地铁隧道结构变形监测信息管理系统的开发

合集下载

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。

二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。

三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。

2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。

3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。

四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。

2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。

五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。

2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。

3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。

六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。

2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。

七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。

未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。

以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。

浅谈地铁施工过程中的变形监测技术

浅谈地铁施工过程中的变形监测技术

浅谈地铁施工过程中的变形监测技术地铁作为城市交通系统的重要组成部分,对于城市的交通发展和人们的出行具有重要意义。

地铁的建设和运行关系到城市的经济发展、环境改善和人民群众的出行安全。

而地铁的施工过程中,变形监测技术显得尤为重要。

本文将从地铁施工过程中的变形监测技术展开论述,旨在探讨地铁建设中的变形监测技术在保障安全和质量方面的重要性。

1.施工过程中的变形控制地铁施工过程中,常常需要对周围的建筑、道路、管线等进行变形监测。

这是因为地铁车站、隧道等工程往往会引起周围环境的变形,而这些变形可能会对周围的建筑和管线产生影响,甚至会引发安全事故。

对于地铁施工过程中的变形进行监测和控制显得尤为重要。

2.变形监测技术的应用地铁施工过程中的变形监测技术主要通过激光测距仪、全站仪、GPS等设备来进行测量,利用计算机技术对监测数据进行处理和分析,以实现对施工变形的实时监测和控制。

这些技术不仅可以对地铁工程的变形进行监测,还可以对周围建筑、管线等进行监测,确保地铁施工过程中的变形不会对周围环境产生不利影响。

1.保障施工安全2.保障工程质量地铁工程的施工质量直接关系到地铁的运行安全和使用寿命。

而施工过程中的变形如果得不到有效监测和控制,可能会产生一些隐藏的质量问题,对工程的安全和使用寿命产生影响。

对地铁施工过程中的变形进行监测和控制,有助于保障工程的质量。

3.减少施工成本地铁施工过程中,如果不能及时对施工变形进行监测和控制,可能会引发一些不必要的施工事故,导致施工成本的增加。

而通过变形监测技术,可以及时发现并处理施工过程中的变形问题,减少施工事故的发生,从而降低施工成本。

4.符合规范要求地铁施工过程中的变形监测技术的应用,可以有助于保障施工过程的符合规范要求。

地铁施工的变形监测技术的应用已成为国内外地铁施工的标准做法,符合国家标准和规范要求,有助于提高施工质量和工程安全性。

三、地铁施工过程中的变形监测技术的现状和发展趋势1.现状目前,国内外地铁施工过程中的变形监测技术已经得到广泛应用。

地铁变形控制标准

地铁变形控制标准

地铁变形控制标准
地铁变形控制标准主要涉及到地铁施工过程中,对新旧隧道、地下结构、地面建筑物及周围环境变形的控制要求。

为了确保地铁工程的顺利进行和周边环境的安全,以下几个方面可以作为变形控制标准:
1. 隧道变形:新建隧道在施工过程中,其变形应控制在一定范围内。

一般来说,隧道的径向变形控制标准为±10mm,纵向变形控制标准为±5mm。

对于近距离穿越既有隧道的
施工,新建隧道变形控制标准应更为严格,以确保既有隧道的正常使用。

2. 地下结构变形:地铁施工过程中,地下结构的变形应控制在设计范围内,以确保地下结构的安全稳定。

地下结构变形控制标准主要包括地下连续墙、桩基、地道等结构的变形限制。

3. 地面建筑物变形:地铁施工对地面建筑物的影响应控制在一定范围内,以保证建筑物的安全使用。

地面建筑物变形控制标准主要包括建筑物倾斜、沉降、裂缝等方面的限制。

4. 周围环境变形:地铁施工过程中,应密切关注周围环境的变化,包括地下管线、道路、绿化等方面的变形。

周围环境变形控制标准主要根据实际情况和相关规范来确定。

5. 施工安全:地铁施工过程中,应确保施工安全,防止事故发生。

施工安全控制标准包括施工现场的管理、施工工艺的规范、监测系统的建立等方面。

6. 变形监测:地铁施工过程中,应建立完善的变形监测系统,对隧道、地下结构、地面建筑物及周围环境的变形进行实时监测,以确保施工安全。

需要注意的是,地铁变形控制标准并非固定不变,而是根据工程实际情况、地质条件、周边环境、设计要求等多方面因素来综合确定的。

在实际施工过程中,还需根据监测数据及时调整施工方案,以实现变形控制目标。

地铁隧道结构变形监测控制网及其数据处理

地铁隧道结构变形监测控制网及其数据处理
第3 7 卷第 1 期
2 0 1 4 年 O 1 月


2 贝 0 绘
Vo 1 . 37 , No .1
Mo d e r n S u r v e y i n g a n d Ma p p i n g
J a n . 2 0 1 4
地 铁 隧道 结 3 ] 。
l 隧 道结构 变 形监测 系统控 制 网 的布 设及 TM3 0 ( 0 . 5 , 0 . 6 mm+ l p p mXD) 测量机 器 人 , 将 测 其 数据处理流程
隧道 内测量 条 件很 差 , 隧 道结 构 变 形 无 法 采 用
常规 的监测 手段 , 智 能 化 的 监 测技 术 如 测 量 机 器 人
自动化 监测 系统 所测 , 该 系统 采用 测 量 机器 人 ( L e i ~
数据处理时 , 如果监测 网内有稳 定 的基准 点,
网平 差 有 足 够 的 起 算 数 据 , 则 采 用 固定 基 准[ ] 。 根据 该工 程 的实 际情 况 采 用 固定基 准 , 即认 为 基 准 点位 置 坐标 已知 , 由基 准 点 观 测 数 据平 差 求 得 工 作
也 带来 了变形 数 据 的分析 难度 [ 1 ] 。如 今地 铁 隧道 变
形监 测 走 向 系统 化 、 自动 化 和 实 时 化 , 将 硬 件 系统
图 1 基 准 点 组 布 设 不 意 图
和 软件 系统 结合 起来 , 提供 实 时 的监 测 数 据 和 变形 量L 2 ] 。本 文所 处 理数据 来 自南京 地铁 隧道 结构 变形
程 实践 有 很大 的指 导意义 。
外, 在该工程中变形区外布设 4 组基准点 , 每个基准 点 组在 变形 区外 8 0 m 处 均匀 布 设 9个 L型棱 镜 ,

