a a <<20 ,0)(2>∴a f ,0)(<a f ,根据零点存在性定理得,)(x f 在()a ,0内有且只有一个零点.所以,当20-<<e a 时,)(x f 恰有两个零点,符合题意.综上得,20-<<e a .⑵由条件得,⎪⎪⎩⎪⎪⎨⎧=++=++01ln 01ln 2211x a x x a x ,⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=--⎪⎪⎭⎫ ⎝⎛+-=+∴2121212111ln ln 211ln ln x x a x x x x a x x()2ln 112ln ln 21111ln ln ln ln 12121212212121121221-⎪⎪⎭⎫ ⎝⎛⋅-+=---+=-⎪⎪⎭⎫ ⎝⎛+--=+x x x x x x x x x x x x x x x x x x x x 要证421-<e x x ,即证4ln ln 21-<+x x ,即证42ln 11121212-<-⎪⎪⎭⎫ ⎝⎛⋅-+x x x x x x , 即证2ln 11121212-<⎪⎪⎭⎫ ⎝⎛⋅-+x x x x x x ,即证2ln 11121212>⎪⎪⎭⎫ ⎝⎛⋅-+x x x x x x ①,设12x x t =,不妨设21x x <,由2210x e x <<<-知,1>t 证①式,即转化为证明:当1>t 时,2ln 11>-+t t t , 设112ln )(+-⋅-=t t t t h ,则()()()22211141)(+-=+-='t t t t t t h , ∴当1>t 时,0)(>'t h 恒成立,即)(t h 在()+∞,1上单调递增, ∴当1>t 时,0)1()(=>h t h ,所以4211e x x <成立. 解法二:不妨设21x x <,由⑴可知,()2,0-∈ea ,()a x ,01∈,()+∞∈,2a x ,)(x f 在()+∞,a 上单调递增,要证4211e x x <,即证4121e x x <,即证()⎪⎪⎭⎫⎝⎛<4121e x f x f , 即证03ln 141>+--x ae x ,即证0-3ln 141<+x ae x由01ln )(111=++=x ax x f ,得()1ln 11+-=x x a , ∴只需证()01ln 3ln 12141<+++x x e x ①,令()1ln 3ln )(24+++=x x e x x h ,则()3ln 21)(4++='x x e xx h , 令()3ln 21)(4++=x x e x x ϕ,则()()5ln 215ln 21)(42442++-=++-='x e xe x e x x ϕ, 由20-<<e x ,得2ln -<x ,241xe <,0)(<'∴x ϕ,)(x ϕ∴在(]2,0-e 上单调递减,且0)(2=-e ϕ, (]2,0-∈∴e x ,0)(>x ϕ,即0)(>'x h ,)(x h ∴在(]2,0-e 上单调递增,且0)(2=-e h ,而21-<<e a x , 0)()(2=<∴-e h x h ,即①式得证,所以4211ex x <成立. 【点睛】方法点睛:⑴研究函数)(x f 零点问题,方法一:令0)(=x f ,参变分离,得到)(x g a =的形式,借助数形结合(几何法)求解;方法二:整体含参通过求导讨论)(x f 的单调性、极值的符号,由数形结合可知函数)(x f 的图象与x 轴的交点情况即函数)(x f 的零点情况. ⑵处理极值点偏移问题的基本策略是利用极值点满足的等式构建不等式,再利用导数讨论不等式对应的函数的单调性即可.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2tan 1tan x y βββ=⎧⎪⎨=⎪+⎩(β为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程:(2)若点M ,N 为曲线C 上两点,且满足3MON π∠=,求2211OMON-的最大值.【答案】(1)()Z k k ∈+≠+=,2sin 31122ππθθρ;(2)233 【详解】⑴化简曲线C 的参数方程得,⎪⎩⎪⎨⎧==ββ2sin 212cos y x (β为参数,且ππβk +≠2,Z k ∈) 消去参数β得曲线C 的普通方程()11422-≠=+x y x .化成极坐标方程为()()()Z k k p ∈+≠=+,21sin 4cos 22ππθθθρ,θρ22sin 311+=∴()Z k k ∈+≠,2ππθ.⑵ 不妨设()θρ,1M ,⎪⎭⎫⎝⎛+32πθρ,N ,则1ρ=OM ,2ρ=ON , - ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+=+∴3sin 31sin 31112222πθθON OM⎪⎭⎫⎝⎛+-=--=32sin 2332cos 492sin 433πθθθ 当且仅当()Z k k ∈+=ππθ127时,2211ONOM +取得最大值为233. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数()22f x x a x a =--+. (1)若()11f ≥,求实数a 的取值范围;(2)若对任意x R ∈,()20f x ≤恒成立,求a 的最小值.【答案】⑴⎥⎦⎤ ⎝⎛-∞-21,;(2)0【详解】⑴由1)1(≥f ,得11212≥+--a a ,()⎩⎨⎧≥++--≤∴112211a a a 或()⎪⎩⎪⎨⎧≥+--≤<-11221211a a a 或()⎪⎩⎪⎨⎧≥+-->1121221a a a 解得1-≤a 或211-≤<-a , a ∴的取值范围为⎥⎦⎤ ⎝⎛-∞-21,.⑵ 设t x =2()0≥t ,由已知得,对任意0≥t ,使得0)(≤t f 成立,0)(≤t f ,则a t a t +≤-22,即()()2242a t a t +≤-,即01232≥+at t ,当0=t ,R a ∈;当0>t ,04≥+a t 恒成立,即0≥a ,0≥∴a ,即a 的最小值为0.。