论变形监测技术的现状与发展趋势

论变形监测技术的现状与发展趋势

论变形监测技术的现状与发展趋势
1 变形监测技术的概述
变形监测技术是指以先进的传感器和监测设备为核心,结合运用
计算机技术和通讯技术,对建筑物、桥梁、地铁隧道、水库、大坝等
土木工程和交通运输设施的变形进行实时监测,从而能及时掌握结构
的工作状态、变形状况和安全风险,为结构的健康管理提供科学依据,分类确定防护措施。

2 变形监测技术的现状
目前,变形监测技术已经成为土木工程和交通运输领域不可或缺
的技术手段之一。

这种技术已经广泛应用于桥梁、地铁、隧道、公路、机场、码头、水库、大坝、建筑物等工程中。

随着先进传感器、通信、计算机技术的发展,现代变形监测技术采取多元化测量方法,包括全
站仪、倾斜仪、水准仪、和应力应变传感器等,实现对工程的三维测量,对于工程变形,尤其是塑性变形的检测更为精准。

3 变形监测技术的发展趋势
随着时代的发展,变形监测技术正在朝着更为高精度、智能化的
方向发展。

一方面,相关科研单位正在大力研制超声波、微波雷达等
新型传感器技术,不再局限于传统单一传感器测量,不同传感器覆盖
物理量的不同侧重点,通过集成进行全方位变形监测。

另一方面,人
工智能技术已逐渐受到重视,研究者们正致力于开发智能变形监测技
术,构建智能化变形诊断和应急处置平台,旨在提高结构的安全可靠性,为工程部门的决策提供更为科学的依据。

总之,变形监测技术将会在土木工程和交通运输领域发挥越来越重要的作用。

未来,科学研究人员将会以更加领先的科技手段,进一步推动变形监测技术的不断发展和应用,让变形监测技术更好地服务于社会。

基于智能型全站仪的地铁隧道变形自动化监测技术及应用

基于智能型全站仪的地铁隧道变形自动化监测技术及应用

基于智能型全站仪的地铁隧道变形自动化监测技术及应用摘要:在地铁建设和运行的时候,要始终监测隧道结构的变形情况,以往使用的人工监测技术很难达到预期的目标。

为了使地铁既有线路正常运行和在建项目顺利施工,可利用智能型全站仪自动化监测技术,实现对地铁隧道变形情况的实时监测。

文章从全站仪变形监测的原理入手,具体包含三维坐标监测原理、围岩收敛变形监测的目的与原理等内容,并围绕其设计和实现展开探讨,结合实际案例探讨其应用,保证地铁既有工程的正常运行和在建工程施工的顺利实施。

关键词:智能型全站仪;自动化监测;地铁隧道引言由于新建地铁工程工作量大,施工、计量工作繁杂,各种工作过程错综复杂,对邻近运营的轨道交通监控造成了一定的影响,故对已经投入运营的地铁进行实时监控。

智能全站仪的自动监控技术能够实现地下隧道的实时数据采集,从而准确、及时地掌握和了解隧道的变形情况,因此,采用智能全站仪对地下隧道的变形进行自动监控有着十分重要的意义。

地铁隧道变形监测精度高、频次高、时效性强,但是隧道变形监测环境复杂,天窗时间段,存在着一定的安全风险,常规的手工操作方式很难适应地铁监控的需要。

采用全天候自动化的变形监测方法,是目前地铁隧道监控的最佳方法。

全站仪自动化变形监控系统能够全天候、高精度、高频率、安全稳定地进行变形监测,并能实时、准确、快速、安全、稳定地进行变形监测,并产生变形曲线、变形报告,对安全事故进行预测,消除隐患,确保地铁的安全施工和运行。

1.地铁隧道施工监测现状目前国内隧道工程监测主要采用手工监测,其优点是简单、技术成熟可靠,但其缺点是时间短、监测效率低、成本高、危险性大。

采用自动监控技术对地铁隧道施工进行实时监控,是目前地铁隧道工程监控发展的必然趋势,通过自动监控技术,可以实现对隧道工程的实时监控,并对其进行快速、高效的分析,对解决人工测量弊端具有很强的实际意义。

目前,我国隧道工程监测的重点是隧道纵向变形监测、隧道横向变形监测、隧道管径收敛变形监测。

地铁隧道结构变形监测信息管理系统的开发

地铁隧道结构变形监测信息管理系统的开发
有 效地 管 理 原 始 信息 , 进 行 相 应 的处 理 显 得 尤 并
统 的建立提 供基 础 。
3 系统功能
地 铁 隧道 结 构 变 形 监 测 信 息 管 理 系统 包 括 文 档 管理 、 据 预 处 理 、 据 库 管 理 、 测 数 据 分 析 、 数 数 监 信 息 预警 预报 和系统 管理 六 大模 块 , 内容 不仅 涵 盖 了相关技 术规 范的 所有 要 求 , 而且 具 有 地 铁 隧道 自 身 的特点 , 面 、 全 标准 、 专业 , 良好 的应用 前景 。 有
黄维华, 岳荣花, 张学华, 于安柱
( 南京地下铁道有限责任公司 , 江苏 南京 2 00 ) 1 0 8 摘 要 地铁 隧道 结构 变形监 测的特殊性 、 周期性 和长期性 , 使其信 息量非 常庞 大。信息 管理是 地铁 隧道 结构 变
形 监测 中一 项 重 要 的 工 作 , 有 的 管 理 方 式 效 率很 低 。 为 了 高效 、 现 准确 地 管理 监 测 信 息 , 时 分 析 预 报 地 铁 隧道 结 及 构 的稳 定 状 况 , 文 结合 南京 地 铁 运 营期 隧道 结构 变 形监 测 实例 , 发 了一 套 具 有 变 形 监 测 资料 存 储 、 处 理 、 本 开 预 管 理 分析 、 可视 化分 析 、 测 预报 及 限值 预 警 等 功 能 的 信 息 管 理 系统 , 证 了 准确 及 时快 速 的数 据 处 理 和信 息 反 馈 , 预 保
对 于不 同的地 铁 隧道 结 构 变 形监 测项 目内容 ,
所 用监测 方法 和仪 器 也 不相 同。通 常 , 于 隧道垂 对
直 位移 和水平位 移 监测 , 通 过 大地 测 量 或者 自动 可 化 测量 的方法利 用精 密 水 准仪 、 密 全 站仪 或智 能 精

地铁隧道施工安全信息化管理综合系统

地铁隧道施工安全信息化管理综合系统

地铁隧道施工安全信息化管理综合系统地铁作为现代城市交通的重要组成部分,其隧道施工安全至关重要。

随着科技的不断发展,信息化管理综合系统在地铁隧道施工安全保障方面发挥着越来越重要的作用。

地铁隧道施工是一个复杂且充满风险的过程。

在地下施工环境中,面临着地质条件复杂、地下水位变化、周边建筑物影响等诸多挑战。

这些因素不仅增加了施工的难度,也给施工安全带来了巨大的威胁。

因此,建立一套高效、全面的安全信息化管理综合系统成为了确保地铁隧道施工安全的关键。

地铁隧道施工安全信息化管理综合系统是一个集成了多种技术和功能的综合性平台。

它通过对施工现场的实时监测、数据分析、预警预报以及信息共享等手段,实现对施工过程的全方位安全管理。

在这个系统中,实时监测是基础。

通过在施工现场布置各种传感器,如位移传感器、应力传感器、水位传感器等,对隧道结构的变形、围岩压力、地下水位等关键参数进行实时采集。

这些传感器将数据传输到中央控制系统,确保管理人员能够及时了解施工现场的实际情况。

数据分析是系统的核心功能之一。

采集到的大量数据需要经过专业的分析处理,才能提取出有价值的信息。

系统运用先进的数据分析算法和模型,对监测数据进行深入挖掘,识别出潜在的安全隐患和风险趋势。

例如,通过对比不同时间段的数据变化,发现隧道结构变形的异常情况,及时采取相应的措施进行防范。

预警预报功能则是系统保障施工安全的重要手段。

当数据分析结果显示某些参数超过了设定的安全阈值,系统会立即发出预警信号。

预警信息可以通过多种方式传达给相关人员,如短信、电子邮件、手机应用程序等,确保施工人员能够在第一时间采取应急措施,避免事故的发生。

信息共享也是系统的一个重要特点。

施工过程中涉及到多个部门和单位,包括设计单位、施工单位、监理单位等。

通过信息化管理综合系统,各方可以实时共享施工安全信息,实现协同工作。

这样不仅提高了工作效率,还能够避免信息不对称导致的安全管理漏洞。

为了确保系统的有效运行,还需要建立完善的管理制度和技术保障措施。

浅析地铁隧道结构的变形测量与监控

浅析地铁隧道结构的变形测量与监控
浅谈沉井施工 的问题及解决办法
杜 林
江 阴市市政建i  ̄ : r - 程 有限公 司 江苏江 阴 2 1 4 4 0 0
【 摘耍 】 下文结合 了笔 者多年的工作 实践经验 ,针对 沉井施工 中容 易出现 的问题 进行 了探讨 ,并提 出了相对应 的处 理方法,希望与大家共 同学习 进步。 【 关键 词 】 概 述;制作 ;问题;措 施 中 图分 类号 :U 4 4 3 . 1 3 + 1 文献 标识 号 :A 文章 编号 :2 3 0 6 — 1 4 9 9( 2 0 1 3 )0 9 — 0 0 6 8 — 2
以上。基坑底 部的平面 尺寸 ,一般 要 比沉井 的平面 尺寸大一些 ,同时还 需 考虑支模 、搭设脚 手架 及排水 等项工 作的需要 。基坑 开挖 的深度 ,视 水 文 、地 质 条 件 而 定 。 砂 垫层 可提 高 地基 的承 载 能力 ,便 于支模 ,可 使沉 井 自由收缩 , 避 免产生收 缩裂缝 。砂 垫层宜采 用颗粒 级配 良好 的中砂 、粗砂 或砂砾 , 施 工时应采用 平板振 动器进行 分层夯实 。为便于施工 在砂垫层 上面浇筑 2 0 0 a r m 厚C 2 0素混凝 土垫层 作为沉 井刃脚 的底模 ,6 0 a r m 厚 素混凝 土垫层 作 为沉井支护 结构脚手架立杆基础 。 本 文 以圆形沉井施 工为例 ,为便于环 形模支设 ,模 板采用 l O O m m宽 组 合钢模板进 行拼接 ,钢模板采 用卡扣 锁死 ,侧模 固定采用对 拉螺栓及 斜撑 , 同时 为了保证 外侧模板稳 定,防止浇 筑混凝 土过程 中发生胀模 , 在模板 外侧增设螺纹 由2 2的钢 筋环型箍 。模板采用 内撑 外挂的方式整 体 固定在满堂 脚手架 上,模板 的固定与脚 手架 的固定上下可 稍微移动 ,避 免 浇筑混凝 土 时下 沉压垮脚 手架 。混凝 土采用商 品混凝土 ,泵 车配 合, 采 用分层铺 设法,混凝 土面保持 同步均匀 上升, 以免造 成地基 不均匀 下 沉 或产生倾 斜, 同时设专人密 切观测沉 井沉 降,以防井壁 产生裂缝 。为

地铁隧道结构沉降监测数据处理与分析系统的设计与实现

地铁隧道结构沉降监测数据处理与分析系统的设计与实现

沉 降监 测基 准 网 由水 准基 点 和工 作 基 点 构
成 。 由 于狭 长 的 地 铁 隧 道 使 得 监 测 基 准 网 的 网 形呈现较 长 的带 状 形式 , 水 准基 点 远 离 隧道 , 加 之隧道 内光 线 昏暗 , 能见 度 低 , 给 观 测 成 果 带 来
1 2
选择 相应 的平差 方法 。
检验, 判 定 整 个 基 准 网 的稳 定 性 。若 不 显 著 , 则 表 明基 准 网稳 定 。若 显 著 则 采 用 单 点 位 移 分 量 法 对 基 准 网的基 点进行 逐 个 检 验 , 判 定 各 工 作基 点 的稳
定性 。
1 . 2 . 3 单 点位移 分量 法