2021合肥三模理科数学试卷(含答案)

2021合肥三模理科数学试卷(含答案)

合肥市2021年高三第三次教学质量检测理科综合试题参考答案及评分标准第Ⅰ卷 题号1 2 3 4 5 6 7 8 9 10 11 答案C BD A C B B D A B D 题号12 13 14 15 16 17 18 19 20 21 答案 C C C A B B AB CD AB AD第Ⅱ卷(共174分)22. (9分) (1)10.0(2分)(2)2.96 8.75(各1分)(3)8.5~10(答案2分,作图2分)(4)能 (1分)23. (6分) (1)最大(1分)(2)148.0 (2分) 偶然 (1分)(3)1.45~1.55 7.50~10.5(各1分)24. (14分)(1)由题意可知运动员下滑的距离cos 8.00m x H l θ=-=(1分)由v t -图像可知运动员下滑的距离 2v x t = (2分)把4s t =代入上式可得 4m/s v =(1分)(2)由动能定理可得0f mgh W +=(2分) 代入数据解得 4800J f W =-(1分) 运动员下滑过程克服摩擦力做的功4800J W =克 (1分)(3)由v t -图像可知运动员加速下滑时间1 2.5s t =,减速下滑时间2 1.5s t =,则运动员加速下滑阶段加速度大小2111.6m/s v a t == (1分) 减速下滑阶段加速度大小 2228m/s 3v a t == (1分) 设运动员加速下滑和减速下滑过程的摩擦力大小分别为1f 、2f ,由牛顿第二定律可得 11mg f ma -= (1分)22f mg ma -=(1分)代入数据解得 1504N f =,2760N f =则 1263:95f f =: (2分)注:其他方法合理也给分25.(18分)(1)根据法拉第电磁感应定律可得,存在磁场的每段时间内线圈中产生的感应电动势(2)在0~t 1时间内,油滴做自由落体运动,设t 1时刻,油滴的速度为v 1,此时两板间加有电压,油滴在重力与电场力作用下做匀减速运动,再经过时间τ1,油滴正好到达下板且速度为零,故有:11v gt =(1分) 110v g τ=-(1分) 221111111222d gt v t g τ=+- (1分)由以上各式得11t τ== (1分)则油滴释放后第一次下降至最低点的过程中电场力的冲量大小61210N s I F τ-=⋅=⨯⋅ (2分)(3)接着,油滴由下板处向上做匀加速运动,经过时间τ2,速度变为ν2,方向向上,这时撤去电压使油滴做匀减速运动,经过时间τ3,油滴到达上板且速度为零,故有:22v g τ=230v g τ=-22223311-22d g v g τττ=+ (2分)由以上各式得32ττ= (1分)故21121t t ττ=++= (1分) 此后液滴每次在上下两板间先做初速度为0的匀加速直线运动,后做末速度为0匀加速直线运动,且加速度大小均为g ,依照上面分析可知33t = (1分)45t =…分析可得()n 2323=23,4...21s 0n n n t -=-), (1分)注:其他方法合理也给分26.(14分)(1)①紫红色接近褪去(2分); ②--+2223I +5Cl +6H O=2IO +10Cl +12H (2分)(2)分液漏斗(2分)(3)降低碘酸钙的溶解度使其析出,便于后续分离(2分)(4)AC (2分)(5)溶液蓝色褪去且30s 内不恢复蓝色(2分) 39.0% (2分)27.(15分)(1)SiO 2(1分)。