第3 6 卷
行分 析 , 本文根据地铁沉 降变形实际 , 主要 分 析 如
该法 是 在 平 均 间 隙法 对 基 准 网进 行 整 体 性 检
验显 著后 注
意 的是 , 该 法 是 在 两 期 同精 度 观 测 的条 件 下 进 行 的, 因此 在进 行 该 项 检 验 前 , 先 要 进 行 F 检 验 判 断 两期 观测 精度 是否 相 同 。
法, 对地铁结构沉 降监测数据 处理与分析 系统的设计 与 实现进 行 了深入研 究 , 经某地铁监 测 实际应 用表 明该 系统 具有较好 的 实用性和较 高的可靠性 , 为类似 系统提供 了借 鉴。
关键词 地铁 隧 道 结 构 沉 降监 测 数据 处理与分析 沉 降监 测 系统
中图分类 号 : T U 1 9 6
文献标识码 : A
文章编号 : 1 6 7 2 —4 0 9 7 ( 2 0 1 3 ) O 5 —0 0 1 1 —0 3

地铁工程变形监测方案

地铁工程变形监测方案

地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。

在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。

通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。

本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。

二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。

地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。

地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。

地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。

三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。

其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。

隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。

地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。

地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。

四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。

传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。

新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。

五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。

监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。

地铁隧道沉降变形信息发布及预警系统设计与实现

地铁隧道沉降变形信息发布及预警系统设计与实现



系统管理员 I \ /
上一

定/ . /
l 普通查 询人员
用 户
2 上 位机 发 布系统 开 发原 理及 需求
分析
上位机预警及信 息 发布系统使用 W b e 浏览器作 为用户操作界面, 基于微软. E 平台的 A PN T架 NT S .E
构进行 开发研 制 J 。使用 工具有微软 Vsa Sui i lt 一 u d
模块 :
() 1 系统管理 : 实现 系统 的登 录、 等级权 限设 置、 用户信息修改、 报警信号接解除等 。
( ) 询模块 : 现 隧道 当前及 历 史沉 降变形 2查 实
览器
数据 的查 询 , 当 前最 大 截 面 变形 处 信 息 , 度最 及 温
高处等环境信ห้องสมุดไป่ตู้的实时显示。
( oeeo ehncl nier g T n ̄U i rt,Saga 0 84,hn ) C l g fM caia E gnei , o g nv sy h hi 10 C ia l n i ei n 2
Ab t a t T i p p r r p s d ad sg b u emer e omain d t it b t n t r u h t e I tm e .B s d sr c : h s a e o o e e in a o t h t d fr t aa d s i ui h o g h n e t a e p t o o r o
位 机发 布 系统应实 现 图 3所示 的主要功 能 。
用 户 登 录
图1 p H值 对 S S改性 沥青乳液储存稳 定性 的影 响 B
Fi . T e t n e eo ma in mo i r g s se wo k n g 1 h u n l d fr t n ti y tm r i g o on p n i l i r cp e

地铁隧道结构变形监测方案

地铁隧道结构变形监测方案

地铁隧道结构变形监测方案一、工程概况珠江新城海心沙绿化改造及地下空间(三区)基础工程位于珠江新城海心沙区域的西部,正在运营的地铁三号线“珠江新城〜赤岗塔”区间盾构隧道在该工程的地下由西北向东南通过。

该工程位于地铁隧道上方的地基基础主要为直径 1.6和2.2米的钻(冲)孔灌注桩基础,桩底高程约为-23.35〜-20.7米(广州城建高程),并设置横、纵向转换梁支撑跨越地铁隧道的上部主体结构,最大的转换梁梁底高程约 2.70米。

经核查,位于地铁隧道两侧的钻(冲)孔桩与地铁隧道的最小水平净距约2.90米,位于地铁左、右线隧道中间的钻(冲)孔桩与地铁隧道的最小水平净距约 2.60米。

横、纵向转换梁梁底与地铁隧道结构顶面之间的最小垂直净距约为15.50米。

该工程范围内的地铁隧道结构顶面高程约-13.15米,地铁隧道结构底高程约-19.35米。

二、监测目的正在运营的地铁三号线“珠江新城〜赤岗塔”区间盾构隧道在该项目看台工程的地下由西北向东南通过,在地铁隧道结构外侧左右垂直距离15.0米范围内的看台工程桩及上部主体施工过程中,可能对地铁隧道结构产生变形、倾斜、位移、隆起或沉降等方面的影响。

受广州新中轴建设有限公司的委托对此区间的盾构隧道进行变形监测和裂缝监测。

主要目的是:1、了解各种因素对地铁盾构结构变形等的影响,为有针对性地改进施工工艺和修改施工参数提供依据;2、预测地铁隧道结构的变形趋势,根据变形发展程度,决定是否需要采取保护措施,并为确定经济合理的保护措施提供依据;3、了解上部工程施工过程中地铁隧道结构有无裂缝情况及其变化规律;4、建立预警机制,避免结构和环境安全事故造成不必要的损失;5、施工过程中,根据监测数据分析,及时反馈信息、指导施工,为地铁的安全运营提供可靠保障。

三、遵循的监测技术及方案编制依据3.1遵循的技术为TPS极坐标差分法该方法采用瑞士Leica公司的具有ATR (自动目标识别) 功能的TCA系列的全站仪(又称测量机器人),进行极坐标差分作业。

深圳地铁5号线结构变形监测研究

深圳地铁5号线结构变形监测研究
因地铁隧道现场条件的限制,本文采用精密导线 法进行测量。根据现场实际情况尽可能控制相邻导线 边长比值大于 1/3,且在一个导线网里相邻导线边长 比值接近 1/3 的导线边数不允许超过导线边长总数的 1/3,以保证控制导线的测量精度。
作者简介:韦选万(1984—),男,壮族,工程师,主要研究方向为地铁监测。E-mail:361539747@
深圳地铁5号线结构变形监测研究
韦选万
(深圳市市政设计研究院有限公司,广东 深圳 518029)
摘 要:随着城市轨道交通的飞速发展,城市轨道交通网络的安全运营对整个城市的稳定性都起着至关重要的作用。 以深圳地铁 5 号线为试点,从既有运营线路的变形量监测出发,采用实时、科学、准确的技术方法,建立高效的数 据处理网络信息系统。在已有监测数据资料的基础上,通过为期一年的监测、统计分析,为考察地铁隧道运营安全、 研究隧道变形规律提供了可靠的参考数据。 关键词: 城市轨道交通;变形监测;深圳地铁
4 监测实验分析
4.1 水平观测分析 水平位移观测采用车站的基准点为坐标起算点,
为保证监测数据的准确性和连续性,平差计算前采用 检查相对关系的方法对基准点的稳定性进行检验分析。 具体算法以基准网中两个点的坐标为起算点,推算网 中其他点的坐标,如推算出的坐标与原坐标的差值小 于极限误差(取 2 倍观测中误差),则认为基准网点 间相对变形不显著,并将其坐标作为观测点平差的起 算数据。水平位移基准网稳定性检验计算结果如表 1 所示。
LJ079 黄贝岭
LJ081
里程
K00+342 K00+456 K01+738 K01+852
K06+438 K06+548 K07+651 K07+765 K10+332 K10+446

地铁保护区变形自动化监测技术应用

地铁保护区变形自动化监测技术应用

地铁保护区变形自动化监测技术应用发布时间:2021-07-27T16:00:46.373Z 来源:《基层建设》2021年第9期作者:尹波[导读] 摘要:在城市化不断发展的背景下,城市地铁线路越来越多、为人们的生活提供了便利。

中铁第六勘察设计院集团有限公司天津市 300308摘要:在城市化不断发展的背景下,城市地铁线路越来越多、为人们的生活提供了便利。

但不断地开发地铁沿线也造成了地铁隧道保护区结构变形的问题越来越频繁发生。

地铁隧道保护区是否变形是影响地铁运行状态的一个重要指标,及时发现隧道结构的变化、解决变形问题对于保障地铁运行安全具有重要意义。

为此,相关部门及工作人员应当加大对自动化监测技术的研究和应用,全面保障地铁运营安全、保障人们生活与出行安全。

本文对地铁保护区变形自动化监测技术应用进行探讨。

关键词:地铁保护区;自动化监测;技术应用1有关机器人测量的非接触型监测的技术应用机器人测量的非接触型监测技术是一种常用的地铁保护区变形自动化监测技术,是一种在机器人顶部中央位置安装超声波、红外线的装置,通常信号发射装置上会设置一个具有四面反射作用的反射体。

这样的设置可以做到全方位的监测,即便是一些监测盲区也能被监测到,从而实现监测范围的扩大。

采取非接触型监测技术还是接触型监测技术需要考虑监测环境的各方面情况、测量对象,地铁隧道内光线并不充足,在一定程度上加大了监测工作难度,若是能将机器人测量的非接触型监测技术应用于监测过程中,可以全面提高监测效率、质量和水准,避免事故的发生。

常用的四种非接触型监测传感器包括超声波、微波雷达、毫米波雷达以及激光雷达,四种传感器各有优势和劣势,超声波具有较强的穿透力又具有很强的稳定性,不受电磁干扰,但测量范围仅限于百米之内,抗干扰能力也十分有限;微波雷达可实现多目标探测工作、测距范围较大,但微波雷达探测的盲区较多、体积过大不易于携带和安装;毫米波雷达抗干扰能力较强且具有测距范围大的优势,但精准度并不高、在特定环境下容易出现模糊的情况;激光雷达使用寿命较长、性价比高且安装使用比较方便,但其量程有限,具体选择何种传感器,需要视情况而定。

地铁结构变形处置预案

地铁结构变形处置预案

一、预案编制依据1. 《中华人民共和国城市轨道交通运营管理规定》2. 《城市轨道交通运营安全规范》3. 《城市轨道交通运营突发事件应急处理办法》4. 《地铁结构变形监测技术规程》5. 各类相关法律法规和行业标准二、预案编制目的为确保地铁结构安全稳定运行,提高地铁运营安全水平,最大程度减少地铁结构变形事故造成的损失,制定本预案。

三、预案适用范围本预案适用于地铁运营期间发生的地铁结构变形事故,包括但不限于以下情况:1. 地铁隧道、车站等结构出现裂缝、错位、倾斜等变形现象;2. 地铁隧道、车站等结构出现渗漏水、沉降、膨胀等现象;3. 地铁隧道、车站等结构发生火灾、爆炸等事故导致的结构变形。

四、预案组织机构及职责1. 预案领导小组:负责地铁结构变形事故的应急处置工作,统一指挥、协调各部门行动。

2. 应急指挥部:由预案领导小组下设,负责具体组织、协调、指挥应急处置工作。

3. 应急救援队伍:由地铁运营公司、相关专业人员、志愿者等组成,负责现场应急处置、救援工作。

4. 监测部门:负责地铁结构变形监测数据的收集、分析,为应急处置提供依据。

5. 信息部门:负责事故信息的收集、上报、发布等工作。

五、应急处置程序1. 监测发现(1)监测部门发现地铁结构变形异常时,立即向应急指挥部报告。

(2)应急指挥部接到报告后,立即启动应急预案,组织相关部门开展应急处置。

2. 初步判断(1)应急指挥部组织相关专家对事故现场进行初步判断,确定事故等级和处置方案。

(2)根据事故等级,启动相应的应急响应程序。

3. 现场处置(1)应急救援队伍根据事故等级和处置方案,迅速到达现场,开展应急处置工作。

(2)对事故现场进行隔离、警戒,确保人员安全。

(3)对变形结构进行加固、修复,消除安全隐患。

4. 后续处理(1)应急指挥部组织相关部门对事故原因进行调查分析,查明事故原因。

(2)对事故责任人进行追责,依法依规进行处理。

(3)根据事故原因,完善相关管理制度和应急预案。

上海轨道交通14号线隧道工程变形监测与分析

上海轨道交通14号线隧道工程变形监测与分析

上海轨道交通14号线隧道工程变形监测与分析摘要:为探讨隧道工程变形监测要点,文章以上海轨道交通14号线隧道工程为例,从建立地面及地下高程系统、布设监测点位,到获取监测数据,有效实现了对隧道变化情况的监测,监测结果可靠,能够为实际工作提供指导。