2021高三一模数学试卷及答案(理科)

2021高三一模数学试卷及答案(理科)

2021年高考数学第一次适应性试卷(理科)(一模)一、选择题(每题5分).1.已知集合A={x|x2>4),B={﹣1,0,1,2,3},则(∁R A)∩B=()A.{﹣2,3}B.{﹣1,0}C.{﹣1,0,1}D.{﹣1,0,1,2}2.复数z=的虚部是()A.i B.C.﹣i D.﹣3.若,则=()A.B.C.D.4.(+2)5的展开式中,x2的系数是()A.4B.8C.10D.205.已知直线l,两个不同的平面α和β.下列说法正确的是()A.若l⊥α,α⊥β,则l∥βB.若l∥α,α⊥β,则l⊥βC.若l∥α,l∥β,则α∥βD.若l⊂α,α∥β,则l∥β6.记S n为等差数列{a n}的前n项和,若a3=2,S4=7,则数列{a n}的通项公式a n=()A.n﹣1B.C.2n﹣4D.(n﹣1)(n﹣2)7.过点P(2,2)的直线l1与圆(x﹣1)2+y2=1相切,则直线l1的方程为()A.3x﹣4y+2=0B.4x﹣3y﹣2=0C.3x﹣4y+2=0或x=2D.4x﹣3y﹣2=0或x=28.已知函数f(x)=,则其大致图象为()A.B.C.D.9.春天是鲜花的季节,水仙花就是其中最迷人的代表,数学上有个水仙花数,它是这样定义的:“水仙花数”是指一个三位数,它的各位数字的立方和等于其本身.三位的水仙花数共有4个,其中仅有1个在区间(150,160)内,我们姑且称它为“水仙四妹”,则在集合{142,147,152,154,157,“水仙四妹”},共6个整数中,任意取其中3个整数,则这3个整数中含有“水仙四妹”,且其余两个整数至少有一个比“水仙四妹”小的概率是()A.B.C.D.10.已知抛物线C:x2=2py(p>0)的焦点在直线x+y﹣1=0上,又经过抛物线C的焦点且倾斜角为60°的直线交抛物线C于A、B两点,则|AB|=()A.12B.14C.16D.1811.已知双曲线E:=1(a>0,b>0)的左焦点为F1,过点F1的直线与两条渐近线的交点分别为M、N两点(点F1位于点M与点N之间),且,又过点F1作F1P⊥OM于P(点O为坐标原点),且|ON|=OP|,则双曲线E的离心率e=()A.B.C.D.12.设a=,b=,c=,则a,b,c的大小顺序为()A.a<c<b B.c<a<b C.a<b<c D.b<a<c二、填空题(共4小题).13.已知向量=(﹣2,1),=(x,4),若⊥,则x=.14.记S n为递增等比数列{a n}的前n项和,若a2=2,a4=a3+4,则S10的值为.15.函数f(x)=sin(ωx﹣)(ω>0)的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线x =﹣,则ω的最小值为.16.已知母线长为6的圆锥的顶点为S,点A、B为圆锥的底面圆周上两动点,当SA与SB 所夹的角最大时,锐角△SAB的面积为8,则此时圆锥的体积为.三、解答题:共70分。