这对于促进隧道工程行业的发展也具有一定现实意义,希望能够为有关单位提供帮助。

关键词:轨道交通;隧道工程;变形监测地铁轨道工程的使用运行过程中,隧道沉降现象较为常见,但沉降量较大时,往往会造成车辆运行过程的平顺问题,带来较大的安全隐患。

与此同时,还存在治理难度大、周期长的特点。

对此,给予有效的监测方式,及时发现变形问题,尽早给予处理,才利于切实维护轨道工程的稳定应用,减少事故、问题的发生。

1 工程概况项目为上海轨道交通14号线沉降与收敛工程,测量范围为:昌邑路站(不含)~桂桥路站(含)段正线里程自K26+176.901~K38+557.755,包含工作范围内的折返线、与6号线云山路站换乘通道,桂桥路出入场线,地下车站9座。

实际的工作中,重难点为线路长,跨幅大,参与人员多,仪器设备投入多等,且存在时间紧、任务重的特点。

最终通过科学合理的规划,快速建立了地面高程系统、获取了线路测量数据、并对数据进行了有效处理,完成了监测任务,取得各方一致的好评。

2 工程地质条件从轨道工程所在地域情况来看,为水系较为发达的区域,包括地上河流与地下暗河。

地质情况为浜土、粘土、基岩石等,基岩面被厚约250~350m的第四系覆盖。

由于基岩出露面积较少,工程地质条件主要涉及100m以浅的主要由软土、粉土和黏性土组成的第四系松散土体,其中与地铁隧道工程建设密切相关的主要为浅部砂、粉土层和软土层。

由于地质情况较差,虽然施工过程中给予了有效的固化技术,但还可能出现工程的沉降变形问题,因此给予全面的变形监测具有必要性[1]。

3 隧道变形监测3.1 隧道监测内容(1)对隧道位移变形监测。

隧道工程在长期使用过程中,很可能出现地表下沉位移或周边位移现象。

上海地铁运营线路隧道变形分析及研究

上海地铁运营线路隧道变形分析及研究

Value Engineering0引言上海地铁已形成运营里程稳居世界前列的城市网络大动脉,分担公交出行比例超70%,日均客流超千万,迄今为止运营里程稳居世界前列,已达831公里,上海地铁规模化、网络化的形成不仅提升了城市活力,更进一步方便了乘客的日常出行。

因此,全网的安全运营给上海地铁管理方带来巨大挑战。

全面关注隧道结构的变形状态是上海地铁重点实施的工作之一。

本文在撰写之前,充分考虑上海地铁目前全网络的运营区间的变形状态,通过总体比对分析,选取2号线客流量较大、区间长度较长、变形特点较为突出的A 站-B 站为典型案例,分析自投运15年以来,隧道结构的变形情况,结合目前隧道结构的总体情况并进行合理评估,为上海地铁的运营管理和维护提供参考建议。

1概况2号线东西横穿市中心且贯穿浦东、虹桥机场及火车站,与多线路形成换乘枢纽,A 站-B 站位于西侧,长约5.8km ,包含a 、b 、c 、d 四个风井以及一个泵站。

上方地势平坦,地面标高大部分处于2m ~5m ,区域基岩上层覆土为约350m 第四季松散沉积物,主要由粘性土层、粉性土层和砂性土层组成[1],自上而下为表土层、软土层、一般粘性土层、第一硬土层、第一砂层、第二硬土层、第二砂层等[2]。

受古河道切割影响,第⑥层硬土层缺失,第⑤层厚度较大。

A 站-B 站为单圆通缝隧道,建设期易拼装和定位、衬砌环施工应力相对小、变化控制量更精细,管片成型效率较高。

盾构推完后,结合土体特点加之地层扰动,出现一定变形,隧道上方近年来无新建建筑物和构筑物,但监测数据仍有波动,因此,该区间结构变形也是上海地铁运维管理方的关注重点。

2A-B 区间变形监测分析A 站-B 站隧道监测重点围绕沉降和收敛展开,频率均为2次/年,在上、下半年进行。

针对数据超标区域,经综合判定后频率提升至1次/月,稳定半年后降频。

2.1沉降分析A 站-B 站按照“五环一点,遇缝必设”的原则布设道床沉降监测点,间距约6m ,水准仪测点数量超2800个。

地铁线路结构变形监测

地铁线路结构变形监测

地铁线路结构变形监测摘要:本文主要介绍了地铁线路结构变形监测实施的一套成熟、完善的技术方案,明确了地铁线路结构变形监测的评定标准,可作为今后地铁线路结构变形监测的重要借鉴。

关键词:变形监测;基准点;实施方案;评定标准1、概述地铁线路结构变形监测是为了掌握运营后车辆荷载、运行和地铁沿线因物业开发或其它工程施工对车站和区间隧道结构及轨道线路的影响,确保地铁结构安全和正常运营,建立全线的变形监测体系,为后续地铁设计、施工提供资料。

广东省重工建筑设计院有限公司承担了长沙地铁2号线变形监测工程,对长沙地铁2号线危害性变形及时提出了预报,达到了监测的目的;并且分别建立了全线的变形监测体系,为下阶段的监测工作提供了依据;为地铁轨道检修及维护使用、保证地铁的正常运行和设施安全提供安全信息。

2、变形监测实施技术方案2.1变形监测基准点的选择基准点是变形监测的基础,因此基准点选择原则应遵循:基准点位于变形区域外,地质情况良好,不易发生变形的地段。

长沙地铁2号线变形监测在铺轨控制基标的基础上测设,隧道及车站内的铺轨控制基标是在一级导线的基础上测设的,而平面变形监测的导线精度要求为三等导线,后者作业精度要求远高于前者,这就造成低精度的基础导线点作为高精度测量的平差依据。