2021年安徽省江南十校高考数学一模试卷(理科)有答案

2021年安徽省江南十校高考数学一模试卷(理科)有答案

2021年安徽省江南十校高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合A={x|x2−5x−6>0},集合B={x|4<x≤7},则A∪B=()A.(6, 7]B.(4, 7]C.(−∞, −1)∪(4, +∞)D.(−∞, 2)∪(3, +∞)2. 已知复数z=1+i,是z的共轭复数,若•a=2+bi,其中a,b均为实数,则b的值为()A.−2B.−1C.1D.23. 已知sinα=,α∈(,),则tan2α=()A.-B.-C.D.4. 2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的联结线,α≈16∘,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0∘B.1∘C.2∘D.3∘5. 函数的图象大致为()A.B.C.D.6. 已知F为椭圆C:=1(a>b>0)的右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120∘,则椭圆C的离心率为()A. B. C.−1 D.−17. 现有5名志愿者被分配到3个不同巡查点进行防汛抗洪志愿活动,要求每人只能去一个巡查点,每个巡查点至少有一人,则不同分配方案的总数为()A.120B.150C.240D.3008. 将数列{3n−1}与{2n+1}的公共项从小到大排列得到数列{a n},则{a n}的第10项为()A.210−1B.210+1C.220−1D.220+19. 已知函数f(x)=e|ln x|,a=f(1),b=f(log2),c=f(21.2),则()A.b>c>aB.c>b>aC.c>a>bD.b>a>c10. 在△ABC中,角A,B,C的对边分别为a,b,c,a=c sin B,则tan A的最大值为()A.1B.C.D.11. 在棱长为2的正方体ABCD−A1B1C1D1中,O为正方形A1B1C1D1的中心,P,M,N 分别为DD1,AB,BC的中点,则四面体OPMN的体积为()A. B. C. D.12. 已知函数f(x)=e log a x−(a>1)没有零点,则实数a的取值范围为()A.(e, +∞)B.(,+∞)C.(1, +∞)D.(,+∞)二、填空题:本大题共4小题,每小题5分,共20分。

2021届安徽省合肥市高考数学第三次教学质量检测试卷(理科)(含答案解析)

2021届安徽省合肥市高考数学第三次教学质量检测试卷(理科)(含答案解析)