虽然位移沉降监测重在于对两次测量成果进行比较,在保证作业路线、作业仪器、作业人员乃至作业精度不变的情况下,对导线两端控制点的精度依赖不大,但两次测量的闭合差及其在误差分配方面的不一致,在一定程度上损害了三等变形监测成果的精度;而且,因变形监测的基准点为车站内的控制基标,个别车站的控制基标点数满足不了监测方案的要求,而在靠近车站的区间内选择了控制基标作为基准点,这些基准点本身是否受到变形区的影响而变形的情况,若存在变形也将影响监测的精度。

实践表明:选择铺轨控制基标作为变形监测的基准点不可取。

综合总结上述情况,经综合比较分析,长沙地铁2号线变形监测选择将基准点布设在车站内。

地铁隧道变形监测系统数据库设计与开发

地铁隧道变形监测系统数据库设计与开发

地铁隧道变形监测系统数据库设计与开发
赵炯;鲁丹军;潘舒眉;胡玉俊;熊肖磊
【期刊名称】《机电一体化》
【年(卷),期】2011()11
【摘要】研究地铁隧道变形监测系统数据库的设计方案。

数据库系统作为监测系统数据采集和处理的存储介质,同时也为上位Web发布提供数据基础。

简述了基于图像处理的隧道变形监测系统的工作原理及形成隧道变形海量信息数据库的设计方案。

通过系统需求分析和数据库逻辑设计,构建隧道变形监测系统的数据库系统。

【总页数】5页(P84-88)
【关键词】隧道变形;SQL;sever;数据库;Web发布
【作者】赵炯;鲁丹军;潘舒眉;胡玉俊;熊肖磊
【作者单位】同济大学机械工程学院机械电子研究所
【正文语种】中文
【中图分类】TP311.13
【相关文献】
1.自动监测系统在地铁隧道变形监测中的应用 [J], 吴华明
2.地铁隧道结构变形监测信息管理系统的开发 [J], 黄维华;岳荣花;张学华;于安柱
3.自动变形监测系统在运营地铁隧道监测中的应用 [J], 廖海山;李盈洲
4.自动变形监测系统在运营地铁隧道监测中的应用 [J], 王浩克
5.地铁隧道沉降变形监测系统数据库设计 [J], 周奇才;韩梦丹;范思遐;熊肖磊;张慧群
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁隧道结构变形监测信息管理系统的开发摘要地铁隧道结构变形监测的特殊性、周期性和长期性,使其信息量非常庞大。

信息管理是地铁隧道结构变形监测中一项重要的工作,现有的管理方式效率很低。

为了高效、准确地管理监测信息,及时分析预报地铁隧道结构的稳定状况,本文结合南京地铁运营期隧道结构变形监测实例,开发了一套具有变形监测资料存储、预处理、管理分析、可视化分析、预测预报及限值预警等功能的信息管理系统,保证了准确及时快速的数据处理和信息反馈,具有良好的运用和推广前景。

关键词地铁隧道变形监测信息管理系统1 引言随着经济的发展 ,越来越多的城市开始兴建地铁工程。

地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。

无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。

地铁隧道是一狭长的线状地下建构筑物,监测点数量比较大,其周期性和长期性,使数据量非常庞大。

面对这些繁杂而又庞大的数据能否管理利用好,关系到监测隧道结构变形和预测预报结构变形工作能否实现和实现的质量。

为此,如何有效地管理原始信息,并进行相应的处理显得尤为重要。

目前多数监测信息的管理和应用存在不直观、不及时、自动化程度较低等缺点[1,2],根据地铁隧道结构自身特点研制一套高效率的、使用方便的监测信息管理系统是必要的,它与变形监测一样具有重要的实用意义和科学意义。

2 系统设计思想以地铁隧道结构变形监测信息为管理对象,根据地铁隧道结构变形监测的实际情况,综合运用监测数据处理分析技术、数据库技术和信息管理技术,实现对地铁隧道结构变形信息的存储、预处理、管理分析、可视化分析监测信息、预测预报及限值预警,为结构分析提供数据资源,以及时反馈地铁隧道结构安全状况,使安全监测管理人员更为方便和高效的管理监测信息,为确保地铁隧道结构的安全运行提供有效的决策支持。

地铁隧道结构变形监测数据管理系统主要应满足如下要求:1.1 提高地铁隧道结构变形监测数据处理分析与管理的科学化和自动化水平,满足辅助决策需求1.2 构建地铁隧道结构变形监测信息管理基础平台1.3 为后期自动化监测的开展及安全监测专家系统的建立提供基础。

3 系统功能地铁隧道结构变形监测信息管理系统包括文档管理、数据预处理、数据库管理、监测数据分析、信息预警预报和系统管理六大模块, 内容不仅涵盖了相关技术规范的所有要求,而且具有地铁隧道自身的特点,全面、标准、专业,有良好的应用前景。

3.1 文档管理模块3.1.1 变形监测资料地铁隧道结构变形监测根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,主要内容包括[3]:垂直位移监测(区间隧道沉降监测和隧道与地下车站沉降差异监测);水平位移监测(区间隧道水平位移监测和隧道相对地下车站水平位移监测);隧道断面收敛变形监测等。

对于不同的地铁隧道结构变形监测项目内容,所用监测方法和仪器也不相同。

通常,对于隧道垂直位移和水平位移监测,可通过大地测量或者自动化测量的方法利用精密水准仪、精密全站仪或智能全站仪进行;而对于隧道断面收敛变形监测,则要通过物理量测的方法利用收敛仪(计)进行。

变形监测资料包括历次变形监测的原始数据,监测报告及鉴定报告等。

3.1.2 工程概况资料工程概况资料主要有工程概况、工程特性参数、重要技术资料和安全监测系统档案等。

(1)工程概况:包括地铁地理位置,车站布置,沿线主要建筑物概况,工程地质与水文地质条件,结构特性、施工情况等。

(2)重要技术资料:主要结构设计文件、图纸,运行设计报告,竣工验收报告,隧道加固改建或观测更新改造专题报告,重要工程图形和图像。

(3)变形监测系统档案:主要包括监测仪器运行、维护和历次检查、鉴定记录及报告。

(4)其他资料:主要包括水文、气象和地震资料等。

3.1.3 巡检资料包括对隧道结构的各个部位和断面的渗漏、变形和裂缝等的日常巡查记录表,隧道安全情况和隧道重大事故报告等。

3.2 数据预处理模块通过不同的方式导入原始监测资料,并对其进行粗差检验,若有粗差则提示警告,以便查找原因返工重测,然后再进行初步处理分析。

对基准点和工作基点的稳定性进行检验,不同的稳定性检验结果决定平差方法的选取。

最后对所得监测结果进行整理,存储至相关数据库。

3.2.1 数据导入目前嵌入式操作系统发展特别迅速,根据监测手段和方式不同,用户可以通过系统的接口程序实现系统和观测电子手簿直接相连,自动导入或手工导入。

3.2.2 粗差检验依据相关规范规程应用相应检验粗差的方法对其进行检验,若有粗差则给出提示警告和可能原因,以便查找原因返工重测;若没有粗差则提示检验通过,可进行下一步处理计算。