2021届安徽省合肥市高考数学第三次教学质量检测试卷(理科)一、单选题(本大题共12小题,共60.0分)1.设全集U=R,集合A={x|x2+4x<0},集合B={x|x<−2},则图中阴影部分表示的集合为()A. {x|−4<x<−2}B. {x|−4<x<0}C. {x|x>0}D. {x|x<−2}2.设复数z=(12+i)(1−i),则|z|=()A. √5B. √102C. 52D. 5√243.具有如图所示的正视图和俯视图的几何体中,体积最大的几何体的表面积为()A. 13B. 7+3√2C. 72πD. 144.已知扇形的面积为3π16,半径为1,则该扇形的圆心角的弧度数是()A. 3π16B. 3π8C. 3π4D. 3π25.设函数f(x)=3sin(π2x+π4),则函数f(x)的最小正周期为()A. 2πB. 4πC. 2D. 46.已知对于任意实数x,均有f(π2−x)+f(x)=0且f(π+x)=f(−x)成立,当x∈[0,π4]时,有f(x)=cos2x,则f(79π24)的值为()A. √6−√24B. √6+√24C. √2−√64D. −√6+√247.已知双曲线x2a2−y2b2=1(a,b>0)的一条渐近线向上平移两个单位长度后与抛物线y2=4x相切,则双曲线的离心率e=()A. √52B. √62C. √2D. 328.下列说法中正确的个数是( )(1)若命题p :∃x 0∈R ,x 02−x 0≤0,则¬p :∃x 0∈R ,x 02−x 0>0;(2)命题“在△ABC 中,A >30°,则sinA >12”为真命题;(3)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的充分必要条件; (4)△ABC 中,若A >B ,则sinA >sinB 为真命题.A. 0B. 1C. 2D. 39.已知扇形OAB 的圆心角是60°,半径是1,C 是弧AB⏜上不与A ,B 重合的一点,设OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB⃗⃗⃗⃗⃗⃗ (x,y ∈R),若u =x +λy 存在最大值,则实数λ的取值范围为( ) A. (12,2)B. (12,1)C. (13,3)D. (1,3)10. 直线l 与圆x 2+y 2+2x −8y =0相交于A ,B 两点,若弦AB 的中点为M(−3,2),则直线l 的方程为( )A. x −y +5=0B. x +y +1=0C. x −y −5=0D. x +y −3=011. 已知函数f(x)=若|f(x)|≥ax ,则a 的取值范围是( ).A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]12. 已知F 1,F 2是距离为6的两个定点,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹是( )A. 椭圆B. 直线C. 线段D. 圆二、单空题(本大题共4小题,共20.0分)13. P ,Q 为△ABC 所在平面内不同的两点.若3AP ⃗⃗⃗⃗⃗ +2BP ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ =0⃗ ,3AQ ⃗⃗⃗⃗⃗ +4BQ ⃗⃗⃗⃗⃗⃗ +5CQ ⃗⃗⃗⃗⃗ =0⃗ ,则S △PAB :S △QAB =______. 14. 知双曲线的两条渐近线与抛物线的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为,则抛物线的标准方程为15. 从10名女生和5名男生中选出6名组成课外学习小组,如果按性别比例分层抽样,则组成此课外学习小组的不同方案有______ 种. 16. 下列4个命题:①“如果x +y =0,则x 、y 互为相反数”的逆命题; ②“如果x 2+x −6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sinA >12”的充分不必要条件;④“a =1”是“函数f(x)=(x −1)2在区间[a,+∞)上为增函数”的必要充分条件. 其中真命题的序号是______ .三、解答题(本大题共7小题,共82.0分)17. 已知函数f(x)=1−4sinxsin(x −π3),在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且f(A)=1,b +c =3. (1)求角A 的大小; (2)求边BC 上高的最大值.18. 观察教室内现有的物体,找出两个平面互相垂直的例子.19. 一名箭手进行射箭训练,箭手连续射2支箭,已知射手每只箭射中10环的概率是14,射中9环的概率是14,射中8环的概率是12,假设每次射箭结果互相独立. (1)求该射手两次射中的总环数为18环的概率; (2)求该箭手两次射中的总环数为奇数的概率.20. 已知函数f(x)=e x x的定义域为(0,+∞).(Ⅰ)求函数f(x)在[m,m +1](m >0)上的最小值;(Ⅱ)对任意x ∈(0,+∞),不等式xf(x)>−x 2+λx −1恒成立,求实数λ的取值范围.21. 已知F 1(−2,0),F 2(2,0),点P 满足|PF 1|−|PF 2|=2,记点P 的轨迹为E . (1)求轨迹E 的方程;(2)若直线l 过点F 2且与轨迹E 交于P 、Q 两点.(i)无论直线l 绕点F 2怎样转动,在x 轴上总存在定点M(m,0),使MP ⊥MQ 恒成立,求实数m 的值. (ii)过P 、Q 作直线x =12的垂线PA 、OB ,垂足分别为A 、B ,记λ=|PA|+|QB||AB|,求λ的取值范围.22.(本小题满分10分)选修4−1:几何证明选讲如下图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.(1)求证:AD//OC;(2)若圆O的半径为1,求AD・OC的值.23(本小题满分10分)坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.(1)求的值及直线的直角坐标方程;(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.24(本小题满分10分)不等式选讲:设不等式的解集为,且,.(1)求的值;(2)求函数的最小值.23. 已知函数f(x)=|x+1−2a|+|x−a2|,g(x)=x2−2x−4+4(x−1)2(Ⅰ)若f(2a2−1)>4|a−1|,求实数a的取值范围;(Ⅱ)若存在实数x,y,使f(x)+g(y)≤0,求实数a的取值范围.【答案与解析】1.答案:A解析:本题考查了求Venn 图表示的集合,关键是根据图形会判断出阴影部分表示的集合元素特征,再通过集合运算求出.阴影部分表示的集合为A ∩B ,解出A ,再与B 求交集.解:因为A ={x|−4<x <0},Venn 图表示的是A ∩B ,所以A ∩B ={x|−4<x <−2}, 故选:A .2.答案:B解析:解:因为:复数z =(12+i)(1−i)=12+(1−12)i −i 2=32+12i ; 所以:|z|=√(32)2+(12)2=√102.故选:B .通过复数的乘除运算法则化简求解复数为:a +bi 的形式,即可得到结论. 本题考查复数的代数形式的混合运算,复数的基本概念,是基本知识的考查.3.答案:D解析:试题分析:根据三视图判定几何体的形状,再由正视图判断几何体的长与高,俯视图判断几何体的宽,代入公式计算即可。

安徽省2021版高考数学一模试卷(理科)A卷(新版)

安徽省2021版高考数学一模试卷(理科)A卷(新版)

安徽省2021版高考数学一模试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二上·惠城期中) 设A={1,2},B={2,3,4},则A∩B=()A . {2}B . {1,2}C . {1,3,4}D . {1,2,3,4}2. (2分) (2018高三上·河南期中) 若在复平面内,复数所对应的点落在直线上,则A .B .C .D .3. (2分) (2020高一下·太原期中) 已知向量=(4,-3),向量=(2,-4),则△ABC的形状为()A . 等腰非直角三角形B . 等边三角形C . 直角非等腰三角形D . 等腰直角三角形4. (2分) (2016高二上·岳阳期中) 已知命题R,p:∃x∈R使,命题q:∀x∈R都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题②命题“命题“p∨¬q”是假命题③命题“¬p∨q”是真命题④命题“¬p∨¬q”是假命题其中正确的是()A . ②④B . ②③C . ③④D . ①②③5. (2分) (2017高三上·成都开学考) 按照如图的程序框图执行,若输出结果为31,则M处条件可以是()A . k>32B . k≥16C . k≥32D . k<166. (2分) (2016高二上·福州期中) 某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨)3212B(吨)128A . 12万元B . 16万元C . 17万元D . 18万元7. (2分) (2017高一上·漳州期末) 函数y=ax﹣b(a>0且a≠1)的图象如图1所示,则函数y=cosax+b 的图象可能是()A .B .C .D .8. (2分)(2015高二上·河北期末) 若(2x﹣1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),则的值为()A .B . ﹣C .D . ﹣9. (2分) (2017高三上·张掖期末) 某三棱锥的三视图如图所示,则该三棱锥的体积是()A .B .C .D . 110. (2分)若存在过点(1,0)的直线与曲线和都相切,则a= ()A . 或B . -1或C . 或D . 或711. (2分)(2018·商丘模拟) 已知点分别是双曲线的左、右焦点,为坐标原点,在双曲线的右支上存在点,且满足,,则双曲线的离心率的取值范围为()A .B .C .D .12. (2分) (2015高一下·正定开学考) 设函数f(x)=x2﹣4x+3,,则关于x的方程g[f(x)]=1的实数根个数为()A . 2B . 3C . 4D . 5二、填空题 (共4题;共4分)13. (1分) (2019高一上·三台月考) 已知函数为定义在R上的奇函数,且当时,,则等于________.14. (1分)从4名男生和n名女生中任选2名学生参加数学竞赛,已知“2人中至少有1名女生”的概率为,则n等于________.15. (1分) (2015高一上·西安期末) 一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为________ cm3 .16. (1分)(2019高二上·河南月考) 已知中的内角为,重心为,若,则 ________.三、解答题 (共7题;共60分)17. (5分) (2019高二上·浙江期中) 已知正项等比数列和等差数列的首项均为1,是,的等差中项,且.Ⅰ 求和的通项公式;Ⅱ 设,数列前n项和为,若恒成立,求实数k的取值范围.18. (10分) (2017高二上·苏州月考) 如图,在长方体中,,AB=2a,E 为的中点.(1)求证:平面BEC;(2)求三棱锥E-BCD的体积.19. (10分)(2017·渝中模拟) 渝州集团对所有员工进行了职业技能测试从甲、乙两部门中各任选10名员工的测试成绩(单位:分)数据的茎叶图如图所示.(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于3a的人数为ξ,求ξ的分布列及数学期望.分数[60,70)[70,80)[80,90)[90,100]奖金a2a3a4a20. (5分) (2020高三上·海淀期末) 已知椭圆的右顶点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设为原点,过点的直线与椭圆交于两点、,直线和分别与直线交于点、,求与面积之和的最小值.21. (15分)设f(x)=ax﹣1 , g(x)=bx﹣1(a,b>0),记h(x)=f(x)﹣g(x)(1)若h(2)=2,h(3)=12,当x∈[1,3]时,求h(x)的最大值(2) a=2,b=1,且方程有两个不相等实根m,n,求mn的取值范围(3)若a=2,h(x)=cx﹣1(x>1,c>0),且a,b,c是三角形的三边长,求出x的范围.22. (10分) (2016高三上·莆田期中) 在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.23. (5分)(2019·龙岩模拟) 选修4-5:不等式选讲已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若存在,使成立,求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共60分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、。

2021合肥市高三理科数学一模试卷及答案

2021合肥市高三理科数学一模试卷及答案

15.-16
16.27
三、解答题:
17.(本小题满分 12 分)
解:(1)
P
1
7 8
6 7
5 6
3 8

…………………………5 分
(2)设每个坯件的加工成本为 元,则
P
70
1 8
,P
130
7 8
1 7
1 8
, P
160
7 8
6 7
3 4

∴ 的分布列为
70
130
160
P
∴ E
70
1 8
130

x1x2 m2.
当k 1 时, AB 4 2m 2 .
∴ AB 1 k 2 x1 x2 2 4mp 2 p2 4 2m 2 ,化简得( p 2m 2)( p 2) 0 .
∵ p 0, m 0 , ∴ p 2 . ∴抛物线 E 的方程为 y2 4x .
…………………………6 分
z 轴,建立如图所示空间直角坐标系,则 P (0,0,1),
C
(0,1,0),
B
(1,2,0),
A
(2,1,0),G
1 2
,1,1 2
.