3.2.3 稳定性检验通过对监测资料的计算分析,应用统计方法(F检验和t 检验)对基准点和工作基点的稳定性状况进行分析,为平差计算采用何种平差方法提供依据。

3.2.4 平差计算根据基准点及工作基点稳定性检验结果,对变形监测网相应的选用经典平差、拟稳平差或自由网平差;如果监测资料(如隧道收敛变形监测资料等) 无需平差计算的则直接进行相关成果计算。

3.2.5 资料整理入库根据前述各部分处理计算所得结果,对所得监测成果以及检验结果进行整理和存储入库。

此外,可根据需要对相关监测属性信息进行相关编辑、修改,然后再整理入库。

3.3 数据库管理模块对数据库相关数据进行查询、添加录入、修改和删除,同时可根据需要进行数据报表生成输出。

3.3.1 数据查询根据不同监测项目特点,采用不同的查询方式对测点的属性信息和监测成果进行条件查询和遍历查询,并可根据需要将查询结果以不同的方式输出。

3.3.2 数据录入添加根据实际需要对测点属性数据和监测单位所提供的直接成果数据进行录入添加,同时可对属性数据信息进行编辑、修改添加。

3.3.3 数据修改考虑到操作的规范性,系统只允许对监测点属性进行修改。

通过查询所要修改的监测点,对其属性信息进行修改,同时可以动态显示数据库中的监测点属性信息,方便用户及时看到修改结果。

3.3.4 数据删除与数据修改功能相似,通过对数据信息查询后再进行删除,删除前须经确认,然后才能操作,确保准确无误。

3.3.5 报表生成可根据用户需要,查询相关监测信息,然后以相关的报表形式输出监测信息。

3.4 监测数据分析模块通过应用不同的数据分析方法和方式对各种监测数据进行处理分析,分析过程和方式采用表格和曲线图形方式进行。

3.4.1 监测点稳定性分析应用相关稳定性分析方法及指标,结合监测现场实际,对不同类型监测点稳定性进行分析评判。

3.4.2 可视化分析针对监测信息反馈分析的需要,提供可视化的变形监测图形报表,辅助测点稳定性分析评判,以便使用者更直观具体地了解隧道结构整体变形趋势。

以南京地铁西延线垂直位移监测为例,除提供每期沉降量曲线图、沉降速率曲线图、挠度曲线图、相对挠度曲线图外,还可提供任意两期累积沉降量、累积沉降速率、挠度及相对挠度的对比曲线图。

3.5 信息预警预报模块仅仅将监测的信息录入系统中是不够的,还要根据稳定性分析以及前n期的监测成果模拟监测点的变形曲线,并结合相关资料预报今后的变化趋势。

由于影响变形体的因素错综复杂,考虑到系统的通用性,模块提供了回归分析、灰色系统、kalman滤波等传统的模型供选择。

根据系统给出的限值进行预警,提供相关区间段的工程图纸及地质、水文气象资料,便于隧道结构变形情况的进一步分析。

3.6 系统管理模块为保证系统的安全,系统运行和数据操作过程中都不能出现任何差错,必须对系统进行有效的管理,这主要是指对系统用户的管理及日常使用日志的管理。

3.6.1 系统用户管理为保证监测信息的完整性、正确性和安全性,必须对系统的用户进行有效的管理。

用户登录系统的过程必须在系统日志中进行登记,包括用户名、登录时间、对系统的操作过程以及在系统中滞留的时间等。

系统管理员定期将系统的用户使用情况向主管领导汇报。

在征得主管领导的同意后,系统管理员可以根据实际情况添加用户或提升、降低某些用户的用户使用级别,必要时可以禁止某些用户的使用权力。

系统用户管理包括系统用户登录管理和用户权限管理两个部分。

3.6.2 系统日志及安全管理本系统为系统管理员提供系统日志的检查和备份功能,使系统管理员通过对系统日志的查看了解系统的使用情况以及存在的不足和问题 ,及时地处理系统存在的隐患,保证系统的高效运行。

3.6.3 数据库备份与恢复为了保证管理系统或计算机系统经灾难性毁坏后,能正常恢复运行,必须进行数据库的备份与恢复。

系统采用自动备份与人工备份结合的方式,确保系统的安全稳定运行。

4 结语地铁隧道结构变形监测信息管理系统采用C/S结构设计,各功能模块间具有相对地独立性,便于进行功能扩充,为后期自动化监测的开展及安全监测专家系统的建立提供支持和铺垫[4,5]。

该系统已在南京地铁中应用,不仅准确及时快速的数据处理和信息反馈,提高了地铁运营的管理水平,而且为地铁的安全运营提供了保证,具有显著的社会经济效益和良好的应用前景。

参考文献[1]王浩,葛修润,邓建辉,丰定祥.隧道施工期监测信息管理系统的研制[J].岩石力学与工程学报,2001,10:1684—1686[2]李元海.地铁施工监测数据处理系统的分析设计及应用[J].隧道建设,1996,4:22—26[3]黄腾,李桂华,孙景领,岳荣花.地铁隧道结构变形监测数据管理系统的设计与实现[J].测绘工程,2006,6:1—3[4]赵显富.变形监测成果数据库管理系统的研制[J].测绘通报,2001,4:28—32[5]张其云,郑宜枫.运营中地铁隧道变形的动态监测方法[J].城市道桥与防洪,2005,7:87—89。

相关文档
最新文档