AG
3 2
,0,1 2
,CP
0,
1,1
,CA
2,0,0
.
设平面 PAC 的法向量n x,y,z .

nn
CP CA
0 0

y
2
x
z 0.
高三数学试题(理科)答案 第 2 页(共 4 页)
21.(本小题满分 12 分)
解:(1)
f
x

安徽省合肥市2021届新高考数学一模试卷含解析

安徽省合肥市2021届新高考数学一模试卷含解析

安徽省合肥市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .1【答案】D 【解析】 【分析】通过复数的乘除运算法则化简求解复数为:a bi +的形式,即可得到复数的虚部. 【详解】由题可知()()()()202022131313123211111i i i i i i i z i i i i i i +-+++-=====++++--, 所以z 的虚部是1. 故选:D. 【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 2.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .236【答案】C 【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果. 【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查. 3.已知复数z 满足()()5z i i --=,则z =( ) A .6i B .6i -C .6-D .6【答案】A 【解析】 【分析】由复数的运算法则计算. 【详解】因为()()5z i i --=,所以56z i i i=+=- 故选:A . 【点睛】本题考查复数的运算.属于简单题.4.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( ) A .69人 B .84人C .108人D .115人【答案】D 【解析】 【分析】先求得100名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得500名学生中对四大发明只能说出一种或一种也说不出的人数. 【详解】在这100名学生中,只能说出一种或一种也说不出的有100453223--=人,设对四大发明只能说出一种或一种也说不出的有x 人,则10050023x=,解得115x =人. 故选:D 【点睛】本小题主要考查利用样本估计总体,属于基础题. 5.若函数22y sin x ϕπ⎛⎫<+=的图象经过点0π⎛⎫,,则函数22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-【答案】B 【解析】 【分析】 由点012π⎛⎫⎪⎝⎭,求得ϕ的值,化简()f x 解析式,根据三角函数对称轴的求法,求得()f x 的对称轴,由此确定正确选项. 【详解】 由题可知220,122sin ππϕϕ⎛⎫⨯+=< ⎪⎝⎭.6πϕ=- 所以()2cos 266f x sin x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭5226412x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭ 令52,122x k k Z πππ+=+∈, 得,242k x k Z ππ=+∈ 令3k =,得3724x π= 故选:B 【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.6.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B .32C .1D .0【答案】B 【解析】 【分析】作出可行域,平移目标直线即可求解. 【详解】 解:作出可行域:由2z x y =+得,1122y x z =-+ 由图形知,1122y x z =-+经过点时,其截距最大,此z 时最大10y x x y =⎧⎨+-=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,11,22C ⎛⎫ ⎪⎝⎭ 当1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,max 1232222z =+⨯=故选:B 【点睛】考查线性规划,是基础题.7.O 是平面上的一定点,,,A B C 是平面上不共线的三点,动点P 满足+OP OA λ=()·cos ?cos AB AC AB BAC C+,(0,)λ∈∞,则动点P 的轨迹一定经过ABC ∆的( )A .重心B .垂心C .外心D .内心【答案】B 【解析】 【分析】解出AP ,计算AP BC ⋅并化简可得出结论. 【详解】AP OP OA =-=λ(AB AC AB cosBAC cosC+⋅⋅),∴()...0AB BC AC BC AP BC BC BC AB cosB AC cosC λλ⎛⎫⎪=+=-+= ⎪⋅⋅⎝⎭,本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算AP BC ⋅是关键.8.设1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( ) ABC .2D .3【答案】B 【解析】 【分析】设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b =--,联立方程,求得2a x c=,ab y c =,即2,a ab P c c ⎛⎫⎪⎝⎭,由1PF =,列出相应方程,求出离心率. 【详解】解:不妨设过点()2,0F c 作b y x a =的垂线,其方程为()ay x c b=--, 由()b y x a a y xc b ⎧=⎪⎪⎨⎪=--⎪⎩解得2a x c =,ab y c =,即2,a ab P c c ⎛⎫ ⎪⎝⎭,由1PF OP =,所以有22224222226a b a a a b c c c cc ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭, 化简得223a c =,所以离心率==ce a. 故选:B. 【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.9.在复平面内,复数z=i 对应的点为Z ,将向量OZ 绕原点O 按逆时针方向旋转6π,所得向量对应的复数是( ) A.122-+ B.122i -+ C.12-D.122i --由复数z 求得点Z 的坐标,得到向量OZ 的坐标,逆时针旋转6π,得到向量OB 的坐标,则对应的复数可求. 【详解】解:∵复数z=i (i 为虚数单位)在复平面中对应点Z (0,1), ∴OZ =(0,1),将OZ 绕原点O 逆时针旋转6π得到OB , 设OB =(a ,b),0,0a b <>, 则3cos62OZ OB b OZ OB π⋅===, 即32b =, 又221a b +=, 解得:13,22a b =-=, ∴13,22OB ⎛⎫=- ⎪ ⎪⎝⎭,对应复数为1322i -+. 故选:A. 【点睛】本题考查复数的代数表示法及其几何意义,是基础题.10.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( ) A .324 B .522C .535D .578【答案】D 【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号. 【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:436,535,577,348,522,535,578,324,577,,因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键. 11.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+【答案】C 【解析】 【分析】 【详解】由于111113579-+-+-中正项与负项交替出现,根据S S i =+可排除选项A 、B ;执行第一次循环:011S =+=,①若图中空白框中填入(1)21n i n -=+,则13i =-,②若图中空白框中填入(1)2ni i -=+,则13i =-,此时20n >不成立,2n =;执行第二次循环:由①②均可得113S =-,③若图中空白框中填入(1)21ni n -=+,则15i =,④若图中空白框中填入(1)2ni i -=+,则35i =,此时20n >不成立,3n =;执行第三次循环:由③可得11135S =-+,符合题意,由④可得13135S =-+,不符合题意,所以图中空白框中应填入(1)21ni n -=+,12.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .25【答案】B 【解析】 【分析】先列举出不超过15的素数,并列举出所有的基本事件以及事件“在不超过15的素数中,随机选取2个不同的素数a 、b ,满足3a b -<”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】不超过15的素数有:2、3、5、7、11、13,在不超过15的素数中,随机选取2个不同的素数,所有的基本事件有:()2,3、()2,5、()2,7、12()()f x f x -、()2,13、()3,5、()3,7、()3,11、()3,13、()5,7、()5,11、()5,13、()7,11、()7,13、()11,13,共15种情况,其中,事件“在不超过15的素数中,随机选取2个不同的素数a 、b ,且3a b -<”包含的基本事件有:()2,3、()3,5、()5,7、()11,13,共4种情况,因此,所求事件的概率为415P =. 故选:B. 【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥市合钢英华学校2021年高三数学理联考试卷含解析

安徽省合肥市合钢英华学校2021年高三数学理联考试卷含解析

安徽省合肥市合钢英华学校2021年高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 与向量=(,1),=(1,)的夹角相等且模为的向量为()A. B.C.D。

参考答案:C2. 已知2,则的值是( )A.-7 B. C. D.参考答案:D略3.(A)(B)(C)(D)参考答案:A4. 若直线2ax+by-2=0(a>0,b>0)平分圆,则的最小值是( )A.2- B.-1 C.3+2 D.3-2参考答案:C 略5. 已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得的最小值为( )A.B.C.D.参考答案:A考点:基本不等式;等比数列的通项公式.专题:等差数列与等比数列.分析:由 a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.解答:解:由各项均为正数的等比数列{a n}满足 a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.点评:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.6. 有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是()A.甲B.乙C.丙D.丁参考答案:D【考点】进行简单的合情推理.【分析】本题应用了合情推理.【解答】解:假设甲猜对,则乙也猜对了,所以假设不成立;假设乙猜对,则丙、丁中必有一人对,所以假设不成立;假设丙猜对,则乙一定对,假设不成立;假设丁猜对,则甲、乙、丙都错,假设成立,故选:D.7. 在中,角所对的边分.若,则A.- B. C. -1 D.1参考答案:D本题主要考查了正弦定理与同角三角函数的基本关系式,关键是等式的变换与应用,难度中等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档